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ABSTRACT Interstitial fluid flow is a feature of many solid tumors. In vitro experiments have shown that such fluid flow can
direct tumor cell movement upstream or downstream depending on the balance between the competing mechanisms of tenso-
taxis (cell migration up stress gradients) and autologous chemotaxis (downstream cell movement in response to flow-induced
gradients of self-secreted chemoattractants). In this work we develop a probabilistic-continuum, two-phase model for cell migra-
tion in response to interstitial flow. We use a kinetic description for the cell velocity probability density function, and model the
flow-dependent mechanical and chemical stimuli as forcing terms that bias cell migration upstream and downstream. Using ve-
locity-space averaging, we reformulate the model as a system of continuum equations for the spatiotemporal evolution of the cell
volume fraction and flux in response to forcing terms that depend on the local direction and magnitude of the mechanochemical
cues. We specialize our model to describe a one-dimensional cell layer subject to fluid flow. Using a combination of numerical
simulations and asymptotic analysis, we delineate the parameter regime where transitions from downstream to upstream cell
migration occur. As has been observed experimentally, the model predicts downstream-oriented chemotactic migration at
low cell volume fractions, and upstream-oriented tensotactic migration at larger volume fractions. We show that the locus of
the critical volume fraction, at which the system transitions from downstream to upstream migration, is dominated by the ratio
of the rate of chemokine secretion and advection. Our model also predicts that, because the tensotactic stimulus depends
strongly on the cell volume fraction, upstream, tensotaxis-dominated migration occurs only transiently when the cells are initially
seeded, and transitions to downstream, chemotaxis-dominated migration occur at later times due to the dispersive effect of cell
diffusion.
SIGNIFICANCE It is well known that interstitial flow biases the direction of cell migration, and that this phenomenon has
important implications for tumor metastasis. Here, using a probabilistic approach, we develop a two-phase model for the
directed migration of cells under the mechanochemical stimuli induced by fluid flow. Previous experimental findings have
suggested the presence of competing tensotaxis and chemotaxis stimuli, resulting in transitions in the dominant mode of
migration as the flow conditions and cell density are varied. The current model enables us to examine the competing signal
hypothesis, to generate predictions about how the balance between these competing mechanisms changes over time and,
thus, to determine the conditions under which a transition from upstream to downstream cell migration occurs.
INTRODUCTION

Cells can sense a variety of chemical and mechanical cues
that may bias their movement. In healthy tissues, cells
migrate in response to multiple environmental cues: exam-
ples include morphogenesis, wound healing, and the stimu-
lation of an immune response to infection (1). At the same
time, many diseases are characterized by excessive (or
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insufficient) directed cell migration: examples include tu-
mor invasion and metastasis to adjacent tissues (2,3) and
impaired wound healing caused by diabetes (4).

Fluid flow has been found to promote tumor cell migra-
tion in several different ways (3,5–7). Interstitial fluid flow
in solid tumors is known to be higher than in healthy tissues
due to growth-induced increases in interstitial pressure and
leaky blood vessels. Consequently, interstitial flow has been
suggested as a contributor to cell migration and metas-
tasis (8,9).

In vitro experiments (5) have shown that fluid flow may
impact the directed movement of cells in several different
ways. On the one hand, extracellular fluid flow increases
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FIGURE 1 Experimental results, reproduced with permission from (5),

showing the directional migration score (positive [negative]––most cells

travel downstream [upstream], see (5) for details) as a function of the

strength of interstitial flow and for different cell seeding densities

(‘‘high’’ and ‘‘low’’ refer to seeding densities of 25� 104 and 5� 104

cells/mL, respectively). The dashed lines show that upstreammigration pre-

vails when the CCR7 receptor signaling pathway is blocked, interrupting

the downstream-oriented autologous chemotaxis.
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the pressure on the upstream part of the cell and, conse-
quently, the cell increases the adhesion forces it exerts on
the extracellular matrix (ECM) in this region. In turn, the
localized tension at the front of the cell leads to actin local-
ization and protrusion in this region, contributing to migra-
tion against the direction of flow (6). This mechanism,
which is dominant in three-dimensional (3D) cell cultures,
is similar to the mechanism underlying durotaxis, where
cells on a 2D substrate migrate in response to gradients in
the mechanical stiffness of the substrate (10,11). Cell move-
ment in response to gradients in cell-ECM adhesion forces
has been termed rheotaxis in (6), but here we refer to it as
tensotaxis (12) to emphasize the role of fluid-induced stress
(rather than velocity gradients) on this type of movement. In
addition to upstream directed movement induced by tenso-
taxis, autologous chemotaxis drives cell movement down-
stream. Here, the flow advects cell-secreted ligands,
creating transcellular gradients of chemokines. The ligands
bind to specific receptors on the cell surface, inducing cell
polarization in the direction of higher chemokine concentra-
tions and driving downstream, chemotactic migration. This
autologous signaling mechanism has been observed by
Shields et al. (3), where tumor cells have been shown to
migrate downstream by binding self-secreted CCL21 li-
gands to the CCR7 receptors.

In experiments by Polacheck et al. (5), cancer cells were
seeded in a microfluidic channel and subject to fluid flow.
The distribution of cell velocities was measured and the
average migration direction (with respect to the flow direc-
tion) was evaluated; the local flow direction experienced by
the cells was evaluated by numerically simulating the flow
field in the microfluidic device. The results, reproduced in
Fig. 1, show that the dominant mode of migration switched
between downstream (with the flow direction; positive
values of directional migration in Fig. 1) and upstream
(against the flow direction; negative values of directional
migration in Fig. 1) as the cell density increased. However,
when the CCR7 receptor signaling pathway was blocked,
upstream migration was found to prevail regardless of the
cell density, supporting the observations by Shields et al.
(3) regarding CCR7-dependent, downstream-oriented autol-
ogous chemotaxis. In addition, for all of the experimental
curves shown in Fig. 1, an increase in the interstitial flow
led to a higher tendency of the cells to migrate upstream.
These results motivate the question of how different proper-
ties of cells, and the mechanochemical landscape they sense,
affect their migration directions. In this paper, we show how
mathematical modeling can shed light on the mechanisms
regulating the direction of collective cell migration in a
flow as system parameters vary.

Models of chemotactic migration go back to the highly
influential work of Keller and Segel (13). More recently,
chemotaxis has been considered in the context of two-phase
cellular tissue models (14,15) by formulating mass and mo-
mentum balance of the cell and fluid phases coupled to the
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transport equation for chemoattractant propagation in the
fluid phase. The ability of multiphase models to incorporate
coupled interactions between cells, fluid, and chemoattrac-
tants makes them a natural framework for describing the
mechanisms involved in mechanochemical transduction of
cells subject to interstitial fluid flow.

While models for chemotaxis are prevalent (see the
extensive review in (16)), models for tensotaxis are less
common. In a recent related work (17), a generalized
Keller-Segel model was applied to study the combined ef-
fect of rheotaxis (directed movement in response to flow ve-
locity field) and chemotaxis on the aggregation of
swimming organisms. However, in (17) a single-phase
model was formulated; thus, the coupled interactions of
the organisms and fluid were not considered. Evje and co-
workers (18,19) have formulated a multiphase model that
combined the competing mechanisms of downstream-ori-
ented autologous chemotaxis and upstream force, intro-
duced ad hoc by inverting the direction of fluid drag force
acting on the cells. Their model have been successful in re-
producing the transition between downstream and upstream
migration as the cells’ volume fraction increases, as was
observed in (5). However, the heuristic assumption of invert-
ing the direction of drag force does not explain the mecha-
nisms underlying this type of migration and does not allow
any generalization of the model to more complicated sce-
narios where different sources of mechanical stimulus exist.
More recently, Rosalem et al. (12) derived a single-phase
model for the tensotactic migration of cells, where the cell
flux was assumed to be proportional to the transcellular
pressure gradient. They verified that, in the presence of
flow, this mechanism leads to upstream migration of cells;
however, they did not consider the opposing effect of
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chemotactic migration. Consequently, it remains to be es-
tablished what parameters (other than cell volume fraction)
affect the direction of cell migration and what parameter re-
gimes support downstream, rather than upstream, cell
migration.

