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SUMMARY

Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase in-
hibitor (PARPi)maintenance therapy of ovarian cancer.We propose that adaptive therapy, which dynamically
reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse mi-
croscopy and stepwise model selection, we calibrate and validate a differential equation mathematical
model, which we leverage to test different plausible adaptive treatment schedules. Our model indicates
that adjusting the dosage, rather than skipping treatments, is more effective at reducing drug use while main-
taining efficacy due to a delay in cell kill and a diminishing dose-response relationship. In vivo pilot experi-
ments confirm this conclusion. Although our focus is toxicity mitigation, reducing drug use may also delay
resistance. This study enhances our understanding of PARPi treatment scheduling and illustrates the first
steps in developing adaptive therapies for new treatment settings.
A record of this paper’s transparent peer review process is included in the supplemental information.

INTRODUCTION

PARP (poly-adenosine ribose polymerase) inhibitors (PARPis)

are revolutionizing ovarian cancer therapy. These small molecule

inhibitors target the PARP family of proteins, in particular PARP1

and PARP2, which help to detect single-stranded DNA (ssDNA)

damage and orchestrate the subsequent repair.1,2 PARP inhibi-

tion results in a buildup of ssDNA breaks that interfere with DNA

regulation and replication (Figure 1A). If the cell attempts to

divide, then the replication fork will stall at ssDNA breaks, which

causes cell cycle arrest and double-strand breaks (DSBs).2–4

Furthermore, there is growing evidence that PARPis additionally

promote this process by trapping PARP proteins directly on the

DNA, leaving further obstacles for the cell to resolve4 (Figure 1A).

Although the damage caused by PARPis can be repaired via the

homologous repair (HR) pathway, HR is deficient inmany ovarian

tumors due to, for example, mutations in BRCA1 or BRCA2. As a

result, ovarian cancers rely on more error-prone backup mecha-

nisms, such as non-homologous end joining, making PARPis an

effective treatment option2–6 (an effect referred to as ‘‘synthetic

lethality’’).

Historically, ovarian cancer has been a particularly challenging

disease to treat because most patients (70%7) are diagnosed

with stage III or IV disease, and because it is remarkably adept at

overcoming treatment.8,9 But, thanks to PARPis this picture

has begun to change. In this study, we will focus on olaparib

(AstraZeneca), which is the longest-approved and one of the

mostwidely usedof the threecurrently approvedagents. It is given

orally and is primarily used asmaintenance therapy, which means

that treatment is administered after chemotherapy has been

completed, with the aim to eradicate the disease or, at least, to

pushbackprogression.2 Itsbenefitasasingle-agent therapy inpa-

tients with germline or somatic BRCA mutations, or as combina-

tion therapy with Bevacizumab in patients with an HR deficiency,
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has been demonstrated in multiple clinical trials,8–13 most promi-

nently the SOLO1 (NCT01844986), SOLO2 (NCT01874353), and

PAOLA-1 (NCT02477644) phase III studies. But, in all studies,

most patients still saw their tumor recurring within 5 years.11–13

Furthermore, around 40% of patients required dose adjustments

due to serious grade 3 or 4 adverse events, such as anaemia.14,15

As such, there is an important need to investigate how we can

administer olaparib more safely and effectively.

Olaparib is currently given according to the maximum toler-

ated dose (MTD) principle.16,17 This means that the dose and

A

B

Figure 1. PARPis are revolutionizing ovarian cancer treatment, but toxicity and developing resistance are important challenges in the clinic
Here, we developed a mathematical model to help address these issues through more personalized treatment scheduling.

(A) The mechanism of PARPi-mediated cytotoxicity. PARPs are important proteins in the repair of single-stranded DNA breaks. But PARPis can trap PARPs on

the DNA,which results in stalled replication forks and DSBs during DNA replication. Only cells with intact HR pathways can repair this damage, but tumor cells are

typically HR deficient and are thus killed. Redrawn with permission from Noordermeer and van Attikum.3

(B) Outline of our paper. Using in vitro experiments, we derived amathematical model of PARPi treatment.We proceeded in a stepwise fashion, characterizing the

growth, treatment, and dose-response dynamics in turn and independently validating each step using unseen treatment conditions. Subsequently, we leveraged

this model to explore plausible adaptive treatment algorithms to reduce cumulative drug use.
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frequency of drug administration is chosen to maximize drug

exposure while maintaining an acceptable toxicity profile.

Specifically, patients will take a total dose of 600 mg olaparib

per day (2 3 150 mg tablets b.i.d.), and side effects are

managed by first temporarily interrupting treatment and, if

necessary, reducing the dose to 500 mg per day (1 3

100 mg + 1 3 150 mg b.i.d.) and, ultimately, to 400 mg per

day (2 3 100 mg tablets b.i.d.).16,18 The rationale for MTD is

based on the work by Kaye et al.19 and Audeh et al.,20 who

found that reducing dose levels to 50% or 25% of the MTD

also reduced the overall response rate from 31% to 25%19

and 33% to 13%,20 respectively. However, these dose reduc-

tions were large and they were applied indiscriminately of how

sensitive the tumor, or the patient, was to treatment. Further-

more, Fong et al.8 found that pharmacodynamic effects pla-

teaued at doses beyond 15% of the MTD, and Francis

et al.15 detected no negative effect of toxicity-induced treat-

ment reductions during the first 12 weeks of therapy on

outcome in the SOLO2 study. This indicates that the expo-

sure-response relationship is clearly diminishing, suggesting

that smaller dose reductions may still be possible without

markedly impacting response.

The past two decades have revealed that cancers are hetero-

geneous and dynamic diseases, so that each tumor has its own

unique evolutionary history.21,22 As a result, the same dose that

represents a good trade-off between toxicity and efficacy in

one patient, may over- or under-treat another.23–25 Further-

more, inter-patient variability in pharmacokinetic processes

such as drug uptake or metabolism mean that the same dose

results in different levels of exposure in different patients.23

Yet, because current dosage recommendations are deter-

mined on a population level and only adapted for toxicity but

not efficacy, it is challenging to take this inter-patient heteroge-

neity into account.

The aim of this paper is to investigate whether a personalized

approach to treatment scheduling can enablemore effective and

robust treatment de-escalation of olaparibmaintenance therapy.

Our work is motivated by recent promising results of so-called

‘‘adaptive therapy’’ (AT) in which therapy is dynamically adjusted

according to the tumor’s response dynamics.26–29 The underly-

ing rationale is that, in advanced cancers, drug tolerant or resis-

tant cells likely exist prior to treatment, but are suppressed by

competition for space and resources with more sensitive cancer

cell subpopulations.26,28 Aggressive treatment at MTD removes

this suppression and allows resistance to emerge, but AT can

leverage competition to extend progression free survival (PFS)

by maintaining a pool of sensitive cells (e.g., Strobl et al.,30

Gallaher et al.,31 Bacevic et al.,32 and Viossat and Noble33).

The ability of AT to delay resistance has been demonstrated in

several pre-clinical studies, including in breast cancer,34,35

lung cancer,36,37 and melanoma,38,39 as well as in the chemo-

therapy treatment of ovarian cancer,27,40 where a clinical trial is

ongoing (NCT05080556). Clinical feasibility has been demon-

strated in a pilot phase IIb study in androgen-deprivation treat-

ment in prostate cancer that reported a 19.2-month increase in

median time to progression in comparison with a matched his-

torical control cohort.41,42

Although AT was developed with the aim of delaying disease

progression, it also provides a means for treatment reduction.

For example, in the prostate cancer trial, patients received

46% less treatment than the historical control,41,43 and AT in

mouse models of breast34,35 and ovarian cancer,40 respectively,

could steer some tumors into a state in which they remained sta-

ble with little to no further treatment.36,37,42 Based on these

promising results, we hypothesize that AT could provide a

means to de-escalate PARPi maintenance therapy for ovarian

cancer to mitigate pharmacological and financial toxicity. The

strategies investigated here could also allow us to better manage

resistance and extend PFS, even though we will not explicitly

consider resistance in this study.

Olaparib’s short half-life, oral administration, and the availabil-

ity of CA-125 as an easily accessible biomarker to monitor tumor

dynamics44 suggest that adaptive administration may be

feasible. However, how should therapy be adapted? Existing

AT algorithms can be broadly categorized into two types: (1)

modulation-based approaches, which adjust the dose accord-

ing to response, and (2) skipping-based approaches, which al-

ways treat at the same (high) dose but omit doses when the tu-

mor is decreasing or under control.34,35 The challenge in

deciding how and when treatment is adapted is that the number

of possible options is too large to exhaustively test in a labora-

tory. To tackle this issue, we usedmathematical modeling, which

has been establishing itself as a powerful way to improve treat-

ment scheduling.45–48 Mathematical models allow for the sys-

tematic interrogation of different treatment strategies and, unlike

traditional laboratory models, they can typically provide outputs

in hours rather than days or weeks and are cheap to run (see Bo-

testeanu et al.49 for an in-depth review of mathematical models

of ovarian cancer).

In this study, we integrated in vitro experiments and mathe-

matical modeling to characterize the temporal dynamics of

ovarian cancer cells under olaparib treatment and to investigate

whethermodulation- or skipping-based ATwould bemore effec-

tive and robust at reducing mean drug use (Figure 1B). To cali-

brate the model, we used in vitro time-lapse microscopy exper-

iments to measure the population dynamics of ovarian cancer

cells in response to PARPi treatment under different seeding

conditions (low and high initial density) and treatment schedules

(continuous and intermittent treatment at different drug concen-

trations). Leveraging these data, we systematically evaluated

different plausible models of treatment response to derive our

final calibrated and validated model and to shed biological in-

sights into the observed dynamics (Figure 1B). To conclude,

we used ourmodel to explore different possible PARPi treatment

algorithms, showing that strategies that adjust treatment by

modulating the dose are predicted to be superior to those skip-

ping treatments. Overall, our study explores how AT can be

leveraged for personalized treatment de-escalation in PARPi-

sensitive disease and showcases the first steps in developing

ATs in a new treatment setting.

