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Several simple models have been proposed to account for spatial organization in early development. Recently,
a number of models have been proposed in which such patterning mechanisms are coupled. Here, we present a
review of some of the latest theoretical results on such systems. In particular, we consider two cases: in one, the
coupling of two mechanisms greatly enhances the robustness of the patterns produced; in the other, a hierarchical
model exhibits spatially asymmetric patterns that are consistent with certain experimental observations.

1 Introduction

Spatial organization in early development is one of the
central issues in embryology. Many models have been pro-
posed to account for spatial pattern formation in such
diverse areas as skeletal patterning in the vertebrate limb,
the marking on animal coats, the formation of regular pat-
terns in tissue organ primordia, segmentation patterns in
Drosophila, aggregation and differentiation in Dictyoste-
lium Discoideum, to name but a few. Two important
models are chemical pre-pattern models, which propose
that a spatial pre-pattern is set up in some chemical concen-
tration to which cells respond by differentiating if the con-
centration breaches a threshold value [24]; and mechano-
chemical models, which propose that the mechanical and
chemical interaction of cells with their environment leads to
a spatial pattern in cell density and cells within high density
aggregates then differentiate. The pattern formation poten-
tial of these models has been widely studied. The book by
Murray [17] is an excellent and detailed review of this work.

The patterns produced by these models, however, are
unable to capture essential experimental observations in
some cases and this has prompted a number of authors to
consider the pattern formation potential of more com-
plicated models in which mechanisms are coupled together.
This views spatial organization as a hierarchy of events. For
example, many of the above models, such as reaction-diffu-
sion models for chemical pre-patterns, exhibit patterns that
increase in complexity with increasing domain size. Thus
they are unable to account for patterns that exhibit a large
degree of scale-invariance. For example, the slug stage of
the slime mould Dictyostelium Discoideum is composed of
pre-stalk and pre-spore cells. These cell populations are in
a ratio that remains fixed over several orders of magnitude
in slug length. Othmer and Pate [21] considered a modified
reaction-diffusion system in which the diffusion coefficient
of one of the chemicals was determined by a control
chemical which, itself, satisfied a reaction-diffusion equa-
tion. They showed that this modified model could exhibit
patterns that were scale invariant.

In skin morphogenesis, certain organs occur in patterns
that are composed to two very different wavelengths. This
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appears to be inconsistent with standard models in which a
preferred wavelength is selected. Nagorcka et al. [18] con-
sidered a tissue interaction model for the formation of skin
organs. They showed that coupling a reaction-diffusion
model with a mechanochemical model could lead to com-
plex pattern formation in which the pattern was composed
of two spatial patterns, each having very different wave-
lengths. More recently, Cruywagen et al. [5] considered a
tissue interaction model in which each mechanism alone
was incapable of producing pattern, but when coupled, the
full model produced a diverse range of patterns.

One of the major criticisms of the application of reaction-
diffusion (or Turing models [23]) to pattern formation in
embryology is that the patterns they generate are too sen-
sitive to variation in parameter values or initial conditions
for them to realistically account for robust patterning
mechanisms [1]. Moreover, Turing patterns are sym-
metrical in the sense that each peak in concentration has the
same height and the wavelength is constant across the do-
main, at least near to the bifurcation point, whereas many
patterns in embryology are asymmetrical. In Section 2 we
present two modifications of the Turing model in one
spatial dimension. In Model 1, the role of boundary condi-
tions is investigated. It is shown that appropriately selected
boundary conditions can greatly enhance the robustness of
the resulting patterns. Model 2 is a hierarchical model in
which the diffusion coefficients of a reaction-diffusion
system are determined by a control chemical. It is shown
that this model exhibits spatially asymmetric solutions. An
application of these results is presented in Section 3 and
both models are discussed in Section 4.

2 Generalised Turing Models

The generalised nondimensionalised Turing model for
two species in one space dimension takes the form

U= )’f(“; v,p)+ (Duux)x
in (0,1) (1)
v, =yg W, v,p)+(Dyu,)y
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with boundary conditions

ou .
0,—=p(1—-0)(0:u"—u)
on
for x =0,1 (2)

86,20 = 8p(1 - 0,)(650° ~v)

on
where u(x,t) and v(x,t) are nondimensionalised chemical
concentrations at position x and time ¢, with xe[0,1];  is
a nondimensional parameter proportional to the dimen-
sional length L of the domain, and the diffusion coefficients
of u and v are D, and D,, respectively. The functions f and
g are rational polynomials which model the reaction
kinetics and p denotes the vector of kinetic parameters. The
parameters 6;€[0,1], i =1,2,3 are homotopy parameters,
and u® and v® denote the uniform steady state values of
morphogen concentrations, that is, f(u®,v’,p)=gu’,v°,
p)=0.

