
Mathematical Biosciences 374 (2024) 109240

A
0

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original research article

Phenotypic switching mechanisms determine the structure of cell migration
into extracellular matrix under the ‘go-or-grow’ hypothesis
Rebecca M. Crossley a,∗, Kevin J. Painter b, Tommaso Lorenzi c, Philip K. Maini a, Ruth E. Baker a

a Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom
b Dipartimento di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, 10129, Torino, Italy
c Department of Mathematical Sciences ‘‘G. L. Lagrange’’, Politecnico di Torino, 10129, Torino, Italy

A R T I C L E I N F O

Keywords:
Go-or-grow
Travelling wave
Mathematical modelling
Collective cell migration
Extracellular matrix
Phenotypic switching

A B S T R A C T

A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences
tumour progression and relapse. While current mathematical models often consider discrete phenotypic struc-
turing of the cell population, in-line with the ‘go-or-grow’ hypothesis (Hatzikirou et al., 2012; Stepien et al.,
2018), they regularly overlook the role that the environment may play in determining the cells’ phenotype
during migration. Comparing a previously studied volume-filling model for a homogeneous population of
generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to
a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that
can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic
switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum
model derived from its individual-based counterpart, insights into the influence of the ECM and the impact
of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot
switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing
different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests
that the structure of an invading cell population could be used to infer the underlying mechanisms governing
phenotypic switching.
1. Introduction

Phenotypic heterogeneity profoundly impacts tumour behaviour
and is a hallmark feature driving post-treatment recurrence [1]. Col-
lective cell migration, which can be crucial in understanding various
stages of tumour progression, often involves distinct cell phenotypes
with varying motility and proliferative capacities [2,3]. Mathemati-
cal approaches to studying these processes often use models formu-
lated as reaction–diffusion equations with phenotypic structuring [4,5],
where cells are assumed to undergo random, undirected movement and
grow logistically to some maximum capacity, similar to the classical
Fisher–KPP model [6,7].

It is often observed experimentally that individual cells are either
proliferative or motile [8], but not both [9], representing a trade-off
known as the ‘go-or-grow’ hypothesis [10,11]. Numerous mathemat-
ical models have been proposed to study the migration–proliferation
dichotomy of a phenotypically structured population of cells, such
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as those that simulate glioblastoma growth [12]. Models of this na-
ture consider various phenotypic switching mechanisms, derive an-
alytical expressions for the minimum travelling wave speed of the
migrating front [13–16], or include more complex non-linear diffusion
terms [17]. Crucially, however, cell phenotypes and their functions
are fundamentally dependent on external cues, such as contact with
neighbouring cells or interactions with the extracellular matrix (ECM) –
the highly complex network of proteins and other macromolecules that
cells reside within – which reduces the available space for migration
and provides structure and chemical cues to guide migration [18–
20]. Despite the increasing evidence for phenotypically structured cell
populations, few studies have included the role of the ECM in models
for cell migration under the go-or-grow hypothesis, to consider how
it might affect the phenotypic structure of invading fronts and their
speed. Furthermore, despite several experimental results supporting
the existence of leader and follower cell sub-populations during col-
lective cell migration [21,22], other findings do not support such
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hypotheses [23,24], possibly due to the use of different cell types or
experimental conditions.

To investigate the role of the ECM further, this work compares
a model of a homogeneous population of generalist cells that can
proliferate, move and degrade ECM to a model of a heterogeneous
population comprising two sub-populations of specialist cells that can
either move and degrade ECM or proliferate. This continuum model
for two distinct cell phenotypes and ECM dynamics is derived from
first principles (as the limit of an underlying individual-based model)
to accurately account for individual cell mechanisms at the population
level. A number of different possible phenotypic switching mechanisms
are considered, including random switching and both cell- and ECM-
dependent switches in various forms, to explore their impact on the
speed and phenotypic structure of invading cell populations.

1.1. Layout of the paper

In Section 2, we begin by describing the underlying assumptions of
the models we study. We start by reviewing the details of the model for
a population of homogeneous generalist cells in one spatial dimension
that was first derived in [25]. Subsequently, we extend this model to
a heterogeneous population comprising two distinct sub-populations of
specialist cells that can either move and degrade ECM or proliferate,
in order to introduce phenotypic heterogeneity into the cell population
(see Section 2.2 and Appendix A). In Section 3, the solutions of these
models are studied numerically for a variety of different phenotypic
switching functions. We find that specialist cell populations with the
ability to switch phenotype may invade faster than a generalist cell
population, and that the choice of phenotypic switching mechanism
drastically impacts the phenotypic structure of migrating cell fronts,
such that the leading cell sub-population differs between switching
functions. The phenotypic structure of the invading cell population
could potentially therefore be used to predict the underlying switch-
ing mechanism. In Section 4, we discuss these findings, the possible
applications and potential avenues for future research.

2. Mathematical models

It is well-known that cells move in response to gradients in local cell
volume fractions, and in response to nearby environmental features,
such as the ECM, by haptotaxis, for example [26]. Many mathemat-
ical models have been developed that include non-linear terms to
describe these processes, and non-local reaction terms to describe the
proliferation of cells to fill the surrounding available space [27,28].

To invade into surrounding healthy tissues, many tumours must
overcome physical barriers to migration, such as the ECM. In order to
do this, tumour cells have developed mechanisms such as the ability
to remodel, reorient and degrade elements of the ECM [29,30] through
the production of specific matrix degrading enzymes, such as matrix
metalloproteases (MMPs), that act in very close proximity to their cell
of origin before decaying [31–33]. Since the timescale of ECM degrada-
tion is much longer than the timescale of intermediate processes, such
as MMP decay, we employ the simplifying assumption that cells directly
degrade the ECM [34]. In this work, we focus on investigating the sim-
plest possible problem — that of the role of phenotypic heterogeneity
in cell invasion into an ECM that is devoid of cells.