RESULTS

The aim of this paper was to investigate the feasibility of alterna-

tive treatment schedules for olaparib that maintain or even

enhance tumor control but reduce drug use. To do so, we

performed a series of in vitro experiments to develop, calibrate,

and validate a mathematical model of the treatment response
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dynamics (Figure 1B; see Table 1 for an overview of model

parameters). Subsequently, we explored implications for sched-

uling, showing that dose-modulation-based AT is more effective

and robust at reducing drug use in this setting than dose skip-

ping. We repeated our analysis on two commonly used human

epithelial ovarian cancer cell lines (OVCAR3 and OVCAR4).

These were originally derived from ascites and were chosen to

model experimentally the peritoneal disease that PARPi mainte-

nance seeks to manage. Furthermore, we generally started our

experiments and simulations from low-density populations

(5%–20% confluence) to reflect the small tumor burden at the

start of treatment. As both cell lines yielded similar results, we

focus on OVCAR3 and refer to the supplemental information

for the OVCAR4 results.

Untreated cells’ growth dynamics indicate non-linear
density dependence
The cytotoxic effect of PARPis is based on their interference with

the DNA replication machinery and the induction of double-

stranded DNA breaks. We therefore first analyzed the growth dy-

namics of OVCAR3 cells in the absence of treatment in order to

accurately capture the fraction of dividing cells over time. Using

time-lapsemicroscopy and image analysis, we collected images

daily, such as those shown in Figure 2A, and from these quanti-

fied the population size over time as a percentage of how much

of the visible area was overgrown (% confluence). Subsequently,

we compared the observed trajectory with five plausible and

commonly used mathematical models, representing different

assumptions about how rapidly the fraction of dividing cells

decreased as the population approached confluence (their

‘‘density dependence’’; Figure 2B; see the section mathematical

model development for the equations). We found that a general-

ized logistic model was the most consistent with the observed

growth dynamics, even when we penalized for its additional pa-

rameters (Figure 2B). The corresponding concave shape of the

density dependence relationship suggests reduced contact inhi-

bition, consistent with the cancerous nature of these cells.

Repeating this analysis with OVCAR4 cells showed stronger

density dependence but yielded otherwise similar conclusions

(Figures S3A and S3B).

Next, we sought to test how well this model could predict

growth under experimental conditions different to those for

which we had calibrated it. Given that AT relies on cells

competing in close proximity,30,31,32 we chose to test the model

in its ability to predict growth when we seeded cells at a higher

initial density (60% confluence). This analysis corroborated our

choice of the generalized logistic model, although for both cell

lines it slightly under-predicted the initial growth rate of the pop-

ulation (Figures 2C and S3C). The parameter estimates for each

cell line are summarized in Figures S3D and S3E, respectively.

Table 1. Overview of model variables and parameters

Variable/ Parameter Description Range

NðtÞ Tumor population size at t days (in % confluence) 0-100

PðtÞ Size of actively proliferating population at t days (in % confluence) 0-100

PiðtÞ Size of proliferating population with i rounds of divisions

impacted by PARPi-induced damage at t days (in % confluence)

0-100

PDðtÞ Size of proliferating population with (any) PARPi-induced

damage at t days (in % confluence)

0-100

AðtÞ Size of arrested population at t days (in % confluence) 0-100

DðtÞ Drug concentration in the well at t days (in m M) 0-100

DMax Maximum administered drug concentration (in m M) 100 (fixed)

r Cell growth rate (in day-1) 10-4-2

K Carrying capacity (in % confluence) 0-100

n Shape parameter determining curvature of density-dependence

relationship (dimensionless)

0-5

a Probability of PARPi-induced cell cycle arrest during

cell division when treated at DMax (dimensionless)

0-1

b Rate at which arrested cells repair themselves (in day -1) 0-0.5

d Rate at which arrested cells undergo apoptosis and

detach from the plate (in day 1)

0-4

ri ;ai ;bi Growth rate, damage probability, and repair rate of

sub-population with i rounds of PARP-afflicted cell divisions

(with units, respectively, day-1, dimensionless, day-1)

g Rate at which damaged cells become arrested (in day-1) 0-4

4 Average number of divisions a damaged cell undergoes

before apoptosis (dimensionless)

0-2

k50 PARPi concentration at which half the maximum drug

effect is achieved (in mM)

0-100

n Hill shape parameter determining the curvature of the

dose-response relationship (dimensionless)

0-10
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Even at high doses, there is a time delay before the
population begins to shrink
Having characterized the cells’ growth dynamics, we turned to

study their response to therapy. To do so, we exposed the cells

to continuous treatment at 100 m M olaparib for 21 days. This

experiment revealed that, despite high-dose treatment, the

population tended to initially expand before a treatment-

induced regression could be observed (Figure 3A). To under-

stand the reasons behind this delay in treatment response,

and to develop a means for subsequent in silico schedule opti-

mization, we next extended our mathematical model to capture

these dynamics.

PARPis interfere with the DNA repair and replication ma-

chinery, which induces cell cycle arrest and eventually results

in apoptosis if cells are unable to repair themselves (Fig-

ure 1A). Based on this understanding, we tested a model in

which we assumed that the tumor population could be divided

into two subpopulations (Figure 3B): (1) cells that are actively

cycling and unaffected by PARPi (P) and (2) cells in PARPi-

induced cell cycle arrest (A). Furthermore, we assumed

that during treatment, the drug caused cell cycle arrest in a

fraction of cells in the cycling subpopulation (those undergo-

ing mitosis during this period) and thereby moved them from

the P to the A compartment. Once arrested, these cells would

either repair themselves and return to the proliferating

compartment or would undergo apoptosis and detach from

the plate. Seeking to keep our model as simple as possible,

we initially assumed that if there was olaparib-induced dam-

age, then the cell would immediately abort division and go

into arrest (Figure 3B; model 1; Equations 2, 3, 4, and 5; Table

1). Fitting this model to our data, we found that it was able to

reproduce the biphasic behavior of expansion and contraction

we had observed experimentally (Figure 3B). However, while

qualitatively in agreement, the model predicted a much less

pronounced initial expansion than what we had seen in vitro,

suggesting that the assumption of immediate cell cycle arrest

was inconsistent with our data (Figure 3B).

Modeling indicates that cells undergo 1–2 extra
divisions before PARPi-induced arrest
Based on this observation, we tested a model in which we

assumed that multiple divisions under PARPi exposure were

required to amount sufficient damage to induce cell cycle ar-

rest (model 2; Equations 6, 7, 8, 9, and 10; Table 1). In this

model, the cell accumulated DNA damage if affected by the

PARPi during mitosis, but it still successfully completed cell

division. Only after too many ‘‘hits’’ were received was the

cell forced to abort division and was pushed into cell cycle

A

B C

Figure 2. Development of the growth model to describe the population expansion in the absence of treatment
Points and bars denote mean and 95% confidence intervals (CIs) of observed confluence (n = 3 independent replicates). Solid lines show the model predictions

based on the maximum likelihood estimate, and bands indicate 95% CIs.

(A) Representative IncuCyte microscopy images, based on which we assessed the growth and treatment dynamics over time.

(B) Comparison of the descriptive ability of 5 commonly used growth models in fitting the untreated growth data from cells seeded at low density (Exp, expo-

nential; vBfy, von Bertalanffy; Gomp, Gompertz; Log, logistic; GLog, generalized logistic; see the section mathematical model development for equations; AIC,

Akaike information criterion). The GLog model achieves the best fit, even if its additional parameter is taken into account (lowest AIC score).

(C) Testing of the growthmodels by comparing their predictions for when cells are initially seeded at 60% confluence with the experimentally observed dynamics.

This shows that the GLog model is also the most predictive model and corroborates our choice of this growth model. The box, center line, and whiskers denote

the inter-quartile range, median, and 1.53 inter-quartile range, respectively (250 bootstrap replicates; gray dots show a random subset of 125 individual

bootstrap replicates). White dots show the performance of the maximum likelihood fit. For clarity, extremely poor predictions (negative r2 values) are not shown.
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arrest (Figure 3C). In addition, cells could repair damage and,

for simplicity, we assumed that partial damage did not alter

the behavior of the cell, so that parameters were the same

across all proliferating compartments, Pi. Fitting this model,

we found that assuming a cell underwent 2–3 cell divisions

before it was forced into arrest reliably reproduced the

A

C

D

B

Figure 3. Mathematical modeling of the PARPi treatment response indicates that cells can undergo multiple divisions before entering

PARPi-induced cell cycle arrest

Points and bars denote mean and 95%CIs of observed confluence (n = 3 independent replicates). Solid lines show themodel predictions based on themaximum

likelihood estimate, and bands indicate 95% CIs derived via parametric bootstrapping (250 bootstrap replicates).

(A) Treatment response dynamics and representative imagesmeasured with our in vitro imaging setup, showing a delayed response where the population initially

expands under treatment before it contracts.

(B) A simple model that assumes PARPis induce cell cycle arrest immediately once a cell attempts to divide cannot explain this initial expansion seen in the data

(model 1; Equations 2, 3, 4, and 5).

(C) Amore complexmodel in which cells need to acquire PARPi-induced damage over multiple rounds of cell division can explain the dynamics under continuous

treatment (model 2; Equations 6, 7, 8, 9, and 10). Specifically, a value of 2–3 divisions before arrest appears to be most consistent with the data. However, this

model predicts faster recovery upon drug withdrawal than what is seen in vitro, suggesting that further refinement is required.

