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S1 Virtual Patient Parameters

The parameters used in the virtual patient model are taken from Strobl et al. [1] and outlined
in Table S1.

Name Description Value/Range Reference
rs Sensitive cell proliferation rate 0.027 day ! Adopted from [2]
TR Resistant cell proliferation rate 0.5rg — 1.0rg Lower limit [3], upper limit of no cost

Lower limit given by zero turnover

ds,dgr Natural cell death rate 0.0rg — 0.57rg Upper limit adopted from [4]
dp Drug-induced cell killing 1.5 Adopted from [5]
Ny Initial tumor cell density 0.1 -0.75 Values in this range reported by [6]
Ry Initial resistant cell fraction 0.001Ng — 0.1y Values in this range reported by [7]

Table S1: Parameter values/ranges used for the virtual patient.

For the single patient case considered in Sections 3.1 - 3.3, we consider the case where there
is no cost associated with drug resistance, such that rg = rg. Combined with zero natural
death rates dg,dpr, these parameters replicate a treatment-resistant tumor that is common in
late-treatment settings, where conventional treatment protocols typically struggle to contain the
disease effectively. Finally we consider a tumor with initial size Ng = 0.75 and initial resistant
population Ry = 0.01.

S2 Deep Learning Methods

This section provides further exposition and psuedocode implementations to supplement the
explanation of the DRL model in Section 2.3.

We transform cancer treatment into a reinforcement learning problem, in which a computa-
tional agent learns to make decisions in an interactive environment by trial and error based on
a reward function, allowing the agent to learn from unstructured input data [8]. We construct
this as a ‘model-free’ problem, where information about the dynamics of the environment is
not given explicitly, but instead inferred through interactions with the environment. We adopt
an Actor-Critic method, which combines the advantages of policy and value-based methods,
whereby an ‘Actor’ updates the policy distribution according to a value function estimated by
the ‘Critic’ [9]. An illustration of this process is given in pseudocode in Algorithm 1.

Note that Operation 5 utilises a baseline comparison for the value of the cumulative reward;
this results in a smaller absolute value, which reduces the error in gradient-based updates. This

!This uses the standard form for the policy gradient [10].



Algorithm 1 Actor-Critic Method

Require: Parameters: « (learning rate), v (discount factor)
Require: Initial values: state s, policy parameters 6, value w and action a.

for t < 1... T do
Calculate reward r from reward function R(s,a)

3: Compute next state s’ based on previous P(s'|[s,a)
Sample next action a’ according to policy my(a'|s)
0+ 0+ aQy(s,a)Vylog mg(als) > Update policy parameters!
6: d=r+vQu(s,d) — Qu(s,a) > Compute correction for action value
W 4w+ adVy,Qu(s, a) > Update parameters w of value function @,
a+a;s+ ¢
9: end for

choice of baseline is taken from Q Actor-Critic [11], but it is not the only option; a popular
alternative is advantage Actor-Critic [12]. Here the baseline A, (s,a)Vglogmy(als) is used,
where the advantage value A, (s, a) is given by:

Aw(sva) = Qw(sv CL) - V(S)v (1)
i.e.,, the added benefit from taking the given action a from state s compared to the expected
value V' (based on all actions) from state s.

As with all GPU-based deep-learning algorithms, this typically has a high computational
cost, and requires specialist architecture to train performant models. We therefore utilize the
asynchronous, advantage Actor-Critic (A3C) framework pioneered by Mnih et al. [13] which
combines the Advantage Actor-Critic method with a lightweight CPU framework supporting
parallel actor-learning asynchronously. The policy and value functions are not updated every
timestep and share a convolutional neural network framework with separate softmax and linear
outputs for the policy and value respectively. Since the threads are asynchronous, they update
from the master policy at different times, and so follow slightly different policies exploring
different regions of the environment. A simplistic pseudocode representation of each actor-
learner thread is given in Algorithm 2, adapted from [13].

