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Table S1. Parameters resampled from the full posterior corresponding to four synthetic patients.

Parameter Fast responder Poor responder Plateaued responder Pseudo progression

λ 3.5× 10−2 d−1 3.0× 10−1 d−1 3.2× 10−1 d−1 3.2× 10−1 d−1

K 2.2 2.2 1.1 1.5
γ 1.1× 10−1 d−1 1.0× 10−2 d−1 2.2× 10−1 d−1 4.2× 10−1 d−1

ζ 1.4× 10−1 d−1 2.4× 10−4 d−1 3.6 d−1 4.5× 10−2 d−1

η 1.6× 10−4 d−1 8.3 d−1 1.3× 10−4 d−1 1.4× 10−4 d−1

φi 9.4× 10−2 1.5× 10−1 1.5× 10−1 2.9× 10−1

∗These authors contributed equally.
†These authors also contributed equally.
‡Corresponding author: browning@maths.ox.ac.uk or HEnderling@mdanderson.org
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Figure S1. Two parameter sweep of mathematical model. We sweep across the parameters
ζ ∈ {0.1, 0.5, 1, 1.5, 2} and η ∈ {0.1, 0.25, 0.5, 0.75, 1} with the other parameters fixed at λ = 1, K = 5,
γ = 0.3, and φ0 = 0.2. Arrows indicate the direction of increasing ζ and η. Trajectories show the
total tumour volume (black), and necrotic volume (red). All patients undergo the standard course of
treatment used in the classification procedure in the main document (daily doses of radiotherapy on
weekdays over a six week period, initiated from t = 14 d).
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Figure S2. Classified patient responses from two parameter sweep. We sweep across the
parameters 0 < ζ ≤ 2 and 0 < η ≤ 1 with the other parameters held fixed at λ = 1, K = 5, γ = 0.3,
and φ0 = 0.2. All patients undergo the standard course of treatment used in the classification procedure
in the main document (daily doses of radiotherapy on weekdays over a six week period, initiated from
t = 14 d). In (a), classification is performed using noise-free synthetic data, whilst in (b), classification
is performed using noisy synthetic data produced using the statistical model with pre-estimated noise
parameters.
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Table S2. R̂ MCMC diagnostic statistics for each patient.