When (6,,6,,60;) = (1,1, ) the boundary conditions (2)
reduce to homogeneous Neumann conditions (zero flux),
and when (6,, 65, 6;3) = (0,0, 1) we have Dirichlet conditions
fixed at the uniform steady state. These two types of bound-
ary conditions are referred to as scalar boundary conditions
[7]. If D, and D, are constant, then the above system, with
scalar boundary conditions, is the standard Turing model
that has been widely studied. We now consider two varia-
tions of the standard model.

Model 1

The standard Turing model is clearly a very special of the
above general model. For example, if (84,8,,6;) = (1,0,1),
then u satisfies homogeneous Neumann boundary condi-
tions, and v satisfies Dirichlet conditions fixed at the
uniform steady state for v. This is an example of a non-
scalar boundary condition. The effects of such non-stan-
dard boundary conditions was investigated in [7] for (1)
with constant diffusion coefficients. It is important to note
that the mathematical analysis becomes much more com-
plicated as soon as one moves away from the standard case.
For example, for this particular set of non-scalar boundary
conditions, the eigenfunctions of the linearised system are
no longer simple sines or cosines. Moreover, for the case
(8,,6,,65) = (1,0,0), for example, if v* does not equal 0
then the system does not have a uniform steady state. There
are, however, some special cases in which a non-standard
linear analysis can be carried out (see [7]). The time evolu-
tion model can be analysed by solving the system numerical-
ly. The steady state problem can be investigated using
numerical bifurcation packages such as AUTO [6] which
calculate the steady states and their stability as a bifurcation
parameter is varied. For the case of scalar boundary condi-
tions, it is well known that a minimum domain length is re-
quired for a spatially non-uniform steady state to exist and
the bifurcation diagram and steady states increase in com-
plexity with increasing domain length. Furthermore, multi-
ple stable steady states are possible. An investigation of the

corresponding properties for non-scalar boundary condi-
tions was carried out in [7] for the kinetics
f(u,v,p)=B—kKu-— uvz, g(u,v,p)= KU+ uv? — v, where f
and k are fixed parameters, corresponding to a simplified
glycolysis model. It was found that for certain non-scalar
boundary conditions, a stable, non-constant, steady state
can exist at arbitrarily small L. For most non-scalar bound-
ary conditions, the range of admissible solutions decreases
and hence the complexity of the bifurcation diagram is
greatly reduced. Solutions are less sensitive to changes in
domain size and are more robust to changes in other param-
eters and in initial conditions.

These results hold for several types of reaction kinetics.
For example, the Schnakenberg model [22], where
fu,v,p)=a—u—-u’v, gu, v,p):b—uzv, a and b are
constant parameters, was analysed in [20] and shown to ex-
hibit similar properties. Furthermore, the time evolution
problem for these kinetics was simulated for the case where
y was taken as a function of ¢ to represent a growing do-
main. For scalar boundary conditions, as domain length in-
creases, the steady state problem exhibits a multiplicity of
stable states. For the time evolution problem, one therefore
has a mode selection problem in which the pattern exhibited
for a certain domain size will depend critically on the initial
pattern, which, in turn, will depend on the rate of domain
growth. However, with certain non-scalar boundary condi-
tions, the problem of multiplicity of stable solutions can be
totally eliminated for a large range of domain length.
Therefore, as the domain grows, it can only evolve to the
single pattern appropriate to that domain length.

Model 2

We now consider the scalar boundary condition case in
which the diffusion coefficients are spatially varying.
Several authors have analysed Turing models with spatially-
varying parameters [8, 10—12, 14] but there are few
analytic treatments for the case of spatially-varying diffu-
sion coefficients [13]. Here, we consider a hierarchical
model in which the diffusion coefficients of ¥ and v depend
on a control chemical ¢, which itself satisfies the reaction
diffusion equation

¢ =vic,—0%c 3)

subject to the boundary conditions

(0,8)=0, ec(1,t)=¢5, (4)
where v2 and @2 are, respectively, the nondimensionalised
diffusion coefficient and the rate of linear degradation of c.
The motivation for this equation comes from the applica-
tion to skeletal patterning along the anterior-posterior axis
of the limb bud in which there are known to be gradients of
several chemicals which influence morphogenesis. Assum-
ing further that the diffusion coefficients depend linearly on
¢, this is the simplest possible composite model.
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Assuming that this reaction-diffusion equation reaches a
stable equilibrium on a fast time scale during which in-
significant changes in ¥ and v concentrations take place, the
equilibrium distribution of ¢ is ¢y cosh (2x)/cosh 2, where
Q=06/v.