Within this, each worker network is constructed as follows:

1. Input Layers

e Long Short-Term Memory layer [14] gives 4-dimensional output.
2. Hidden Layers

e Fully connected layers for each of the sizes: 128, 64, 32, 16, 10.

e Each layer is multiplied by the previous output to produce a tensor of hidden units.

e Use a rectified linear activation function.
3. Output Layers

(a) Policy - Fully connected layer of output size 2, softmax activation function [15].

(b) Value - Fully connected layer of output size 1, linear activation function.

Note that the output size of the policy is determined by the number of policy options
available; this assumes a binary treatment decision (i.e.,, treatment is either given or withheld).

As outlined in Algorithm 2, a reward function is calculated at each step, and is used to
weight the update of each thread to the global network. The full reward function applied when
training the DRL framework is given in Algorithm 3, based on the parameters in Table 1:



Algorithm 2 Asynchronous Advantage Actor-Critic —adapted from [13]

Require: Parameters: t,,4, (update rate), Ty, (iteration number), v (discount factor)
Require: Global shared variables: 6,0, (parameter vectors), T' (counter)
Require: Thread-specific variables: 6,0, (parameter vectors)

t+1 > Initialise thread step counter
while T' < T},4, do
Reset gradients df < 0; df, < 0
Synchronise with global parameters 6’ «+ 6; 6. < 6,
tstart =1
Obtain state s;
while ¢t — tgart < tmas doO
Perform action a; according to policy (a¢|s:;6")
Receive reward r; and new state s;41
t—t+1
T+T+1
end while
R =V(s,0) > Bootstrap from last state
forie {t—1,... tstart} do
R+—mr,+~vR
df < db + Vg log m(a;|si; 0') (R — V(s 6))) > Accumulate gradients wrt 6/
df, + df, + (R -V (s30,))* /08,
end for
Asynchronous update of 6 using df and of 8, using d#,
end while

Algorithm 3 Reward Function used for DRL

Require: Reward Parameters: base, holiday, progression, survival
Require: State Variables: n (tumor size), no (initial tumor size), ¢ (time), d (last drug dose)

r¢ < base > Base reward applied for surviving another timestep

if n > 1.2ny then > If burden is 20% larger than baseline
Tt — progression

else if ¢ > 30 x 365 then > 30 years denotes indefinite survival
7 <— T4 + survival

else if d =0 then > If previous treatment period was a drug holiday
r¢ < 1 + holiday

end if

return r;




S3 DRL Variability

In Section 3.1, we present results obtained by training the DRL model on a single patient.
These are averaged over 100 evaluations, to account for the stochasticity in patient outcomes.
This stochasticity is not a product of the virtual patient itself (whose treatment response is
calculated by a deterministic set of differential equations), but rather inherent in the decision
making process of the DRL framework, such that each iteration receives a slightly different
treatment schedule.

We characterise this stochasticity in Figure S1, showing significant variation between indi-
vidual evaluations of the patient, with the shortest TTP almost one-third of the longest, for the
same patient profile. This variation means that this patient would have a significant probability
of performing worse on the DRL strategy compared to AT50, even though the DRL framework
has a mean TPP over 200 days greater. In Section 3.2, we subsequently demonstrate how vari-
ation in the performance of the DRL model can be reduced by increasing the interval between
treatment decisions, enabling the DRL framework to consistently outperform AT50.
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Figure S1: (a) Variation in treatment outcomes due to stochasticity in the DRL’s decision-
making process, evaluated on 5 copies of the virtual patient. (b) The distribution of TTP
for 100 evaluations, consistently outperforming the predicted TTP for both continuous and
adaptive therapy.



S4 Bruchovsky Trial Patients

To replicate the tumor dynamics observed in the clinic, we consider patient data from a prospec-
tive Phase II trial of intermittent androgen suppression for locally advanced prostate cancer,
conducted by Bruchovsky et al. [16]. This trial used an intermittent strategy that subsequently
inspired adaptive therapy to treat biochemical recurrence after radiotherapy, with a continuous
lead-in treatment period before allocating treatment holidays according to the patient’s PSA
dynamics. Enrollment to the study required a rising serum PSA level after the patient received
radiotherapy, and no evidence of distant metastasis. Each treatment cycle consisted of 4 weeks
of cyproterone acetate given as lead-in therapy, followed by a combination of leuprolide acetate
and cyproterone acetate, which ended after a total of 36 weeks. During each cycle, serum PSA
and testosterone levels were recorded every 4 weeks. For the full study protocol, see [16].

