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1 Numerical methods
This section provides details of the numerical methods for model simulation and calculation
of the profile likelihoods.

1.1 Numerical solutions of the PDE models

We use a finite difference method to simulate the general form of the model, given in Eq. (1).
For simulations in two spatial dimensions, the size of the domain, corresponding to the size
of the image, is Lx = Ly = 4380 µm. This domain is discretized into nx = 150 by ny = 150

squares, each with side length ∆x = ∆y = 29.2 µm. We used ∆t = 1/30 h.
Let Ci,j,k denote C(xi, yj, tk), where xi = (i − 1)∆x, yj = (j − 1)∆y, tk = (k − 1)∆t are

the mesh points. The scheme we used follows = [6], and can be written as follows:
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where

D(Ci+1/2,j,k) =
1

2

[
D(Ci,j,k) +D(Ci+1,j,k)

]
, 1 ≤ i, j ≤ nx = ny = 150, 1 ≤ k ≤ nt = 77.

The discretization in the y direction is completely analogous. Zero flux boundary conditions
are imposed at x = 0, Lx and y = 0, Ly.

We use an implicit-explicit (IMEX) scheme [1, 4] for time-stepping, where the nonlinear
diffusion coefficient, D(C), and the proliferation term, f(C), are treated with the explicit
Euler method, and the diffusion term overall is treated with the implicit Crank-Nicolson
method, which has second order convergence. The advantage of this scheme is that the
explicit treatment of the nonlinear components of the equation allows us to avoid having to
solve a nonlinear root-finding problem at every time step, which would be necessitated by
a fully implicit scheme. The implicit treatment of the diffusion term improves the stability
of the scheme, and [1] showed that this class of schemes has reasonably low relative errors
when the diffusion term is not vanishingly small, which is the case in this work. The IMEX
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Crank-Nicolson time stepping scheme can be written as

∂Ci,j,k

∂t
≈ Ci,j,k+1 − Ci,j,k

∆t
=

1

2

[
∇ · (D(Ci,j,k)∇Ci,j,k+1) +∇ · (D(Ci,j,k)∇Ci,j,k)

]
+ f(Ci,j,k).

We have verified that the scheme is convergent by successively halving ∆x or ∆t and
recomputing the model solutions with the default parameter values in Eq. (SM.2), and check
that the norm of the difference between successive model solutions decreases almost linearly
on a log-log plot with respect to ∆x or ∆t.

To justify that the discretisation we have chosen is sufficiently fine, let C1
model denote the

model solution computed with ∆x = 29.2 µm and ∆t = 1/30 h, C2
model, C3

model be the model
solution computed with ∆x or ∆t halved, respectively. Then the difference between C1

model

and C2
model, averaged over all grid points, is 0.448, while that between C1

model and C3
model is

4.224, both much smaller than the averaged magnitude of the model solutions, which is on
the order of 103, therefore we conclude that the numerical scheme is suitably accurate.

1.2 Optmisation procedure for MLE and profile likelihoods

To solve the optimisation problems for finding the MLEs and evaluating the profile likelihood
functions, we use three algorithms, all implemented in MATLAB: the built-in fmincon and
globalsearch, and Covariance Matrix Adaptation Evolution Strategy (CM-AES) [3], with the
implementation obtained at [2].

The optimisation procedure is initialized with the following default parameter values:

D0 = 1300 µm2/h, r = 0.3 h−1, K = 2600 cell/mm2, α = β = γ = 1, η = 0.

(SM.2)
We impose the following bounds for the parameters to guide the optimisation procedures:

100 µm2/h < D0 < 10000 µm2/h, 0.01h−1 < r < 1h−1,

500 cell/mm2 < K < 5000 cell/mm2, 0 < α, β, η < 3, 0 < γ < 9.
(SM.3)

We use globalsearch to find the MLEs, and fmincon to evaluate points on the profile likelihood
functions. In the case where fmincon struggles to find the true maximum, we use CM-AES
instead.
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2 Profile likelihoods for synthetic datasets
In this section, we present the profile likelihoods for each model for two sets of synthetic data.
The main purpose of this exercise is to verify that the profile likelihoods behave as expected
under ideal conditions. The synthetic data are generated by simulating the model, Eq. (1)
of the main text, in one spatial dimension, using the parameter values in Eq. (SM.2), and
perturbing by adding Gaussian noise to the model solution. The “low noise” dataset uses
σ = 20, while the “high noise” dataset uses σ = 400. In comparison, the σ∗ estimated from
real data ranges between 380 – 460, depending on the dataset and the model.

The profile likelihoods for the high noise dataset are presented in Fig. 1, which shows that
all profile likelihood curves are unimodal with a finite confidence interval, and the MLEs are
close to the true parameter values. For the low noise dataset, the profile likelihood curves
are very narrow, and centered almost exactly at the true parameter values. These results
verify that the profile likelihoods can recover the true parameter values, at least in a highly
idealized case, as the theories suggest.