An additional drawback of existing macroscopic multi-
phase models for cell migration (e.g., (14,18)) is that
directed migration is modeled as an internal force exerted
by the cells on their self (source terms in the cell momentum
balance). Therefore, the cell speed increases with the
strength of the stimulus. This contradicts some experimental
findings, which show that individual cells bias their direc-
tionality in response to the external cues, but their speed
of migration is not correlated with their directionality
(5,11,20).

The goal of this work is to derive a two-phase model for
cell migration subject to flow-induced mechanochemical
stimuli. The chemotactic and tensotactic cues are viewed
as external signals that bias the probability that a cell moves
in a certain direction while the magnitude of its speed re-
mains constant. This situation resembles the kinetic model
developed by Hillen (21) to describe contact guidance of
cell migration along the ECM fiber network. In that model,
Hillen (21) used a transition probability function (TPF) to
describe the velocity-jump process of the cells, biased by
the structure of the ECM network. The use of a TPF was
originally introduced in the pioneering work by Alt and
co-workers (22) and has been used since to describe many
aspects of directed cell migration (see the review by Per-
thame (23) and references cited therein). Building on these
previous works, we propose a mesoscopic kinetic equation
to describe the evolution of the cells’ probability density
function in response to the external stimulus induced by
fluid flow; here, the stimulus induces a cell velocity jump
via a specifically tailored TPF. We then apply velocity-space
averaging to derive continuum equations for the spatiotem-
poral evolution of the cells’ volume fraction and flux in
response to forcing terms depending on the local direction
and magnitude of the mechanochemical stimulus. Using a
combination of numerical simulations and asymptotic anal-
ysis, we delineate the parameter regimes for which cell
migration transitions from downstream to upstream.

The remainder of the manuscript is structured as follows.
In the methods we introduce our two-phase model for cell
migration in response to flow-induced mechanochemical
stimuli; we then introduce the 1D model problem that is
the focus of this paper, and use asymptotic methods to
derive the critical conditions for transition between down-
stream and upstream migration in the limit of small stim-
ulus. In the results and discussion we present numerical
results describing the spatiotemporal dynamics of the cell
layer for different parameter regimes supporting different
modes of migration; then, we compare predictions from
the asymptotic analysis with numerical results derived
from the full model regarding the conditions under which
migration switches between downstream and upstream re-
gimes. In the conclusion we summarize our findings and
outline possible directions for future research.
METHODS

Model formulation

In this section we introduce a model for cell migration in the presence of

interstitial fluid flow, motivated by in vitro experiments that show that inter-

stitial flow can induce mechanochemical stimuli biasing the direction of

cell migration (3,5). In the present model we view the mechanochemical

cues as external signals that regulate the probability that the cells move

in a certain direction, and assume that the magnitude of the cell speed re-

mains constant. In more detail, we seek to formulate a kinetic model for

the probability density function, f ðx; t; xÞ, that the velocity of a cell in a

neighborhood of spatial position x, at time t, has orientation vector x. In

the following subsection we formulate a dimensional model in an arbitrary

number of dimensions; in the subsequent subsection we consider a simpli-

fied 1D version of the model and then nondimensionalize the governing

equations using the characteristic scales of the system which we introduce

therein.

Probabilistic model for cell migration

We consider a mesoscopic kinetic model for the cells’ probability density

function, f ðx; t; xÞ. We assume that the cells travel at a drift velocity Ucx,

where the cell speed, Uc, is constant and x is a unit vector representing

the cell velocity orientation, which evolves in response to the external stim-

ulus sensed by the cells. This change in cell velocity orientation is modeled

using a velocity-jump process induced by a TPF, Fðx; t; xÞ. We assume

further that the cells perform an unbiased random walk (modeled as a

microscopic space-jump process) superimposed on their directed move-

ment. Accordingly, we model the change in the cells’ probability density

function, f ðx; t;xÞ, using the following mesoscopic kinetic model:

vf

vt
þUcx $Vf ¼ 1

t

2
64 Z

x0 ˛V

Fðx; t; xÞf ðx; t; x0Þdx0 � f

3
75

þ DcV
2f ;

(Equation 1)

where Dc denotes diffusivity due to the unbiased random motion; x and x0

mark the current and previous cell velocity orientation, respectively. The
transition probability, F, represents the rate at which the orientation vector

changes, and biases the probability density function in the direction of the

stimulus; the constant, t, represents the relaxation time over which the cell

responds to the external signal. The integration in Eq. 1 is carried out over

all cells at ðx; tÞ (i.e., over all possible [previous] velocity orientations,

x0 ˛V, where V is the set of vectors pointing from the origin to the surface

of a unit sphere). We assume that F ¼ Fðx; t; xÞ is only a function of the

current cell velocity (after jump) and not a function of the previous velocity

(before jump). Therefore, Eq. 1 can be written as

vf

vt
þUcx $Vf ¼ 1

t

�
f

Vc

F � f

�
þ DcV

2f ; (Equation 2)

where we assume that all cells have volume, Vc. Thus, we define the cell

volume fraction as
f ¼ Vc

Z
x˛V

f ðx; t; xÞdx:
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We note that the kinetic formulation in Eq. 1 contains terms that arise

from both space- and velocity-jump processes. Since this approach is

nonstandard, we now include more explanatory details. The velocity-

jump process induced by the transition probability, F, will introduce a diffu-

sion term at the second moment of f. However, the cell ‘‘diffusivity’’ will

then scale as U2
c t (see, e.g., (24)). Under this scaling, we estimate that,

for tumor cell migration, the diffusion term will be subdominant to the drift

term. We note that this may contradict some experimental results on tumor

cell migration for which the diffusive displacement is typically larger than

the directed displacement (e.g., (20,25)). In contrast to, for example, a run-

and-tumble process that characterizes some bacteria, with cell migration

there is no particular reason to assume a priori that the Brownian and

directed motion of cells share similar speeds, particularly when the latter

involves sensing, which may reduce its speed relative to the speed of

random motion. By assuming two separate stochastic processes (i.e., an

isotropic space-jump process and an anisotropic [stimulus-induced] veloc-

ity-jump process), we can control the scales of both diffusive and directed

motion and, thus, consider their effects separately. Painter and Hillen (26)

used a transition probability that includes both isotropic and anisotropic

parts to model the two separate processes; however, we prefer to use an

isotropic space-jump process because it allows for simpler closure of the

macroscopic model.

In Eq. 1, cell-cell interactions and cell-volume exclusion are neglected.

As such, the model is suitable to describe situations in which the cell vol-

ume fraction takes low to moderate values. While the diffusion term in Eq. 1

may mimic the effect of intercellular repulsion, other phenomena related to

collective cell migration (27,28) are neglected in our model formulation to

focus attention on the way in which flow-induced stimuli direct cell migra-

tion. In Eq. 1 we also neglect cell proliferation and death since we aim to

model migration dynamics at much shorter time scales.

We define a stimulus vector, s ¼ jsjh, where jsj represents its magnitude

and h is a unit vector, such that F is maximized when the cell velocity and

stimulus vector are aligned, and F decreases monotonically as the angle be-

tween x and h increases. A simple functional form that captures this

behavior is given by

Fðsðx; tÞ; xÞ ¼ A exp ½s $ ðx � hÞ�; (Equation 3)
where the normalization factor A is chosen so that F satisfiesZ

x˛V

Fdx ¼ 1; (Equation 4)
depends solely on the local stimulus vector.
to ensure conservation of mass. Eq. 3 states that the velocity-jump process

We define q˛ ½0;p� as the angle between x and h, such that the 3D inte-

gration dx ¼ sin qdqd4, where 4˛ ½0; 2p� is the polar angle in the plane

perpendicular to h. Therefore, the integral in Eq. 4 readsZ
x˛V

Fdx ¼ 2pA

Z p

0

exp ½jsjðcos q � 1Þ�sin qdq

¼ 2pA

�
1 � e� 2jsj�

jsj :

(Equation 5)
Combining Eqs. 4 and 5 we have

A ¼ jsj
2pð1 � e� 2jsjÞ : (Equation 6)
Accordingly, F is given by
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F ¼ jsj
2pð1 � e� 2jsjÞ exp ½s $ ðx � hÞ�: (Equation 7)

We multiply Eq. 2 by Vc and integrate over all possible cell velocity ori-

entations, x˛V. Then, together with the normalization condition of F (Eq.