We formed a cohort of virtual patients from these data by fitting the Lotka—Volterra model
introduced in section 2.1 to each patient’s treatment history (for details, see Strobl et al. [1]).
Patients who developed a metastasis were excluded, to avoid potentially confounding effects
from a variation in lesion number. Specifically, we focused on those 12 patients who progressed
during the trial, to test whether DRIL-informed AT could have improved their TTP. Simulating
these parameter sets with the virtual patient model (Equations (1)), however, reveals that only
7 out of the 12 patients are expected to reach progression within 5000 days. This discrepancy
can be partly attributed to a differing progression criterion used by Bruchovsky et al. [16], which
was based on both PSA and testosterone rises under treatment and thus differed from the PSA-
only criterion used here. The second reason is a limitation of the mathematical tumor model
used in our study which can not provide a good representation of the treatment dynamics for
some patients and instead converges to a spurious steady state solution, where a fully resistant
tumor stabilises below the limit for progression (subsequently derived in Section S5.1). Given
that the virtual patient model in these cases does not provide a meaningful benchmark we
excluded these cases from our analysis. To sum up, we trained the DRL framework on the 7
virtual patients who are expected to reach progression within 5000 days, since they are most
significantly impacted by the limitations of the current treatment paradigms.

S5 DRL Framework Sensitivity Analysis

In Section 3.5 we consider the robustness of the DRL framework to variation in patient pa-
rameters. There we highlight results from a complete sensitivity analysis, the full results of
which are presented in Figure S2 below. The DRL framework was trained on Patient 25 from
the Bruchovsky trial (cost = 0.23, turnover = 0.29, Ng = 0.42, fg = 107°), and the sensitivity
analysis perturbed both the tumor’s dynamics and initial composition from these initial values.

S5.1 Progression Analysis under Treatment

Within this sensitivity analysis, we can see there exists a region of parameter space where the
Lotka—Volterra model (Section 2.1 - (1)) allows for a steady state which prevents progression. We
will first derive this under continuous therapy (CT), where the sensitive population will rapidly
be depleted to extinction, leaving a fully resistant population at the steady state. However this
final resistant population has no dependence on the drug concentration, and so this steady state
may be ultimately achieved under any treatment strategy.

Our original model for the virtual patient is reproduced below:

ds S+R
dt_rss<1—K> x (1 —dpD) — dS,

(1 revisited)
dR:rRR<1—S;;R) —dR.



Model Sensitivity to Variation in Patient Parameters
Plotting the TTP in days for models evaluated on patients sampled from parameter space
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Figure S2: (a) The DRL framework is robust to variation in the cost of resistance, but highly
sensitive to reduction in the cellular turnover below the value encountered in training, as the
tumor grows faster than expected leading to premature progression while the tumor is still
sensitive to treatment. (b) The DRL framework is less sensitive to changes in the initial
tumor parameters, but under-performs AT50 for tumors smaller (i.e., further from carrying
capacity) than encountered in training. These tumors grow faster during treatment holidays,
and experience reduced competitive suppression.

Considering a fully resistant tumor in steady state (S(t) = 0; ¥ = 0) defines the resistant
cell population R' according to the expression:

R
/ / _
dR' =rRrR <1 > , (2)

which, upon rearrangement, gives the result for R':

R’:K<1—dR). 3)

TR

The resistant population reaches a non-zero, constant steady state provided that rg > d,.
This will only result in progression when:

1.2(So+ Ry) < K <1 — dR> ) (4)
TR
where Sy and Ry are the initial populations of sensitive and resistant cells respectively.
Patient profiles which obey this condition will therefore remain stable indefinitely under a
CT strategy. Any patient who does not progress under CT will also not progress under the ‘rule
of thumb’ AT strategy, and will either cycle indefinitely, or ultimately experience extinction of
the sensitive population and converge to the fully resistant steady state derived above for CT.



