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Abstract

Tumour angiogenesis leads to the formation of blood vessels that are structurally and spa-

tially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxy-

gen heterogeneity, impairs a tumour’s response to radiotherapy. The optimal strategy for

enhancing tumour perfusion remains unclear, preventing its regular deployment in combina-

tion therapies. In this work, we first identify vascular architectural features that correlate with

enhanced perfusion following radiotherapy, using in vivo imaging data from vascular

tumours. Then, we present a novel computational model to determine the relationship

between these architectural features and blood perfusion in silico. If perfusion is defined to

be the proportion of vessels that support blood flow, we find that vascular networks with

small mean diameters and large numbers of angiogenic sprouts show the largest increases

in perfusion post-irradiation for both biological and synthetic tumours. We also identify

cases where perfusion increases due to the pruning of hypoperfused vessels, rather than

blood being rerouted. These results indicate the importance of considering network compo-

sition when determining the optimal irradiation strategy. In the future, we aim to use our find-

ings to identify tumours that are good candidates for perfusion enhancement and to improve

the efficacy of combination therapies.

Author summary

Dysregulated tumour vasculature often contains hypoperfused blood vessels which inhibit

the delivery of blood-borne anticancer therapies. Radiotherapy, used to treat more than

half of all cancer patients, causes DNA damage to vascular endothelial cells, preferentially

impacting smaller vessels, leading to their death and vessel pruning. At the same time,

experiments measuring changes in tumour perfusion post-irradiation produce varying

outcomes and, therefore, the impact of irradiation-induced vessel pruning on network-
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scale perfusion remains unclear. In this study, we use recent (in vivo) imaging data to

identify features of tumour vascular architectures that impact perfusion change post-irra-

diation. We then use a newly-developed computational framework, directly informed by

the experimental observations, to elucidate the relationship between the vascular geome-

try and topology prior to radiotherapy and the irradiation-induced changes to network

perfusion. We find that perfusion increases most significantly for networks of blood ves-

sels with small mean diameters and large numbers of angiogenic sprouts. Our results also

distinguish different mechanisms of perfusion increase and we identify cases where

rerouting of blood flow causes previously hypoperfused vessels to become perfused. Our

study sheds more light on the impact of radiotherapy on tumour blood flow; these insights

could be useful for improving anti-cancer treatments.

Introduction

Tumour cells exploit various biological opportunities to disregard the extracellular signals that

normally direct an organism’s somatic cells to sacrifice themselves for the sake of its germ cells

[1]. One of these opportunities is a tumour’s ability to incite the growth of its own blood supply

network in a phenomenon called ‘tumour angiogenesis’. Tumour angiogenesis produces vas-

culature that grows in a disordered manner. Therefore, blood circulation in a tumour is slug-

gish, which leads to poor perfusion and a lack of oxygen. Poor oxygenation, in turn, attenuates

the effect of major oncological therapies. The efficacy of radiotherapy, which is used to treat

more than half of all cancer patients, depends on the generation of reactive oxygen species that

induce irreparable DNA damage [2]. The mechanism governing the increased efficacy of

radiotherapy in the presence of oxygen is explained by the ‘oxygen fixation hypothesis’ [3, 4].

Upon irradiation, free electrons are generated that mediate irradiation-induced damage, either

by directly damaging the macromolecules, resulting in sites of DNA base loss and DNA single-

strand breaks (SSBs), or by interacting with oxygen to form peroxyl radicals, which induce

DNA damage, including double-strand breaks (DSBs) that are difficult for cells to repair [5, 6].

In hypoxia, the lower amount of oxygen results in reduced formation of reactive oxygen spe-

cies (ROS), including peroxyl radicals. Hence, there is less DNA damage, leading to a greater

ability for the damage to be repaired, resulting in increased radioresistance. Importantly, pock-

ets of hypoxia within a tumour can exhibit a lower response to radiotherapy by up to a factor

of three [7]. Moreover, adaptations to hypoxia can lead to tumour phenotypes with increased

chemoresistance and metastatic capabilities [8]. For a list of drugs that perform more poorly in

hypoxic conditions than in normoxic conditions, see [9].

Tumour growth is primarily monotonic, i.e., the tumours continue to grow and the tumour

vasculature also grows continuously after the angiogenic switch has been triggered. Conse-

quently, there is no spontaneous regression of the tumour blood vessels, resulting in a chaotic

and disorganised vasculature with limited remodelling and maturation. In the development of

normal vessels, one of the important mechanisms regulating their complexity and organisation

is the trimming of a vascular network, termed ‘vessel pruning’, which marks the physiological

regression of a subset of microvessels within a growing vasculature [10–12]. This phenomenon

was studied in detail in the postnatal mouse retinal vascular network where it was shown that

the vessel density at the sprouting front of a postnatal retina is significantly higher than in the

mature vascular network of the adult retina. The main driver of vessel pruning is the vascular

endothelial growth factor (VEGF) and VEGF receptor (VEGFR) signalling. However, other

signalling pathways activated by fibroblast growth receptor 2 (FGF2), angiopoietin 2 (ANG2),
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platelet-derived growth factor (PDGF), and delta-like 4 (DLL4) have been shown to work

independently of the VEGF/VEGFR pathway [11]. Anti-angiogenic therapies take advantage

of these signalling axes and can cause a transient induction of vessel pruning in tumours, lead-

ing to a more normal-looking and stabilised vasculature. This is called ‘vascular normalisa-

tion’, which involves not only morphological but also functional improvements: reduced

interstitial fluid pressure (IFP), reduced tumour hypoxia, and improved penetration of macro-

molecules from these vessels, which significantly improves the efficacy of some therapies, such

as radiotherapy and chemotherapy [10, 13]. Recently it was shown that radiotherapy can also

act as a vascular normalization therapy by preferentially pruning the small, non-perfused ves-

sels [14, 15]. Importantly, non-perfused vessels and vessels with sluggish blood flow are also

predisposed to vessel pruning and changes in blood flow act as regulators of vessel regression

or maturation. In the mouse retina, a pharmacological inhibition of vasoconstriction or induc-

tion of vessel dilation resulted in reduced blood vessel stability confirming that vessel pruning

is dependent on haemodynamic forces [16, 17]. However, it is not yet clear whether molecular

components, such as angiogenic factors, or mechanical factors, such as shear stress, are the pri-

mary regulators of vessel regression associated with flow.

In the clinical setting, irradiation of the normal tissue surrounding the tumour cannot usu-

ally be avoided. In order to reduce the normal tissue toxicity of radiotherapy, the total radia-

tion dose is divided into several fractions. ‘Conventional fractionation’ has been used in clinics

for decades and divides the total radiation dose into 1.8–2 Gy fractions administered 5 days a

week up to a total dose of 40–70 Gy. This type of fractionation takes advantage of the biological

differences between the tumour and normal tissue, which usually results in less damage to the

normal tissue with the same degree of tumour control [5]. In contrast to conventional low-

dose fractionated therapies, hypofractionation describes a radiation treatment in which the

total dose is administered in a smaller number of larger (>2 Gy) fractions, resulting in a

shorter overall treatment time. If the treatment is administered as a single dose or in a small

number of fractions, usually with a dose of 8–30 Gy per fraction, it is referred to as stereotactic

body radiation therapy (SBRT) [18]. The use of SBRT has increased over the past decade. This

is primarily due to technological advances in image guidance and highly conformal dose deliv-

ery, which allow a high dose of radiation to be delivered to the tumour while maintaining an

acceptable dose to surrounding normal tissue [5, 18].

Experiments conducted to measure the change in tumour perfusion after irradiation of

tumours have recorded varying outcomes. A review by Park et al. found that reported results

were inconsistent, and that functionality improved and then worsened in human tumour vas-

culature during the early stages of radiotherapy [19]. Conversely, in human tumour xenografts

or murine tumours, irradiation resulted in mild to severe damage depending on the dosage,

reducing blood perfusion [19]. Kim et al. found that stereotactic body radiation therapy

decreased perfusion [20]. On the other hand, Shibuya et al. found that in the case of cervical

cancer, blood flow improved significantly after irradiation [21]. Moreover, a study by Bussink

et al. found that irradiation led to rapid changes in perfusion, observing increases shortly after

irradiation followed by significant decreases [22]. Kaeppler et al. used a transgenic CreERt2-td-

Tomato mouse model with <95% of endothelial cells fluorescently labelled coupled with in
vivo intravital multiphoton microscopy which allowed them to simultaneously image the per-

fused and non-perfused tumor vasculature to study its response to single-dose and fraction-

ated radiotherapy [15]. They used two tumour cell lines—a highly vascularised colon

adenocarcinoma (MC38) and a less vascularised melanoma (B16F10)—and found that the for-

mer contained a larger proportion of hypoperfused vessels compared to the latter. Moreover,

it was observed that the smaller-diameter vessels were more likely to be hypoperfused and also

more likely to be pruned following irradiation (i.e., their endothelial cells were more
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susceptible to apoptosis). Thus, it was concluded that tumour perfusion post-irradiation

depends on the density of small (typically hypoperfused) vessels.