4), we have the macroscopic cell conservation equation

vf

vt
þV$c ¼ DcV

2f; (Equation 8)

where the cell flux, c, is given by Z

c ¼ VcUc

x˛V

xfdx:

To close the model we require an additional equation for c, and a natural

choice is a momentum balance equation. To derive the momentum balance,
we multiply Eq. 1 by VcUcx and integrate over all possible velocity orien-

tations to obtain

vc

vt
þU2

cVcV $

Z
x˛V

xxTfdx ¼ 1

t

0
B@fUc

Z
x˛V

Fxdx � c

1
CA

þ DcV
2c:

(Equation 9)

The system of macroscopic Eqs. 8 and 9 is not closed due to the presence

of the second-order moment in the left-hand side of Eq. 9. There is a wide

body of literature concerning the formal derivation of macroscopic equa-

tions from kinetic models (see, e.g., (24) for closures of cell migration

models and (29) for derivation of hydrodynamic equations from gas kinetic

theory). However, for the present case of tumor cell migration, a simpler

way to close the model is facilitated by the following dimensional analysis.

We assume that the characteristic length scale of the system is L and the

characteristic time scale is the relaxation time, t. The characteristic scale

of the cell flux is c � Uc. Applying this scaling to Eq. 9 we have

v~c

vt
þUcVct

L
~V$

Z
x˛V

xxTfdx ¼ f

Z
x˛V

Fxdx � ~c þ Dct

L2
~V2 ~c;

(Equation 10)

where tildes denote nondimensional variables and operators. From Eq. 2,

we estimate that the characteristic magnitude of f is Ff=Vc (this is the equi-
librium probability in the limit of small cell speed and diffusivity). Assign-

ing f � Ff=Vc to the second-order moment in Eq. 10 we have

Vc

Z
x˛V

xxTfdx� jsj
2pð1 � e� 2jsjÞ

Z
x˛V

xxT

� exp ½s $ ðx � hÞ�dx%Oð1Þ;
(Equation 11)

where it can readily be shown that the absolute magnitude of the compo-

nents of the tensor in Eq. 11 is bounded such that they lie in the interval
½0; 1� for all s. Therefore, we assume that

UcVct

L
~V $

Z
x˛V

xxTfdx � O

�
Uct

L

�
: (Equation 12)
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For tumor cell migration we estimate that the characteristic cell speed is

Uc � 10 mm=h (5,20) and that the relaxation time is of the order of minutes

to a few hours t(1 h (30). In order for the macroscopic model to be valid,

we assume that the characteristic length scale is much larger than the di-

mensions of a single cell, L[ 10 mm=h. These characteristic scales lead

to the conclusion that

Uct

L
� 1

and, therefore, that the second-order moment term (Eq. 12) can generally be

neglected in Eq. 9 in the context of tumor cell migration. We expect that a
Chapman-Enskog expansion in the small parameter Uct=L, similar to that

carried out by Hillen (21), would result in OðUct =LÞ diffusive correction

terms. However, such an expansion is beyond the scope of the current

article.

We note that, in this model, the length scale parameter, Uct, represents

the mean-free path of the cells: it describes the characteristic distance a

cell covers before changing direction. Therefore, the assumption that the

parameter Uct=L � 1 means that, in the macroscopic limit, cells undergo

many velocity jumps along the macroscopic length scale. This parameter

emerges as the equivalent to the Knudsen number in the kinetic theory of

gases (29), which represents the ratio of the molecular mean-free path to

the macroscopic length scale. Similarly to our model, in the kinetic theory

of gases the derivation of macroscopic hydrodynamic equations from the

kinetic Boltzmann equation is facilitated in the limit of small Knudsen

number.

While it is possible to continue with the nondimensional formulation

given by Eq. 10, we now return to the dimensional formulation and post-

pone nondimensionalization to the section where we introduce the

model-problem setup. Reverting to the dimensional formulation in Eq. 9

and evaluating the transition probability integral on the right-hand side,

we haveZ
x˛V

Fxdx ¼ jsj
2pð1 � e� 2jsjÞ

Z
x˛V

x exp ½s $ ðx � hÞ�dx

¼ �
cothðjsjÞ � jsj� 1

�
h;

(Equation 13)

where the components in directions perpendicular to h vanish due to

symmetry.
Finally, neglecting the second-order moment term in Eq. 9 and substitut-

ing from Eq. 13 we have

vc

vt
¼ 1

t

�
fUc

�
cothðjsjÞ � jsj� 1

�
h � c

	þ DcV
2c:

(Equation 14)

We note that the cell flux source term in Eq. 14 is in the direction of the

stimulus and is monotonically increasing with the stimulus magnitude, jsj
(vanishes as jsj/0 and attains a maximal value of fUc as jsj/ N).

This source term acts as an effective ‘‘force’’ driving cells in the direction

of the stimulus. In what follows, we propose a constitutive model for the

stimulus, s, which depends on the local mechanochemical cues sensed by

the cells.

Constitutive model for the mechanochemical stimulus

Cancer cells react to a variety of chemical and mechanical stimuli. We

introduce a stimulus potential, F, such that

s ¼ � lcVF; (Equation 15)

where lc is a constant length, which should be at the scale of the cell length.

We consider two stimulus potentials:
Chemotaxis. Binding of ligands to specific receptors on the membrane of

cancer cells can polarize their movement in the direction of larger concen-

tration of these ligands, leading to effective chemotactic migration (2). We

model this process by assuming that the potential of the chemotactic stim-

ulus is proportional to a chemokine concentration, a,

FC ¼ � ca; (Equation 16)

where the constant c represents the chemotactic potential per unit

concentration.
Tensotaxis. Cells respond to local stress by biasing their movement in the

direction of larger tension in their cell-ECM connections (5,6). When cells

embedded in a 3D matrix are subject to interstitial flow, the cell response is

usually stimulated by increased fluid pressure at the upstream part (the part

facing the flow) of the cell, which causes the cell to generate tensile ECM

adhesion forces in this region (and compressive forces in the downstream

region) resisting the flow-induced drag force. In turn, the localized tension

at the upstream part of the cell polarizes its movement in the direction of

larger pressure (6). For simplicity, we model this process by viewing the

tensotactic stimulus experienced by the cells as a potential that is propor-

tional to the stresses acting on the cell in the direction normal to the cell’s

outer surface:

FT ¼ � 6sext
nn : (Equation 17)

In Eq. 17, 6 represents the strength of the tensotactic potential per unit

stress, and sextnn hnTsextn is the extracellular stress acting on the cell in
the direction normal to its outer surface, where sext is the extracellular

stress tensor and n is a unit vector normal to the cell surface. We note

here that, in more general cases, the cells may be subject to other external

stresses, such as shear stresses (31) that stimulate tensotaxis. Typically,

when cells are embedded in a 3D matrix and subject to fluid flow, the domi-

nant stress they experience is due to fluid pressure (5). Therefore, in this

work we assume that Eq. 17 can be simplified to read

FT ¼ � 6p; (Equation 18)

where p is the interstitial fluid pressure.

Finally, we write the total potential,F, as the sum of the chemotactic and
tensotactic potentials, so that F ¼ FC þFT . Then, Eq. 15 becomes

s ¼ lc6Vpþ lccVa: (Equation 19)

To close the model we introduce equations for p and a. In what follows we

formulate the governing equations of the flow dynamics in the two-phase
cell-fluid mixture, such that the fluid pressure and the concentration of

the flow-advected chemokine can be evaluated.