S5.2 Progression without Treatment

It is important to note that these stable profiles are only stable under continuous treatment,
and may still undergo progression under sub-optimal strategies. However this can only occur
through insufficient treatment of the sensitive population, as the resistant population cannot
result in progression alone. In this case, under the assumption that Sy >> Ry, we may neglect
the resistant population to derive an equivalent condition to (4). When no treatment is given,
patients will only reach progression if:

1.25) < K (1 - dS) . (5)
rs

Otherwise, tumors will maintain a non-zero steady state below the progression threshold,
provided rg > dg (else the tumor will be eliminated). Note that our formulation of the resistance
cost requires that rg > rg, while we assume dg = dp throughout. This also means that (5) is
inherently stricter than (4), i.e., patients who do not progress under continuous treatment may
still progress without treatment. It is worth noting that neither requirement depends on the
initial resistant fraction, but only compares the initial tumor size to its growth and death rates.

S5.3 Cost-Turnover Space

We may reframe condition (4) for progression under treatment in terms of cost-turnover pa-
rameter space. The cost is characterized by the relative proliferation rates for sensitive and
resistant cells (1 —rg/rs), while the cell turnover represents the natural death rate of cells d/rs.
Rewriting these in terms of the resistant tumor properties:

rr =rs(l — cost); d, = rs X turnover, (6)

we may write (4) as:

(7)

t
1.2(S0 + Ro) < K (1 _ ) |
1 — cost

In cost-turnover space, we only observe progression if:

turnover < (1 — 1.280;(Ro> (1 — cost). (8)

This line is plotted for reference in Figure 5c. Naturally, progression cannot occur for
cost = 1, as this would correspond to a zero proliferation rate for the resistant cells. More
interestingly, it is possible to avoid progression even without a resistance cost, provided the
carrying capacity is sufficiently small to restrict the logistic growth of the system.

S6 DRL Robustness to Model Variation

Section 3.5 also explores the robustness of the DRL framework to variation in patient dynamics.
Through this, we introduce a modified Lotka— Volterra model introduced by Lu et al. [17], to
demonstrate that a pre-trained DRL network can adapt to changes in the underlying tumor
dynamics. Explicitly, this model may be written (in non-dimensional form) as:

dS S + 1+R'yt “
o rsS [ ( Ke dsD |,

dR

@ LR
a B




where S and R are the sensitive and resistant cell sub-populations respectively, and D is the
drug concentration.

For this model, progression was defined as growth in the resistant population alone to 0.1Kg.
The model was parameterized according to Table S2, replicating values used by Lu et al. [17],
and chosen to ensure that the profile in question does reach progression.

Name Description Value
rs Sensitive cell proliferation rate 0.01365 day !
TR Resistant cell proliferation rate 0.00825 day~!
Kg | Carrying capacity for sensitive cells 1.0
Kpr | Carrying capacity for resistant cells 0.25
dg Drug-induced sensitive cell killing 2.3205
dr Drug-induced resistant cell killing 1.3205
So Initial sensitive cell fraction 0.75
Ry Initial resistant cell fraction 0.01
Q Growth scaling term 1.0
vy Relative competition 0.27385 day~!

Table S2: Parameter values used for the alternative virtual patient model, taken from Lu et al.
[17].

Evaluating a pre-trained DRL framework on this new model, it attained a TTP of 1506 + 3
days, outperforming the AT50 TTP of 1119 days (Figure S3). We also verify that this benefit
is retained across a range of different tumor dynamics, through variation in the growth scaling
term (o), with an increase in TTP of 305 days for o = 0.5, and 576 days for a = 2.
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Figure S3: The DRL framework may also adapt to different underlying tumor dynamics, demon-
strated by evaluating a pre-trained DRL network on an alternative tumor model (developed by
Lu et al. [17]). This model has modified dynamics (achieved through use of exponential growth
terms), and the progression criterion is also modified to depend on the resistant subpopulation
alone. Despite this, the DRL framework uses similar treatment principles to consistently out-
perform AT.