(D) To address this, we tested a model that assumes that the DNA damage that results in cycle arrest is initially induced by PARPis but is subsequently exac-

erbated through cell division independent of further drug exposure (model 3; Equations 11, 12, 13, and 14). This model can explain the dynamics in response to

both continuous and intermittent schedules (for corresponding fits/predictions, see Figure S4B). Assuming that cells rarely recover from arrest, we were able to

simplify this model while maintaining high fitting and prediction accuracy, which yielded the final treatment model that we carried forward for our study of

treatment scheduling (model 4; Equations 15, 16, and 17; fits/predictions as shown).
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in vitro data (Figures 3C and S4A; r2 values of 0.91 and 0.9,

respectively). We concluded that olaparib-induced damage

did not appear to induce arrest immediately but that, instead,

cell death resulted from the buildup of further damage over

multiple rounds of cell division.

PARPi cytotoxicity involves both drug-dependent and
drug-independent steps
Given this observation, an important follow-up question was

whether treatment interruptions would interfere with the action of

the drug. If cells needed to be damaged not just once but multiple

times, and the continued presence of the drug was necessary to

inducedamage, then thiswouldmean thatwithdrawalof treatment

too early may not allow for enough time to induce cell death. To

investigate this hypothesis, we simulated an experiment in which

we treatedcells for varying lengthsof time (1, 2,4, and7days), after

which we removed treatment. As expected, the model predicted

that the population would start growing again within 24 h of drug

removal (Figures 3C and S4B). However, comparing these predic-

tionswith the dynamicswhenwe repeated this experiment in vitro,

we found that the recovery predicted by the model was too fast

(Figures 3C and S4B). This suggested that the cells were

continuing to experience the impact of the PARPi-induced dam-

age even once treatment had been withdrawn.

To characterize the way in which the cells were impacted, we

tested whether this lingering effect took the form of either a

decreasing proliferation rate or an increasing drug sensitivity

as damage accumulated in a cell, but neither model was able

to explain the data (Figures S4B, S5A, and S5B). Examining

why this was the case, we found that although decreasing the

proliferation rate reduced the growth rate, it also reduced the

cells’ drug sensitivity, resulting in a buildup of damaged, but still

proliferating, cells, which explained why the model predicted too

fast a regrowth upon drug withdrawal (compare the levels of

P1ðtÞ in Figure S4B). This observation prompted us to revisit

our assumption that drug exposure was required for the further

buildup of DNA damage after an initial PARPi-inflicted lesion.

So, we iterated testing with a refined model in which cells

continued to divide after PARPi damage but eventually under-

went apoptosis independent of further treatment, unless they

had been able to repair themselves (Figure 3D; model 3; Equa-

tions 11, 12, 13, and 14; Table 1). This model was able to reca-

pitulate the treatment response under continuous, as well as

intermittent, treatment with high accuracy, suggesting that

PARPi-induced cytotoxicity involved both drug-dependent and

drug-independent steps, as might be expected from PARP trap-

ping, where the PARPi locks onto a lesion site and prevents

repair (Figures S4B, S5A, and S5B). Repeating these analyses

with the OVCAR4 cells corroborated this result (Figures S6A–

S6C) and adds support to the growing evidence for the impor-

tance of PARP trapping in PARPi action.

A slow repair rate simplifies the model needed for
prediction making
Having investigated how PARPis damage cells, we turned to

consider the question of the rate of repair. Examining the esti-

mates for b provided by models 1–3 for both cell lines indicated

that little repair appeared to be taking place (Figures S5C and

S6D). This observation not only provided further biological

insight but also suggested a way of simplifying our model.

Although model 3 was useful for gaining a mechanistic under-

standing of the actions of olaparib, its complexity meant that it

was difficult to parameterize it with the data at hand, seen, for

example, in the notable uncertainty associated with the sizes

of the individual subpopulations (Figure S4B). By neglecting

repair, we were able to reduce our model back to two popula-

tions, consisting of healthy proliferating cells, PðtÞ, and arrested

cells on the way to apoptosis, AðtÞ. In this way, the transient

rounds of cell division following PARPi-induced damage could

be combined into a single step, where a new parameter 4

captured the number of divisions a damaged cell would undergo

before cell cycle arrest (Figure 3D; model 4; Equations 15, 16,

and 17, Table 1). For both cell lines, this model provided fits

and predictions as good as, if not better than, the more complex

model 3, with less uncertainty in its predictions and parameter

estimates (Figures 3D, S5, and S6).

Analysis of the response at different doses reveals
positive cooperativity in drug action
In the last step of model development, we sought to charac-

terize how the treatment dynamics varied with drug dose (Fig-

ure 1B). This was so that we could subsequently use the model

to investigate treatment algorithms that adapted not just

whether or not treatment was given but also adjusted the

dose. To do so, we first used our in vitro time-lapse imaging

pipeline to measure the response dynamics of cells continu-

ously exposed to 1, 10, 25, and 50 m M of olaparib for 9 days.

We then fitted model 4 to each drug level, allowing the treat-

ment-induced damage probability, aðDÞ, to vary freely with

dose (Figure 4A). This analysis revealed a concave dose-

response relationship for aðDÞ, indicating that the dose relation-

ship was not linear, as we had assumed in model 4, but that

there was evidence for positive cooperativity in PARPi action

(Figure 4B). We concluded that acquiring a PARPi-induced

lesion appeared to increase the probability that a cell would

suffer further PARPi-induced damage. We also explored

whether 4 or d varied with dose but did not find evidence to

support this (Figures S8A and S8B).

To integrate this positive cooperativity into our mathematical

model, we extended model 4 by introducing a Hill function to

describe the relationship between the dose and the treatment-

induced damage probability, aðDÞ (Figure 4C; model 5; Equa-

tions 15, 16, 17, and 18; Table 1). After calibrating the shape

parameter, n, and half-effect parameter, k50, using the data at

dose levels 10, 50, and 100 m M, we found that this model was

able to closely recapitulate the experimentally observed drug-

response relationship (Figure 4B) as well as the associated treat-

ment dynamics (Figures 4D; see Figures S8C and S8D for a sum-

mary of the parameter estimates). Repeating this analysis with a

different set of ‘‘training’’ doses (e.g., 1, 25, and 100 mM; data not

shown) and with OVCAR4 (Figures S9A and S9B) corroborated

our conclusions.

The model is highly predictive and reveals that drug
response changes with cell density
To validate the final form of our mathematical model (model 5),

we tested its ability to predict the treatment dynamics under

combinations of different conditions (varying doses, seeding
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densities, and continuous vs. intermittent schedules). We found

that for both cell lines our model was able to predict the

observed dynamics with high accuracy (Figures 4E, S8D, and

S9C–S9F; see Figure S9G for the OVCAR4 parameters). In

particular, our mathematical model predicted that the cells

would recover quickly after drug withdrawal and would

CA

D

B

E

Figure 4. Characterizing the relationship between the treatment dynamics and the drug dose

Points and bars denote mean and 95%CIs of observed confluence (n = 3 independent replicates). Solid lines show themodel predictions based on themaximum

likelihood estimate, and bands indicate 95% CIs derived via parametric bootstrapping (250 bootstrap replicates).

(A) Approach used to deduce the dose-response relationship.

(B) Empirical dose-response relationship derived from our data, demonstrating a concave curvature, which cannot be described by the linear dose-response

model assumed in model 4 (Equation 5) and motivated the illustrated Hill function model (model 5; Equation 18).

(C) Diagram showing how we extended model 4 by assuming that the damage probability, aðDÞ, increases non-linearly with dose, according to a Hill equation

(Equations 15, 16, 17, and 18).

(D) Model fits obtained when calibrating model 5 with data from 0, 10, 50, and 100 m M olaparib.

(E) Testing of model 5 on data from 12 different experimental conditions. Together, (D) and (E) show that model 5 can fit and predict the PARPi response of

OVCAR3 cells in vitro under various conditions with high accuracy, including the fact that the treatment response varies with cell density.
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experience a certain protection from treatment when grown at

higher density. These predictions were validated in vitro (Fig-

ure 4E) and suggested that how, and when, treatment was

adapted would have to be carefully planned. Thus, in the final

part of this study, we leveraged our calibrated and validated

mathematical model to study different possible adaptive treat-

ment strategies.

Model simulations of different AT algorithms indicate
that dose modulation may perform better than dose
skipping
In the prostate cancer AT trial by Zhang et al.,41,42 the authors

alternated between drug administration and drug holidays to

keep tumor size between the baseline value at the start of treat-

ment and 50% of this value (as measured by prostate-specific

antigen [PSA]). However, PARPi maintenance therapy immedi-

ately follows systemic therapy and possibly surgery or radiation

therapy, so that there is typically little or no evidence of remaining

disease at the start of treatment,10,14 making a strategy similar to

that of Zhang et al.41,42 difficult to implement. As an alternative,

we investigated two previously published adaptive algorithms

that adjust treatment based not on tumor size but on changes

in size (Figure 5A): (1) AT1,27,34 whichmodulates the dose admin-

istered at the current time point, increasing it if the tumor grows

too quickly and decreasing it if tumor growth slows sufficiently,

and (2) AT2,34 which performs dose skipping akin to Zhang

et al.,41,42 except that doses are skipped when the growth rate

drops below some threshold. In this way, these algorithms could

be deployed even when no tumor is visible and/or CA-125 levels

are ‘‘normal’’ because decisions can be made based on the rate

of change of the CA-125 levels. To make these algorithms easier

to implement, we made two simplifications compared with

Enriquez-Navas et al.34: for AT1, we selected from one of only

five dose levels (0, 12.5, 25, 50, and 100 mM), separated by fac-

tors of l = 2, and for AT2, we assessed growth rate over one-

step rather than two-step intervals (Figure 5A).

Using model 5, we tested whether these strategies could

reduce drug use while maintaining control over the tumor. Our

simulations showed that by gradually up- and down-titrating

the dose, AT1 has two advantages over AT2: (1) AT1 can keep

the tumor in check and (2) AT1 can reduce the cumulative

dose by 55% relative to continuous treatment (Figures 5B and

5C). In contrast, under AT2, the tumor was predicted to expand

rapidly, even at a higher cumulative dose (65% relative to contin-

uous therapy [CT]). In addition, for both protocols, themodel pre-

dicted considerable variability in the possible trajectories over

time, indicating that even small differences in the values of tumor

parameters or treatment timing could potentially result in distinct

outcomes (Figure 5B).