An improved understanding of the relationship between irradiation and perfusion would

allow for accurately-planned fractionated radiotherapy. However, it remains unclear why cer-

tain tumours exhibit increases versus decreases in perfusion after irradiation. The blood vessels

that comprise tumour vasculature have heterogeneous architectural characteristics that present

a complex system resistant to experimental analysis. Thus, there is a need for computational

tools to guide and complement experimental research.

Broadly speaking, tumour vascular architecture has been modelled spatially with synthetic

networks that reflect biological characteristics or, more recently, by digitising the geometry of

real tumour vasculature. Regular forking networks, constructed by Bernabeu et al. using path-

ological dimensions gleaned from experimental data, are highly ordered because they are gen-

erated using a simple set of deterministic rules and the resulting geometry (vessel diameters,

lengths, and arrangement of vessels into the network) is thus very regular [23]. Moreover,

these networks exhibit strict hierarchy in that every parent vessel subdivides into two daughter

vessels that are shorter and thinner than the parent. Non-hierarchical and ordered vasculature

has been previously represented as a network with a repeated hexagonal unit, similar to that

observed in avian yolk sacs [24]. Alarcón et al. have used a similar network to couple processes

at the intracellular, cellular, and tissue scales [25]. Owen et al. employed both hexagonal and

disordered networks to show that vascular remodelling could be achieved with a balance of

pruning and angiogenesis [26].

Synthetic networks are also commonly generated by simulating the random migration of

capillary tips based on a chemotactic gradient. Anderson and Chaplain developed a model

using a random walk biased towards higher TAF (tumour angiogenesis factor) levels, which

resembled in vivo angiogenic networks [27]. Similar models of biased random motility and

sprout formation have been employed by Macklin et al. and Shirinifard et al. in 2D and 3D,

respectively [28, 29]. In addition, Stepanova et al. have employed a multiscale random walk

model to study endothelial cell dynamics [30]. The modelling of angiogenesis still remains an

active area of research [31–33].

While synthetic networks can replicate many features of real tumour vasculature, some

studies have gone a step further and digitised experimentally-acquired tumour vasculature.

Grimes et al. used a 3D digitised network to estimate oxygen distribution [34]. Grogan et al.

used a similar method to compare 2D and 3D representations, while Sweeney et al. used a 3D

model to suggest that using realistic vasculature was key to modelling tumour fluid dynamics

[35, 36]. However, such simulations presuppose the knowledge of boundary conditions and

the methods for direct observation of flow in individual vessels are limited (especially smaller

microvessels) [37].

Topological data analysis (TDA) is an emerging mathematical field that uses topological

and geometric approaches to quantify the ‘shape’ of data [38, 39]. TDA characterises shape via

topological invariants such as connected components and loops at multiple scales. The most

prominent method from TDA, persistent homology, has been successfully applied to quantify

dynamic characteristics of vascular networks in experimental data [40, 41] and to distinguish

between synthetic vascular networks produced by different parameter regimes in a mathemati-

cal model of tumour-induced angiogenesis [42]. Persistent homology tracks topological fea-

tures across a filtration, e.g., a nested sequence of vascular networks, and outputs information

on the persistence of these features in the filtration in the form of a barcode [39]. The informa-

tion contained in the barcode can either be vectorised and integrated with statistical or

machine learning tools [43, 44] or it can be compressed into a single topological descriptor of

the data, e.g., the number of loops across the filtration, as in [41]. In experimental data, the
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change in the total number of loops in vascular networks over time following radiotherapy has

shown great variation across different tumours relative to the day of irradiation (single dose)

[41]. However, this study did not take perfusion into account and, in particular, did not differ-

entiate between different initial structural characteristics of the networks pre-therapy which

can affect their response to radiotherapy. More recently, a novel topological descriptor for

weighted directed graphs was developed [45]. For a weighted directed graph, e.g., a vascular

network weighted by vessel diameter or flow time with the directions given by the flow, the

method outputs a barcode describing its structure. While this topological descriptor encodes

rich information about such a network, it has not yet been applied to real data, is computation-

ally intensive, and would need to be substantially compressed to enable interpretable compari-

sons of multiple networks. Here, we focus on combining simple topological and geometrical

information to describe the structure of vascular networks interpreted as undirected and

unweighted graphs, i.e., disregarding information on flow direction and vessel diameters. We

then link these structural features to changes in perfusion via flow simulations where flow

direction and vessel diameters are taken into account. We are motivated by previous TDA

studies of tumour vasculature [40–42], in which the number of loops appeared to reflect signif-

icant structural changes of vasculature. In contrast to these studies, we do not apply persistent

homology, but focus on the total number of loops in the networks as a topological descriptor

at consecutive time points. This topological descriptor is readily computable via the Euler

characteristic (see the section Topological determinants of perfusion), does not require nest-

edness of the networks (in contrast to persistent homology), and is thus more suited to the

analysis of networks undergoing pruning. None of the previous studies directly explored the

link between network topology and perfusion as altered following irradiation and to the best

of our knowledge, there exists no experimentally-motivated computational study of the effect

of irradiation-induced pruning on network perfusion that considers both geometric and topo-

logical architectural features.

In this paper, we aim to characterise the extent to which radiotherapy-induced changes in

vascular geometry (e.g., pruning of small vessels) may contribute to increased vascular perfu-

sion. We identify key geometric and topological descriptors characterizing vasculatures with

enhanced perfusion following vessel pruning as well as mechanisms by which such enhance-

ment might occur. While [15] provided a broad analysis comparing two tumour cell lines

under various radiotherapeutic treatment regimes, we noticed that even within one cell line

(MC38) under single-dose radiotherapy, some tumours increased and some decreased their

perfusion. We will therefore focus solely on MC38 under single-dose radiotherapy and aim to

assess whether certain structural features pre-irradiation can be used as a proxy for predicting

perfusion response to radiotherapy.

The structure of this work is summarised in Fig 1. Having introduced the biological and

computational background for this study, we next describe the in vivo experimental study

motivating and informing our model in the section Experimental motivation. In this section,

we also highlight key correlations between certain architectural (geometric and topological)

metrics and changes in perfusion after irradiation. In the section Model overview, we intro-

duce key aspects of our computational model including the proposed architecture of the initial

networks, the pruning rules, and the way in which perfusion is measured. We then use our

model to investigate the underlying causal links and present two mechanisms of perfusion

improvement in the Results section. We conclude with a contextualisation of our findings and

a discussion of their implications in the Discussion section. The complete experimental proce-

dure and model description can be found in the Materials and Methods section.
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Fig 1. Chart summarizing the key components of the present study. Bottom-left panels present representative vascular regions containing

perfused (yellow) and hypoperfused (purple) vessels from Day 0 (just before irradiation) for one of the tumours for which irradiation-

induced vessel pruning led to a decrease in perfusion (tumour 6; top) and one for which it led to an increase (tumour 1; bottom). Note that

the latter vasculature contained many hypoperfused blunt-ended vessels, while the former contained more loops. Bottom-right panels show

pruned synthetic (forking) networks exhibiting similar properties with perfused (red) and hypoperfused (blue) vessels.

https://doi.org/10.1371/journal.pcbi.1011252.g001
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Experimental motivation

Uncertainty in direct flow simulations

Ideally, one would assess the impact of radiotherapy-induced vessel pruning on network per-

fusion by performing direct blood flow simulations on networks extracted from microscopy

images. However, information about which network nodes serve as inlets and outlets is often

limited or non-existent. Even given such information, it would still be challenging to deter-

mine whether constant pressure or constant flow rates should be imposed at inlets, and what

values these pressures or flow rates should take to obtain quantitative agreement with measure-

ments of blood flow in vivo. Despite receiving more attention from the scientific community

in recent years, the problem of reliably assigning appropriate conditions at boundary nodes

remains unresolved. In [37], an algorithm was developed whereby the boundary conditions

are fitted so that the deviation of pressures and wall shear stresses in microvessels from appro-

priately selected target values are minimized. This method has been used in recent years to

find appropriate boundary conditions for cerebral haemodynamics as well as in tumour perfu-

sion simulations [46, 47]. However, due to the complexities of the dynamic tumour microenvi-

ronment, a reliable estimation of flow boundary conditions remains an active area of research.