Interstitial flow dynamics

We make a no-voids assumption for the cell-fluid mixture such that the vol-

ume fraction of the fluid phase is given by 1 � f. Then, the mass conser-

vation equation of the fluid phase can be written as

vð1 � fÞ
vt

þV $
�ð1 � fÞuf

	 ¼ 0; (Equation 20)

where uf is the fluid velocity. Combining Eq. 20 with Eq. 8 we have� 	

V $ cþð1 � fÞuf ¼ DcV

2f: (Equation 21)

Assuming the fluid flux is much larger than the cell flux, as is usual for

biological tissues,

c � DcVf � ð1 � fÞuf ; (Equation 22)

we can simplify Eq. 21 to� 	

V $ ð1 � fÞuf ¼ 0: (Equation 23)
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We proceed by assuming that the momentum equation of the fluid phase

involves a balance between the drag force exerted by the cells and the pres-

sure gradient (for simplicity, we neglect intraphase viscous stresses). This

balance can be written as a Darcy-type equation

uf � uavg
c ¼ � kHgðfÞVp; (Equation 24)

where uavgc ¼ c=f is the average cell velocity, and kH represents the hy-

drodynamic conductivity (permeability divided by viscosity). In Eq. 24,
gðfÞ describes how the drag depends on the cell volume fraction, f. For

simplicity, we use the popular Carman-Kozney relation (32) so that

gðfÞ ¼ ð1 � fÞ3
f2

: (Equation 25)

We chose the Carman-Kozney model since it is arguably the simplest

isotropic model for hydraulic permeability that includes the effect of cell

volume fraction. The dependence on the volume fraction is important as

it ensures that the tensotactic stimulus increases as the cell volume fraction

increases, as has been observed experimentally (5).

In Eq. 24 we can neglect the cell velocity with respect to the fluid velocity

to obtain

uf ¼ � kHgðfÞVp: (Equation 26)

Substituting from Eqs. 25 and 26 into Eq. 19, we can write the equation

for the stimulus vector as

s ¼ � lc6

kH

f2

ð1 � fÞ3uf þ lccVa: (Equation 27)

Finally, we model the evolution of the chemokine concentration, a, using

a reaction-advection-diffusion equation. We assume that the chemokine is

secreted by the cells at a constant rate, bp, and that bd is the rate (per

unit concentration) at which it binds to receptors on the surface of the cells.

Under these assumptions we obtain the following equation for the chemo-

kine concentration

va

vt
þV $

�
að1 � fÞuf

	 ¼ bp

Vc

f � bd

Vc

faþ DV2a:

(Equation 28)

whereD is the diffusion coefficient of the chemokine in the interstitial fluid.

Taken together, Eqs. 8, 14, 23, 27 and 28 form a closed system for the cell
volume fraction, f, and flux, c, the cell stimulus, s, fluid velocity, uf , and

chemokine concentration, a.
FIGURE 2 Schematic illustration of the 1D model problem.
Model problem: Cell layer subject to 1D flow

Formulation of a nondimensional 1D model

In this subsection we reduce the model developed in the previous subsection

to a 1D model that describes the migration of a population of cells (initially

localized around a particular spatial position) in a long microfluidic channel

(i.e., we neglect cell fluxes into, or out of, the channel edges). This model

will be used to provide a simple explanation of how and why the migration

patterns of tumor cells change in response to changes in flow velocity and

cell volume fraction observed by Polacheck et al. (5). While the geometry

of the microfluidic device in (5) is not exactly identical to a long channel,

the fluid velocity in the cell region of the experiments was primarily ori-

ented in a single direction, along the axis of the channel. We thus view

our 1D model as a reasonable approximation of the experimental setup.

We consider a long channel that is aligned with the x axis, in which an initial

cell layer is distributed normally around x ¼ 0 such that
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fðx�; t� ¼ 0Þ ¼ f exp

�
�


x�
L�

�2
�
: (Equation 29)

In Eq. 29 and henceforth, we use asterisks to denote dimensional parame-

ters, and the constants f and L� represent typical values of the cells’ initial
volume fraction and layer size, respectively. The cells are subject to fluid

flow, where in the far field as jx�j[L� (i.e., in regions sufficiently far

from the cell layer), the fluid velocity magnitude is U�
f . A schematic of

the 1D model problem is illustrated in Fig. 2.

We now simplify the equations derived in the model formulation subsec-

tion to 1D Cartesian geometry form and nondimensionalize them using the

following scaling: we normalize length by the characteristic length of the

initial distribution of cells, L�; we scale the velocity by the far-field fluid

velocity, U�
f ; accordingly, time is normalized by L�=U�

f . The chemokine

concentration is scaled by its maximal equilibrium concentration, a�eq ¼
b�p=b

�
d . The full set of independent and dependent nondimensional variables

are given by

x ¼ x�

L�; t ¼ t�U�
f

L� ; f; j ¼ j�

U�
f

; uf ¼ u�f
U�

f

;

and a ¼ a�

a�eq
:

(Equation 30)

Then, Eq. 8 in a 1D nondimensional form reads
vf

vt
þ vj

vx
¼ 1

Pec

v2f

vx2
; (Equation 31)

where j is the x-component of c and

� �

Pec ¼ Uf L

D�
c

:

Using physiologically relevant parameters we have U�
f � 1 mm=s (5),

L� � 100 mm, andD�
c � 1000 mm2=h (33), such that the interstitial fluid ve-

locity is much larger than the diffusive velocity of cells, i.e., Pec [ 1. We

expect, however, that the cell flux will also be small, j � 1, such that we

cannot neglect diffusive effects.

In one dimension it is easier to assume that the direction of the stimulus is

constant, h ¼ bx, where bx is the unit vector in the positive x-direction.

Then, the stimulus vector is given by

s ¼ sbx;
where s˛ ð�N;NÞ is the x-component of the stimulus vector. We note

that the stimulus vector is alignedwith the x axis because,within the 1Dmodel,
the only gradients of themacroscopic fields are in the x-direction.However, the

microscopic velocity, x, is still a 3D vector, in accordancewith its definition in

Eq. 1 et seq.

Reducing Eq. 14 to 1D and nondimensionalizing we have

vj

vt
¼ U

T

�
cothðsÞ � s� 1

	
f � j

T
þ 1

Pec

v2j

vx2
;

(Equation 32)
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where

T ¼ t�U�
f

L� and U ¼ U�
c

U�
f

:

In Eq. 32 we made use of the antisymmetry of the source term in Eq. 14:� � �

cothðsÞ � s� 1 ¼ � cothðjsjÞ � jsj� 1

; s% 0

cothðjsjÞ � jsj� 1
; sR 0:

(Equation 33)

Since the cell velocity is much smaller than the fluid velocity we will as-

sume U � 1. The characteristic response time of cells, t�, is in the range

of minutes to hours (30) such that, based on the characteristic scales of

length and fluid velocity introduced above, we can estimate that T �
10 � 100.

To evaluate the stimulus, s, we must solve for the fluid velocity and che-

mokine gradient. Starting from the fluid velocity, we consider the nondi-

mensional 1D form of the cell-fluid mixture mass conservation Eq. 23

v

vx

�ð1 � fÞuf
	 ¼ 0: (Equation 34)

Integrating Eq. 34 with respect to x we have

uf ¼ 1

1 � f
: (Equation 35)

where we have assumed that uf jx/�N ¼ 1, in accordance with the dimen-

sional boundary condition, u�f jx�/�N ¼ U�
f .
The chemokine transport equation in a 1D nondimensional form then

reads

va

vt
þ va

vx
¼ Da fð1 � aÞ þ 1

Pe

v2a

vx2
; (Equation 36)

where

� � � �

Da ¼ L bd

U�
f V

�
c

and Pe ¼ Uf L

D� (Equation 37)

are the chemoattractant Damkohler and Peclet numbers, respectively. Using

the physiologically relevant parameter values of U�
f and L� introduced
above, together with characteristic diffusivity of chemokines D� �
100 mm2=s (34,35), we can estimate that Pe � 1, meaning that diffusive ef-

fects are likely to be important. In the context of the present 1D model, the

diffusive terms act to smooth the chemokine gradient and, thereby, to

reduce the magnitude of the chemotactic cue in the center of the cell layer

(with subdominant contributions at the edges of the domain). However,

since Pe � Pec, we would need a very large domain to simulate, on the

one hand, sufficiently large times to allow for cell migration while, on

the other hand, avoiding boundary interactions of the chemokine at the

channel edges. Therefore, to simplify the numerical calculations, we choose

to neglect the diffusive term in Eq. 36 and view the results as the purely

advective limit, bearing in mind that including diffusion would result in

somewhat weaker chemotactic migration.