This study focuses on cell movement and proliferation, as restricted
by volume filling assumptions that entail both of these processes being
limited by the presence of other surrounding cells and ECM, and on
the degradation of ECM by direct contact with the cells. We begin
by presenting two deterministic, continuum models for cell migration
into the ECM that have been derived by coarse-graining underlying
individual-based models to give rise to a corresponding population-
level description (see schematic in Fig. 1). The first model considers
a homogeneous generalist cell population invading into the ECM, as is
often studied in standard models for collective cell migration [35], and
2
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builds on similar models for cell migration into the ECM studied in [36,
37]. To further extend this previous work, we introduce a second model
describing a population of specialist cells consisting of two distinct
phenotypes, in line with evidence supporting the existence of separate
proliferating and migrating populations [8]. This model extends those
presented in [11,38,39] to include the ECM and its degradation by
cells, as well as volume-filling effects. We then compare the resulting
structure of travelling wave solutions of the models and investigate
differences between the migrating cell population distributions and
invasion speeds.

2.1. A model for a homogeneous generalist cell population invading into the
ECM

We first consider a homogeneous generalist population of cells that
(under volume-filling assumptions) is motile, proliferative and degrades
the ECM. Previous models considered cell migration into the ECM
without volume-filling assumptions [36,37]; these models comprised
two coupled differential equations with non-linear cross-dependent
diffusion and logistic growth. The differential equation model for gen-
eralist cells considered here describes the evolution of cell and ECM
densities under volume-filling assumptions, where the movement and
proliferation of cells is reduced in higher volume fraction regions.
In [25], this model was derived from an underlying one-dimensional,
on-lattice, individual-based model, and its travelling wave solutions
were studied.

To motivate later comparisons with a heterogeneous cell popula-
tion, we re-introduce this model here with non-dimensional weightings
of the cells towards proliferation, 𝜃𝐺,𝑃 ∈ [0, 1], degradation of ECM,
𝜃𝐺,𝐷 ∈ [0, 1], and movement, (1 − 𝜃𝐺,𝐷 − 𝜃𝐺,𝑃 ) ∈ [0, 1], that distribute a
cells’ weighting across different functions. The non-dimensional volume
fractions of the generalist cell population and corresponding ECM are
denoted as 𝑢𝐺(𝑥, 𝑡) and 𝑚𝐺(𝑥, 𝑡), respectively, and their dynamics are
governed by the following system:

𝜕𝑢𝐺
𝜕𝑡

= (1 − 𝜃𝐺,𝑃 − 𝜃𝐺,𝐷)
𝜕
𝜕𝑥

[

(

1 − 𝑢𝐺 − 𝑚𝐺
) 𝜕𝑢𝐺
𝜕𝑥

+ 𝑢𝐺
𝜕
𝜕𝑥

(

𝑢𝐺 + 𝑚𝐺
)

]

+ 𝜃𝐺,𝑃 𝑢𝐺(1 − 𝑢𝐺 − 𝑚𝐺), (1)
𝜕𝑚𝐺
𝜕𝑡

= −𝜃𝐺,𝐷𝜆𝐺𝑚𝐺𝑢𝐺 , (2)

where 𝑥 ∈ R and 𝑡 ≥ 0. The first term inside the square brackets
on the right-hand side of Eq. (1) models the undirected movement
(i.e., diffusion) of the generalist cells, where this movement is pre-
vented by the presence of other cells and ECM. The second term inside
the square brackets models movement of the cells down the gradient of
the total volume fraction of both cells and ECM, 𝑢𝐺 + 𝑚𝐺, whereas the
last (reaction) term describes proliferation of cells, which is assumed
to be logistic up to a carrying capacity in the total of the cell and
ECM volume fractions (non-dimensionalised to unity). The parameter
𝜆𝐺 ∈ R+ is the rescaled ECM degradation rate and when 𝜆𝐺 = 0 this

odel may simplify to a Fisher–KPP model with appropriately rescaled
arameters [25]. We employ the following initial conditions:

𝐺(𝑥, 0) =

{

1, if 𝑥 < 𝛼,
0, if 𝑥 ≥ 𝛼,

(3)

𝐺(𝑥, 0) =

{

0, if 𝑥 < 𝛼,
𝑚0, if 𝑥 ≥ 𝛼,

(4)

here 𝑚0 ∈ [0, 1) corresponds to the volume fraction of ECM ahead of
he cells, and 𝛼 ∈ R+ defines the width of the region initially occupied
y the cells. We complement this model with the following boundary
onditions: 𝑢𝐺 and 𝜕𝑢𝐺∕𝜕𝑥 → 0 as 𝑥 → ∞. Previous studies show
hat, under these conditions, travelling wave solutions can be observed,
hose speeds depend on the initial volume fraction of ECM ahead
f the invading wave of cells and the ECM degradation rate [25,37].
xamples of these solutions, and their numerically estimated travelling
ave speeds as the parameters 𝜃 and 𝜃 vary, are shown in Fig. 2.
𝐺,𝐷 𝐺,𝑃
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Fig. 1. Schematic representation of the model for a homogeneous generalist population of cells, and the model for a heterogeneous specialist population of cells.
Fig. 2. Plots of the travelling wave profile of the system (1)–(2) subject to the initial conditions for the cells as in Eq. (3) and for the ECM as in Eq. (4) for different values of
𝜃𝐺,𝐷 and 𝜃𝐺,𝑃 and translated into the travelling wave co-ordinate, 𝑧 = 𝑥 − 𝑐𝐺𝑡, where 𝑐𝐺 is the numerically estimated travelling wave speed. The far right shows the contour plot
of the numerically observed travelling wave speeds as we vary 𝜃𝐺,𝐷 and 𝜃𝐺,𝑃 . The initial ECM volume fraction ahead of the cells is 𝑚0 = 0.5, the ECM degradation rate is 𝜆 = 1,
and the width of the region initially occupied by migrating cells is 𝛼 = 1 across all simulations. For more information regarding the numerical methods used see Appendix D.
2.2. A model for a heterogeneous specialist cell population invading into the
ECM

Having introduced the model for a homogeneous generalist popula-
tion of cells migrating into the ECM, we now extend it to investigate
the impact of phenotypic heterogeneity.