In this work, we choose a different strategy. First, in the section Understanding perfusion

response to radiotherapy and its determinants, we identify key global geometric and topo-

logical metrics that can be used to determine whether irradiation-induced vessel pruning

improves or impairs the perfusion of vascular networks extracted from tumours. Then, in the

following sections, we present a theoretical study of network perfusion and vessel pruning in

synthetic networks. In doing so, we aim to confirm the utility of the newly-proposed metrics

in distinguishing tumour vascular networks whose perfusion increases or decreases following

radiotherapy.

Understanding perfusion response to radiotherapy and its determinants

Exposure to radiotherapy causes DNA damage in endothelial cells, which was found to induce

cell death due to apoptosis preferentially in smaller hypoperfused vessels and result in cell

cycle arrest in larger vessels which thus remain functional channels for the flow of blood [15,

48]. Regardless of the exact mechanism driving the cell death, we assume that radiation-

induced DNA damage is the dominant cause of vessel pruning with a strong preference for

small vessels and we neglect a preferential regression of hypoperfused vessels found in develop-

mental vascular networks [17, 49].

We define perfused and hypoperfused vessels as in [15] (see also the section Experimental

procedures and data preprocessing for the experimental procedure and the section Perfusion

threshold for the minimum differentiating flow rate in our simulations) and similarly use the

perfusion fraction (PF) to quantify network perfusion. The perfusion fraction PðtÞ is the ratio

of the number of perfused vessels to the total number of blood vessels, i.e.:

PðtÞ ¼
# of perfused vessels at time t

# of remaining ðunprunedÞ vessels at time t
: ð1Þ

The perfusion fraction is time-dependent because both the total number of vessels and the

number of perfused vessels change over time, due to pruning (see the representative example

in Fig 2). Experimental observations of irradiated tumours suggest that vessel pruning occurs

on timescales that range from hours to days [15, 48, 51]. We thus focus on short-term

responses, during the first four days following radiotherapy (Fig 3). We number the studied

tumours from 1 to 7. Firstly, we note that the time between irradiation (Day 0 in Fig 3) and the
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Fig 2. Representative vascular architectures from our experiments [15]. A single dose of 15 Gy X-rays was delivered to a tumour and changes to its

vascular structure were monitored over the course of 4 days (reproduced from [50]). In the top row, endothelial cells are in cyan, while perfused vessels

(qDot705) are in red. Every panel is a 2D representation of a 3D image in the form of a Z-stack approximately 300 μm tall. The depth of field for a single

Z-slice was 2 μm. The middle and the bottom row show images of endothelial cells and perfused vessels, respectively. The scale bar corresponds to

100 μm.

https://doi.org/10.1371/journal.pcbi.1011252.g002

Fig 3. The first four days post radiotherapy (Day 0 is the day of irradiation). Time evolution of (A) vessel count NV and (B) perfusion fraction P for

the 7 tumours studied in [15].

https://doi.org/10.1371/journal.pcbi.1011252.g003
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first day on which a reduction in vessel number (vessel pruning) was observed varied across

the tumours that were studied. While most tumours (1, 2, 3, and 4) exhibited a decrease in ves-

sel number on Day 1, others (5 and 6) experienced a slight increase in vessel number over this

time period. We note further that this delayed decrease in vessel number was observed for

tumours with a relatively low vessel number and (at the same time) a large average vessel diam-

eter at the time of radiotherapy (see Table 1). We speculate that these tumours were still under-

going extensive angiogenesis and had not developed a fully functioning tumour

microvasculature at the time of radiotherapy.

We note also that the vessel count for tumour 7 increased up to, and including, Day 4. This

tumour’s vasculature had the largest number of connected components per size, and the size

of its largest connected component was the smallest across all tumours (see Table A in S1

Appendix). These data are indicative of problems in image processing for this tumour and,

therefore, we exclude it from our analysis. Secondly, the number of days over which the num-

ber of vessels decreased varied between tumours: for some tumours (1 and 3) the decrease only

lasted one day, while for others (2, 4, 5, and 6) it lasted two days. This variability is likely due to

the complex nature of the tumour microenvironment and uncertainties in the timescales for

vessel pruning. The pruning phase was followed by a period characterised by a significant

increase in vessel number, likely due to angiogenesis. Based on the above observations, we

divide the tumours into two groups A and B so that a tumour belongs to group A or B if its

perfusion fraction increases or decreases respectively during the pruning phase, which we

define to be the period from Day 0 to the last day on which the number of vessels decreased,

prior to the onset of angiogenesis. For a more quantitative comparison, we also define the

pruning-induced perfusion difference DP and its relative counterpart D%P as follows:

DP ¼ PðFinal DayÞ � PðDay 0Þ and D%P ¼
PðFinal DayÞ � PðDay 0Þ

PðDay 0Þ
� 100: ð2Þ

Table 1. Key geometric and topological characteristics of tumour vasculatures on Day 0. Note that all lengths are in μm, all geometric resistances (total, mean, and per

loop) in μm−3, and all resistances with viscosity in cP�μm−3, where cP (centipoise) is a unit of dynamic viscosity equal to mPa�s).

Change in PF DP Increase (group A) Visualization Decrease (group B)

Tumour number 1 2 3 4 5 6

Vessel count (size) NV 1000 4087 1038 0 5000 2175 644 528

Mean diameter d 22.75 24.63 26.10 22 35 32.35 33.65 31.51

Mean length L 112.70 106.48 121.47 100 130 129.39 109.05 117.51

Total geometric resistance Rgeom
T 0.95 3.79 0.80 0 4 1.60 0.21 0.26

Total resistance with viscosity RT 72.87 224.17 47.14 10 230 74.11 11.06 13.25

Mean geometric resistance Rgeom (×10−4) 9.47 9.28 7.70 3 10 7.34 3.31 5.01

Mean resistance with viscosity R (×10−2) 7.29 5.48 4.54 0 8 3.41 1.72 2.51

Loops β1 22 247 48 0 250 134 48 36

Loops per vessel b1 (×10−2) 2.20 6.04 4.62 0 8 6.16 7.45 6.82

Resistance per loop Rgeom
b (×10−2) 4.30 1.54 1.66 0 5 1.19 0.44 0.73

Resistance with viscosity per loop Rb
3.31 0.91 0.98 0 5 0.55 0.23 0.37

https://doi.org/10.1371/journal.pcbi.1011252.t001
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The perfusion increases if D%P > 0 and decreases if D%P < 0. In Table 2, we summarize

these quantities and rank the tumours with respect to the relative change in PF (as measured

by D%P).

It might seem that the response to radiotherapy can be predicted by whether or not the

tumour is initially highly-perfused. Tumours that are initially highly-perfused (e.g., 4 and 6)

tend to have impaired perfusion post radiotherapy while those that are initially hypoperfused

tend to have improved perfusion post radiotherapy (e.g., 1 and 2). However, even in our small

dataset, we can find a counterexample: tumour 5 experienced a low perfusion fraction on Day

0, and an even lower value post-pruning. The particular value of the perfusion fraction (on any

day of the experiment) is expected to be strongly dependent on the number, location, and

strength of the inlet vessels which are often unknown. However, in the absence of such infor-

mation and provided the inlet vessels are not pruned, it may still be possible to predict the per-

fusion response of tumour vasculature to radiotherapy (as measured by the relative change in

the perfusion fraction D%P) based on geometric and topological characteristics of the vascula-

ture on Day 0 (i.e., just before the irradiation). Next, we carefully investigate the relationship

between key characteristics of the tumour vasculature on Day 0 and the perfusion response.

Network size (vessel count). In general, the resistance of a vascular network to flow

increases with the number of vessels. Therefore, one might naively expect that pruning vessels

in a large network should always increase its perfusion and, consequently, that irradiation

should improve perfusion at a rate proportional to the number of vessels in the network. Most

of our networks are consistent with this principle. However, the PF decreased following irradi-

ation for tumour 4, even though it has a large network (see Table 1). We conclude that the ves-

sel count alone is insufficient to predict perfusion response to radiotherapy.