In addition, the time-derivative of the chemokine is associated with

changes in the cell volume fraction such that

va

vt
�Da

vf

vt
�O

�
Da U; Da

Pec

�
� 1: (Equation 38)

Therefore, we can assume that the chemokine distribution is quasisteady,

i.e., changes in the cell volume fraction lead to instantaneous adaption of

the chemokine distribution. Under these assumptions and together with
the vanishing of the chemokine at the channel inlet, ajx/�N ¼ 0, we

can simplify Eq. 36 to

aðx; tÞ ¼ 1 � exp

�
� Da

Z x

�N

fðz; tÞdz
�
:

(Equation 39)

Substituting from Eqs. 35 and 39 into the 1D form of Eq. 27 we have

s ¼ � K
f2

ð1 � fÞ4

þMDa f exp

�
� Da

Z x

�N

fðz; tÞdz
�
;

(Equation 40)

where the nondimensional parameters

� � � � � �

K ¼ lc6 Uf

k�H
and M ¼ lcc aeq

L� ;

represent characteristic magnitudes of the tensotactic and chemotactic

stimuli, respectively. Then, the 1D spatiotemporal evolution of the cell
volume fraction, f, and flux, j, in response to interstitial fluid flow, can

be solved using Eqs. 31 and 32, together with the constitutive model for

the cell stimulus in Eq. 40. We impose no flux boundary conditions at

the far field, i.e.,

vf
vx

¼ 0 and j ¼ 0 as x/ 5N: (Equation 41)

To solve the system of equations given by Eqs. 31, 32, and 40, we use

a semi-implicit finite difference scheme; the x-derivatives are discretized us-
ing a second-order central difference method on a uniform grid spanning

the interval ½�X;X�; where X[ 1 is sufficiently large that the far-field

boundary conditions given in Eq. 41 have negligible effect on the

results. Advancing the system in time is achieved using Euler’s forward

method. The above scheme is implemented in MATLAB. The code is avail-

able at the following GitHub repository: github.com/yaronbenami/cell_

migration.

Downstream and upstream migrating populations

An important goal of the present model is to identify parameter regimes in

which transitions between upstream and downstream migration occur.

While the sign of j provides an indication of the average direction of

cell migration, changes in the proportion of cells traveling upstream and

downstream is more accurately given by

fdiff ¼ Vc

0
B@ Z

xx > 0

fdx �
Z

xx < 0

fdx

1
CA: (Equation 42)

It is important to note here that, because we used a probabilistic approach

to develop our model, we can derive fdiff from Eq. 42. This would not have

been possible using a conventional multiphase model in which the average

macroscopic variables are not explicitly related to microscopic velocity

distributions.

Integrating Eq. 2 with respect to x for xx > 0 and subtracting the integral

of Eq. 2 for xx < 0 we have

vfdiff

vt
þ vjdiff

vx
¼ 1

T



f tanh


s
2

�
� fdiff

�
þ 1

Pec

v2fdiff

vx2
;

(Equation 43)
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where

jdiff ¼ UcVc

0
B@ Z

xx > 0

xxfdx �
Z

xx < 0

xxfdx

1
CA; (Equation 44)

and we note the source (sink) term due to cells changing their migration di-

rection from upstream to downstream (and vice versa). To obtain an equa-
tion for jdiff, we multiply Eq. 2 by UcVcxx, integrate with respect to x for

xx > 0, and subtract the integral for xx < 0 to obtain

vjdiff

vt
¼ U

T

�
1 � tanhðs=2Þ

s

�
f � jdiff

T
þ 1

Pec

v2jdiff

vx2
:

(Equation 45)

With f and s determined by Eqs. 31, 32, and 40, we can solve Eqs. 43 and

45 to determine fdiff and jdiff .
We define the total difference between downstream- and upstream-

migrating cells,

NdiffðtÞ ¼
Z N

�N

fdiffðx; tÞdx; (Equation 46)

and use this quantity as a metric to determine whether, at time t, there is a

dominant tendency for the cells to migrate downstream (NdiffðtÞ> 0) or up-
stream (NdiffðtÞ< 0). We note that by integrating Eq. 43 with respect to xwe

can derive an ODE for Ndiff

dNdiff

dt
¼ RðtÞ � Ndiff

T
; (Equation 47)

where we have assumed no cell flux as x/5N and RðtÞ is given byZ N 
 �

RðtÞ ¼

�N

f tanh
s

2
dx:

Finally, we define fcrðtÞ as the critical value of f (the initial volume frac-

tion at x ¼ 0, see Eq. 29) for which Ndiff ¼ 0 at time t, such that a tran-

sition in the overall migration tendency occurs at time t when fð0;0Þ ¼
fcr. The experimental significance of fcr can be summarized as follows.

Suppose we want to measure the dominant mode of cell migration after

time T has elapsed since the seeding of the cells. If the cells are seeded

with an initial density fcrðTÞ, then equal proportions of cells will be

migrating up- and down-stream at time T. If the cells are seeded at densities

f>fcrðTÞ then the dominant direction of cell migration at time T will be

upstream (and vice versa). Therefore, fcr is a measure that can be used to

predict the expected dominant mode of migration at different times during

the experiment.

Asymptotic analysis of fcr in the limit of small stimulus

The strengths of the tensotactic and chemotactic stimuli are governed by the

nondimensional parameters f and Da. While the parametersK andM also

affect the value of s, we will show below that the transition between down-

stream and upstreammigration is dominated by the parameter combinations

that yield sjx¼ 0 ¼ 0, such that only the ratioK=M affects the value of fcr.

In this section we estimate fcr in the limiting case for which f; Da � 1.

In this limit, the order-of-magnitude of the stimulus in Eq. 40 scales as

s�O
�
f2;Daf

� � 1:

In what follows we evaluate the asymptotic value of s in the limit s � 1. In

Eq. 32, in this limit, the cell advective flux, j, is much smaller than the
diffusive flux, j � Ufs � Pe� 1
c f. Therefore, we may assume that, at

leading order, the dynamics of the cell volume fraction are governed by

the unsteady diffusion equation
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vf

vt
z

1

Pec

v2f

vx2
: (Equation 48)

The solution of Eq. 48, together with the initial condition

fðx; 0Þ ¼ f exp
�� x2

�
;

and the far-field decay of f, is given by � �

fðx; tÞz fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t=Pec
p exp � x2

1þ 4t=Pec
:

(Equation 49)

With s � 1, at leading order, Eqs. 43 and 45 yield the following expres-

sions for fdiff and jdiff ,
fdiff ¼ � T
vjdiff

vx
þ OðsÞ (Equation 50)

and
jdiff ¼ 1

2
Ufþ OðsÞ: (Equation 51)

Combining Eqs. 50 and 51 we have

fdiff ¼ � 1

2
T U vf

vx
þ OðsÞ: (Equation 52)

Since in this limit fdiff and jdiff are, respectively, proportional to f and

vf=vx , the unsteady diffusion operator, Lhv=vt � Pe� 1v2=vx2 was elim-

inated from Eqs. 43 and 45 by substituting from Eq. 48.