To do this, we consider two different cell types, whose properties
follow the well-studied go-or-grow hypothesis [40,41]. We introduce
a discrete variable 𝑝 ∈ {1, 2} that represents the cell phenotypic state.
Cells in the phenotypic state 𝑝 = 1 are able to degrade the ECM and
are motile but cannot proliferate, whereas cells in the phenotypic state
𝑝 = 2 are able to proliferate but do not degrade the ECM or move.
The volume fraction of cells in phenotypic state 𝑝 ∈ {1, 2} at time
𝑡 ≥ 0 is denoted by 𝑢𝑝(𝑥, 𝑡) and the volume fraction of ECM at 𝑡 ≥ 0 is
denoted by 𝑚(𝑥, 𝑡). The population model is obtained through coarse-
graining an individual-based model (see Appendix A) and, following
a non-dimensionalisation (see Appendix B), is given by the following
system:
3

𝜕𝑢1
𝜕𝑡

= (1 − 𝜃𝑆,𝐷)
𝜕
𝜕𝑥

[

(

1 − 𝑢1 − 𝑢2 − 𝑚
) 𝜕𝑢1
𝜕𝑥

+ 𝑢1
𝜕
𝜕𝑥

(

𝑢1 + 𝑢2 + 𝑚
)

]

+ 𝑢2𝛾21(𝑢1, 𝑢2, 𝑚) − 𝑢1𝛾12(𝑢1, 𝑢2, 𝑚), (5)
𝜕𝑢2
𝜕𝑡

= 𝜃𝑆,𝑃 𝑢2
(

1 − 𝑢1 − 𝑢2 − 𝑚
)

− 𝑢2𝛾21(𝑢1, 𝑢2, 𝑚) + 𝑢1𝛾12(𝑢1, 𝑢2, 𝑚), (6)
𝜕𝑚
𝜕𝑡

= −𝜃𝑆,𝐷𝜆𝑚𝑢1, (7)

where 𝑥 ∈ R and 𝑡 ∈ R+. Here, 𝜆 ∈ R+ is the rescaled rate of ECM
degradation by cells in phenotypic state 1, whilst 𝜃𝑆,𝐷 ∈ [0, 1] describes
the weighting of cells in phenotypic state 1 towards degrading ECM.
Similarly, 𝜃𝑆,𝑃 describes the weighting of cells in phenotypic state 2
towards proliferation, where we set 𝜃𝑆,𝑃 = 1 for the duration of this
study, and

𝛾12 ∶ R3
+ → R+ and 𝛾21 ∶ R3

+ → R+,

are the non-dimensional phenotypic switching functions, where 𝛾12 is
the phenotypic switching function from state 1 to 2 (and vice versa for
𝛾 ).
21
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Fig. 3. The top row shows plots of the travelling wave profile of the system (5)–(7) subject to the initial conditions for the cells as in Eq. (8) and for the ECM as in Eq. (4) for
ifferent values of 𝜃𝑆,𝐷 for the case of constant switching (see Table 1) and translated into the travelling wave co-ordinate, 𝑧 = 𝑥 − 𝑐𝑆 𝑡, where 𝑐𝑆 is the numerically estimated

travelling wave speed. The bottom row shows contour plots displaying the difference between the numerically observed travelling wave speed of the homogeneous generalist
population, system (1)–(2) subject to the initial conditions (3)–(4), and the heterogeneous specialist population, system (5)–(7) subject to the initial conditions for the cells as in
Eq. (8) and for the ECM as in Eq. (4). The regions coloured in pink display the parameter regimes where the difference between the travelling wave speeds, 𝑐𝐺 − 𝑐𝑆 , is positive,
meaning generalist cells invade faster than specialists, and regions are coloured in green when this difference is negative (i.e., 𝑐𝑆 > 𝑐𝐺). The dashed black line is plotted at 𝑐𝐺 = 𝑐𝑆 .
The initial ECM volume fraction ahead of the cells is 𝑚0 = 0.5, the ECM degradation rate is 𝜆 = 1, the switching rate is 𝑠 = 1, and the width of the region initially occupied by
migrating cells is 𝛼 = 1 across all simulations. For more information regarding the numerical methods used see Appendix D.
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Table 1
Table listing the phenotypic switching functions we consider.

Name 𝛾12(𝑢1 , 𝑢2 , 𝑚) 𝛾21(𝑢1 , 𝑢2 , 𝑚)

Constant 𝑠 𝑠
ECM-dependent 𝑠(1 − 𝑚) 𝑠𝑚
Space-dependent 𝑠(1 − 𝑢1 − 𝑢2 − 𝑚) 𝑠(𝑢1 + 𝑢2 + 𝑚)
Cell-dependent 𝑠(1 − 𝑢1 − 𝑢2) 𝑠(𝑢1 + 𝑢2)

Similar to the generalist model, the first term inside the square
rackets in Eq. (5) captures undirected movement (i.e., diffusion) of
he cells in phenotypic state 1, inhibited by the presence of other cells
nd ECM, and the second term inside the square brackets describes
he movement of cells in phenotypic state 1 down the gradient in the
otal volume fraction of cells and ECM. The first term on the right-hand
ide of Eq. (6) describes the growth of cells in phenotypic state 2, as
imited by the presence of other cells and ECM. The single term on
he right-hand side of Eq. (7) describes degradation of ECM by cells
n phenotypic state 1. We consider a number of phenotypic switching
unctions that incorporate different types of behaviour with a view to
nderstanding their impact on the speed of cell invasion as well as on
he structure of the invading wave.

We assume boundary conditions of the form 𝑢1 → 0 and 𝜕𝑢1∕𝜕𝑥 → 0
as 𝑥 → ∞. For consistency with the volume-filling assumptions of the
model, we also initially assume that

𝑢𝑝(𝑥, 0) =

{

0.5, if 𝑥 < 𝛼,
0, if 𝑥 ≥ 𝛼,

(8)

for 𝑝 ∈ {1, 2}. The initial conditions for the ECM volume fraction,
4

𝑚(𝑥, 0), are prescribed by Eq. (4), where 𝛼 and 𝑚0 have the same a
interpretation as in Section 2.1. Furthermore, we note here that the
system (1)–(2) and the system (5)–(7) are solved numerically on the
domain 𝑥 ∈ [0, 𝐿], where 𝐿 is chosen differently between simulations
o be sufficiently large such that convergence in the travelling wave
peed is observed, and the boundary conditions do not have an effect
see Appendix D). For more information on the method for the numer-
cal calculation of the travelling wave speed, 𝑐, for each simulation,
ee Appendix D, and note that the solutions in Figs. 3, 5 and 7 are
ranslated into the travelling wave co-ordinate 𝑧 = 𝑥 − 𝑐𝑡.