Geometric determinants of perfusion. We now consider geometric determinants of flow

resistance in individual vessels. One typically assumes that the flow rate Q through a cylindrical

vessel, subject to a pressure drop Δp across its length L, satisfies Poiseuille’s law:

Q ¼
Dp
R

and R ¼
128Lmeff

pd4
; ð3Þ

where d denotes vessel diameter and μeff is the effective viscosity of blood [23, 52]. This param-

eter depends in a nonlinear way on the vessel diameter and haematocrit (see [53]). Determin-

ing the haematocrit distribution within a network is challenging due to uncertainty in the

locations and strengths of the inlets, the lack of consensus about the functional form describing

haematocrit splitting (this remains an active research area [23, 54–56]), and the highly coupled

and nonlinear nature of the haematocrit and blood flow. Therefore, for the sake of computa-

tional efficiency, we impose a uniform haematocrit H = 0.45 in all networks (the effect of

Table 2. Perfusion fractions on Day 0 and the final day of the pruning phase, the pruning-induced perfusion dif-

ference, and its relative counterpart for six studied tumours. Tumours are ordered based on the relative change in

PF as measured by D%P.

Tumour P(Day 0) P(Final Day) DP D%P

1 0.14 0.41 0.27 192.86

2 0.26 0.56 0.30 115.38

3 0.36 0.55 0.19 52.78

4 0.62 0.48 -0.14 -22.58

5 0.29 0.18 -0.11 -37.93

6 0.97 0.45 -0.52 -53.61

https://doi.org/10.1371/journal.pcbi.1011252.t002

PLOS COMPUTATIONAL BIOLOGY Enhanced perfusion following exposure to radiotherapy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011252 February 16, 2024 10 / 32

https://doi.org/10.1371/journal.pcbi.1011252.t002
https://doi.org/10.1371/journal.pcbi.1011252


varying H is documented in Section S1.5 of S1 Appendix). Substituting this value into standard

formulas obtained in [53] (see Eqs (17)–(19)), we arrive at a relationship describing how the

effective blood viscosity depends on vessel diameter (also known as the Fåhræus–Lindqvist

effect) [57, 58]. Note that for consistency with existing mathematical models [53], all length

scales in Eqs (17)–(19) are nondimensionalised with respect to 1 μm. Substituting this relation-

ship into Eq (3), we obtain an explicit expression for the resistance R in a vessel of length L
and diameter d. As a further simplification, we propose the quotient Rgeom ¼ L=d4 as the sim-

plest proxy for vessel resistance involving only the key geometric parameters. At the network

scale, we define the following measures for the total resistance of a network:

RT ¼
128

p

X

i

Lim
eff
i

d4
i

and Rgeom
T ¼

X

i

Li

d4
i

; ð4Þ

where the sum is over all network vessels i. Finally, we define the following proxies for mean

vessel resistance:

R ¼
RT

NV
and Rgeom ¼

Rgeom
T

NV
: ð5Þ

Due to the fourth-power dependence of the resistance on diameter, we expect that the average

vessel diameter in a network will strongly impact its resistance. Table 1 confirms this: networks

with small mean diameters typically have high mean resistance (both R and Rgeom). Further-

more, the mean diameter and mean resistances appear to be good predictors of radiotherapy

response: low values of mean diameter (high values of mean resistance) correspond to group

A, and vice versa. We note that neither the mean length nor the total resistance (which neglects

network size, and decreases when vessels are pruned) distinguish between the two groups of

tumours. In summary, for the 6 studied tumours, the mean diameter d and mean resistance R
distinguish between the two groups, with group A having, on average, thinner (higher resis-

tance) vessels than group B.

Topological determinants of perfusion. We use Betti curves [59, 60] to track the number

of loops in vascular networks during radiotherapy-induced vessel pruning. The Betti numbers

β0 and β1 refer to the number of connected components and the number of loops in a network,

respectively. Via the Euler-Poincaré formula [60, 61], the Euler characteristic X of a network,

which is given by its number of edges (vessels) NV and nodes NN, i.e., X ¼ NN � NV , is directly

connected to its Betti numbers: X ¼ b0 � b1. Given β0, NV, and NN, β1 can therefore be com-

puted as [60]:

b1 ¼ b0 � NN þ NV : ð6Þ

To obtain a Betti curve for β1, we track the number of loops throughout the pruning process

on a network.

As in the previous section, we also introduce metrics normalised by the number of vessels,

i.e.:

b0 ¼
b0

NV
and b1 ¼

b1

NV
: ð7Þ

We note from Tables 1 and A (the latter in S1 Appendix.) that β0, b0 , and β1 do not distinguish

between the two groups of tumours (A and B), whereas b1 —which we will call loops per vessel

—provides a (weak) distinction between the two groups: tumours with fewer loops per vessel

belong to group A. To elucidate why the loops per vessel on Day 0 might impact the perfusion
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response, we use Eqs (6) and (7) to write:

b1 ¼ b0 �
NN

NV
þ 1: ð8Þ

In what follows, we consider a network containing NI/O/ST nodes of degree 1 (inlets, outlets,

and tips of angiogenic sprouts that have not yet anastomosed) and NB nodes of degree 3 (bifur-

cation points). For simplicity, we ignore nodes of degree 2 (vessels subdivided into segments),

4 (trifurcations), and higher as these seldom appear in our networks. We then have NN = NI/O/

ST + NB and, counting vessels twice by looping over all network nodes, we have NV = (NI/O/ST

+ 3NB)/2. Using these relations, Eq (8) can be simplified to read:

b1 ¼
1

3
þ b0 �

2

3

NI=O=ST

NV
¼

1

3
þ b0 �

2

3
NI=O=ST ; ð9Þ

where NI=O=ST denotes the normalised number of degree-1 nodes. We see that small values of

b1 result from large numbers of nodes of degree 1, and vice versa. As the degree of a node

relates to its connectivity, vessels adjacent to degree-1 nodes are unlikely to play a significant

role in network perfusion and pruning such vessels is desirable. Moreover, while some of these

are inlet or outlet nodes, the majority are likely to represent tips of angiogenic sprouts (blunt

ends) that have not yet anastomosed. Consequently, the relevant vessels are hypoperfused.

Pruning these sprouts increases the perfusion fraction simply by reducing the denominator in

Eq (1), whereas pruning vessels that connect bifurcation points (degree = 3) may disconnect

parts of the network that were previously connected. This is confirmed in the bottom-left pan-

els in Fig 1: the vasculature for which the PF increased (tumour 1; bottom) contains more

angiogenic sprouts (i.e., is less inter-connected, with lower b1 ) on Day 0, than the one for

which the PF decreased (tumour 6; top). Taken together, these results provide a possible expla-

nation for why tumours with low b1 increase their PF, and vice versa.

Metrics combining geometry and topology. A full understanding of the determinants of

network perfusion is still lacking. It requires more detailed knowledge of the diameter and

length distributions within a network and their connectivity. The intricate (nonlinear) nature

of blood rheology further complicates the situation. A single measure (geometric or topologi-

cal) is unlikely to contain complete information about the perfusion fraction. To assess the

impact of radiotherapy on the perfusion fraction, one needs to consider the distribution of

high- and low-resistance loops that are being pruned from the network. To this end, and

inspired by the observations above, we now propose new metrics that combine network topol-

ogy with its geometric properties in the form:

Rb ¼
R
b1

and Rgeom
b ¼

Rgeom

b1

: ð10Þ

Table 1 shows that these metrics can distinguish between the two groups of tumours (particu-

larly Rb, which accounts for the dependence of viscosity on the vessel diameter). To our

knowledge, these are the first global metrics to combine the geometry and topology of vascular

networks.

Taken together, our analysis suggests that networks containing large numbers of high-resis-

tance vessels and angiogenic sprouts are likely to increase their PF following radiotherapy. In

other words, we postulate that irradiation-induced vessel pruning will increase the PF of vascu-

lar networks containing large proportions of thin and blunt-ended vessels—we will next test

this hypothesis using synthetic networks.
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Model overview

Our analysis of the experiments revealed that vascular architecture influenced the outcome of

pruning: tumours with lower mean vessel diameters (d) and fewer vascular loops per vessel

(b1 ) exhibited an increase in perfusion (D%P > 0) when irradiated. We then used our compu-

tational model to better understand the causal relationship between the architectural proper-

ties of a vascular network and how its perfusion changes following radiotherapy (Fig 4). In

brief, we constructed multiple networks to replicate the characteristics of interest (d and b1 )

exhibited by the biological dataset. We then simulated blood flow through the networks and

measured the change in perfusion as vessels were successively pruned. The design of the model

is detailed below, with the parameters in Section S1.8 of S1 Appendix.

Network design

We used forking and hexagonal networks to represent hierarchical and non-hierarchical vas-

culature respectively (Table 3). We then simulated blood flow through the networks. Using

simple symmetric geometries allows us to isolate the influence of the different geometric and

topological factors (e.g., vessel diameters, lengths, and network loops) under consideration.

While the geometries of the networks are simple, they reflect several properties of biological

vasculature. Here, we describe the forking networks since they form the focus of our results.