It can be readily verified from Eq. 52 that fdiff is antisymmetric with

respect to x ¼ 0 (since f maintains its symmetry at this limit, see Eq.

49). Thus, the leading order term of fdiff does not contribute to the in-

tegral in Eq. 46. We conclude that the contribution of the tensotactic

and chemotactic stimuli to the integral arises from the OðsÞ terms local-

ized around x ¼ 0, where vf=vx vanishes. Consequently, we can as-

sume that the tendency toward upstream or downstream migration is

dominated by the stimulus value at x ¼ 0. Substituting Eq. 49 into

Eq. 40 we have

sjx ¼ 0 z � K

ð1þ 4t=PecÞ
f2


1 � f
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t=Pec
p �4

þ MDafffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t=Pec

p exp

�
�

ffiffiffi
p

p
Daf

2

�
:

(Equation 53)

In Eq. 53, we retain terms that are subdominant as Da;f � 1. While the

higher-order terms are not asymptotically valid (since we did not formally
derive the next order correction terms), retaining them in our analysis was

useful to capture the qualitative behavior of fcr for nonsmall Da and f (see,

e.g., the local maximum in fcr in Fig. 6, which is captured by the asymptotic

expression).

In the limit when f � 1, RT=C, the ratio of the magnitudes of the ten-

sotactic and chemotactic terms in Eq. 53, is proportional to f � 1:

RT=C ¼ Kf

MDa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t=Pec

p :



TABLE 1 Nondimensional parameter values

Parameter Value

f 0.01–0.5

Da 0.01–10

U 0.003a

Pec 300b

T 10, 100c

K 10

M 10

aAssuming dimensional fluid velocity, U�
f � 1 mm=s, this gives a dimen-

sional cell speed, U�
c � 10 mm=h (5).

bAssuming U�
f � 1 mm=s and L� � 100 mm, this gives a dimensional cell

diffusivity, D�
c � 1000 mm2=h (33).

cSee discussion after Eq. 32 et seq.

Flow-induced cell migration
We conclude that, for sufficiently small cell volume fractions, there will

always be a parameter combination such thatRT=C < 1, i.e., a dominant ten-

dency toward downstream migration. This result is consistent with the

experimental findings of Polacheck et al. (5) who observed that downstream

migration becomes more dominant as the cell volume fraction decreases

(see Fig. 1).

Equating Eq. 53 to zero yields the following transcendental equation for

fcr:

K

MDa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t=Pec

p fcr exp

� ffiffiffi
p

p
Dafcr

2

�


1 � fcr

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t=Pec

p �4
¼ 1;

(Equation 54)

which depends on the nondimensional parameter groupings, K= M, Da,

and t=Pec, representing the relative strength of the tensotactic to chemo-
tactic stimulus, the ratio of chemokine reaction and advection rates, and

cell diffusive time, respectively. The dependence of fcr on t means that

the critical value of the initial volume fraction for the transition from

downstream to upstream migration depends on the time that has elapsed

since the cells were seeded. This is because cell diffusion reduces the

value of fjx¼ 0 as t increases. Consequently, a transition to downstream

migration at sufficiently large t will always occur, regardless of the value

of the initial volume fraction f. Alternatively, by replacing fcr/ f and

t/tcr in Eq. 54, the equation could be interchanged to describe the critical

time in which the transition takes place, tcr, as a function of the initial vol-

ume fraction f.
RESULTS AND DISCUSSION

Table 1 summarizes the nondimensional parameter values
used to generate model simulations. We will study the
behavior of cells for a range of values of the initial volume
fraction, f, and the Damkohler number, Da. These parame-
ters, together with the values of the tensotactic and chemo-
tactic signal strengths, K and M, respectively, govern the
magnitude and direction of the stimuli. In this work we
keep K and M constant and equal, and vary the values of
f and Da. The cells’ nondimensional velocity, U, and their
Peclet number, Pec, are chosen to have physiologically rele-
vant values and are fixed at these default values throughout
the paper. We examine two physiologically relevant values
of the cells’ relaxation time, T , corresponding to dimen-
sional times of minutes and hours.

Fig. 3 illustrates the spatiotemporal evolution of the cell
layer in response to the flow-induced chemotactic and tenso-
tactic stimuli. We define the macroscopic average cell ve-
locity as

uavgc ¼ j

f
; (Equation 55)

and plot the x-distributions of the scaled average velocity,
uavg=U (macroscopic cell velocity normalized by the indi-
c

vidual cell velocity), and the cell volume fraction, f, at
times t ¼ 0; 100; 500; 1000. For the specific case of
Da ¼ 0:5 and T ¼ 10, we consider two initial cell volume
fractions, f, which induce different migration behaviors: in
Fig. 3, A and B, f ¼ 0:2, leading to dominant downstream
migration at all times, as can be seen from the average cell
velocity profiles in Fig. 3 B, which are always nonnegative.
By contrast, in Fig. 3, C and D, f ¼ 0:4, leading to up-
stream migration at early times, and a transition to dominant
downstream migration at later times (notice the dominant
negative cell velocity at early times in Fig. 3 D, as indicated
by the t ¼ 100 curve, which changes to all-positive velocity
profiles at t > 500).

To complete the picture of the different velocities in
which different regions of the cell layer migrate, Fig. 4
shows how the spatial position, x, at which the volume frac-
tion attains its maximal value, fmax, changes over time t
(solid lines). Also shown are the trajectories of the two
spatial locations at which the volume fraction attains its
half-maximal value (dashed lines). For purely diffusive
(PD) motion (i.e., without directed migration, j ¼ 0), the
cell flux is PD (i.e., in the direction of � vf=vx). The PD
trajectory, xPD, for which f ¼ fmax=2, is given by

xPDðt;f ¼ fmax = 2Þ ¼ 5 lnð2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t=Pec

p
(Equation 56)

and is included in Fig. 4 for reference. Naturally, in the PD
case the location of the maximal value does not change over

time, xPDðt;f ¼ fmaxÞ ¼ 0.

Comparing the PD trajectories (black dashed-dotted
lines) and the red trajectories (f ¼ 0:2) in Fig. 4, we
note that both trajectories exhibit the same qualitative
behavior, except for a small, right (downstream) shift of
the red curves due to the stimulus-induced directed motion.
This means that, when f ¼ 0:2; we have a dominant cell
diffusion, where the locations of f ¼ fmax=2 predomi-
nantly travel in the direction opposite to the volume fraction
gradient. This diffusive movement is superimposed on a
small shift of the cell layer to the right (downstream)
due to the chemotaxis-induced positive velocity. For low
cell volume fractions the effect of the stimulus-induced
migration is small due to the small average cell velocity
(up to 10% of the individual cell speed in the case of f ¼
0:2, see Fig. 3 B). This is because, although chemotaxis
dominates tensotaxis, the chemotactic signal is rather
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weak at low volume fractions. While the cell layer in Fig. 3
A seems to maintain its symmetry with respect to the loca-
tion of the maximum volume fraction, it is possible to detect
a small amount of symmetry breaking in the cell velocity
field due to the nonlinearity of the tensotactic and chemo-
tactic stimuli, which attain their maximum values at slightly
different x-locations.

At a larger initial cell volume fraction, in Fig. 3 C we
can notice that the cell layer is skewed to the left at early
times due to the large negative cell velocity at the center of
the cell layer (solid blue line in Fig. 4). This is because the
tensotactic signal is dominant in the region where the vol-
ume fraction is large. At early times we also notice that the
stimulus-directed velocity and diffusive velocity are oppo-
site at the downstream part of the cell layer, while they
reinforce each other to generate a large upstream velocity
at the upstream part of the cell layer (compare the blue
dashed curves and PD curves in Fig. 4). At later times,
we observe a reduction in the cell volume fraction due to
the action of cell diffusion, which consequently leads to
a transition to dominant downstream migration (notice
the change to positive velocity in Fig. 3 D and in the solid
blue line in Fig. 4 when tT100).