The profile likelihood curves for the parameters of the Richards and Generalised Fisher
models tend to be broader compared to those of the Standard Fisher model, which reflect
the greater flexibility of the more complicated models to compensate for a change in one
parameter value by shifting the other parameter values.
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Figure 1: Profile likelihoods for the four models as described in Eq. (1) and Table 1 of the
main text, for a synthetic dataset generated with Eq. (1) and parameter values in Eq. (SM.2),
perturbed as in Eq. (2) of the main text with σ = 400. The dotted vertical lines mark the
location of the true parameter values, while the dashed vertical lines mark the MLE for each
parameter. The black horizontal line at −1.92 marks the threshold for the 95% confidence
interval. The axis scale for the parameters shared between the models (D0, r,K) is kept
consistent.
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3 Inference results for all datasets
In this section, we present the MLE and 95% confidence intervals of the parameter values
calculated for all experimental datasets in table format, and σ∗, the MLE for the noise
parameter, as well as the AIC and BIC. Recall that we have cell density data from eight
experiments, which we refer to as the full datasets. Experiments 1–4 have circular initial
conditions, while Experiments 5–8 have triangular initial conditions. For Experiments 1–
4 we also consider the radially-averaged datasets. All results are given to four significant
figures.

We also perform a χ2-likelihood ratio test for nested models [5], and report the p-value.
The Standard Fisher model is nested inside the Porous Fisher, Richards, and Generalised
Fisher models, and this test provides a measure of whether the more complicated models
have a significant improvement in maximum likelihood over the simpler model. Denote the
MLE parameters of the Standard Fisher model as θ∗

0, and the MLE parameters of one of the
more complicated models as θ∗

1. Let

Λ = −2 log

[
L(Cdata|θ∗

0)

L(Cdata|θ∗
1)

]
= 2 logL(Cdata|θ∗

1)− 2 logL(Cdata|θ∗
0),

be the test statistic based on the ratio of maximum likelihoods of the two nested models
being compared. Then, under our assumption of normal i.i.d observation errors (Eq. (2)),
by Wilks’ theorem [7], Λ ∼ χ2

(df), where the degrees of freedom, df, is equal to the number
of additional parameters in the more complicated model compared to the simpler model.
This allow us to compute a p-value, p = 1 − Φ(λ), where Φ is the cdf of Λ ∼ χ2

(df). The
p−value represents how likely the observed improvement in likelihood can happen, if the
simpler model were the true model underlying the data. According to this metric, the more
complicated model should be accepted if the p-value is sufficiently small.

For all datasets and all three more complicated models, we have p < 0.05, suggesting these
models are a significant improvement upon the Standard Fisher model. However, this test is
only accurate if the observation errors are indeed normal i.i.d. As discussed in the main text,
the observation errors are likely correlated across space and time, hence the improvement in
likelihoods are overestimated, and the p-values reported here are likely overestimates.
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Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1287 [1267, 1307] 0.2707 [0.2683, 0.2731] 2620 [2614, 2625] 39.698 162289 162310 -
Porous Fisher 1361 [1306, 1419] 0.2686 [0.2658, 0.2714] 2622 [2616, 2628] η : 0.0219[0.0069, 0.0372] 39.689 162283 162311 4.07× 10−3

Richards 1467 [1400, 1535] 0.2272 [0.2146, 0.2410] 2612 [2606, 2618] γ : 1.3119[1.1950, 1.4416] 39.663 162258 162287 1.07× 10−8

Generalised Fisher 1391 [1321, 1465] 0.1429 [0.1130, 0.1758] 2664 [2652, 2678] α : 1.1086[1.0779, 1.1434]
β : 1.2034[1.1587, 1.2508]

39.571 162175 162210 < 10−20

Table 1: Experiment 1, radially-averaged dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1287 [1282, 1293] 0.2775 [0.2767, 0.2782] 2621 [2619, 2622] 21.447 26161393 26161430 -
Porous Fisher 1545 [1529, 1564] 0.2702 [0.2694, 0.2710] 2628 [2627, 2630] η : 0.0719[0.0677, 0.0766] 21.445 26160486 26160536 < 10−20

Richards 1402 [1385, 1418] 0.2462 [0.2425, 0.2502] 2616 [2615, 2618] γ : 1.1972[1.1677, 1.2249] 21.447 26161172 26161221 < 10−20

Generalised Fisher 1423 [1403, 1443] 0.1013 [0.0945, 0.1085] 2701 [2698, 2704] α : 1.1733[1.1688, 1.1818]
β : 1.3548[1.3437, 1.3663]