The design of the hexagonal network can be found in Section S1.3 of S1 Appendix. In the fork-

ing network, each vessel divides into two daughter vessels until 7 generations are created

(counting the inlet vessel as generation 0). After the seventh generation (generation 6), the net-

work converges symmetrically into a single outlet vessel. The effect of varying the number of

generations is documented in Section S1.6 of S1 Appendix. Note that throughout this work,

for simplicity, we consider any straight-line segment to be an individual vessel (as opposed to

defining vessels by their two endpoints being bifurcation nodes, inlets, outlets, or blunt ends).

Vessel dimensions. The diameters of the two daughter vessels (dA and dB) are related to

the diameter of the parent vessel (dparent) via Murray’s law [64]:

d3
parent ¼ d3

A þ d3
B: ð11Þ

Therefore, the inlet vessel diameter dinlet modulates the thickness of all subsequent vessels.

Fig 4. Flow chart summarising our model components. Simulations were carried out using Microvessel Chaste [62, 63].

https://doi.org/10.1371/journal.pcbi.1011252.g004
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Following [23], we assume that the vessel lengths L are proportional to vessel diameters (d) so

that:

L ¼ ld: ð12Þ

Based on the mean vessel length to mean diameter ratios in our experimental data, we fix λ =

4. The branching angle at a bifurcation is dictated by the y-extent of its constituent vessels. The

y-extent of a vessel in generation i� 1 is the length of its projection onto the y-axis (Vi) in a

manner that places the following limit on the spatial extent of the network [23]:

Viþ1 ¼
Vi

2
: ð13Þ

We set V1 = 0.9L1 for our simulations to allow the network to extend to a sufficient degree

along the y-axis, in line with [23]. If we further impose that two daughter vessels of any parent

vessel must have the same diameter (dA = dB), then the network geometry is fully specified.

This forms our reference network (Fig 5). Our reference network must be modified to reflect

the properties of interest (d and b1 ) in the biological networks. Therefore, we offset the mean

vessel diameter of the synthetic networks to match the minimum, maximum, and average val-

ues of d observed across the biological vasculatures (see Section S1.2 of S1 Appendix for details

on how we did so). Throughout our diameter variations, all vessel lengths and branching

angles remain identical to the reference network. Therefore, Eq (12) does not apply in these

cases. Variations in d do not result in variations in b1 within a network. Therefore, we tracked

b1 as we pruned the forking network and measured the corresponding changes in perfusion.

Table 3. Heterogeneity in both hierarchical and non-hierarchical networks is modulated by a single parameter.

Architecture Hierarchy Heterogeneity Parameter Values

forking present relative thickness of daughter vessels (α) 1.1, 1.2, 1.3

hexagonal absent SD of diameter distribution (σ) 8.68 μm, 13.23 μm, 17.49 μm

https://doi.org/10.1371/journal.pcbi.1011252.t003

Fig 5. Blood flows from left to right through a single inlet and a single outlet in the forking network. Li and Vi

denote the length and y-extent of a vessel in generation i, respectively. Note that our implementation of network

heterogeneity results in vessels at the top of the network being the thickest in their generation and vessels at the bottom

being the thinnest.

https://doi.org/10.1371/journal.pcbi.1011252.g005
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In effect, we considered every vessel removal as a way of generating a new network with a dif-

ferent b1 .

Network heterogeneity. To ensure heterogeneous diameters in the network, we fixed the

diameter of one of the two daughter vessels (dA) at each bifurcation to be α-times (α> 1)

thicker than the other (dB):

dA ¼ adB: ð14Þ

In the homogeneous case (α = 1.0), both daughter vessels have the same diameter. The diame-

ter of a vessel in any generation can be calculated as:

di ¼
dinleta

nthick

ð1þ a3Þ
i
3

; ð15Þ

where di is the diameter of a vessel in generation i on a path that features nthick thick vessels

originating from an inlet vessel with diameter dinlet. Since every permutation of thick and thin

vessels on a path exists in the network, it makes no difference which daughter vessel is α-times

thicker than the other at each bifurcation. We choose the vessel that extends upwards from a

bifurcation to be thicker than the lower vessel. As a result, vessels at the top of the network are

the thickest in their generation and those at the bottom are the thinnest (Fig 5).

Pruning

Radiotherapy preferentially prunes smaller vessels and the extent of pruning increases with the

dose [14, 15]. Therefore, we simulated increasing magnitudes of dosage by removing vessels

individually in order of increasing diameter (Fig 6). Recall that the constant λ dictates the ratio

between vessel lengths and diameters in the forking network. Therefore, pruning by diameter

effectively prunes by length as well, but provides more data points than the 7 distinct lengths

present in the forking network. Removing one vessel at a time allows us to examine pruning at

a greater temporal resolution than obtainable experimentally. If two vessels have the same

diameter then the vessels are pruned in order of their Vessel ID as detailed in Section S1.2 of

S1 Appendix. The effect of pruning multiple vessels of equal diameters simultaneously is docu-

mented in Section S1.7 of S1 Appendix. Due to the lack of hierarchy, isolated vessels may

remain in the hexagonal network during the course of pruning. Note that our model can only

be used to mimic the effect of single-dose radiotherapy over relatively short time scales, as a

reliable model of a fractionated radiotherapy over the course of multiple weeks would require

one to take into account significant angiogenic growth and vascular remodelling.

Perfusion threshold

Instead of identifying vessels as perfused based on fluorescence, we track the flow directly and

introduce the perfusion threshold (Qmin) as the minimum flow rate at, or above, which vessels

are considered perfused and below which vessels are considered ‘hypoperfused’. This threshold

serves as a proxy for the sensitivity with which our experimental apparatus can detect the sig-

nal coming from perfused vessels. In the forking network, we set the value of this threshold

Qmin to be 3 × 10−12 m3 s−1 which, for the default model parameters and the three offsetting

scenarios of the least heterogeneous network (α = 1.0), yields initial PFs of 0.24 (minimum),

0.50 (average), and 1.00 (maximum). In this way, we cover a large range of initial PFs spanning

almost the entire interval (0, 1) which was also observed in real vasculatures (initial PFs rang-

ing from 0.14 to 0.97). Similarly, we set Qmin = 3 × 10−13 m3 s−1 for the hexagonal network.

This value allows us to cover a sufficiently large range of initial PFs.
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Perfusion fraction

We compute the PF using the experimental formula (Eq (1)). Guided by Eq (2), we quantify

improvements in perfusion for synthetic networks by introducing D
maxP, the maximum value

attained by DP during pruning, and D
max
%

P, the maximum percentage change in the PF,

Fig 6. An example of pruning. Changes to the architecture of a forking network as (A) 0 vessels, (B) 50 vessels, (C)

100 vessels, and (D) 200 vessels are pruned.

https://doi.org/10.1371/journal.pcbi.1011252.g006
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where:

D
maxP ¼ Pmax

� P0 and D
max
%

P ¼
Pmax

� P0

P0

� 100: ð16Þ

In Eq (16), P0 and Pmax
denote, respectively, the initial and maximum value of the PF during

pruning.

Results

In line with our analysis of actual tumours, we found that the largest increases in PF in our

synthetic vascular networks were associated with lower values of d and b1 . Additionally, we

identified two mechanisms that can effect a positive change in perfusion post-irradiation. The

vascular remodelling that occurs in vivo makes it difficult to isolate the effects of each mecha-

nism. By contrast, synthetic networks offer no such barrier to analysis. We detail our infer-

ences from these simulated networks in the following subsections.

While our forking networks are inherently hierarchical, the same (high) level of order

might not be present in dysregulated tumour vasculatures. In order to gain insight into the

role that hierarchy plays, we also examined the effect of non-hierarchical structures modelled

as hexagonal networks and the impact of diameter heterogeneity. We found that hierarchy was

conducive to perfusion enhancement and that heterogeneity resulted in an increased and sus-

tained D%P response. For a full discussion, see Section S1.4 of S1 Appendix.

Two mechanisms can increase the perfusion fraction post-irradiation

One can deduce from Eq (1) that the perfusion fraction (P) can increase not only if the num-

ber of perfused vessels increases after pruning, but also if the number of hypoperfused vessels

decreases (Fig 7). We conclude that two mechanisms can increase the value of D%P when a

hypoperfused vessel is pruned:

• Mechanism 1: When a vessel is pruned, blood flow may be rerouted causing one, or more,

hypoperfused vessels to become perfused and increasing the number of perfused vessels (Fig

8).