To test these predictions empirically, we attempted to repeat

these experiments in vitro but found that it was not possible to

culture cells for multiple treatment cycles in the same dish

without replating (data not shown). Thus, we moved to an in vivo

setting, which provided confirmatory evidence that adaptive

dose modulation (AT1) can greatly reduce drug use while inhibit-

ing tumor growth as well as continuous MTD treatment (Figures

5D and 5E). In contrast, dose skipping (AT2) also reduced cumu-

lative drug use, but resulted in poorer outcomes (Figures 5D and

5E), with three animals developing particularly rapid disease pro-

gression (Figure 5D, ‘‘responder’’ vs. ‘‘failure’’; for all individual

trajectories, see Figure S10; note: to simplify experiments, we

only used four dose levels for AT1: 0, 25, 50, and 100 mg/kg).

Curvature of the dose-response relationship explains
why dose modulation is better than skipping for
reducing cumulative dose
How can we explain the difference in performance between

adaptive dose modulation and skipping? To address this

question, we considered two fixed (non-adaptive) versions

of these protocols: (1) a flat dose reduction, where we treat

continuously at a fixed, lower dose, and (2) intermittent dose

skipping, where we reduce cumulative dose by skipping treat-

ment at fixed intervals. Using model 5, we simulated treatment

for 180 days and tested how the final tumor size changed as

we reduced the total amount of treatment administered (Fig-

ure 6A). Our results show that both approaches can be used

for small total dose reductions. However, when de-escalating

therapy by more than 30%, only a dose reduction approach

can continue to maintain tumor control, recapitulating the dif-

ference between AT1 and AT2 (Figure 6A).

Next, we investigated what causes this difference. One plau-

sible hypothesis was that skipping fails because the tumor grows

to higher densities during treatment breaks, whichmakes it more

resistant to the subsequent round of treatment. To test this, we

varied the number of breaks during treatment skipping and found

that it had little impact on the results (Figure 6A; see also Fig-

ure S11A). Subsequently, we leveraged the mechanistic nature

of our model to ask whether a specific aspect of the drug-

response dynamics was responsible. Carrying out a parameter

sensitivity analysis in which we systematically varied each

parameter in turn, we found that the difference between the

two strategies was primarily driven by the parameters

a;n; and k50, which determine the treatment-induced damage

probability at a given dose level, aðDÞ; as well as by the tumor

growth rate (r; Figure S11B).

Thus, we can explain both by how much and by what means

(dose reduction or skipping) we can de-escalate treatment. Fig-

ure 6B illustrates the rate of DNA damage in the simulations that

we inflict on the tumor as a function of dose. During dose reduc-

tion, the mean rate of damage directly follows the relationship,

aðDÞ, we derived in the section Analysis of the response at

different doses reveals positive cooperativity in drug action (or-

ange curve), whereas during skipping, the average rate of dam-

age is linearly proportional to the time spent underMTD treatment

(black line). When we reduce the dose by 10%, then both proto-

cols damage on average more than 50% of dividing cells, so

that the tumor shrinks and is, thus, controlled (Figure 6B). Howev-

er, due to the concave curvature of the dose-response relation-

ship, aðDÞ, when we seek the greater dose reduction of 50%,

only continuous treatment can maintain sufficient cell kill,

whereas the average cell kill under skipping is insufficient to

stop tumor growth (Figure 6B; for an example of the dynamics

in caseof a convexaðDÞ, see FiguresS11CandS11D). In fact, us-

ing this argument, we can derive analytic expressions for the

de-escalateddose level up towhicheither approachcanbeused:

D1 =
k50

n+DMax
n

2 a DMax
n DMax
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Figure 5. Mathematicalmodeling and in vivo experiments suggest that adaptive treatment strategies can be used to de-escalate therapy but

that doses should be modulated rather than skipped

(A) Two candidate AT algorithms, modified from Enriquez-Navas et al.,34 used as starting points for the development of a PARPi-specific strategy. Both adjust

treatment based on the tumor’s growth rate but differ in how these adjustments are made: AT1 modulates the dose, whereas AT2 will completely skip treatment.

(B) Simulations using model 5, showing that adaptive dose modulation (AT1) can control tumor growth while using less drug than CT but that under adaptive

skipping (AT2) the tumor can escape. Parameters: n0 = 5%; fA = 0% ; AT1: l = 2; t = 0;Dð0Þ = 100 m M; AT2: D+ = 100 mM; t = 0;Dð0Þ = 100 m M. Treatment

interval: 3 days. Solid lines and drug levels (pink bars) show the model predictions based on the maximum likelihood estimate, and bands indicate 95% CIs

derived via parametric bootstrapping (250 bootstrap replicates).

(C) Mean drug dose administered per treatment interval in the simulations in (B). The bars show the maximum likelihood predictions. The box-and-whisker plots

and gray dots illustrate the distribution across 250 bootstrap estimates. The box, center line, andwhiskers denote the inter-quartile range,median, and 1.53 inter-

quartile range, respectively (dots show a random subset of 125 individual bootstrap replicates).

(D) Representative examples of mice treated with the different strategies from (B), illustrating how treatment is dynamically adjusted (see Figure S10 for all in-

dividual trajectories).

(E) Average weekly tumor growth data across all four cohorts, confirming the model predictions that adaptive modulation (AT1) can achieve tumor control

comparable with CT (n = 6 animals per group). Large points and error bars denote the mean size and 95% confidence intervals for each treatment arm,

respectively (note: one animal in the CT group was found dead after 3 weeks and thus excluded from these calculations). Small points indicate individual

measurements. All measurements were taken at the same time, but to enhance readability, data are displayed with a small offset along the x axis. Inset: mean

olaparib dose administered per treatment interval, showing that AT can significantly reduce cumulative drug use (two-sided t test statistics: *p < 0.05, **p < 0.01).

The box, center line, and whiskers denote the inter-quartile range, median, and 1.53 inter-quartile range, respectively. Bars mark the mean across the treat-

ment group.
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and for the theoretical minimum to which the dose could be low-

ered so that the tumor would still shrink (assuming continuous

treatment and a concave relationship):

D2 =

�
kn50

2a � 1

�1
n

: (Equation 1)

The so-calculated values for D1 and D2 agree well with our nu-

merical simulations (Figure 6A).

AT enables personalized dose reduction
Currently, the treatment plan for PARPi maintenance is adjusted

only in case of toxicity or progression. However, our results

C

A B

Figure 6. The shape of the dose-response relationship determines by howmuch and bywhatmeans (modulation vs. skipping) treatment can

be de-escalated, which supports the use of adaptive dose modulation to tailor treatment de-escalation to the patient-specific dose-

response curve

Solid lines and drug levels (pink bars) show themodel predictions based on themaximum likelihood estimate, and bands indicate 95%CIs derived via parametric

bootstrapping (250 bootstrap replicates).

(A) Systematic comparison of reducing cumulative dose either through continuous treatment at a reduced dose (dose reduction) or by skipping doses (spread

across 5–25 breaks across the treatment period). For small reductions, either strategy is possible, but for further de-escalation, only dose reduction can still

control the tumor, as exemplified in the simulations (right). Parameters: n0 = 5%; fA = 0%.

(B) Comparison of the rate of DNA damage induced when de-escalating treatment by either 10% or 50% in the simulations in (A). As long as the damage rate

exceeds 0.5, the tumor growth is inhibited. Due to the concave curvature of the dose-response relationship, aðDÞ (orange line), which we inferred in the section

Analysis of the response at different doses reveals positive cooperativity in drug action, the damage induced when reducing the dose but treating continuously

(green circle) is always higher than that when skipping doses (pink square). Thus, dose reduction can de-escalate therapy more effectively than dose skipping.

(C) Treatment dynamics are very sensitive to the tumor’s dose-response relationship, which motivates personalizing treatment de-escalation via AT. While

continuous treatment at MTD can control all three cases, it misses opportunities for therapy de-escalation in more sensitive tumors. However, a population-wide

dose reduction risks under-treating less-sensitive patients. By adjusting to the tumor’s response dynamics, an adaptive dose modulation approach can help to

better tailor the amount of treatment required for a specific patient. For the base case, parameter fits were taken from OVCAR3 cells (Figure S8C). AT1 pa-

rameters: t = 0: Treatment interval: 30 days.
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indicate that the amount of drug required to control a patient’s

tumor depends strongly on the characteristics of that tumor’s

dose-response relationship and, thus, can vary notably between

patients. To illustrate this point, we simulated three ‘‘virtual pa-

tients’’ that are identical except for some small heterogeneity

in a (Figure 6C). Continuous treatment at the maximum drug

concentration achievable in human plasma (22 mM) can control

the tumor in all three cases but over-treats two of them

(D2 < 22 mM for patients 1 and 2). At the same time, this hetero-

geneity also means that de-escalating dose using a ‘‘one-size-

fits-all’’ strategy across the whole cohort is challenging: for

example, when treated at a 17% lower dose (the initial reduction

foreseen in case of toxicity), the tumor control in patients 1 and 3

ismuch poorer (Figure 6C). These simulations show that, in order

to avoid potentially under-treating less-sensitive tumors, we are

forced to treat at the MTD.

We propose that AT provides a tool to better tailor the amount

of drug given to an individual patient by integrating the tumor’s

dynamics into the decision-making process. To illustrate this

point, we treated the same three patients with a modified form

of AT1 that uses the dose levels already available in the clinic

to manage toxicity (MTD, 83%MTD, and 67%MTD) and that re-

visits the treatment plan on a clinically feasible, monthly time-

scale (30 days). By switching to a higher dose when the tumor

grows and decreasing it otherwise, this strategy can achieve

final tumor sizes that are comparable to that of MTD CT, while

seizing the opportunities for dose reductions in the more drug-

sensitive patients (patients 1 and 2, Figure 6C).