To better illustrate the change in the dominant mode of
migration as the cell volume fraction changes, the results pre-
sented in Fig. 5 show the spatial variation in the proportion of
cells traveling downstream and upstream at time t ¼ 100

when Da ¼ 0:5 and the initial volume fraction varies. For
small f, most cells travel downstream. As f increases, more
cells travel downstream (compare the change between f ¼
0:1 and 0.2 in Fig. 5) due to the increased production of che-
mokine; however, the maximum number of cells traveling
downstream is no longer in the center of the cell layer due to
the increased tensotactic stimulus in the region where the
cell volume fraction is maximal. As f increases further,
different migration directions dominate in different regions
of the cell layer. On the one hand, the strong tensotactic stim-
ulus in the center of the cell layer, where the cell volume frac-
tion is maximal, leads to upstreammigration in this region; on
the other hand, cells in the edges, where the volume fraction is
smaller, continue tomigrate downstream.At the critical value,
fcr (black dashed line in Fig. 5), there is a balance between the
proportion of upstream-migrating cells in the bulk of the cell
layer and the proportion of downstream-migrating cells at
the edges of the cell cluster. As f increases beyond fcr more
cells migrate upstream. Due to the strong nonlinearity of the
tensotactic stimulus, small deviations of f above fcr amplify
the tendency for upstreammigration. Consequently, the x-po-
sition where fdiff attains its minimal value (in the region of
dominant tensotaxis) moves to the left as f increases because
of the large cell flux in the negative x direction,which shifts the
location of the maximum value of f.

Sufficiently far from the bulk of the cell layer, where the
stimuli are very weak and cell diffusion dominates, all
curves of fdiff in Fig. 5 collapse onto a single curve. In these
808 Biophysical Journal 123, 799–813, April 2, 2024
regions cells tend to diffuse in the direction of decreasing
cell density.

Having observed transitions in the favorable migration di-
rection as the system parameters vary, it is useful to delin-
eate the parameter regimes in which these transitions
occur. For that purpose, the results presented in Fig. 6 A
show how fcr changes as the Damkohler number, Da, is var-
ied for two fixed values of the cell relaxation time, T , and
two values of the time that has elapsed since the initial con-
dition; all other parameters are held fixed at their default
values (see Table 1). The characteristic time scale is given
by L�=U�

f � 100 s; we used values of T corresponding to
dimensional relaxation times of several minutes (T ¼ 10,
t� � 17 min, red symbols) and a few hours (T ¼ 100,
t� � 3 h, blue symbols) corresponding to physiologically
relevant relaxation times (30). For the time at which data
were collected (i.e., the elapsed time since the start of the
experiment), we used dimensional times of several hours
(tshort ¼ 100, square symbols) and approximately one day
(tlong ¼ 1000, star symbols) to study cell behavior on
time scales that are either much smaller or similar in magni-
tude to the time scale for cell migration, respectively. For
each parameter combination we used the MATLAB func-
tion fzero, and our numerical scheme, to determine the value
of f for which Ndiff ¼ 0 at the simulated time (either tshort
or tlong).

Fig. 6 A shows that fcr increases as the duration of time
for which data are collected increases. This can be rational-
ized by noting that, as t increases, the cell volume fraction
decreases due to cell diffusion; thus, the tendency for up-
stream-oriented tensotactic migration decreases. Therefore,
if the time at which we measure the mode of migration in-
creases, then the initial volume fraction, f, must also be
increased so that a mode transition (equal proportion of
cells migrating down- and up-stream) occurs at this time.
The gray region in Fig. 6 A indicates the parameter region
in which downstream migration prevails for all t. This re-
gion is delineated by the critical curve, fcrðDa; t ¼ 0Þ,
on which a ‘‘transition’’ between upstream and downstream
migration occurs at time t ¼ 0. Consequently, for each
value of Da, if f is outside this gray region, upstream
migration will dominate at early times, and a transition
to downstream migration will occur at some later time.
In more detail, a parameter combination in the area delin-
eated by the two curves in Fig. 6 A, fcrðDa; t ¼ t1Þ and
fcrðDa; t ¼ t2Þ, will undergo a transition between up-
stream and downstream migration at some time in the in-
terval t˛ ðt1; t2Þ. Due to the action of cell diffusion, the
cell volume fraction reduces over time and favors down-
stream migration at later times. Due to this mechanism,
we expect that, at sufficiently large times, downstream
migration will always prevail. However, depending on the
values of the parameters, these times could be extremely
long and may not be physiologically relevant. For example,
the dimensional long time we used is equivalent to



FIGURE 3 The spatiotemporal evolution of the cell volume fraction (A and C) and scaled average cell velocity (B and D) starting from a Gaussian x-dis-

tribution of cells at t ¼ 0, with f ¼ 0:2 (A and B) and f ¼ 0:4 (C andD). The solutions are plotted at times t ¼ 0 (black dashed line), t ¼ 100 (blue), t ¼
500 (magenta), and t ¼ 1000 (red). Parameter values: Da ¼ 0:5, T ¼ 10; other parameters are fixed at the values listed in Table 1. The arrows indicate the

direction of the fluid velocity (i.e., the downstream direction). Positive and negative velocities (in B and D) represent average cell velocities that are oriented

downstream and upstream, respectively. To see this figure in color, go online.
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t�long � 1 day. This is about the maximum time scale on
which the current model is applicable since, at longer
time scales, processes such as cell proliferation and death
may no longer be negligible. To further illustrate the effect
of the time that has elapsed since the beginning of the
experiment on the migration behavior, Fig. 6 B shows the
transition time, tcr, as a function of Da for a range of values
of f. In accordance with the gray region in Fig. 6 A, for
sufficiently small values of f, there is a range of values
of Da for which physically realistic values of tcr do not
exist (i.e., tcr < 0 in this region) and, thus, downstream
migration prevails at all times. As expected, tcr increases
as f increases, reflecting the increase in tensotactic stim-
ulus with the cell volume fraction increases.

While the time that has elapsed since the initial state may
affect the value of fcr dramatically, Fig. 6 A shows that vary-
ing the cell relaxation time by a factor of 10 (while remain-
ing in the physiologically relevant regime) does not
significantly alter the critical value of fcr (compare the
red and blue symbols in Fig. 6 A). The modest increase in
fcr for smaller relaxation times can be attributed to a
more rapid reaction of the cells to changes in the dominant
external stimulus from tensotaxis-dominated stimulus at
early times to chemotaxis-dominated stimulus at later
time. This, in turn, causes the transition to occur at earlier
times.

The black lines in Fig. 6 A correspond to the asymptotic
behavior of fcr as Da � 1 and f � 1, given by Eq. 54,
for t ¼ 100 (solid line) and t ¼ 1000 (dashed line). We
note that the asymptotic model is in excellent agreement
with the numerical results when f; Da � 1. We note
that it also replicates the general trend for larger values
Biophysical Journal 123, 799–813, April 2, 2024 809



FIGURE 4 Different regions of the cell layer travel at different velocities.

The change in the spatial position, x, of fmax (solid lines) and fmax= 2

(dashed lines) as a function of time, for the two cases presented in Fig. 3,

f ¼ 0:2 (red lines) and f ¼ 0:4 (blue lines). For comparison, the

dashed-dotted black lines show the purely diffusive evolution of the spatial

location of fmax=2. To see this figure in color, go online.
FIGURE 5 Series of plots showing how, at a fixed time point t ¼ 100,

the proportion of cells moving upstream and downstream changes with x

for different values of the initial volume fraction, f. The black dashed

line represents the critical volume fraction, fcr, at which the dominant

mode of migration switches between downstream and upstream. Parameter

values: Da ¼ 0:5, T ¼ 10; other parameters use the values listed in Ta-

ble 1. To see this figure in color, go online.
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of f and Da. As expected, the agreement improves when
the cell relaxation time increases or the elapsed time de-
creases. This is because larger relaxation times and
smaller elapsed times mean less skewness of the cell
distribution with respect to their x-symmetric initial
distribution, such that the assumptions on which the
asymptotic model is based (see Eq. 48 et seq.) are better
fulfilled.