Fig 7. The two mechanisms of P increase. When a forking network (α = 1.1, d ¼ 28:50 μm) is pruned, perfusion

(D%P) can increase, shown in (A), via Mechanism I when blood flow is rerouted from pruned vessels to other vessels,

as seen in (B) where the number of perfused vessels increases and the number of hypoperfused vessels decreases. In

contrast, perfusion (D%P) can also increase, shown in (A), via Mechanism II when hypoperfused vessels are pruned

without any net increase in the number of perfused vessels, as evidenced in (B) by the constant number of perfused

vessels.

https://doi.org/10.1371/journal.pcbi.1011252.g007
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• Mechanism 2: Removing hypoperfused vessels increases the proportion, but not the num-

ber, of perfused vessels.

Fig 9 shows how both mechanisms act on a network during pruning. In the original,

unpruned network, several hypoperfused vessels have blood flow rates that are close to the per-

fusion threshold while others have flow rates that are well below the perfusion threshold.

When the least-perfused vessels are pruned, their flow is rerouted and the flow rate in the

remaining vessels (several of which were previously hypoperfused) increases above the perfu-

sion threshold. A decrease in the number of hypoperfused vessels alone would correspond to a

network that becomes more efficient following radiotherapy. However, it would not necessar-

ily correspond to an improvement in oxygen distribution.

Mean vascular diameter determines the relative contribution of the two

perfusion improvement mechanisms

Having identified two mechanisms that can increase the perfusion fraction, we next examined

how the mean vascular diameter in the unpruned networks (d) affects the percentage change

in the perfusion fraction (D%P). As in the biological experiments, we found that lower values

of d generated larger increases in D%P and higher values of D
max
%

P (Fig 10). However, we also

examined the two mechanisms of improvement in isolation and found that higher values of d
were conducive to flow rerouting, while lower values tended to improve D%P through Mecha-

nism 2.

A low d results in an increase in D%P for two reasons. Firstly, thinner networks have lower

starting perfusion fractions (P0) than thicker networks (Fig 11). Therefore, any change in P is

greater relative to the network’s initial P0. P0 is lower in thinner networks because they offer

greater resistance to blood flow (Fig 12). Secondly, thinner networks have a greater proportion

of hypoperfused vessels that can be pruned before any perfused vessels are pruned. In these

networks, P can increase a greater deal as a result of pruning only hypoperfused vessels.

On the other hand, vascular architectures with a high d are more susceptible to increases in

D%P through blood flow rerouting (Fig 10). For these architectures, flow rates in the pruned

(hypoperfused) vessels are closer to the perfusion threshold. Therefore, these vessels require a

smaller increase in blood supply (via rerouting) to turn them into perfused vessels. These ves-

sels also provide less resistance to the blood that is rerouted into them once pruning begins.

A drop in the proportion of loops precedes a rise in perfusion

Thus far, we have compared networks that differ in terms of their initial, unpruned architec-

ture. Since pruning produces blunt ends (thereby changing the number of loops as discussed

in the section Topological determinants of perfusion), the pruned networks can serve as

Fig 8. Flow rerouting. Flow is rerouted in this section of a forking network (α = 1.1, d ¼ 28:50 μm) when a single vessel is pruned (original

position marked with an asterisk) between (A) and (B) and the flow rate increases in four hypoperfused vessels (blue) to the extent that they

become perfused (red).

https://doi.org/10.1371/journal.pcbi.1011252.g008
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Fig 9. Analysing perfusion response. Panel (A) shows the perfusion response of a single forking network (α = 1.2,

d ¼ 33:65 μm). Considering the central portion of this network, panels (B)–(G) present the progression of flow

distributions in the process of pruning, noting that the maximum of the colourmap is set equal to the perfusion

threshold (i.e., vessels that are not dark red are hypoperfused). Having pruned (B) the 20 thinnest vessels, the network

contains pairs of daughter vessels which experience flow rates slightly below the perfusion threshold (Qmin =

3 × 10−12m3s−1). Pruning one vessel of such a pair is likely to result not only in (C) fewer hypoperfused vessels but also

in more perfused vessels due to flow rerouting. Between (D) and (E) and between (F) and (G), we primarily prune
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proxies for networks that initially contain different proportions of angiogenic sprouts. Con-

trasting the number of loops per vessel (b1 ) with the change in perfusion fraction (D%P), we

observed two distinct results (Fig 13).

In the early stage of pruning (less radiation-induced cell death), D%P typically increases

regardless of the behaviour of b1 . In this stage, pruning removes the thinnest vessels, which

tend to constitute hypoperfused loops or blunt ends. Thus, D%P increases through both

blunt ends which increases the perfusion fraction (D%P) via Mechanism 2. Between (E) and (F), D%P dramatically

decreases because perfused paths are disrupted.

https://doi.org/10.1371/journal.pcbi.1011252.g009

Fig 10. The impact of the mean diameter and the diameter heterogeneity on the perfusion response. Series of plots (A–I) showing, for the

forking network, the influence of the mean diameter (d) and the diameter heterogeneity (α) of the unpruned network on how perfusion (D%P)

changes during pruning. An increase in the number of perfused vessels is evidence of flow being rerouted into vessels that were previously

hypoperfused. An increase in D%P without an increase in perfused vessels is evidence of Mechanism 2. Regions in which Mechanism 1 is primarily

active are highlighted in grey.

https://doi.org/10.1371/journal.pcbi.1011252.g010
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mechanisms of improvement. In the later stages of pruning (more radiation-induced cell

death), however, peaks and troughs in b1 correspond to those in D%P. In particular, a reduc-

tion in b1 often precedes an increase in D%P. When a vessel that separates two loops is pruned,

the loops merge into one and the total number of loops decreases. At the site of the pruned

Fig 11. Perfusion response as measured by P. The initial perfusion fraction (P0) depends on the vascular architecture (A–C). Note that, for a given

diameter heterogeneity (α), the perfusion fraction (P) of all mean diameters (d) converges during the later stages of pruning, when the networks only

contain thicker (low-resistance) vessels. Panel (D) shows the pruned architecture at a stage common to all values of d for α = 1.2 (147 pruned vessels).

Here, we observe that all remaining vessels are either perfused or have blunt ends (no flow). No flow rerouting can occur in the hypoperfused vessels.

Thus, subsequent pruning produces the same changes in P, regardless of the initial d . Note that the vessel colour indicates the local flow rate, with the

range of the colourbar adjusted so that perfused vessels are dark red and vessels with little or no flow are dark blue.

https://doi.org/10.1371/journal.pcbi.1011252.g011

Fig 12. Network resistance. Since vessel conductivity depends on the fourth power of the mean network diameter (see Eq (3)), thinner forking networks

offer much greater resistance (Rgeom) to blood flow regardless of α (A–C). Rgeom decreases monotonically during pruning because vessels are removed in

order of increasing diameter.

https://doi.org/10.1371/journal.pcbi.1011252.g012
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vessel, a blunt end may be created. Subsequent pruning favours the removal of this blunt end

due to its small diameter by virtue of previously being connected to the smallest vessel (recall

Murray’s law, Eq (11)). Pruning the blunt-ended vessel does not change the total number of

loops. However, it increases the proportion of loops (b1 ) and the resulting reduction in the

hypoperfused vessel count leads to an increase in D%P. Therefore, a decrease in b1 indicates

that the network now contains a greater proportion of blunt ends (and vice versa). Thus, we

find that D%P increases when networks with a low value of b1 are pruned. We also infer that

b1 indicates when an improvement seen in D%P is caused by the pruning of blunt-ended ves-

sels with no flow, rather than by rerouting.

Discussion

In this paper, we used a computational model to investigate the influence of vascular architec-

ture on the outcome of radiation-induced pruning. As per [15], we measured these outcomes

in terms of overall network perfusion, as defined by the PF (Eq (1)). In our experimental data,

we found that perfusion typically improved in vascular networks with lower mean diameters

(d) and fewer loops per vessel (b1 ). It may seem counter-intuitive for network perfusion to

increase after vessels are removed in a model that excludes angiogenesis. However, our syn-

thetic networks mirrored our observations of the experimental data. We modelled the influ-

ence of radiotherapy by assuming that pruning proceeds from the smallest to largest diameter

vessels. Using our in silico model, we elucidated the mechanisms underlying the perfusion

response, including two mechanisms of improvement in the PF. We have also shown that dif-

ferent architectural features are susceptible to different mechanisms of improvement in the

PF. In particular, we found that networks with low average diameters tend to exhibit improve-

ments in PF via the reduction of hypoperfused vessels, while networks with large average

diameters are more prone to rerouting (see the section Mean vascular diameter determines

the relative contribution of the two perfusion improvement mechanisms). In the former,

large doses of radiotherapy (i.e., more vessels pruned) seem to improve the PF, while rerouting

seems to occur in the latter with smaller doses of radiotherapy (Fig 10).