DISCUSSION

PARPis are promising for revolutionizing ovarian cancer care,

but toxicity, financial costs, and drug resistance mean that not

all patients benefit equally, and often improvements are only

temporary. Recent results in androgen-deprivation treatment

of prostate cancer have shown that, by adapting treatment to

the treatment response of the individual patient, it may be

possible to delay progression and reduce drug use.41,42

Although the rationale behind AT is to delay resistance by

leveraging competition between sensitive and resistant tumor

populations, in this study we focused solely on the dynamics

of sensitive cells. We did so for two reasons: first, this is the

dominant population at the start of treatment, and any AT proto-

col will need to ensure that we can control this population before

we can evaluate potential benefits in inhibiting resistance. Sec-

ond, by integrating the tumor’s response dynamics into the de-

cision-making process, AT also allows patient-specific treat-

ment tailoring that better reflects the amount of drug required

to control a particular patient’s disease. As such, our study con-

tributes to the development of AT by exploring a new clinical

setting (olaparib maintenance therapy of ovarian cancer) and

by investigating it explicitly as a tool to reduce drug use to miti-

gate pharmacological and financial toxicity.

We proceeded by developing a mathematical model with

which we could characterize the processes driving the treatment

response dynamics over time andwith which we could, relatively

cheaply, test different plausible adaptive algorithms. To the best

of our knowledge, our model is the first mechanistic mathemat-

ical model of PARPi treatment in the literature, and it was

systematically derived from, and validated with, in vitro experi-

mental data. Using our model, we asked whether olaparib main-

tenance should be adapted by judiciously skipping doses or by

dynamically modulating the dose level? We found, first in simu-

lations and subsequently in in vivo experiments, that there can be

a considerable difference in outcome between both approaches

and that the modulation-based approach should be preferred.

Leveraging the mechanistic nature of our mathematical model,

we showed that the reason for this difference is the shape of

the relationship between dose and the drug effect that we had

deduced from the in vitro experiments. The concave nature of

this relationship implies that the intermediate doses adminis-

tered during dose modulation suppress tumor growth, on

average, more than the more intense, but also shorter, periods

of treatment at MTD during dose skipping. Our conclusions are

consistent with the wide therapeutic window of olaparib

observed clinically8,17,20 and prior observations about the supe-

riority of a modulation-based approach.31,34 In these studies, the

better performance of modulation-based AT was linked to its

impact on the spatial architecture of the tumor31 and remodeling

of the environment.34 We have shown that the pharmacologic

response must also be considered. Moreover, our argument is,

in principle, generalizable to other measures of ‘‘response’’

(e.g., changes in spatial architecture) andmay provide a concep-

tual framework with which to integrate the effects of AT on

different time and spatial scales to guide decisions on the

most effective strategy. We encourage further study of so-called

‘‘second-order’’ treatment effects caused by non-linear dose-

response relationships.50

Every cancer has a unique evolutionary history and, as a result,

differs in its sensitivity to treatment. However, while inter-patient

heterogeneity is a well-accepted fact, currently treatment is

adjusted only in the case of toxicity or progression. Using our

model and clinically feasible timescales and doses, we provided

a proof-of-principle that by reducing dose when we see the tu-

mor respond, it is possible to de-escalate therapy to better

reflect the level that is required to control a patient’s disease.

At the same time, our work uncovered several challenges that

should be addressed in the next step of protocol development.

First, there was a delay in the drug response, which meant that

even when treated continuously at a relatively high dose of

100 m M (the physiological dose is around 20 m M17) it would

take around 7 days before the population would begin to recede.

Through our integrated modeling approach, we systematically

evaluated different plausible mechanistic explanations for this

delay, which suggested that despite acquiring PARPi-induced

DNA damage, cells underwent 1–2 further rounds of cell division

before cell cycle arrest was induced. Delays in olaparib response

in vitro have also been reported by others, reflected, for example,

in assessments of olaparib efficacy after 5–10 days rather than

themore conventional 3 days.51,52 Our study offers a quantitative

and mechanistic understanding of olaparib response dynamics.

It underscores the importance of judiciously selecting the time

point for evaluating olaparib efficacy and provides a toolkit to

facilitate this decision. Future work should test whether this

time point changes over multiple on/off cycles and how to inte-

grate this knowledge into an adaptive protocol.

Second, in Figure 5, we observed considerable variation in

the predicted treatment dynamics under AT, indicating that
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the frequency at which decisions are made and the specific

thresholds used to drive decision-making need to be further

optimized. The challenge in doing so is that these parameters

need to be tailored to the timescale of the tumor response dy-

namics, i.e., ideally, they in turn should also be ‘‘adapted.’’ As

a first step, it might be possible to use mathematical models

and longitudinal burden data to identify those patients for

whom treatment can be de-escalated, as, for example, demon-

strated by the CA-125-based KELIM statistics53 or the PSI

metric for radiation.54,55 Building on this idea, we have recently

proposed a way in which the parameters of the skipping-based

algorithm by Zhang et al.42 could be personalized by using

mathematical modeling and deep learning, using data collected

during an initial set of AT ‘‘probing cycles.’’56 It would be inter-

esting to investigate how this concept could be extended to

modulation-based strategies and how to quantify and improve

the robustness of AT more generally.37,57

Finally, we observed that more densely seeded cells ap-

peared to experience protection from treatment. In support

of this observation, others58 have found that spheroid cultures

are more resilient to olaparib treatment than two-dimensional

(2D) cell culture, and we hypothesize that this is due to fewer

opportunities for cell division in denser cultures. Although in

the maintenance setting the tumor burden is small, which is

why we have generally considered lower density cultures/

populations in this paper, cancer cells could still find them-

selves in locally dense environments due to normal tissue

constraints. If confirmed in patients, density-dependent drug

sensitivity might therefore limit the maximum tumor burden

we could maintain and thereby limit the competitive suppres-

sion we can exert on any resistant cells. More generally, our

results about the limitations as to when and how we can

reduce treatment send a new and important cautionary note:

in most AT studies so far, we have had, or have assumed,

full control over the sensitive cells,33,59,60 but this may not al-

ways be the case.

There are a number of limitations to our work. First, although

we have discussed how to reduce drug use, this does not

necessarily mitigate toxicity because side effects may also still

occur at lower doses. To address this, one could couple our

mathematical model of the tumor pharmacodynamics with

models of normal tissue response (e.g., Gall et al.61 and Friberg

et al.62). Similarly, our assumption that the dose remains con-

stant between treatment changes should be replaced with

more accurate models of olaparib pharmacokinetics.63 Sec-

ond, while we did partially validate our results in vivo, most of

our conclusions are based on 2D in vitro experiments. There

are limitations to such an experimental model: (1) growth me-

dium changes to vary drug dose can confound measurements

by mechanically disturbing the cells or due to incomplete drug

wash-out, (2) cell-cell interactions and nutrient dynamics are

limited compared with three-dimensional (3D) experiments,

and (3) key elements of the tumor microenvironment are

missing, such as endothelial or immune cells. Although we pro-

vided initial in vivo validation to begin addressing these limita-

tions, we note that our immunodeficient and subcutaneous an-

imal model is still a highly simplified representation of the real

tumor environment during PARPi maintenance therapy. Future

research should extend our work to more realistic systems,

such as orthotopic intraperitoneal mouse models, treated

through oral gavage rather than intraperitoneal injection. In

addition, such work should study how the treatment dynamics

might be modified by the chemotherapy that precedes PARPi

maintenance.

Finally, it will be key to extend our work to include drug-resis-

tant cells and determine whether or not our proposed adaptive

regimen can delay progression. It is intriguing that only about

half of the animals performed poorly under dose skipping in

the in vivo experiments. One explanation could be that these tu-

mors were intrinsically less sensitive, so the cumulative dose

administered was insufficient to control tumor growth (akin to

the scenario illustrated in Figure 6B). Alternatively, it is plausible

that resistance developed during therapy. Future research

should test these hypotheses by performing ex vivo drug sensi-

tivity testing and should measure the ecological interactions be-

tween sensitive and resistant cells.64

To summarize, we have presented a systematic analysis of the

treatment dynamics during PARPi therapy in ovarian cancer. By

closely integrating experiments and mathematical modeling, we

were able derive insights into the underlying biology and build

confidence in our final model. We have intentionally reported

the iterative nature of this process to emphasize that the strength

of modeling is not only to rule-in hypotheses (‘‘good fits’’) but

also to rule them out (‘‘bad fits’’). Our work demonstrates how

AT might be used as a tool to reduce drug use and mitigate

toxicity in olaparib maintenance therapy and provides the

groundwork for future research on delaying resistance. With

the growing use of PARPis in other cancers, such as prostate

and breast cancer, we believe that our results may be of interest

more broadly, and we encourage further exploration of adaptive

scheduling as a means for patient-specific toxicity and resis-

tance management.
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d The confluence vs. time data from the time-lapsemicroscopy experiments has been deposited at Zenodo (DOI: https://zenodo.

org/doi/10.5281/zenodo.10718199). Raw microscopy images will be shared by the lead contact upon request.

d The longitudinal volume data, as well as the treatment information for each individual animal in the in vivo experiment, have
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d All original code has been deposited at Zenodo and is publicly available as of the date of publication (DOI: https://zenodo.org/

doi/10.5281/zenodo.10718199).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
OVCAR3 andOVCAR4 cells were acquired fromAmerican Type Culture Collection (ATCC,Manassas, VA, 2007 to 2010) and cultured

in Roswell Park Memorial Institute (RPMI) medium (ThermoFisher) supplemented with 10% Fetal Bovine Serum and 1% penicillin/

streptomycin. Every 3-4 weeks the medium was additionally supplemented with MycoZap (Lonza) to prevent mycoplasma contam-

ination. At all times cells were kept at 37C and in a 5% CO2 atmosphere.
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In vivo experiments
We used 6–8 weeks old, female NSG mice (Charles River Laboratories). All animals were maintained in pathogen-free rooms in the

Moffitt Cancer Center and Research Institute (Tampa, FL) Vivarium. Animal weights were measured and recorded twice weekly, and

the overall health of each animal was noted to ensure timely end points within the experiment. Animals were humanely killed upon

progression (tumor size >1500mm3). All experimental procedures were approved by the Institutional Animal Care andUseCommittee

of the H. Lee Moffitt Cancer Center and University of South Florida.