.2.1. Phenotypic switching functions
The phenotypic switching functions we consider, 𝛾12(𝑢1, 𝑢2, 𝑚) and

21(𝑢1, 𝑢2, 𝑚), are listed in Table 1. The first is constant switching, at rate
∈ R+, between the two sub-populations. It is important to note that
hen 𝑠 = 0 there is no switching between the phenotypic states; in this

ase the model does not permit travelling wave solutions and invasion
s not observed. The second, ECM-dependent phenotypic switching,
ntails cells switching from phenotypic state 1 (2) to phenotypic state
(1) at a rate that decreases (increases) linearly with ECM volume

raction, and describes a higher rate of switching to the ECM degrading
henotypic state in regions of higher ECM volume fractions. The third,
pace-dependent phenotypic switching, is defined such that the rate
f switching from phenotypic state 1 (2) to phenotypic state 2 (1)
ncreases (decreases) with the available space, 1 − 𝑢1 − 𝑢2 − 𝑚. Finally,
ell-dependent phenotypic switching assumes that only the total cell
olume fraction impacts switching, with the ECM playing no direct role
n driving phenotypic switching. Note that, since 0 ≤ 𝑢1 + 𝑢2 + 𝑚 ≤ 1,
ll the switching functions given in Table 1 are non-negative.
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3. Results

3.1. Is the speed of migration impacted by the introduction of phenotypic
switching?

In reality, many different cell types are known to co-operate to
create robust migration, often through the emergence of leader and fol-
lower cell phenotypes. For example, in neural crest cell migration, the
leader and follower phenotypes generate streams of invading cells [22,
42,43], whereas during angiogenesis, tip and stalk cells aid in the
branching process [44]. To investigate whether robust cell invasion can
be observed in a phenotypically heterogeneous specialist population,
we explore the dynamics of Eqs. (5)–(7), first in the case of constant
switching, at rate 𝑠 > 0.

In this case, travelling wave solutions can be observed in the ECM
nd cell volume fractions, where the two sub-populations are well
ixed along the invading front (see the top row of Fig. 3). The

ottom row of Fig. 3 shows the difference between the numerically
stimated travelling wave speed of a homogeneous generalist popu-
ation, 𝑐𝐺, and a heterogeneous specialist population, 𝑐𝑆 , such that
reen indicates regions of parameter space where the travelling wave
peed of the heterogeneous cell population exceeds that of the homoge-
eous counterpart. The numerically estimated travelling wave speeds
𝐺 and 𝑐𝑆 are computed as described in Appendix D. The maximum
bserved speed from either cell population in these model simulations
as 0.5, when 𝜃𝐺,𝑃 = 0.5, 𝜃𝐺,𝐷 = 0 and 𝑚0 < 1, and thus the
ifferences between the travelling wave speeds of the homogeneous
nd heterogeneous populations are observed to be of the same order
f magnitude as the numerically estimated travelling wave speeds. We
ind that specialist cell populations with constant phenotypic switching
ave a faster travelling wave speed in all cases except when gener-
lists heavily weight their abilities towards cell motility, rather than
CM degradation. However, it is important to note that the maximum
ossible travelling wave speed for the two models is the same (see
upplementary Material S2.3).

.2. Does environmentally-dependent phenotypic switching change the speed
r structure of migrating fronts?

In reality, cells are able to sense their environment and neigh-
ouring cells, which can both provide cues for directed migration.
ariations in the surrounding cells and environment can also cause
henotypic changes within cells that affect their behaviour [45] and
hus we extend our study of the heterogeneous specialist population
f cells to consider the impact of ECM-, space- and cell-dependent
henotypic switching functions, as defined in Table 1.

CM-dependent switching. We first consider the scenario where cells
re able to sense the volume fraction of surrounding ECM which then
nfluences the rate of phenotypic switching. In this case, we find that
patial heterogeneity appears within the travelling wave front (see
ig. 4). Instead of a well-mixed population of cells that degrade and
roliferate throughout the invading wave (as is observed for constant
henotypic switching between heterogeneous specialist populations,
r for homogeneous generalist populations) we find that the cells in
henotypic state 1 (i.e., the ECM degraders) concentrate at the wave
ront in the form of a travelling pulse, whereas the bulk of the invading
ave is filled by a travelling front of proliferative cells in phenotypic

tate 2.

pace-dependent switching. In line with the volume-filling principles
nderlying this model (i.e., the fact that cells are unable to move
r proliferate in a region that has no available space), we introduce
henotypic switching from phenotypic state 1 (ECM degrader) to phe-
otypic state 2 (proliferator) at an increasing rate as available space
ncreases (see Table 1). By inspecting Fig. 4 it is clear that the bulk
f the travelling wave consists of cells in phenotypic state 1, whereas
5

ells in phenotypic state 2 concentrate at the migrating front, which
s opposite to what is observed for ECM-dependent switching. As a
esult, there is increased ECM degradation due to a larger proportion
f cells in phenotypic state 1, and we see a sharper transition between
= 0 and 𝑚 = 𝑚0 in the travelling wave as compared to constant, or

ECM-dependent, switching (see Fig. 4).

Cell-dependent switching. When cells change phenotypic state according
to the cell-dependent phenotypic switching function defined in Table 1,
a qualitatively similar cell distribution is observed as in the space-
dependent switching case, with proliferating cells (phenotypic state
2) at the migrating front and ECM-degrading cells (phenotypic state
1) in the bulk. Subtle differences between the travelling wave profile
for ECM- and space-dependent switching can be observed in Fig. 4,
including a higher maximum volume fraction of proliferating cells and
a steeper travelling wave front in both ECM and total cell volume
fractions.

Overall, it is clear that constant speed travelling wave solutions
can be observed for the system (5)–(7) subject to any of the switching
functions described in Table 1. Furthermore, the functional form of
phenotypic switching mechanism chosen influences the distribution of
cell phenotypic states within the travelling wave, as schematised in
Fig. 5.