Therefore, our model represents a first step towards understanding the different perfusion

responses found in the literature, where some studies reported increased perfusion post-irradi-

ation and some did not [19]. Moreover, our exposition of the different mechanisms of PF

improvement may explain why Bussink et al [22] observed an increase followed by a decrease

Fig 13. The proportion of loops. A drop in the number of loops per vessel (b1 ) precedes a positive change in the perfusion fraction (D%P) in the

forking networks (d ¼ 33:65 μm) across all values of α (A–C). Minor differences in b1 arise between heterogeneities because α changes the order of

pruning by virtue of changing the diameters of vessels.

https://doi.org/10.1371/journal.pcbi.1011252.g013
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in tumour perfusion. Bussink et al. attributed the increase in perfusion to the redistribution of

blood and the refilling of previously non-functional vessels (in line with our model’s

predictions).

While we are not aware of any experimentally informed computational models of radio-

therapy-induced pruning, several studies have modelled the effect of vessel pruning due to low

wall shear stress. For example, when modelling angiogenesis, Owen et al. found that poorly-

perfused vessels tended to be pruned and that new vessels were formed by ‘stealing’ flow from

other vessels [26]. Although we pruned our synthetic networks in order of increasing vessel

diameter, we note that the thinnest vessels are likely to have the lowest blood flow. Further,

our models also exhibited flow rerouting, with previously hypoperfused vessels becoming per-

fused following vessel pruning. Stéphanou et al. simulated vessel pruning based on flow rates

to investigate the rate of drug uptake [65]. Pruning vessels randomly sometimes resulted in

improved rerouting of blood flow, and increased drug uptake [65]. Pruning low-flow vessels,

on the other hand, did not improve drug uptake but improved delivery speed as blunt-ended

vessels were removed [65]. In our study, the removal of blunt ends is also unlikely to result in

improved oxygenation, although a full investigation is reserved for future work.

Experimental implications

Our findings also have several implications for experimental methodologies used to study radi-

ation-induced pruning. For one, our results in the section Two mechanisms can increase the

perfusion fraction post-irradiation have shown that the PF is not an ideal measure of a

tumour’s perfusion, since it fails to account for hypoperfused vessels that are pruned. Further-

more, the PF offers no indication of a vascular network’s ability to sufficiently deliver oxygen

in tissue. Theoretically, a region could feature a single perfused vessel and have a PF of 1

despite the fact that the vessel may not cover a sufficient area or carry enough red blood cells

to maintain a normoxic environment. Experimentally, Bussink et al. found discrepancies

between perfusion and hypoxia [22]. Monitoring the PF alone cannot tell us which mechanism

(as discussed in the section Two mechanisms can increase the perfusion fraction post-irra-

diation) is at work during pruning. Discerning the mechanism is important because it tells us

whether or not blood flow has improved in the remaining vessels. Future experiments could

be used to validate the model’s findings. For example, if a vascular network has a low average

diameter and a low number of loops per vessel, our study suggests that the network is likely to

show an improvement in perfusion after irradiation. To avoid the pitfalls of using the perfu-

sion fraction metric, it would be useful to measure flow as total blood flow rate or in terms of

the tissue area under normoxic oxygen tension.

In the section A drop in the proportion of loops precedes a rise in perfusion, we showed

that the number of loops per vessel may act as an indicator of improvements in PF via the

reduction of hypoperfused vessels. In Table 1, we classified biological tumours into groups A

and B based on the DP on a fixed day. However, the non-monotonic response of P in our sim-

ulations implies that this classification is subject to the sampling point (Table 4). In other

words, a network belongs to group A or B depending on the number of vessels pruned from it.

Interestingly, for any fixed α, the lower the mean diameter, the more often one observes an

increase in PF. Similar correlations were found in real vasculatures.

We also computed for forking networks a compound metric discussed in the section Met-

rics combining geometry and topology: the resistance per loop. As expected from Eq (10),

over the course of pruning, the trend of Rgeom
b follows that of b1 in an inverse fashion (Figs 13

and 14). However, Rgeom
b also encodes information on the mean diameter (via resistance) and

thus allows us to distinguish between networks of varying mean diameters. Consistent with
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real vasculatures, we observe that networks with initially higher Rgeom
b exhibit greater potential

for perfusion improvement, as measured by D
max
%

P (compare with Fig 10). This leads us to pro-

pose the metric Rgeom
b for future investigations as a predictor of perfusion improvement, useful

especially when d and b1 individually give contradictory predictions. This might be relevant,

for example, for vasculatures with low mean diameters and a large proportion of loops, even

though such a combination of characteristics did not occur within the small tumour sample

studied here. These speculations need to be confirmed by future work and the mechanism of

improvement must also be discerned.

While the focus of this study is the generation of mechanistic insights into enhanced perfu-

sion, we note that the clinical implications of our model are limited by current vascular imag-

ing technologies. High-resolution methods, such as the multiphoton microscopy used in this

study, are limited to a penetration depth of approximately 1 mm, requiring the use of a win-

dow chamber [66]. In a clinical setting, vascularised tumours may be located below this depth.

On the other hand, techniques such as MRI and CT have previously been used to study vascu-

lar function in humans but are limited to a resolution of 100 microns, while our model shows

that the redirection of blood flow is prevalent in smaller vessels [67]. Thus, our predictions

from synthetic networks would require clinical imaging technology to advance considerably

before their prognostic value in humans can be evaluated.

Table 4. The classification of forking networks into groups A and B varies based on the sampling point, i.e., how many vessels have been pruned when D%P is mea-

sured. Cells have been shaded green or red to represent positive or negative values of D%P.

Dosage (vessels pruned) d ¼ 22:76 μm d ¼ 28:50 μm d ¼ 33:65 μm

α = 1.1 α = 1.2 α = 1.3 α = 1.1 α = 1.2 α = 1.3 α = 1.1 α = 1.2 α = 1.3

25 7.13 10.48 10.48 15.66 12.11 8.75 8.36 16.07 13.31

50 20.26 24.02 20.76 22.08 22.20 22.08 8.52 53.85 39.92

75 -1.49 37.62 15.30 28.09 30.95 39.13 -6.23 39.55 32.28

100 9.52 42.67 42.67 38.62 52.21 61.72 -14.70 31.01 32.69

125 60.46 44.51 70.32 -14.20 41.32 93.06 -47.20 21.65 58.41

150 17.95 79.25 79.25 -35.38 0.17 21.63 -60.23 -13.78 -0.20

175 -32.07 135.98 135.98 -64.97 31.87 40.11 -78.44 13.51 14.96

200 -100.00 -13.69 -1.36 -100.00 -51.77 -41.44 -100.00 -58.49 -51.95

225 -100.00 -100.00 60.71 -100.00 -100.00 -4.58 -100.00 -100.00 -21.71

https://doi.org/10.1371/journal.pcbi.1011252.t004

Fig 14. Resistance per loop. The resistance per loop (Rgeom
b ) follows trends inverse to those observed for the loops per vessel (b1 ) for all values of α (A–

C), but can also distinguish between networks of varying mean diameter.

https://doi.org/10.1371/journal.pcbi.1011252.g014
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Future work

In this work, we used forking and hexagonal networks to illustrate the role of hierarchy in vas-

cular architecture. However, both network types are regular (i.e., symmetric) and might not

adequately represent all features of dysregulated tumour vasculature. As a next step, one

should consider irregular networks, such as those generated by the Voronoi tessellation of a

planar region [68, 69]. Tumour vasculature is further known to contain many leaky and tortu-

ous vessels which will also need to be accounted for in the model.

We performed our blood flow simulations under the assumption that the haematocrit (frac-

tion of blood made up of red blood cells) distributes itself evenly in all vessels. In reality, how-

ever, the spread of haematocrit at vessel junctions is more complex. The haematocrit in each

vessel affects its flow rate (Eq (17)), as well as its capacity to carry oxygen. Additionally, our

colleagues have hypothesised that irradiating a tumour with a larger proportion of small vessels

might be more likely to lead to improved perfusion by altering the proportion of haematocrit

splitting [15]. Therefore, it will be important to contrast different haematocrit splitting rules

sourced from the literature [23, 70, 71]. Different splitting rules will give rise to different oxy-

gen distributions in the tissue. These distributions are a key determinant of the efficacy of stan-

dard oncological treatments, such as chemotherapy, which can also be modelled within

Microvessel Chaste [62, 63] as a chemical transport process. The death of tumour cells caused

by radiotherapy or chemotherapy lowers net oxygen consumption, which further increases tis-

sue oxygen levels. The inclusion of an oxygen consumption term proportional to the local den-

sity of live tissue cells will be an important next step in the precise modelling of tissue oxygen

perfusion. We have already highlighted that the PF is an imprecise metric to describe the oxy-

genation status of the tissue. Once we explicitly simulate oxygen diffusion, we will need to

adopt and develop new spatial metrics that better describe the spread of oxygen. With a model

of oxygenation in place, we will then consider the dynamic nature of the tissue perfused by the

vasculature. Cells that comprise the tissue will have varying uptake rates, and will divide and

die based on the amount of oxygen available to them.