METHOD DETAILS

Drug response dynamics under continuous treatment
To characterize how the tumor cells grew in the absence of treatment and when exposed continuously to different drug con-

centrations, we seeded cells in a 48 well flat-bottom plate (Costar Corning) and left them to attach overnight in 200 m L culture

medium. Subsequently, we aspirated the medium and replaced it with treated growth medium, containing 0, 1, 10, 25, 50 or

100 m M Olaparib (AstraZeneca), and monitored their growth for 9 days. We carried out two versions of this assay: i) a ‘‘low-

density’’ version in which we seeded cells at 5,000 cells per well, and ii) a ‘‘high-density’’ version in which each well started

with 60,000 cells. In each case, 3 replicates were performed for each experimental condition. During the experiment the me-

dium was replaced every 3 days with fresh, drug-containing medium (or drug-free medium in the case of the control wells)

to maintain constant drug concentrations. We also tested changing the medium daily but found that this did not change the

growth dynamics (Figure S1).

To prepare the treatedmedium, we dissolved Olaparib (AstraZeneca) in 1mL Dimethyl sulfoxide (DMSO), filtered the solution using

a 0.22nm syringe filter, and dissolved it in our regular culture medium to obtain a stock solution containing 100 m M of drug (DMSO

concentration in media: 0.18%). Next, we diluted this maximum tolerated dose (MTD) stock with normal culture medium to obtain

batches with 1-50 m M Olaparib. We verified that the DMSO did not adversely impact the cells’ growth dynamics (data not shown).

Drug response dynamics upon drug withdrawal
To test how the cells responded to treatment withdrawal following different lengths of drug exposure, we seeded 10,000 cells per

well in a 48 well flat-bottom plate (Costar Corning) and left them to attach overnight in untreated culture medium. Next, we aspi-

rated themedium and replaced it with treatedmedium for 1, 2, 4, 7, or 21 days before wewithdrew treatment again by replacing the

mediumwith regular culturemedium. Tomaintain constant drug and nutrient concentrations we replaced themedium every 3 days

with fresh drug-containing medium (or drug-free medium after the drug had been withdrawn). We repeated this experiment twice:

once where cells were treated at 50 mM and once where cells were treated at 100 mMOlaparib (treated medium was prepared as

specified in Drug response dynamics under continuous treatment). In each case, we carried out 3 replicates for each experimental

condition. The experiment lasted a total of 21 days.

Real-time imaging and data processing
Cell growth was monitored once per day using an IncuCyte ZOOM S2 time-lapse microscopy system (Essen BioScience; see Fig-

ure 2A for examples). Confluence was measured based on phase-contrast, white light images, which were analyzed using the

IncuCyte ZOOM software (10x magnification; confluence estimated based on 2 images per well). On two occasions we accidentally

removed large numbers of cells when aspirating out medium during medium changes, and thus we did not include measurements

from these wells in our analysis. In addition, when measuring the treatment response of OVCAR4 cells under 100 m M Olaparib for

21 days (protocol per drug response dynamics upon drugwithdrawal), we found that after 13-14 days the imaging systemwas greatly

overestimating confluence due to the build-up of debris from dead cells on the plate. To avoid this from confounding our results, we

decided not to include the data from days 15-21 in our analyses. The raw and curated data are available on our GitHub repository, as

is a Jupyter Notebook detailing every data curation/processing step (jnb_dataProcessing.ipynb).

In vivo experiments
Oneweek before inoculation with tumor cells (53 106 OVCAR3 cells, subcutaneously), animals were assigned to one of the following

four treatment arms (Figure S2): 1: Control group, treated with vehicle (DMSO) intraperitoneally. 2: MTD group, treated with PARPi

(Olaparib), 100 mg/kg intraperitoneally, three times per week. 3: AT1 group, which was treated with PARPi (Olaparib) by the AT1 al-

gorithm (dose modulation; see below). 4: AT2 group, which was treated with PARPi (Olaparib) by the AT2 algorithm (dose skipping;

see below). Tumor growth was monitored every other day and tumor size was measured by calipers three times a week (Monday,

Wednesday, Friday). These measurements were used to inform the dose choices under AT1 and AT2 at these times. Tumor volume

was calculated using the following formula: volume = p (short diameter)2 3 (long diameter)/6. When the tumor volume reached

200 mm3, treatment was started. Animal weights were measured and recorded twice weekly, and the overall health of each animal

was noted to ensure timely end points within the experiment. Animals were humanely killed upon progression (tumor size

>1500mm3), and the experiment was ended when half of the animals in a treatment arm had progressed.

Adaptive therapy with dose modulation (AT1)

Given the observed delay in treatment response, all animals were initially treated every other day for at least 5 days before dosemod-

ulation was started (100mg/kg). As soon as the tumor stopped growing, the subsequent treatment dose was reduced to 50% of the
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original dose. When the tumor started growing again (any measurable growth from the previous time point), we applied the original

dose again and if the tumor stayed under control we reduced the dose by another 50% (Figure S2). To account for errors in the caliper

measurements we allowed for a 10% lee-way in the decision-making.

Adaptive therapy with treatment skipping (AT2)

Treatment started at MTD (100 mg/kg) for at least 5 days, and subsequently continued until the tumor stopped growing (no measur-

able growth from the previous time point). As soon as tumor size growth stopped or reduced, we skipped the next treatment. Treat-

ment started again as soon as the tumor started growing asmeasured by caliper (Figure S2). To account for errors in the caliper mea-

surements we allowed for a 10% lee-way in the decision-making.

Mathematical model development
The aim of ourmathematical model was to describe and predict the tumor population size over time in response to different treatment

schedules (as measured by the percentage of the well covered by cells, which we will refer to as confluence). Given the continuous

nature of the confluence measurements, we chose to model the population dynamics using ordinary differential equations (ODEs),

such that NðtÞ (in % confluence) represents the confluence at time t (in days). We developed our model in three consecutive steps

(Figure 1B): Firstly, we identified terms to describe untreated growth (Figure 2). Next, we characterized the dynamics in response to

continuous treatment at 100 m M Olaparib (Figure 3), and lastly, we extended this model to cover the response at several different

drug doses: 10, 50 and 100 m M (Figure 4). At each step, we compared different plausible models and picked one to carry forward

to the next step (see Tables 1 and S1 for an overview of model parameters and fitting steps). This approach not only increased con-

fidence in our final model choice, but also was an important step to help elucidate underlying biology by ruling out hypotheses that

were inconsistent with the data.

Growth models

We tested 5 different, commonly-used models of untreated tumor growth representative of different assumptions about the strength

of density-dependence (see also Figures 2B and S3): i) Exponential growth, which assumes no change in per-capita growth rate with

increasing density (dNdt = rN), ii) von Bertalanffy growth,65 which assumes cells grow as a sphere with only the cells on the surface

dividing so that the growth rate scales approximately with the sphere’s surface area (dNdt = rN
2
3), iii) Logistic growth, which assumes

a linear decrease in per-capita growth rate with density (dNdt = r
�
1 � N

K

�
N), iv) Gompertzian growth,66 which assumes an exponentially

decreasing relationship with density (dNdt = r log
�
K
N

�
N), and v) Generalized Logistic growth, which assumes the per-capita growth rate

decays according to a power-law (dNdt = r
�
1 � �

N
K

�n�
N). Throughout, r (in day-1) denotes the instantaneous growth rate, K (in %

confluence) is the population’s carrying capacity, and n is a dimensionless shape parameter.

Treatment models

We assumed that the Olaparib concentration, DðtÞ (in m M), was homogeneous within a well and due to the regular medium replen-

ishment could assumed to be piece-wise constant over time.

To investigate and characterize the treatment response, we examined 4 treatment models with different assumptions about the

conditions required for a cell to be forced into apoptosis (note that for each model, we assume generalized logistic growth, as

this was the model selected from the 5 growth models we considered). Since it takes time for cells to undergo apoptosis and detach

from the plate, we divided the population into an unaffected, proliferating compartment, PðtÞ, and an affected, arrested compart-

ment, AðtÞ:

d Model 1: During mitosis, cells in the P compartment have a probability aðDÞ (dimensionless) to acquire PARPi-induced

DNA damage, which is a function of the PARPi concentration, DðtÞ. If a cell is damaged, then division is immediately aborted,

the cell becomes arrested and undergoes apoptosis at rate d (in day-1), unless it is able to repair itself, which occurs at rate b (in

day-1):

dP

dt
= r

�
1 �

�
P+A

K

�n�
ð1 � 2aðDÞÞ P+ bA; (Equation 2)

dA

dt
= aðDÞr

�
1 �

�
P+A

K

�n�
P � bA � dA (Equation 3)

NðtÞ = PðtÞ+AðtÞ (Equation 4)

where for simplicity we assumed in models 1-4 that the relationship between drug concentration and damage probability was linear:

aðDÞ = a
DðtÞ
DMax

: (Equation 5)
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Here, DMax = 100m M is the maximum administered drug concentration, introduced for scaling purposes, and a is the damage

probability (dimensionless) when treated at DMax.