21.437 26158023 26158085 < 10−20

Table 2: Experiment 1, full dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1211 [1192, 1231] 0.2780 [0.2755, 0.2805] 2551 [2546, 2556] 39.620 162216 162238 -
Porous Fisher 1650 [1578, 1725] 0.2673 [0.2645, 0.2701] 2564 [2558, 2570] η : 0.1270[0.1086, 0.1458] 39.396 162009 162038 < 10−20

Richards 981 [938, 1026] 0.3675 [0.3474, 0.3891] 2560 [2554, 2565] γ : 0.6808[0.6333, 0.7323] 39.509 162115 162143 < 10−20

Generalised Fisher 806 [758, 857] 0.2787 [0.2374, 0.3219] 2873 [2838, 2913] α : 1.0744[1.0532, 1.0984]
β : 2.0151[1.9249, 2.1130]

38.266 160935 160970 < 10−20

Table 3: Experiment 2, radially-averaged dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1157 [1152, 1163] 0.2896 [0.2888, 0.2904] 2550 [2548, 2552] 21.258 26099801 26099838 -
Porous Fisher 1527 [1509, 1545] 0.2788 [0.2779, 0.2795] 2561 [2560, 2563] η : 0.1099[0.1071, 0.1129] 21.250 26097458 26097507 < 10−20

Richards 916 [907, 926] 0.4061 [0.4004, 0.4119] 2561 [2559, 2562] γ : 0.6307[0.6196, 0.6419] 21.250 26097356 26097406 < 10−20

Generalised Fisher 826 [816, 837] 0.2383 [0.2283, 0.2484] 2893 [2881, 2905] α : 1.1091[1.1024, 1.1160]
β : 2.1168[2.0860, 2.1485]

21.204 26082314 26082376 < 10−20

Table 4: Experiment 2, full dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1107 [1083, 1131] 0.3172 [0.3133, 0.3212] 2518 [2511, 2525] 47.887 169220 169242 -
Porous Fisher 1228 [1160, 1301] 0.3136 [0.3093, 0.3179] 2520 [2513, 2527] η : 0.0394[0.0191, 0.0604] 47.868 169207 169236 1.11× 10−4

Richards 1200 [1117, 1288] 0.2860 [0.2622, 0.3122] 2514.7859 [2507, 2522] γ : 1.1669[1.0249, 1.3367] 47.880 169217 169245 1.94× 10−2

Generalised Fisher 1146 [1064, 1237] 0.2391 [0.1941, 0.2866] 2534 [2516, 2553] α : 1.0501[1.0231, 1.0811]
β : 1.1005[1.0093, 1.1850]

47.867 169209 169245 4.77× 10−4

Table 5: Experiment 3, radially-averaged dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1118 [1113,1122] 0.3198 [0.3191,0.3206] 2521 [2520,2523] 21.418 26152075 26152112 -
Porous Fisher 1300 [1286,1314] 0.3144 [0.3136,0.3153] 2524 [2523, 2526] η : 0.0569[0.0529, 0.0609] 21.416 26151214 26151263 < 10−20

Richards 1293 [1275,1307] 0.2633 [0.2597,0.2678] 2514 [2513,2516] γ : 1.3493[1.3131, 1.3801] 21.417 26151457 26151506 < 10−20

Generalised Fisher 1377 [1353,1398] 0.1999 [0.1919,0.2080] 2500 [2498,2504] α : 1.0506[1.0439, 1.0576]
β : 0.8671[0.8443, 0.8943]

21.416 26151117 26151179 < 10−20

Table 6: Experiment 3, full dataset
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Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1239 [1221,1257] 0.2849 [0.2825,0.2873] 2784 [2779,2790] 39.387 161998 162019 -
Porous Fisher 1406 [1356,1458] 0.2800 [0.2773,0.2827] 2789 [2784,2795] η : 0.0499[0.0363, 0.0637] 39.329 161945 161974 1.56× 10−13

Richards 1466 [1410,1523] 0.2273 [0.2168,0.2387] 2775 [2770,2781] γ : 1.4221[1.3136, 1.5407] 39.304 161922 161951 1.14× 10−18

Generalised Fisher 1416 [1358,1476] 0.1464 [0.1216,0.1732] 2799 [2789,2810] α : 1.1009[1.0761, 1.1284]
β : 1.0869[1.0457, 1.1293]

39.292 161913 161948 4.32× 10−20

Table 7: Experiment 4, radially-averaged dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1252 [1247,1258] 0.2865 [0.2858,0.2872] 2788 [2787,2790] 21.436 26157597 26157634 -
Porous Fisher 1440 [1425,1454] 0.2809 [0.2801,0.2817] 2794 [2792,2795] η : 0.0539[0.0500, 0.0575] 21.433 26156816 26156866 < 10−20

Richards 1565 [1548,1580] 0.2108 [0.2084,0.2137] 2775 [2773,2776] γ : 1.6398[1.6013, 1.6736] 21.429 26155625 26155675 < 10−20