As an example, we chose the Schnakenberg model for the
kinetics for ¥ and v. A mathematical investigation of this
system is again non-standard. If one approximates the dif-
fusion coefficient to be piecewise constant a linear analysis
can be carried out which determines the parameter space in
which various types of patterns can form [2]. The patterns
are now asymmetrical. For the case where both diffusion
coefficients are piecewise constant the patterns produced
have almost constant amplitude but their wavelength varies
across the domain [3]. For the case in which only one of the
diffusion coefficients depends on ¢, the patterns produced
can be isolated to parts of the domain, with an amplitude
that can vary markedly across the domain [2]. Detailed
numerical simulations show that these results carry over for
the full system (with the diffusion coefficients varying con-
tinuously with time).

3 Application

We now consider the biological application of the above
modified Turing models to skeletal patterning in the
vertebrate limb. This is a widely studied problem both
theoretically and experimentally (see [15] for review). The
skeletal elements within the limb are laid down at a very ear-
ly stage within the limb bud, before the complicated
geometry of the bud has developed. Pattern formation
essentially occurs along two axes: anterior-posterior (AP)
and proximal-distal (PD). The limb grows outwards under
the influence of a specialised ridge structure at the tip
known as the apical ectodermal ridge (AER). Removal of
this ridge terminates growth and leads to limbs in which the
skeletal structure has been truncated. The AP pattern is
controlled by a specialised zone at the posterior margin
known as the zone of polarising activity (ZPA). The skeletal
pattern along the PD axis follows the transitional sequence
1-2-3... the extra elements being accommodated by a
widening of the AP axis. It may be possible to generate such
a transitional sequence using the standard Turing model,
but only if the parameters of the model are changed in a
very precise manner [19]. However, using Model 1 we can
show that the sequence can be generated easily and robustly
as domain length L changes [7]. It is important to note that
as the parameter L occurs in a nondimensionalised parame-
ter which also includes diffusion coefficients, such a se-
quence could also arise due to appropriate changes in diffu-
sion coefficient.

The above model does not capture the asymmetry of the
skeletal elements along the AP axis. This behaviour can be
obtained from Model 2, in which the domain can be essen-
tially partitioned by the concentration of the control
chemical, ¢, into pattern-forming and non-pattern-forming
subdomains. The intuitive explanation of this result is quite
clear. Bearing in mind that the diffusion coefficient and do-

main length are closely linked, changing the diffusion coef-
ficient corresponds to varying the length. Therefore a
spatially-varying diffusion coefficient essentially rescales
the domain in such a way that certain sub-domains are
larger, and therefore pattern-forming, than others which
are non-pattern-forming.

Recently it was shown [25] that experimentally formed
double anterior limbs exhibit two humeri despite being the
same size as a normal limb bud which produces only one
humerus. Note that this is inconsistent with the traditional
Turing model which predicts that the pattern formed
depends on the length of the domain. However, it is wholly
consistent with Model 2 as the result can be interpreted as
combining two pattern-forming subdomains [16]. It should
also be noted that, because at the stage this experiment was
performed there was no sign of any pattern in cell density,
the authors concluded that skeletal patterning could not be
due to a mechanochemical mechanism. However, as the
mechanochemical model shares many similarities with the
Turing model, we conjecture that a modification of the
mechanochemical model along the lines of Model 2 would
result in patterns consistent with this experiment. Hence a
different interpretation of this result is that skeletal pattern-
ing in the limb is the consequence of a patterning hierarchy
of mechanisms in which a gradient type model first parti-
tions the domain into a set of subdomains on which a more
complex model acts. That model may be a chemical pre-pat-
tern or a mechanochemical model.

4 Discussion

In this paper we have considered two modifications of the
classical Turing model. We have shown that these modifica-
tions can generate robust patterns and asymmetrical pat-
terns in one dimension. Model 1 may be thought of as a
specific example of the more general hypothesis recently
proposed by Goodwin et al. [9] which suggests that mor-
phogenesis is intrinsically robust due to the dynamic coupl-
ing between different patterning mechanisms. Model 2
assumes that the diffusion coefficient of chemicals varies
spatially. Such a phenomenon has been shown experimen-
tally along the AP axis of the vertebrate limb [4]. We are
presently extending the analysis of these models to higher
dimensions. Preliminary analysis of Model 2 on a two-
dimensional domain shows that a variety of new patterns
emerges, one of which is a sequence of parallel stripes and
spots. These results will be presented in a forthcoming
publication.
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