In contrast to the previous models, which categorise cells by drug-response, we also consid-
ered an alternate model from Brady-Nicholls et al. [18], which differentiated between prostate



cancer stem-like (S) and differentiated (D) cells to model tumor response to intermittent andro-
gen deprivation therapy. Stem-like cells divide with per capita rate A to produce two stem-like
cells with probability ps (symmetric division), with negative feedback SJF% from differentiated
cells, or a stem-like and a non-stem cell (asymmetric division). Unlike androgen-independent
stem-like cells, differentiated cells die in response to androgen removal at rate a. Treatment
on and off cycles are described with parameter 7)., where T, = 1 when treatment is given, and
T, = 0 during holidays.

as S
dt <S+D)p5>‘s
dD S (10)

The model was parameterized according to Table S3, replicating the values used by Brady-
Nicholls et al. [18], with the given patient profile chosen to ensure that the tumor reaches
progression. Evaluating the same pre-trained DRL framework on this new model, it attained a
TTP of 2841 + 102 days, outperforming the AT50 TTP of 2123 days.

Name Description Value
A Stem-like cell proliferation rate 0.69 day !
DS Symmetric division probability 106
Q Drug-induced sensitive cell killing | 0.07 day
So Initial stem-like cell population 10
Dy Initial differentiated cell population 1000

Table S3: Parameter values used for the stem cell virtual patient model, taken from Brady-
Nicholls et al. [18].

S7 Group-Trained DRL Networks

Section 3.5 introduces a DRL model trained on the Bruchovsky patient cohort, demonstrating
that such ‘group-trained’ models have increased robustness to variation in tumor dynamics, at
the cost of specialisation to a single tumor profile. To supplement this Section, we additionally
trained a separate DRL framework on a completely separate set of synthetic profiles, randomly
sampled from an enclosed region of parameter space (Figure S4a).

This group acts as an independent validation dataset, demonstrating that such generalized
DRL networks are performant without having encountered the test patients during training.
For six out of the seven patients, this achieves almost identical TTP as the generalist model
trained on the Bruchovsky dataset (Figure S4b), as well as matching or out-performing AT50.

Notably however, this method fails for Patient 12, which in Figure S4a has a significantly
reduced turnover compared to the other patients in both the Bruchovsky cohort and the syn-
thetic training space. As demonstrated in Section S5, the DRL framework fails for profiles with
a lower turnover than encountered in training. In fact, each DRL model here is only performant
for patients with greater or equal turnovers to the lowest value encountered during training -
this lowest value for the synthetic group excluded Patient 12 and so the network trained on this
group fails to treat that patient.

More specifically, the threshold size in the treatment strategy must be reduced during re-
training to account for the lowest turnover, shifting the treatment strategy curve right (Figure
S4c) to be more conservative. This accounts for the reduction in TTP for other patients, as
the sensitive cell population is maintained at a lower level, reducing resistant suppression. This



contributes towards a wider discussion of specialist vs generalist models, and the inherent trade-
off between model robustness and optimal performance (i.e. how well a model adapts to new
parameter values, against its performance on the training set).
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Figure S4: (a) A synthetic training cohort was generated by sampling a subset of parameter
space, representing patients with the same initial tumor but different underlying dynamics.
(b) Training the DRL network on this independent cohort achieves comparable performance
to the framework trained directly on the Bruchovsky cohort for most patients. The framework
fails to treat Patient 12, however, due to their exceptionally low turnover relative to patients
encountered in training. (c) This difference manifests in the treatment strategies, where the
framework trained on the synthetic group has a higher treatment threshold than the completely
generalist framework trained on the Bruchovksy group, but below that of the completely spe-
cialized framework trained on a single patient.