3.3. How do the model parameters impact cell migration?

We now analyse how variations in the model parameters impact the
numerically observed travelling wave speed, and determine whether
similar trends are observed in the generalist and specialist cell popula-
tions. In particular, we will consider:

• manipulations of biological parameters specific to the cells, such
as the phenotypic switching rate and ECM degradation rate;

• manipulations of the environmental conditions, specifically the
ECM volume fraction ahead of the invading wave.

3.3.1. Manipulations of cell parameters
Variations in the phenotypic switching rate. Numerical simulations sug-
gest that variations in the switching rate generally have a small impact
on the cell migration speed when we employ constant, ECM- or space-
dependent switching (for further details, the reader is directed to the
Supplementary Material S1, where phenotypic switching at different
rates in either direction is also considered). However, when considering
cell-dependent switching we find that changing the switching rate
has a significant impact on the speed of invasion. Fig. 6 reveals that
for low values of the ECM degradation rate, 𝜆, the travelling wave
speed increases as the switching rate, 𝑠, decreases and the wave front
becomes smoother (see Fig. 7). However, for sufficiently large 𝜆, ECM
egradation dominates over phenotypic switching to determine the
ravelling wave speed, and the maximum invasion speed is reached
hen 𝑠 = 1. The optimal switching rate, in terms of the fastest speed
f invasion, is found analytically in Supplementary Material S2.3.

When considering fast phenotypic switching, following ideas in
25], we can formally find expressions for the travelling wave speed in
symptotic regimes of the ECM degradation rate, 𝜆 → 0+ and 𝜆 → ∞,

that match the wave speed observed in numerical solutions to Eqs. (5)–
(7) subject to the initial conditions for the cells in Eq. (8) and for the
ECM in Eq. (4) (see Supplementary Material S2).

Despite the phenotypic switching rate, 𝑠, having little quantita-
ive impact on the travelling wave speed for most moderate parame-
er values across most phenotypic switching mechanisms considered,
hanging 𝑠 does significantly impact the distribution of cells within the
ravelling wave front in all cases. By looking at the top row of Fig. 7,
hen we have constant phenotypic switching, we see that increasing

he switching rate balances the proportion of cells throughout the wave,
hich is consistent with analytical results detailed in Supplementary
aterial S2. As the phenotypic switching rate decreases, however, there
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f

Fig. 4. Plots showing the proportion of cells in each phenotypic state and their position in the travelling wave when simulating the system (5)–(7) subject to the initial conditions
or the cells as in Eq. (8) and for the ECM as in Eq. (4) and translated into the travelling wave co-ordinate, 𝑧 = 𝑥− 𝑐𝑡, where 𝑐 is the numerically estimated travelling wave speed,

for each of the phenotypic switching functions in Table 1. In the first column, we show zoomed in profiles at the front of the travelling wave. In the second column, we show
the full travelling wave profile, with each constituent shaded. In all plots, the initial ECM volume fraction ahead of the cells is 𝑚0 = 0.5 and the ECM degradation rate is 𝜆 = 1.
The width of the region initially invaded by migrating cells is 𝛼 = 1, the weighting of specialists towards degradation is 𝜃𝑆,𝐷 = 0.5 and the switching rate for all functions is 𝑠 = 1.
The insets in the column on the left are zoomed in on the travelling wave front. For more information regarding the numerical methods used see Appendix D.
is a larger proportion of cells in phenotypic state 2 at the front of
the wave, and a wider travelling wave profile. For ECM-dependent
switching, increasing the switching rate increases the proportion of
cells in phenotypic state 1 at the wave front, and concentrates them
to the front, leading to sharper travelling wave profiles. Alternatively,
for space- and cell-dependent phenotypic switching mechanisms, in-
creasing the switching rate reduces the volume fraction of cells in
phenotypic state 2. This reduction is larger with space-dependent phe-
notypic switching. Qualitatively, the travelling wave profiles for space-
6

and cell-dependent switching are almost identical (see the bottom
two rows of Fig. 7), and increasing the switching rate decreases the
maximum volume fraction of cells in phenotypic state 2 at the front
of the wave, shortening the tail of the travelling pulse and leading to
sharper travelling wave profiles in the total volume fraction of cells.

Variations in ECM degradation rate. In the model of a homogeneous
cell type invading into the ECM (defined by Eqs. (1)–(2)), the shape
and speed of the travelling wave changes as the ECM degradation
rate varies [25]. Relationships between the rescaled ECM degradation
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Fig. 5. Schematics demonstrating the possible cell distributions in the travelling waves observed in this numerical study. Note that there are subtle differences between space-
and cell-dependent switching, namely that proliferating cells lead the wave of invasion in isolation during cell-dependent switching.
Fig. 6. The numerically estimated speed of travelling wave solutions of the system (5)–
(7) subject to the initial conditions for the cells in Eq. (8) and for the ECM in Eq. (4),
with cell-dependent phenotypic switching (see Table 1), as a function of the phenotypic
switching rate, 𝑠, and the rescaled ECM degradation rate, 𝜆. The initial ECM volume
fraction ahead of the cells is 𝑚0 = 0.5, the weighting of the specialists towards degrading
ECM is 𝜃𝑆,𝐷 = 0.5 and the width of the region initially invaded by migrating cells is
𝛼 = 1. For more information regarding the numerical methods used see Appendix D.

rate in asymptotic regions and travelling wave speed were established
previously for the fully non-dimensional model, without weightings,
and it was shown that 𝑐 → 2− as 𝜆 → ∞ and 𝑐 → 2(1 − 𝑚0) as
𝜆 → 0+ [25].

By inspecting Fig. 8, we can see that, across all the switching func-
tions that we consider in this work, an increase in the ECM degradation
rate leads to an increase in the numerically estimated travelling wave
speed when ECM degradation rates are above a critical value. We
also see that as 𝜆 → ∞ convergence in the travelling wave speed to
a constant value is observed for constant, space-dependent and cell-
dependent switching mechanisms, but to different values. In Supple-
mentary Material S2, we perform a formal analysis of the system (5)–(7)
for general switching rates that can differ in either direction. In the
7

particular case where the switching rate is the same in either direction,
we show analytically that, in the fast phenotypic switching regime,
𝑐 → (1 − 𝑚0)

√

1 − 𝜃𝑆,𝐷 as 𝜆 → 0+ and 𝑐 →
√

1 − 𝜃𝑆,𝐷 as 𝜆 → ∞
for constant phenotypic switching. Convergence of the numerically
estimated travelling wave speed to these values can be seen in Figure
S3 of Supplementary Material S2. In contrast to the other switching
functions, ECM-dependent switching is far less sensitive to changes in
ECM degradation rates at low initial ECM volume fractions ahead of
the cells, and convergence of the travelling wave speed to a constant
value is not observed within the parameter ranges considered in this
work.