To represent the fact that cells are most sensitive to PARPi-induced damage when they are undergoing mitosis, we assumed in

Equations 2 and 3 that the rate at which cells are arrested by treatment is proportional to the population’s growth rate. The factor

of 2 in Equation 2 accounts for the fact that due to the arrested division no daughter cell will be produced.

d Model 2: This model assumed that a cell needs to acquire multiple PARPi-induced lesions before arrest is induced, so that the

population is composed ofm different proliferating sub-populations with increasing levels of DNA damage, denoted byPiðtÞ (for
i = 0;.;m; in units of % confluence for all compartments):

dP0

dt
= r0

�
1 �

�
N

K

�n�
ð1 � 2a0ðDÞÞ P0 + b1 P1; (Equation 6)

dP1

dt
= 2a0ðDÞr0

�
1 �

�
N

K

�n�
P0 + r1

�
1 �

�
N

K

�n�
ð1 � 2a1ðDÞÞ P1 � b1P1 + b2P2; (Equation 7)

dPm

dt
= 2am� 1ðDÞrm� 1

�
1 �

�
N

K

�n�
Pm� 1 + rm

�
1 �

�
N

K

�n�
ð1 � 2amðDÞÞ Pm � bmPm + bA; (Equation 8)

dA

dt
= amðDÞrm

�
1 �

�
N

K

�n�
Pm � bA � dA; (Equation 9)

NðtÞ =
Xm
i = 0

PiðtÞ+AðtÞ; (Equation 10)

where ri, aiðDÞ = ai
DðtÞ
DMax

, and bi are the growth rate, concentration-dependent probability of drug-induced damage, and repair rate for

sub-populationPi;i = 1;:::;m, respectively. For theanalysespresented in themain text of thepaper,weassumed thatDNAdamagedid

not change the characteristics of the cell untilm rounds of damage had been acquired (i.e. ri = r,ai = a , and bi = b for all i = 0;.;m).

Additional analyses where we allowed ri and ai to vary are shown in Figures S3–S6.

d Model 3: While in model 2 continued drug exposure was required for a cell to keep accumulating DNA damage, this model

assumed that the presence of drug was only necessary for induction of an initial DNA lesion. Damaged cells, PDðtÞ (in% conflu-

ence), might then continue to divide but would become arrested at a drug-independent rate g (in day-1):

dP

dt
= r

�
1 �

�
N

K

�n�
ð1 � 2aðDÞÞ P+ bPD; (Equation 11)

dPD

dt
= 2aðDÞr

�
1 �

�
N

K

�n�
P + r

�
1 �

�
N

K

�n�
PD � gPD � bPD + bA; (Equation 12)

dA

dt
= g PD � bA � dA (Equation 13)

NðtÞ = PðtÞ+PDðtÞ+AðtÞ; (Equation 14)

where again we assumed a linear dose-effect relationship (aðDÞ given by Equation 5.
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d Model 4:This model was a simplified version of model 3, derived by assuming that repair was negligible. In addition, this model

assumed that the extra divisions a damaged cell may undergo before arrest could be summarized in a single step, so that a cell

that was damaged by drug would on average give rise to 4 (dimensionless) arrested daughter cells:

dP

dt
= r

�
1 �

�
P+A

K

�n�
ð1 � 2aðDÞÞ P; (Equation 15)

dA

dt
= ð1 + 4ÞaðDÞr

�
1 �

�
P+A

K

�n�
P � dA (Equation 16)

NðtÞ = PðtÞ+AðtÞ (Equation 17)

Like models 1-3 this model assumed that aðDÞ was linear (Equation 5).

Dose-response model

In the final step, we explored the relationship between dose and treatment effect. We extended model 4 by assuming that the drug

effect was non-linear, so that the damage probability in Equations 15 and 16 was given by

aðDÞ = a
DðtÞn

kn50+DðtÞn
; (Equation 18)

where k50 (in m M) was the drug concentration at which half the maximum possible effect was achieved and n was a non-dimen-

sional shape parameter. The result is the final model we carried forward for prediction-making, referred to as model 5 (Equations 15,

16, 17, and 18).

Model calibration and validation
We calibrated each model by using a Maximum Likelihood approach in which we minimized the root mean squared error (RMSE)

between the model-predicted confluence, NðtÞ, and the experimentally observed data. Specifically, we fitted to the average of the

measured confluence across the three replicates per time point. Following the three steps outlined in Figure 1B, we used data

from three sets of experimental conditions to sequentially infer the parameters related to growth (r;K, and n), treatment (a;b;d;g,

and 4), and dose-response components of the model (n and k50), respectively (Table S1). When transitioning from one step to the

next all parameters related to the prior component(s) were kept fixed.When inferring n and k50, we fitted to data from three conditions

simultaneously (continuous treatment at 10, 50, and 100 m M) by minimizing the combined RMSE across the three conditions. For

initial conditions, we assumed that all cells were initially in the proliferating compartment so that Pð0Þ (or P0ð0Þ for model 2) was equal

to the observed confluence at time 0, and all other compartments were set to 0. Initial conditions were not allowed to vary during

fitting (Table S1).

To test the ability of our models to predict the treatment dynamics under unseen experimental conditions, we performed three sets

of validation experiments (Figure 1B). In these, we set the initial conditions in the ODE model equal to those observed in vitro (again

assuming all cells to be in the P compartment), and compared the dynamics predicted by simulating the model forward with that

observed experimentally. Notably, all parameters were kept fixed in these experiments.

Uncertainty quantification
Parametric bootstrapping was used to estimate the uncertainty in our parameter estimates and model predictions. To do so, we

used the fitted model to simulate 250 synthetic experimental replicates, ðcNi ð0Þ;cNi ð1Þ;.Þ for i = 1;.;250, by sampling residuals

from the error model as follows: cNi ðtÞ = NðtÞ+ ε; where ε � N ð0;sεÞ is the residual and sε is the residual variance of the Maximum

Likelihood model fit, sε = SSR
nfree

. Here, SSR is the sum of squared residuals of the Maximum Likelihood fit and nfree is the number of

free (fitted) parameters. Next, we fitted the model to each of the synthetic replicates using the same protocol as when fitting the

real data. Unless otherwise stated, each of these optimization runs was started from a different random guess within the param-

eter space. This yielded a distribution of bootstrap estimates for the model parameters and model predictions, from which we

derived the presented confidence intervals. To propagate the uncertainty when proceeding from estimating the growth (r; K,

and n), to the treatment (a;b;d;g, and 4), and subsequently the dose-response parameters (n and k50), we applied the following

protocol: for each bootstrap replicate i, we set the fixed parameters to the values obtained in ith bootstrap during the step in which

we estimated these parameters. For example, the value of r in the 1st bootstrap for models 1-5 was taken from the 1st bootstrap

when estimating r from fitting to the growth data in Step 1 of the model development process. The reason why we chose a para-

metric method rather than a more assumption-agnostic, non-parametric method was that we only had three replicates available

per experimental condition. We also tested uncertainty estimation using the delta-method,67 which yielded comparable results

(Figure S7).
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Numerical methods
All data analyses,model fitting and simulations were carried out in Python 3.8. Specifically, we used the DOP853 explicit Runge-Kutta

method in scipy 1.6.2 to solve the ODEs, and the lmfit package68 (version 1.0.2) and the Levenberg-Marquardt algorithm imple-

mented in the least_squares method in scipy to carry out model fitting. Visualizations were produced with Pandas 1.2.4, Matplotlib

3.5.2, and Seaborn 0.11.1. All code is available at https://github.com/MathOnco/PARPi_Model.
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Figure S1. Comparison of the treatment dynamics of OVCAR3 cells under daily and every 3d replenishment of the media starting 
from low or high seeding density (top and bottom row, respectively). The similarity in the dynamics suggests that the 
decay/metabolic breakdown of Olaparib over 3d is relatively small, so that our assumption of constant drug exposure is justified. 
Error bars give 95% confidence intervals. Note: the discrepancy for D=100uM in the high density seeding conditions arose 
because the cells formed sheets that started to peel off and were accidentally aspirated when switching out the media. 



 

 
Figure S2. Treatment schema for the in vivo experiments. Note: when assessing tumor growth during adaptive therapy we 
allowed for a ±10% lee-way to account for caliper error. 
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Figure S3. Growth model analysis for the OVCAR4 cells and details of the parameter estimates. In b) & c) points and error bars 
denote mean and 95% CIs of observed confluence (n=3 independent replicates). Solid lines show the model predictions based on 
the maximum likelihood estimate, and bands indicate 95% CIs from parametric bootstrapping (250 bootstrap replicates). In c), 
d) & e) the box, center line, and whiskers of the box-and-whisker plots denote the inter-quartile range, median, and 1.5x inter-
quartile range, respectively. White dots mark the maximum likelihood estimates and predictions. a) Representative microscopy 
images based on which we assessed the growth and treatment dynamics over time. b) Results of fitting the 5 growth models to 
untreated OVCAR4 growth data from cells seeded at low density (Exp: exponential; vBfy: von Bertalanffy; Gomp: Gompertz; Log: 
Logistic; GLog: Generalized Logistic; AIC: Akaike Information Criterion). In this case the Log model achieved the lowest AIC score. 
That being said, also the GLog model performed well (𝛥𝐴𝐼𝐶 = 2), recovering the same linear density-dependence relationship 
and effectively being reduced to the Log model (𝜈 = 1; see also Panel d)). c) Testing of the growth models by comparing their 
predictions for when cells are initially seeded at 60% confluence with the experimentally observed dynamics. As would be 
expected, the Log and GLog model are equally predictive. Because the GLog model performed very well across both cell lines, we 
carried it forward as the growth model in our analyses. d) Parameter estimates for each model for OVCAR3 cells. e) Parameter 
estimates for each model for OVCAR4 cells.  