We can also consider this through the sensitivity of the DRL framework to variation in the
decision interval 7. This is particularly pertinent for the clinical translation of this work, as
medical appointments and clinical tests are frequently delayed for reasons beyond a clinician’s
control. This dependence has already been explored somewhat in Section 3.2, where we show
that the framework is robust to reductions in 7, but may fail under increases to 7 (correspond-
ing to delayed treatment). Exploring this systematically for the DRL framework trained on
Patient 25 above (with 7 = 30 days), we verify that there is no loss of performance (i.e. a
> 20% reduction in TTP) for 7 < 30 days, but there is a loss in performance for ¢ > 42 days,
as premature progression occurs due to the unanticipated increase in decision interval (Figure
S5a). The networks trained on the Synthetic and Bruchovsky patient groups only experienced
a loss in performance after 81 and 97 days, respectively. These group-trained networks both
demonstrated greater robustness to the variation in 7, and significantly outperformed the net-
work trained on Patient 25 for 7 > 40 days (p < 0.01), despite having a lower TTP at the
training value of 7.

We also consider random variation in decision interval, to replicate the practical realities
of clinical scheduling where such delays to treatment are non-uniform. We sample the delay
for each decision point from an exponential distribution with a mean of y days. We find a
significant loss of performance on the Patient 25 network for as little as u = 5 days, reflecting
its highly optimized state to the training problem (Figure S5b). This sensitivity to x4 may be
attributed to the random nature of this sampling - while increasing 7 uniformly increases time
both on- and off-treatment, such that increased tumor growth off-treatment is compensated
by increased suppression on-treatment, no such compensation occurs consistently for every
treatment cycle with randomly sampled decision-intervals. This results in premature progression
over the course of many treatment cycles. By contrast, group-trained networks based on the
Synthetic and Bruchovsky patient groups demonstrated greater robustness to the variation in u,
and with significant losses in performance after only 18 and 28 days, respectively (Figure S5b).
In summary, models trained on a wider region of parameter space display greater robustness
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Figure S5: (a) TTP for each model, when the treatment interval is varied from the value (7 = 30
days, in gray) used in training. While the model trained on patient 25 outperforms the others
at 7 = 30, it is much less robust to increases in 7, while the Bruchovsky model demonstrates
the greatest robustness along with the lowest TTP at 7 = 30. (b) To replicate unexpected
delays to treatment, a delay is added to each treatment decision, randomly sampled from an
exponential distribution with mean p. Again the Patient 25 model, with the best performance
on the training conditions (where p = 0), is the most susceptible to increases in u, while the
more generalist group-trained models have an increased capacity to cope with this stochasticity
in the treatment interval.

(including to variation in parameters that were not varied in training, such as 7), however this
comes at a cost of reduced maximal performance on a single patient.

S8 First Cycle Fitting

In Section 3.7, we fit the virtual patient model (1) to the first cycle of adaptive therapy only,
following the protocol established by Strobl et al. [1].

However, the dynamics in this first cycle are almost completely determined by the sensitive
sub-population alone, with minimal dependence on the resistant sub-population provided its
initial size is sufficiently small. For this reason, it is only possible to accurately infer parameters
characterized by the sensitive population from the initial cycle data and we decided to only fit
for initial tumor size and cellular turnover (hereafter referred to as the sensitive parameters),
while fixing the cost of resistance and the initial resistant fraction at average values determined
by fitting full patient histories of prior patient cohorts.

While this can limit the accuracy of these fits at later times, as demonstrated in the final
two panels of Figure S6 (Patients 99 and 101), this does not impact the ability of the DRL
framework to learn effective strategies for a particular patient, provided the estimated values
for the sensitive parameters are accurate. As demonstrated in Section 3.5, the effectiveness of
the DRL framework is primarily determined by cellular turnover and is robust to significant
variation in the cost of resistance.
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Virtual Tumors from Single Cycle Fits
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Figure S6: Virtual tumor models based on a fit to the first cycle of patient data only, superim-
posed over the entire patient history. While the tumor model struggles in some cases to replicate
the late time dynamics of the patient, these are dominated by resistant sub-populations within
the tumor which do not affect the determination of an optimal treatment strategy for that

individual.
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