From a biological perspective, the limit 𝜆 → ∞ is relevant in
describing cells in an aggressive tumour that have a very high ability
to degrade ECM, which may enable them to invade much faster.
Alternatively, for a sufficiently small product 𝜃𝑆,𝐷𝜆, specialist cells in
phenotypic state 1 should focus more of their ability on movement
(i.e., decrease 𝜃𝑆,𝐷) in order to increase migration speed, since a small
change in the ECM degradation rate alone, when below some threshold
value, will minimally impact the migration speed.

3.3.2. Manipulations of the environmental conditions
For a generalist cell population, it can be shown analytically and

numerically that the speed of the travelling wave of migrating cells
increases as the initial ECM volume fraction ahead of the cells de-
creases [25]. Specifically, for small ECM degradation rates (i.e., 𝜆 →

0+), there is a linear relationship between the travelling wave speed,

𝑐𝐺 = 2(1 − 𝑚0)
√

𝜃𝐺,𝑃 (1 − 𝜃𝐺,𝐷 − 𝜃𝐺,𝑃 ),

and the initial volume fraction of ECM ahead of the wave, 𝑚0 ∈ [0, 1).
Examining Fig. 8, it is clear that, across all four phenotypic switch-

ing functions considered, the speed of the travelling wave of the
specialist cell population increases as the initial ECM volume fraction
ahead of the cells decreases. Biologically, a lower ECM volume fraction
corresponds to a less densely packed region of ECM ahead of the cells
which facilitates faster cell invasion.

4. Discussion

Recently, population heterogeneity, such as leaders and followers,
has been recognised as an important driver of collective cell migration
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Fig. 7. Travelling wave profiles of the solutions of the system (5)–(7) subject to the initial conditions for the cells in Eq. (8) and for the ECM in Eq. (4), plotted as a function
of the travelling wave variable 𝑧 = 𝑥 − 𝑐𝑡, where 𝑐 is the numerically observed constant travelling wave speed. These solutions show that changing the switching rate changes
the distribution of the cell phenotypes within the invading wave front. Here, the initial ECM volume fraction ahead of the cells is 𝑚0 = 0.5, the ECM degradation rate is 𝜆 = 1,
he weighting of the specialists towards degrading ECM is 𝜃𝑆,𝐷 = 0.5 and the width of the region initially invaded by migrating cells is 𝛼 = 1 in all cases. For more information
egarding the numerical methods used see Appendix D.
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nd has attracted significant attention [46]. Here, we have extended
model for a homogeneous generalist population of cells migrating

nto the ECM to explicitly incorporate phenotypic heterogeneity under
he migration–proliferation dichotomy. We considered how distinct
henotypic switching mechanisms impact population structure, and the
ependence of the travelling wave speed on different biological param-
ters. Specifically, we considered constant switching, ECM-dependent
witching, space-dependent switching and cell-dependent switching.
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c

Initially, we compared a homogeneous cell population to a hetero-
eneous cell population without phenotypic switching. In this case, it
s clear that a specialist cell population without the ability to change
ts phenotypic state can never outcompete a generalist cell population
s the model does not admit travelling wave solutions. Conversely,
nalysis of the model for a specialist cell population invading into the
CM that includes phenotypic switching shows that a heterogeneous
ell population can produce travelling waves of invasion with a faster
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Fig. 8. Plots summarising the relationship between the numerically estimated speed of travelling wave solutions of Eqs. (5)–(7) subject to the initial conditions for the cells in
Eq. (8) and for the ECM in Eq. (4), the initial volume fraction of ECM ahead of the cells, 𝑚0, and ECM degradation rate, 𝜆. Here, the weighting of the specialists towards degrading
ECM is 𝜃𝑆,𝐷 = 0.5, the switching rate is 𝑠 = 1 and the width of the region initially invaded by migrating cells is 𝛼 = 1 in all cases. For more information regarding the numerical
methods used see Appendix D.
speed than homogeneous generalist populations that weight their abil-
ity towards movement. Moreover, we confirmed that the travelling
wave speed in the specialist model, irrespective of the phenotypic
switching mechanism, depends qualitatively on the ECM degradation
rate and initial ECM volume fraction ahead of the cells in the same
manner as for the generalist model.

This work considers phenotypic switching that is equal in either
direction, and in this case the travelling wave speed is shown to
be independent of the switching rate for constant, ECM- and space-
dependent switching. When asymmetric switching rates are considered,
both switching rates impact the speed and distribution of phenotypes in
the invading cell population (see Supplementary Material S1 and S2).
In the case of cell-dependent switching, increasing the switching rate
decreases the travelling wave speed.

Biologically, there exist a number of factors that could drive phe-
notypic switching. For example, direct contact between cell surfaces,
or contact on the cell surface from molecules released by neighbouring
cells or ECM, which provide information about surrounding cell and
ECM volume fractions, might cause phenotypic change [47,48]. This
work demonstrates that the mechanism determining the form of phe-
notypic switching function has a profound impact on the phenotypic
structure of the invading cell population. When there is no environ-
mental dependence, a well-mixed population of cells invades into the
ECM, with the ratio of cells in phenotypic state 1 to phenotypic state 2
9

in the bulk being determined by the ratio between the switching rates.
In ECM-dependent switching models, degrading cells in phenotypic
state 1 occupy the migrating front, with proliferating cells in the
bulk, as observed in many examples of leader–follower dynamics [8]
where both sub-populations play an important role in driving cell inva-
sion. Space- and cell-dependent switching models exhibit the opposite
distribution, with proliferating cells leading the way, as observed in
vivo and in vitro in melanoma spheroid growth, where proliferative
clusters form on the outer edges of a larger bulk cluster consisting of
migratory cells [9]. This could be favourable for the population, for
example, if there are lower energetic requirements for proliferation in
low volume fraction regions. A further extension of this work would
be to consider a general switching function combining the influence of
both available space and ECM, to find critical parameter values that
determine the transition between the degraders or the proliferators
leading the invasive population.