Generalised Fisher 1552 [1533,1570] 0.1028 [0.0965,0.1093] 2797 [2794,2800] α : 1.1489[1.1398, 1.1583]
β : 1.0701[1.0572, 1.0831]

21.429 26155629 26155691 < 10−20

Table 8: Experiment 4, full dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1416 [1410,1422] 0.3085 [0.3077,0.3093] 2344 [2343,2346] 20.048 25693899 25693936 -
Porous Fisher 4102 [4059,4145] 0.2739 [0.2731,0.2747] 2377 [2375,2379] η : 0.5677[0.5609, 0.5746] 19.920 25649571 25649620 < 10−20

Richards 2697 [2688,2706] 0.1364 [0.1359,0.1367] 2336 [2334,2337] γ : 7.8055[7.7527, 7.9284] 19.749 25589713 25589762 < 10−20

Generalised Fisher - - - α : −
β : − - - - -

Table 9: Experiment 5, full dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1161 [1156,1166] 0.3244 [0.3235,0.3253] 2307 [2305,2308] 19.820 25614660 25614697 -
Porous Fisher 2713 [2685,2743] 0.2931 [0.2922,0.2940] 2333 [2331,2334] η : 0.4097[0.4041, 0.4157] 19.743 25587515 25587565 < 10−20

Richards 2290 [2282,2299] 0.1413 [0.1409,0.1416] 2288 [2286,2289] γ : 8.1042[8.0335, 8.1723] 19.593 25534767 25534816 < 10−20

Generalised Fisher - - - α : −
β : − - - - -

Table 10: Experiment 6, full dataset

Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1845 [1837,1853] 0.2260 [0.2254,0.2266] 2419 [2417,2421] 19.945 25658251 25658288 -
Porous Fisher 10061 [9894,10232] 0.1637 [0.1628,0.1646] 2627 [2622,2631] η : 1.0443[1.0313, 1.0573] 19.750 25590211 25590260 < 10−20

Richards 3180 [3170,3190] 0.1057 [0.1055,0.1059] 2353 [2352,2354] γ : ∞∗ 19.556 25521509 25521559 < 10−20

Generalised Fisher - - - α : −
β : − - - - -

Table 11: Experiment 7, full dataset. Note that for γ in the Richards model, the profile
likelihood seems to be monotonically increasing up to the upper bound of γ = 9 which we
have imposed for numerical stability, therefore the true MLE is likely to be very large or
infinite.
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Model D0 r K
Parameters unique

to model σ AIC BIC p−value

Standard Fisher 1448 [1442,1454] 0.2669 [0.2662,0.2676] 2294 [2292,2296] 19.598 25536527 25536564 -
Porous Fisher 3504 [3467,3543] 0.2374 [0.2367,0.2382] 2337 [2335,2339] η : 0.4475[0.4414, 0.4539] 19.518 25508165 25508214 < 10−20

Richards 2666 [2658,2675] 0.1199 [0.1196,0.1201] 2241 [2239,2242] γ : ∞∗ 19.341 25444985 25445034 < 10−20

Generalised Fisher - - - α : −
β : − - - - -

Table 12: Experiment 8, full dataset. Similar observations for γ as in Experiment 7.

We also present the profile likelihoods for Experiments 2–8 (those for Experiment 1 are
presented in Fig. 2 and Fig. 3 of the main text).
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Figure 2: Profile likelihoods for Experiment 2, full dataset.
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Figure 3: Profile likelihoods for Experiment 2, radially averaged dataset.
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Figure 4: Profile likelihoods for Experiment 3, full dataset.
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Figure 5: Profile likelihoods for Experiment 3, radially averaged dataset.

12



1245 1260

-2

0

0.2855 0.2875

-2

0

2785 2791

-2

0

1420 1460

-2

0

0.279 0.282

-2

0

2790 2796

-2

0

0.048 0.059

-2

0

1540 1590

-2

0

0.207 0.215

-2

0

2772 2778

-2

0

1.55 1.70

-2

0

1520 1580

-2

0

0.09 0.12

-2

0

2790 2805

-2

0

1.0 1.2

-2

0

Figure 6: Profile likelihoods for Experiment 4, full dataset.
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Figure 7: Profile likelihoods for Experiment 4, radially averaged dataset.
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Figure 8: Profile likelihoods for Experiment 5, full dataset.
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Figure 9: Profile likelihoods for Experiment 6, full dataset.
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Figure 10: Profile likelihoods for Experiment 7, full dataset.
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Figure 11: Profile likelihoods for Experiment 8, full dataset.
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4 Profile likelihoods for down-sampled data
In Fig. 12 we present the profile likelihoods for the down-sampled datasets.
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Figure 12: Profile likelihoods for the down-sampled datasets. A subset of these were presented
in Fig. 7 of the main text.
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