ID In Training λ K γ ζ η φ0

1 Yes 1.003 1.001 1.004 1.005 1.002 1.003
2 Yes 1.001 1.002 1.0 1.0 1.001 1.002
3 Yes 1.025 1.017 1.003 1.007 1.007 1.007
4 Yes 1.0 1.001 1.003 1.001 1.002 1.002
5 No 1.067 1.051 1.063 1.021 1.029 1.047
6 No 1.0 1.003 1.0 1.0 1.0 1.001
7 Yes 1.001 1.003 1.001 1.001 1.001 1.001
8 Yes 1.003 1.004 1.001 1.001 1.001 1.0
9 Yes 1.002 1.001 1.002 1.002 1.001 1.003
10 Yes 1.006 1.004 1.003 1.001 1.008 1.008
11 Yes 1.008 1.002 1.009 1.003 1.008 1.006
12 Yes 1.001 1.0 1.007 1.002 1.002 1.001
13 No 1.011 1.017 1.015 1.002 1.002 1.014
14 No 1.005 1.004 1.004 1.001 1.005 1.002
15 Yes 1.006 1.005 1.007 1.003 1.009 1.002
16 Yes 1.001 1.002 1.001 1.002 1.002 1.003
17 Yes 1.001 1.001 1.001 1.001 1.001 1.003
18 Yes 1.0 1.0 1.0 1.0 1.002 1.0
19 Yes 1.004 1.003 1.009 1.006 1.004 1.001
20 Yes 1.011 1.009 1.009 1.011 1.008 1.025
21 No 1.001 1.002 1.0 1.003 1.001 1.001
22 Yes 1.008 1.003 1.007 1.004 1.012 1.004
23 Yes 1.006 1.0 1.007 1.003 1.009 1.005
24 Yes 1.0 1.001 1.0 0.999 1.001 1.001
25 No 1.001 1.001 1.0 1.001 1.003 1.002
26 Yes 1.002 1.001 1.001 1.003 1.002 1.001
27 Yes 1.001 1.0 1.0 1.0 1.0 1.0
28 Yes 1.003 1.007 1.006 1.015 1.004 1.008
29 No 1.003 1.001 1.0 1.001 1.002 1.001
30 Yes 1.002 1.002 1.003 1.001 0.999 1.0
31 Yes 1.0 1.0 1.001 1.001 1.001 1.0
32 Yes 1.001 1.001 1.0 1.0 1.0 1.001
33 Yes 1.003 1.001 1.0 1.001 0.999 1.002
34 No 1.001 1.002 1.002 1.002 1.0 1.001
35 Yes 1.01 1.001 1.003 1.007 1.009 1.008
36 No 0.999 1.001 1.0 1.001 1.001 1.001
37 Yes 1.004 1.004 1.001 1.002 1.003 1.004
38 Yes 1.0 1.001 1.006 1.001 1.003 1.001
39 Yes 1.004 1.004 1.003 1.0 1.003 1.002
40 Yes 1.013 1.004 1.01 1.001 1.004 1.008
41 No 1.004 1.005 1.009 1.009 1.003 1.003
42 Yes 1.002 1.0 1.001 1.001 1.001 1.001
43 Yes 1.003 1.003 1.001 1.002 1.0 1.003
44 Yes 1.0 1.001 1.0 1.001 1.001 1.0
45 Yes 1.134 1.208 1.1 1.121 1.129 1.296
46 Yes 1.001 1.0 1.0 1.002 1.003 1.001
47 Yes 1.002 1.004 1.008 1.001 1.009 1.001
48 Yes 1.43 1.575 1.447 1.781 1.715 1.537
49 Yes 1.001 1.0 1.0 1.001 1.0 0.999
50 Yes 1.003 1.002 1.008 1.001 1.008 1.004
51 No 1.002 1.0 1.001 1.003 1.0 1.04
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Figure S3. Fits for patients in the training set. Individual fits for all patients in the training set,
using the population-level prior. Shown are the data (black disc), 50% credible interval (light grey), and
95% credible interval (dark grey). Note that model predictions are only drawn at times corresponding
to clinical measurements: results for intermediate time points show as a linear interpolation.
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Figure S4. Subset of classified prior samples. We demonstrate the choices in the classification
algorithm by simulating eight patients of each class from the prior distribution. All patients undergo the
standard course of treatment. Shown is the tumour volume (black), a horizontal line indicating unity
(dashed grey), and a vertical line showing the time of the first radiotherapy dose (dashed grey).
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Figure S5. Results for eight additional synthetic patients. We reproduce the analysis from Fig.
5 in the main document for eight additional synthetic patients (two from each response classification).

7



0.0
0.5
1.0
1.5
2.0

R2 = 0.112 R2 = 0.204 R2 = 0.899 R2 = 0.924

0.0
0.5
1.0
1.5
2.0

R2 = 0.624 R2 = 0.767 R2 = 0.914 R2 = 0.937

0.0
0.5
1.0
1.5
2.0

R2 = 0.605 R2 = 0.626 R2 = 0.891 R2 = 0.911

0.0
0.5
1.0
1.5
2.0

R2 = 0.332 R2 = 0.889 R2 = 0.981 R2 = 0.982

0.0
0.5
1.0
1.5
2.0

R2 = 0.576 R2 = 0.23 R2 = 0.144 R2 = 0.601

0.0
0.5
1.0
1.5
2.0

R2 = 0.61 R2 = 0.858 R2 = 0.958 R2 = 0.971

0 14 28 42 56
Time [d]

0.0
0.5
1.0
1.5
2.0

R2 = 0.284

0 14 28 42 56
Time [d]

R2 = 0.959

0 14 28 42 56
Time [d]

R2 = 0.987

0 14 28 42 56
Time [d]

R2 = 0.991

G
TV

 [F
C

]
G

TV
 [F

C
]

G
TV

 [F
C

]
G

TV
 [F

C
]