 Figure S4. Additional plots documenting the systematic development of the treatment model for OVCAR3 cells. a) Model fits of 
Model 2 for different values of the parameter m, which represents the number of divisions a cell needs to undergo before it 
accumulates sufficient damage to be pushed into apoptosis. We found a value of 𝑚 = 2 gave the most parsimonious fit 
(simulations correspond to bar plot in Figure 3c in the main text). b) Model fits (left column) and model predictions (right 
columns) for the five different models examined in order to explain why there is a delay in the treatment response that cannot 
be accounted for by Model 1. This illustrates how Model 4 provides both the best fit, as well as the most accurate predictions of 
the testing data, implying that PARPi response involves both drug-dependent and independent steps. Points and error bars 
denote mean and 95% CIs of observed confluence (3 independent replicates per condition). Lines depict the model predictions 
based on the maximum likelihood estimate, and bands indicate 95% CIs calculated via parametric bootstrapping. Note that due 
to issues caused by the existence of local optima in the likelihood surface, we turned off randomization of the initial parameter 
guesses when fitting Model 2 with varying r. 
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Figure S5. Quantification of the descriptive and predictive power of the different plausible treatment models we explored for the 
OVCAR3 data, justifying our choice of Model 4 (see Supplementary Figure S4 for the corresponding time dynamics). The box, 
center line, and whiskers of the box-and-whisker plots in b) & c) denote the inter-quartile range, median, and 1.5x inter-quartile 
range, respectively. White dots indicate the maximum likelihood predictions or parameter estimates, respectively. a) 
Quantification of the goodness-of-fit of each model, showing that all can explain the response under continuous treatment 
similarly well (most differences in AIC smaller than 2). Thus, we based our choice of which treatment model to carry forward 
based on their ability to predict the response dynamics for intermittent treatment. b) Quantification of the prediction accuracy 
of each model on the intermittent treatment testing data (250 bootstrap replicates), demonstrating that Model 3 and, in 
particular, Model 4 are most consistent with the observed dynamics. As such, we concluded that PARPi response involves both 
drug-dependent and independent steps. c) Maximum likelihood parameter (white dots) and uncertainty estimates for Models 2-
4 based on 250 bootstrap estimates. 
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Figure S6. Repeating the treatment model analysis with the OVCAR4 cells confirmed that treatment response involved both 
drug-dependent and independent steps and corroborated the descriptive and predictive power of Model 4. The box, center line, 
and whiskers of the box-and-whisker plots in c) & d) denote the inter-quartile range, median, and 1.5x inter-quartile range, 
respectively. White dots indicate the maximum likelihood predictions or parameter estimates, respectively. a) Model fits (left 
column) and model predictions (right columns) for the four different models examined. For Model 2 we found that similar to the 
OVCAR3 data a value of 𝑚 = 2 yielded the best fits. Points and error bars denote mean and 95% CIs of observed confluence (3 
independent replicates per condition). Lines depict the model predictions based on the maximum likelihood estimate, and bands 
indicate 95% CIs calculated via parametric bootstrapping. Note that due to issues caused by the existence of local optima in the 
likelihood surface, we turned off randomization of the initial parameter guesses when fitting Model 4. b) Quantification of the 
goodness-of-fit of each model. For reference, we also show the AIC of Model 2 when allowing r or 𝛼 to vary as damage is 
accumulated. As for the OVCAR3 cells, this does not improve the fits. To allow for better comparison of Models 2-4, we cut off 
the y-axis at a value of 48. The AIC for Model 1 is 56.4. c) Quantification of the prediction accuracy of each model on the testing 
data (250 bootstrap estimates). For clarity, extremely poor predictions (negative r2 values) are not shown. d) Maximum 
likelihood parameter (white dots) and uncertainty estimates for Models 2-4 based on 250 bootstrap estimates. 
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Figure S7. Comparison of the confidence intervals for the growth models (see also Section 3.1.) generated by our bootstrapping 
method compared to those estimated using the delta-method. The width of the confidence intervals is similar, but while the 
delta-method produces symmetric bounds, the bootstrapping approach can account for the fact that confluence cannot exceed 
100% in the model. 
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model predictions based on the maximum likelihood estimate, and bands indicate 95% CIs calculated via parametric 
bootstrapping (250 bootstrap replicates). a) Model 5 assumes that 𝛼 varies with dose. To test the alternative hypothesis that 
one of the other treatment related parameters may vary with dose we fitted the model allowing either 𝜙 or 𝑑 do be dose-
specific instead (analogous to the protocol in Figure 4a). This plot compares the goodness-of-fit of the different models, showing 
clearly that a dose-specific 𝛼 provides the most consistent explanation of the data (smaller AIC is better). b) Example fits from 
the analysis in a) illustrating how changing 𝜙 or 𝑑 fails to produce a model that can describe the dynamics across different drug 
concentrations. Together, a) & b) corroborate our choice of a dose-specific 𝛼 in Model 5. c) Parameter estimates for the final 
model. The box, center line, and whiskers of the box-and-whisker plots denote the inter-quartile range, median, and 1.5x inter-
quartile range, respectively. White dots denote the maximum likelihood estimates. d) Model predictions for additional 
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Figure S9. Calibration and validation of Model 5 for OVCAR4. Throughout the figure, points and error bars denote mean and 95% 
CIs of observed confluence (3 independent replicates per condition). Lines in b-f depict the model predictions based on the 
maximum likelihood estimate, and bands indicate 95% CIs calculated via parametric bootstrapping (250 bootstrap replicates). 
Note that because of issues with local maxima in the likelihood surface we did not randomize the initial parameter estimates 
when fitting to the bootstrap samples but instead started fitting from the Maximum Likelihood estimates. a) Empirical dose-
response relationship derived from the data using the protocol from Figure 4a. Similar to OVCAR3, this shows a clear concave 
relationship, which cannot be described by the linear dose-response model assumed in Model 4 but is fitted well by the Hill 
equation assumed by Model 5. b) Fits of Model 5 to the calibration data for OVCAR4. c) Model predictions for the treatment 
dynamics under continuous treatment at different drug concentrations for cells seeded at a low density. d) Model predictions for 
continuous treatment at different drug concentrations for cells seeded at a high density. e) Model predictions for the response to 
increasing lengths of treatment at 50𝜇M followed by treatment withdrawal. f) Model predictions for the response to increasing 
lengths of treatment at 100𝜇M followed by treatment withdrawal. Together, Panels b)-f) demonstrate that Model 5 also 
provides highly accurate fits and predictions for the treatment response of OVCAR4 cells. g) Estimated model parameters (250 
bootstrap replicates). The box, center line, and whiskers of the box-and-whisker plots denote the inter-quartile range, median, 
and 1.5x inter-quartile range, respectively. White dots denote the maximum likelihood estimates. 
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Figure S10. Treatment trajectories of each individual mouse during the in vivo experiment. Purple bars indicate 
treatment, with the bar height reflecting the drug dose administered at the last injection (secondary y-axis). 



  

Figure S11. Investigations as to why treatment can be reduced more reliably via dose modulation rather than dose skipping. a) 
Simulations of all four treatment de-escalation schemes examined in Figure 6a. These data illustrate that larger dose reductions 
can only be achieved using dose modulation, since skipping loses control of tumor growth. This conclusion is independent of how 
treatment is skipped (number of breaks). Simulations were done with Model 5 parameterised with OVCAR3 data (Figure S8c), 
and an initial tumour size and composition of N(0) = 5% and A(0) = 0%, respectively.  b) Parameter sensitivity analysis showing 
that the parameters related to the dose-response part of Model 5 have the biggest impact on the difference in outcome 
between modulation and skipping. Starting from a 25% dose reduction which is near where skipping starts to fail (Figure 6a), we 
varied each parameter from 75% to 125% its value and computed the final tumour size after 180d of treatment. We did so under 
both continuous treatment at 75𝜇M (modulation) and intermittent treatment with 10 breaks (skipping). To quantify sensitivity, 
we then calculated the difference in tumour size between the two strategies and measured how this difference changes as the 
value of the parameter is varied. The sensitivity index shown here is the gradient of the difference with respect to that 
parameter. c) To illustrate that when the dose-response relationship is convex then a skipping-based approach can do better 
than a reduction-based approach, we modified the parameters in Model 5 to make 𝛼(𝐷) convex. Shown are 𝛼(𝐷) (orange line) 
as well as the mean damage rate when reducing the cumulative dose by 50% using either skipping (pink box; 10 breaks) or dose 
reduction (green point). Unless indicated, all other model parameters are those inferred for Model 5 for OVCAR3. d) Example 
simulations corresponding to the convex dose-response curve in c) illustrating how in this case skipping does better than dose 
reduction (parameters as in c)). 



 

Untreated Growth for 9d  
(Collected as part of  Experiment 2.2.) 

Sample size: n=10 data points

Continuous Treatment at 100uM for 21d  
(Collected as part of  Experiment 2.3.) 

Sample size: n=18 data points

Exponential Growth Model n/a n/a

Von Bertalanffy Growth Model n/a n/a

Logistic Growth Model n/a n/a

Gompertzian Growth Model n/a n/a

Generalised Logistic Growth 
Model n/a n/a

Model 1 n/a

Model 2 (equal params) n/a

Model 3 n/a
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Model 5

α, β, d

r

r

r, K

r, K

r, K, ν

r, K, ν

r, K, ν α, β, d

r, K, ν α, β, d, γ

r, K, ν α, d, ϕ

r, K, ν α, d, ϕ n, k50

Model

Calibration 
Data

Continuous Treatment at 100uM for 21d  
(Collected as part of  Experiment 2.3.; n=18) 

& Continuous Treatment at 10uM for 9d 
& Continuous Treatment at 50uM for 9d 
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Table S1. Overview of the model calibration procedure, indicating which data was used to calibrate each subset 
of parameters. As we proceeded from one part of the model to the next (moving left to right in the table), 
previously fitted parameters were kept fixed at their inferred values, and only the parameters listed for the 
current condition were allowed to vary. A plot of the full set of calibration data can be found in Figure 4d. 
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