The speed of invasion of a cell population alone does not necessarily
allow us to distinguish the mechanisms governing collective cell migra-
tion. In the case of space- and cell-dependent switching, changing the
phenotypic switching rate and observing the changes in the resulting
travelling wave speed may indeed be sufficient to distinguish between
the two switching mechanisms, where differences in the travelling
wave profile are otherwise very subtle. However, in other cases, the
spatial structure of each cell sub-population within an invading wave
might provide further insights. For instance, examination of a detailed

population profile from a tissue biopsy in the direction of migration
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could be used as a predictive tool to distinguish the mechanism under-
lying cell phenotypic switching which could, in turn, be used to help
develop therapeutic treatments. Moreover, if such a biopsy revealed
cells in one phenotypic state only at the front of the invading wave,
this may indicate that the rate of phenotypic switching in one direction
far exceeds the rate of phenotypic switching in the opposite direction.
For example, in the case of ECM-dependent switching, if a population
of primarily ECM-degrading cells is observed at the migrating front,
this suggests that phenotypic switching from proliferative to degrading
phenotypic state is much faster than from degrading to proliferative.
Simulations in Supplementary Material S1 simultaneously revealed a
trade-off between population structuring and the travelling wave speed,
such that when a single population leads the migrating front, the
invasion speed is reduced. This suggests that both the spatial profile and
speed of invasion are required to distinguish the underlying phenotypic
switching mechanisms and that further possible therapeutic treatments
could be developed to slow tumour growth by preventing switching
in one direction, or to speed up wound healing or developmental
processes by initiating symmetrical switching.

There are various possible extensions to this work. The biological
applicability could be expanded by varying the underlying assumptions
of the model and including other possible factors influencing collective
cell migration, such as haptotaxis or chemotaxis. By tailoring this model
to a particular biological application, future work could also explore
validating the model predictions, estimating model parameters, and
establishing the specific form of the phenotypic switching functions by
examining appropriate histology data. Furthermore, the current study
looks exclusively at these populations in one spatial dimension, and
a future avenue for exploration could be to extend the model to two
or more dimensions. In higher dimensions it would be interesting to
investigate the stability of the invading front or the presence of spatial
structure, such as ‘‘fingering’’, which has previously been observed in
models of tumour growth containing sub-populations with different
mobility [49,50] and for tumour growth into heterogeneous ECM [51].

In the specialist population model, it is unclear how to compare
the models with different switching functions since, in the case of
ECM-, space- and cell-dependent switching, the switching rate, 𝑠, is
rescaled by a term bounded in [0, 1] varying in time. This suggests a
further extension of this work to include energetic costs of proliferation,
movement, ECM degradation and phenotypic switching between states
that allows for a more biologically conclusive investigation of which
form of phenotypic switching function generates the highest rate of cell
invasion. It would also be of interest to compare these model results
to those from the underlying discrete model and to perform analysis to
derive an explicit expression for the travelling wave speed as a function
of all the model parameters, defining the parameter space wherein the
numerically estimated travelling wave speed matches that predicted
by analysis. Additionally, it appears that for all of the phenotypic
switching mechanisms considered, the travelling wave speed depends
linearly on the initial ECM volume fraction and is independent of 𝜆 for
𝜆 ≤ 𝜆𝑐 , where 𝜆𝑐 is a critical value. Future work might also seek to de-
termine this critical value explicitly using asymptotic or boundary layer
analysis, by considering a thin layer of cells around the wavefront at
the interface with the ECM, which becomes sharp for large values of 𝜆.

In conclusion, understanding the phenotypic structure of invading
cellular collectives is an important objective, attracting significant re-
search over recent years. The model presented in this study, whilst
clearly simple, provides compelling insights associated with the speed
and structure of heterogeneous cell invasion into the ECM under var-
ious phenotypic switching mechanisms, and provides a basis for more
complex and detailed model development and analysis in the future.
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Appendix A. Formal derivation of the continuum model (5)–(7)
from an underlying individual-based model

We begin by developing a simple one-dimensional, on-lattice,
individual-based model of two distinct cell phenotypes invading into
the ECM, in the presence of volume-filling effects, where motility and
proliferation are reduced in higher density regions of space. Volume-
filling effects warrant being accounted for in this way since research
shows that cells and ECM both regulate cell movement and prolif-
eration. It was experimentally demonstrated that these effects are
indeed inhibitory in high density regions, and stimulatory in low ECM
regions [52–55]. This model derivation follows directly from the ideas
in [25] extended to multiple cell sub-populations, and uses mean-field
assumption ideas [56] from multi-species exclusion processes [57].
Following the go-or-grow assumption studied in [13,40], we consider
a phenotypic trade-off between cells that are degrading the ECM and
migrating, and those that are proliferating, where those that proliferate
do not move. We then coarse-grain this model to formally derive a cor-
responding PDE model that comprises a system of coupled differential
equations for the densities of cells and ECM.

A.1. Individual-based model

In this model, cells are represented as discrete individuals with

finite volume. We consider cells with the ability to change phenotypic
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state that move randomly on a one-dimensional uniform lattice, which
constitutes the spatial domain, proliferate, and degrade the surrounding
ECM, which is composed of discrete elements of the same volume as the
cells.