Pruning can also be conducted stochastically, provided a reliable relationship between the

vessel diameter and the probability of its pruning is found, and the pruning rules can be modi-

fied to reflect radioresistance when the region is anoxic. Let us note that the existing model

can also be adapted to better represent the regression of hypoperfused vessels as observed in

developmental vascular networks by pruning vessels in order of increasing flow rate [17, 49].

Since the vasculature itself is also dynamic, future models must factor in structural adaptation

and the secretion of angiogenic factors. Random sprouting models of tumour angiogenesis

may be useful here [72]. Percolation models would also serve as a good representation of the

statistical distribution of avascular spaces found in tumours [73]. Moreover, percolation mod-

els have been used to replicate observed oxygenation conditions in mice tumour xenografts

[73]. Such a study may also involve modifying haematocrit splitting rules to include higher-

order splitting, since tumour vasculature is not limited to bifurcations [23].

Finally, we may leverage our insights from synthetic networks and apply them to a real bio-

logical network obtained via the methods outlined in [35]. Provided that inlet and outlet ves-

sels with appropriate boundary conditions are identifiable, we may then simulate blood flow

and the pruning of vessels in image-derived networks. However, the implications of this study

remain limited due to a relatively small experimental dataset associated with a single tumour

cell line. Trends identified in this work will thus need to be tested using different cancers and

biological models.
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Materials and methods

Experimental procedures and data preprocessing

Ethics statement. All animal experiments were conducted in accordance with the United

Kingdom Animals (Scientific Procedures) Act 1986 as amended (Amendment Regulations

2012 [SI 2012/3039]), under the authority of a UK Home Office Project License (PPL 30/2922

and PCDCAFDE0), with local ethical approval from the University of Oxford Animal Welfare

and Ethical Review Panel, as previously described [15].

Experimental procedures. Abdominal imaging window implantation. This procedure

was based on a previously described method [74]. Transgenic mice with fluorescent protein

tdTomato expressed in endothelial cells on C57Bl/6 background were prepared in a surgical

unit, and administered with inhalational anaesthesia and pre-operative analgesics. Body tem-

perature and respiration rates were monitored throughout the procedure. A 1 cm cut was

made along the abdominal midline approximately 5 mm underneath the sternum followed by

blunt dissection around the cut to separate the connective tissue from the skin. A custom-

made imaging window frame (Workshop at the Department of Oncology, Oxford University)

was fitted underneath the skin. Continuous sutures were used to secure the skin to the window

frame. Approximately 2.5 × 105 MC38 cells (murine colon adenocarcinoma cells) stably

expressing eGFP in 5 μL containing 30% of Matrigel and 10% of Evan’s blue dye were injected

under the connective tissue and above the abdominal muscle layer. The chamber was then

flushed with water to lyse non-injected cells by osmotic shock, tapped dry with sterile cotton

swabs and flooded with saline. A cover glass glued on the chamber’s lid was secured onto the

window frame. The animals were then placed onto a heat mat for post-operative recovery, and

their health and tumour growth was monitored by visual examination.

Treatment regimes. Animals with tumours approximately 100 mm3 growing in the win-

dow chamber were administered radiation treatment. Prior to the radiation treatment, mice

were anaesthetised under inhalation with isoflurane and placed in an imaging-guided small

animal radiation research platform (SARRP) irradiator (Xstrahl Ltd). A Cone Beam CT scan

(computerised tomography) of each mouse was obtained and the treatment was planned using

Muriplan (Xstrahl Ltd). The SARRP was used to deliver 15 Gy of X-rays (220 kVp copper fil-

tered beam with HVL of 0.93 mmCu) to the tumour at 2 Gy per minute. Dosimetry of the irra-

diator was performed as previously described [75]. We refer to the start of treatment as Day 0.

Intravital two-photon imaging. Mice were imaged for 7 days after radiation treatment

with a Zeiss LSM 880 microscope equipped with a respiratory monitoring system. The stage

and atmosphere were heated to 37˚C. To label perfused vessels, Qtracker705 Vascular Labels

(0.2 μM, ThermoFisher Scientific) were infused intravenously using a motorised pump at a

rate of 0.84 μL�min−1. A mode-locked MaiTai laser tuned to 920 nm was used to simulta-

neously excite eGFP, tdTomato, and Qtracker705. The Qtracker705 signal was acquired

through a BP700/100 filter with a non-descanned detector. GaAsP detectors were used to

acquire the signal of tdTomato selected by a BP 650/45 filter and the eGFP selected by a

BP525/50 filter. Images were acquired in Z-stack tile scans with a pixel size of 0.823 μm and an

image size per tile of 512 × 512 × 5 in x, y, and z, respectively. A water immersion 20× objective

made for UV-VIS-IR transmission with a numerical aperture of 1.0 was used. Representative

examples of vascular networks from our experiments are displayed in Fig 2.

Data preprocessing. The biological networks were obtained by multiphoton intravital 3D

imaging [76] and consisted of 3D stacks of images of tumour blood vessels. Skeleton files were

extracted from the imaging data by combining two segmentation models and taking their geo-

metric average. The skeletons were then pruned (see reference [77], p. 165, for a full descrip-

tion). We extracted blood vessel networks from skeleton files using the method VesselTree
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from UNET_CORE.VESSEL_ANALYSIS in the Python code package UNET-CORE [78]. The extracted net-

works consist of points on vessel branches (multiple points per vessel branch including

branching points) which represent the network nodes, and the vessels that connect them

which constitute the edges of the network. VesselTree also enables us to extract network fea-

tures such as vessel diameters and lengths.

Simulation methods

Blood flow. We assume that the blood flow rate Q in a vessel of length L and diameter d is

determined by Poiseuille’s law (Eq (3)). Following [23, 53], the effective blood viscosity in Eq

(3) is expressed as:

meff ¼ mp 1þ ðm45 � 1Þ
ð1 � HÞC � 1

ð1 � 0:45Þ
C
� 1

 !
d

d � 1:1

!2 #
d

d � 1:1

#2

; ð17Þ

""

where H is the discharge haematocrit, d is the vessel diameter, μp is the plasma viscosity,

m45 ¼ 6e� 0:085d þ 3:2 � 2:44e� 0:06d0:645

; ð18Þ

and:

C ¼ ð0:8þ e� 0:075dÞ � 1þ
1

1þ 10� 11d12

� �

þ
1

1þ 10� 11d12
: ð19Þ

As discussed in the section Geometric determinants of perfusion, we assume that haemato-

crit is distributed evenly within the network (H = Hinlet = 0.45) to yield a linear flow problem.

With signed flow rates Qi for each vessel i (i.e., each edge connected to a node), we also impose

conservation of blood at each network bifurcation node:

X

i

Qi ¼ 0: ð20Þ

In each (unpruned) network, the leftmost nodes serve as inlets and all other vessels with one

detached node serve as outlets. Inlet nodes are assigned a pressure (pinlet) of 3333 Pa (� 25

mmHg), while outlet nodes are assigned a pressure (poutlet) of 2000 Pa (� 15 mmHg) [79].

Software development and post-processing. We performed our simulations using

Microvessel Chaste (version 3.4.3), an add-on to the open-source simulation package Chaste

(version 2020.1) [62, 63]. We added custom functionality to the base version of Microvessel

Chaste, including new network generators and pruning functions. We generated synthetic net-

works detailed above and pruned them vessel-by-vessel in order of increasing vessel diameter.

At each pruning step, we updated the flow distribution, and exported the perfusion fraction

and the network itself in the .vtk format, accounting for all vessels that had not yet been

pruned. We used Python scripts to generate from the .vtk files adjacency matrices weighted by

vessel diameter and vessel length, from which we calculated key geometric metrics, such as

mean diameter and mean geometric resistance. Based on a MATLAB package [80], we wrote

Python scripts to import the adjacency matrices from above, calculate both the number of

loops and loops per vessel at each pruning stage using Eq (6), and finally divide the mean resis-

tance by the latter.
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