In the limit of f � 1 it can be readily seen from the
asymptotic expression in Eq. 54 that, when K=M decreases
and Da increases (for example, by reducing the fluid veloc-
ity), the critical volume fraction for transition from down-
stream to upstream migration increases. Indeed, in (5)
smaller fluid velocities were found to reduce the tendency
for upstream migration (see Fig. 1). Based on our model,
we attribute this behavior to the impact that a reduction in
the fluid velocity has on the mechanisms that inhibit up-
stream migration and promote downstream migration: 1)
the fluid cell drag force decreases, which leads to a smaller
transcellular pressure gradient and a smaller tensotactic cue,
2) the ratio of reaction to advection increases, which leads to
larger chemokine gradients and a larger downstream-ori-
ented chemotactic signal. For large values of the Damkohler
number (DaT3), we note a qualitative change in behavior
where further increases in Da lead to a reduction in fcr

(i.e., a reduced tendency to migrate downstream). This is
due to increased chemokine consumption by the cells as
the chemokine concentration increases, which diminishes
the chemotactic gradients in the downstream region of the
cell layer. This nonmonotonic behavior of the critical condi-
tions with respect to the Damkohler number is also shown in
Fig. 6 B, where the transition time initially decreases with
Da (corresponding to the aforementioned increase in the
chemotactic stimulus), but starts to increase at Oð1Þ values
of Da.
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CONCLUSION

The goal of this study was to use mathematical modeling to
study cell migration in response to flow-induced mechanical
and chemical stimuli. We developed a hybrid probabilistic
continuum model for a two-phase mixture of fluid and cells.
We started from a mesoscopic kinetic description for the cell
probability density function, forced by a stimulus-dependent
TPF biasing the cell velocity probability. Then, we used ve-
locity-space averaging to formulate a system of continuum
equations that describe how the cells’ spatial distribution
evolves over time at the macroscopic level in response to
the mechanochemical signal. The use of a kinetic description
as a starting point to derive continuum models for cell migra-
tion has been widely used (e.g., (21,24,36–38)); in addition,
there are several hybrid models of cell chemotaxis (e.g.,
(39–41)), in which the transport of a chemoattractant is
described by a macroscopic equation, with source/sink terms
that depend on the density of cells, while the cells are
described at the kinetic level. However, our model also ac-
counts for tensotactic migration of cells. Since tensotactic
migration depends on the pressure distribution, this necessi-
tates the formulation of equations for fluid flow, which are
coupled to cell motion via the incompressibility of the
mixture and the dependence of the permeability on the cell
volume fraction. To the best of our knowledge, coupling of
this kind has not been carried out before.

Motivated by the experimental results by Polacheck et al.
(5), we focused on studying the migration of a 1D cell layer
in an infinite channel subject to a fluid flow. Contrary to
purely continuum-based models, our probabilistic approach



FIGURE 6 The critical conditions for transition between dominant downstream and upstream migration in the parameter space of Da, f, and t. (A) The

critical cell volume fraction, fcr, for transition as a function of Da. Comparison between the asymptotic expression (Eq. 54) at times tshort ¼ 100 (solid line)

and tlong ¼ 1000 (dashed line) and numerical simulation results at the respective times (square and star symbols, respectively). Two values of cell relaxation

times, T ¼ 10 (red symbols) and T ¼ 100 (blue symbols) were simulated. The shaded gray area indicates the region in parameter space in which upstream

migration does not take place for any t. (B) The transition time, tcr, as a function of Da for different values of f, as predicted by the asymptotic model. To see

this figure in color, go online.

Flow-induced cell migration
enabled us to determine how the proportion of cells traveling
upstream and downstream at a given spatial location evolves
over time, and to determine the critical conditions at which
transitions in the dominant mode of migration occur.

Through a combination of numerical simulation of the 1D
model and asymptotic analysis, we delineated the locus of
transitions in the two-parameter plane defined by the initial
cell volume fraction, f, and the Damkohler number, Da, the
latter parameter representing the ratio of chemokine secre-
tion to advection rates. In agreement with the experimental
observations in (5) (see Fig. 1), the current model predicts
downstream-oriented chemotactic migration at low cell vol-
ume fractions, and upstream-oriented tensotactic migration
at larger volume fractions. This effect can be understood
by the increase in the transcellular pressure gradient and
consequent tensotactic stimulus when the cell volume frac-
tion increases.

In the experiments by Polacheck et al. (5), the distribution
of cell velocity was only measured at a single time point. By
contrast, our model predicts that the time at which experi-
mental data are collected has an important effect on the
observed dominant mode of migration. We identified a re-
gion of the parameter space in which the chemotactic stim-
ulus dominates the tensotactic stimulus for all t and, thus,
downstream migration prevails for the duration of the exper-
iment. By contrast, outside this region of parameter space,
upstream migration prevails at the beginning of the experi-
ment when the cells are localized, and a transition to down-
stream migration occurs at later times, due to the effect of
cell diffusion, which causes the distribution of cells to
become more dispersed over time. However, this initial
dominant-upstream-migration transient can persist up to
very long times (t > 1000/t� > 1 day for some regions of
parameter space). This means that it will be clearly visible
in cell migration experiments (e.g., in (5) measurements
were taken after 24 h). This phenomenon may indicate the
need to measure the cell velocities at different time points
when conducting cell migration experiments.

We additionally showed that an increase in Da tends to
increase the importance of chemotactic migration due to
enhanced chemokine secretion by the cells. However,
our model predicts that there is an optimal value of
Da � Oð1Þ, which maximizes the chemotactic signal; as
Da increases above this local maximum, chemokine degra-
dation increases, leading to smaller chemotactic gradients in
the downstream region of the cell layer. Here, we mention
that the current results were obtained in the purely advective
limit of the chemokine propagation, i.e., neglecting diffu-
sive effects. It is expected that including chemokine diffu-
sion and boundary interactions (e.g., no flux) will result in
a more complicated behavior.

Applying asymptotic analysis in the limit of f;Da � 1,
we obtained an explicit formula for the critical conditions
in terms of the system parameters. The asymptotic expression
showed excellent agreement with the numerical results in the
limit of f; Da � 1, while it was also able to capture the gen-
eral trend at larger values of f and Da, including the local
maximum observed in the numerical results.

An important feature of the current model is the use of a
permeability function that depends on the cell volume frac-
tion, ensuring that tensotactic stimulus increases as the cell
volume fraction increases. While in this work we used the
isotropic Carman-Kozney permeability, in future work it
would be interesting to examine alternative permeability
models that account for the anisotropic, fibrous nature of
the ECM (e.g., (42)).
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While not considered in this paper, the kinetic model
given by Eq. 2 also allows one to calculate the microscopic
cell velocity probability distribution, f ðx; t; xÞ. This would
need to be carried out via a hybrid model where the numer-
ical solution of f, obtained from the kinetic model in Eq. 2, is
averaged to produce the macroscopic cell volume fraction.
This, in turn, is coupled to the fluid motion and chemoattrac-
tant transport, affecting the macroscopic stimulus profile;
the stimulus is then fed back to the transition probability,
F, in the kinetic equation. In future work, such a hybrid
model could be used to evaluate the cell velocity distribu-
tion, which could be compared with experimental measure-
ments of the distribution of cellular velocities. In this way, it
should be possible to refine the functional form of the TPF,
Fðx; t;xÞ, to achieve better agreement with the experimental
results.

Finally, the model developed in this paper constitutes a
novel framework to study cell migration in a dynamic fluid
environment. One example for such cell migration is the
movement of tumor cells toward plasma-depleting blood
vessels which can lead to either vessel collapse (43) or intra-
vasation (2). Here, the interaction of the cells with the vessel
walls may affect the flux of interstitial fluid depleted by the
vessel, thus coupling the extravascular cell migration to
intravascular blood flow. This phenomenon has significant
implications for tumor blood flow, progression, and therapy
(44,45), and thus represents a natural topic for future work.
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