G
TV

 [F
C

]
G

TV
 [F

C
]

G
TV

 [F
C

]

Figure S6. Temporal predictions for the seven patients excluded from the training set that
do not appear in Fig. 7 of the main document. We reproduce the analysis from Fig. 5 and Fig. 7
in the main document for those remaining patients that were excluded from the training set. Each row
corresponds to a single patient. These patients were not included in the training set, and so their results
are representative of clinical predictions made throughout a new patient’s course of treatment.
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Figure S7. Temporal predictions from four synthetic patients using the uninformative
prior. We reproduce the analysis from Fig. 5 in the main document using the uninformative (i.e.,
population-level) prior.
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Figure S8. Temporal predictions from four patients excluded from the training set using
the uninformative prior. We reproduce the analysis from Fig. 7 in the main document using the
uninformative (i.e., population-level) prior.
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Comparison to Bayesian hierarchical approach

Here, we compare predicted uninformed patient trajectories from the pseudo-hierarchical ap-

proach presented in the main document, to a standard Bayesian hierarchical model implemented

in Turing.jl [1].

We assume that, at the population-level, the logarithm of each model parameter is dis-

tributed according to a truncated normal distribution, with support given by the support of the

uniformed prior as implemented in the main text. For example,

log λ ∼ TruncatedNormal(µλ, σλ, λmin, λmax), (1)

where the prior for λ in the main text was given by log λ ∼ Uniform(λmin, λmax). The

population-level priors are given by

µλ ∼ Uniform(λmin, λmax), (2a)

log σλ ∼ Uniform(−10.0, 3.0), (2b)

where the prior for the log standard deviation is chosen to span a sufficiently wide range of scales

that model parameters may either be concentrated, or approximatately uniformly distributioned

(i.e., a truncated normal distribution with untruncated standard deviation much larger than

the support of the truncated distribution). The priors for the other parameters K, γ, ζ, η, and

φ0 are given in the same way. The noise parameters, α1 and α2, are inferred simultaneously.

Since the individual dosing regime of each patient effectively prescribes a different math-

ematical model for each patient, the hierarchical problem is potentially much more computa-

tionally costly than the pseudo-hierarchical approach. As such, we demonstrate the hierarchical

approach on a randomly chosen subset of the training data, comprising Ñ = 10 patients. We

perform inference using Turing.jl’s inbuilt Hamiltonian Monte Carlo algorithm (code available

on GitHub∗), and sample four independent chains, each of 50,000 samples.

Results in fig. S9 highlight the fundamental differences between a standard hierarchical

approach and the resampling-based approach presented in the main text. In particular, it is

not straightforward to infer a correlation structure between the six patient-level parameters in a

standard hierarchical approach, and so we do not gain information about parameter correlations

or multimodality arising from the different patient responses (fig. S9a,b). This is problematic

for prediction, since the correlation structure and multimodality (recovered using the pseudo-

hierarchical approach) constrains model predictions to the space of trajectories seen in the

training data. We demonstrate this in3 fig. S9c,d. Predictions from new patients (drawn before

any patient-level data is observed) are often unrealistic, and are clearly not constrained to the

set of observations drawn from the training data.

∗https://github.com/ap-browning/clinical_predictions/blob/main/figures/figS9.jl
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Figure S9. Comparison between the pseudo-hierarchical method and a standard Bayesian
hierarchical method. (a,b) Bivariate posterior distribution for patient-level parameters log λ and log γ.
In (a), parameter distributions are drawn from the mixture of individual posterior distributions for the
10 subjects in the resampled training set. In (b), the distribution is constructed by resampling from
the posterior distributions for µλ and log σλ, at each sample reconstructing and then sampling from
the distribution for log λ given by eq. (1) (and similar for parameters related to γ). (c,d) Predictions
drawn from the patient-level distributions formed using (c) the pseudo-hierarchical approach, and (d) the
hierarchical approach, for patients undergoing the standard course of treatment used to classify patients
(see Section 2.2.1 of the main document). Also shown are GTV measurements from the Ñ = 10 subjects
in the resampled training set.
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