Let the number of cells of phenotype 𝑖 = {1, 2} and ECM elements
n lattice site 𝑗 = 1,… , 𝐽 of width 𝛥, at time 𝑡 ∈ R+ of realisation
= 1,… , 𝑅 of the model be denoted by 𝑢𝑟𝑖,𝑗 (𝑡) and 𝑚𝑟

𝑗 (𝑡), respectively.

ccupancy level of the lattice sites. In order to incorporate volume-
illing effects into the model, we prescribe that each lattice site has a
aximum total occupancy level of 𝑁 cells and ECM elements, so that

≤
2
∑

𝑖=1
𝑢𝑟𝑖,𝑗 (𝑡) + 𝑚𝑟

𝑗 (𝑡) ≤ 𝑁.

robability of cell movement. A cell with phenotype 𝑖 will attempt
movement event in a time step 𝜏 with probability 𝑝𝑖,m ∈ [0, 1],

whereby the attempted movement from lattice site 𝑗 to either of the
neighbouring lattice sites 𝑗 ± 1 occurs with equal probability 1∕2. We
assume that the probability of a successful move decreases linearly
with the occupancy level of the target site, such that it is zero when
the target site is full, and one when it is empty. Hence, we define
the probability of a movement to the left, 𝑇 𝑖,m𝑟

𝑗− (𝑡), or right, 𝑇 𝑖,m𝑟

𝑗+ (𝑡), in
[𝑡, 𝑡 + 𝜏) of realisation 𝑟 as

𝑇 𝑖,m𝑟

𝑗± (𝑡) =
𝑝𝑖,m
2

(

1 −

∑2
𝑖=1 𝑢

𝑟
𝑖,𝑗±1(𝑡) + 𝑚𝑟

𝑗±1(𝑡)

𝑁

)

.

Zero flux boundary conditions are implemented such that any at-
tempted move outside of the spatial domain is aborted.

Probability of cell proliferation. A cell with phenotype 𝑖 in lattice site 𝑗
attempts a proliferation event, placing a daughter cell of equal size into
the same lattice site, during time step 𝜏 with probability 𝑝𝑖,p ∈ [0, 1].
We assume the probability of a successful proliferation event, where
one cell is replaced by two daughter cells with the same heritable
phenotypic state as the parent cell, decreases linearly with the occu-
pancy level of the lattice site, such that the probability of a successful
proliferation event, 𝑇 𝑖,p𝑟

𝑗 (𝑡), in time interval [𝑡, 𝑡 + 𝜏) of realisation 𝑟 of
the model is

𝑇 𝑖,p𝑟
𝑗 (𝑡) = 𝑝𝑖,p

(

1 −

∑2
𝑖=1 𝑢

𝑟
𝑖,𝑗 (𝑡) + 𝑚𝑟

𝑗 (𝑡)

𝑁

)

.

robability of cell phenotype change. During time interval [𝑡, 𝑡 + 𝜏) of
ealisation 𝑟 of the model, a cell with phenotype 𝑖 will change to
henotype 𝑙 with probability

𝑖→𝑙
(

𝑢𝑟1,𝑗 (𝑡), 𝑢
𝑟
2,𝑗 (𝑡), 𝑚

𝑟
𝑗 (𝑡)

)

,

here 𝑓𝑖→𝑙 ∶ R3
+ → [0, 1].

robability of ECM degradation. During the time interval [𝑡, 𝑡 + 𝜏) of
ealisation 𝑟, an element of ECM in lattice site 𝑗 is degraded by cells
ith phenotype 𝑖 in the same lattice site with a probability 𝑝𝑖,d ∈ [0, 1].
herefore the overall degradation rate per unit element of ECM by cells
ith phenotype 𝑖, 𝑇 𝑖,d𝑟

𝑗 (𝑡), is

𝑖,d𝑟
𝑗 (𝑡) = 𝑝𝑖,d𝑢

𝑟
𝑖,𝑗 (𝑡).

.2. Coarse-grained model

To derive a coarse-grained description of the individual-based
odel, we introduce the average occupancy of each lattice site 𝑗 by

ells of type 𝑖 = {1, 2} and ECM at time 𝑡 over 𝑅 total realisations of
he model as

𝑢𝑖,𝑗 (𝑡)⟩ =
1

𝑅
∑

𝑢𝑟𝑖,𝑗 (𝑡) and ⟨𝑚𝑗 (𝑡)⟩ =
1

𝑅
∑

𝑚𝑟
𝑗 (𝑡).
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𝑅 𝑟=1 𝑅 𝑟=1
Coarse-grained model of cell dynamics. We write a conservation equa-
tion using mean-field approximations and independence of lattice sites
by considering changes in the average occupancy in the lattice site 𝑗
during the time interval [𝑡, 𝑡 + 𝜏) to give:

⟨𝑢𝑖,𝑗 (𝑡 + 𝜏)⟩ = ⟨𝑢𝑖,𝑗 (𝑡)⟩ +
𝑝𝑖,m
2

⟨𝑢𝑖,𝑗+1(𝑡)⟩
(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑚𝑗 (𝑡)⟩
𝑁

)

+
𝑝𝑖,m
2

⟨𝑢𝑖,𝑗−1(𝑡)⟩
(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑚𝑗 (𝑡)⟩
𝑁

)

−
𝑝𝑖,m
2

⟨𝑢𝑖,𝑗 (𝑡)⟩
(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗+1(𝑡)⟩ + ⟨𝑚𝑗+1(𝑡)⟩
𝑁

)

−
𝑝𝑖,m
2

⟨𝑢𝑖,𝑗 (𝑡)⟩
(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗−1(𝑡)⟩ + ⟨𝑚𝑗−1(𝑡)⟩
𝑁

)

+ 𝑝𝑖,p⟨𝑢𝑖,𝑗 (𝑡)⟩
(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑚𝑗 (𝑡)⟩
𝑁

)

− 𝑓𝑖→𝑙
(

⟨𝑢1,𝑗 (𝑡)⟩, ⟨𝑢2,𝑗 (𝑡)⟩, ⟨𝑚𝑗 (𝑡)⟩
)

⟨𝑢𝑖,𝑗 (𝑡)⟩

+ 𝑓𝑙→𝑖
(

⟨𝑢1,𝑗 (𝑡)⟩, ⟨𝑢2,𝑗 (𝑡)⟩, ⟨𝑚𝑗 (𝑡)⟩
)

⟨𝑢𝑙,𝑗 (𝑡)⟩. (A.1)

earranging Eq. (A.1), and dividing by 𝜏, we find Eq. (A.2) that is given
n Box I.
ividing Eq. (A.2) by 𝛥 and Taylor expanding both sides, before taking

imits as 𝛥, 𝜏 → 0, we obtain a description for cell density dynamics
n terms of variables �̃�𝑖(�̃�, 𝑡) and �̃�(�̃�, 𝑡), which are the continuum
quivalents of the number density of cells, ⟨𝑢𝑖,𝑗 (𝑡)⟩∕𝛥, and the density
f ECM, ⟨𝑚𝑗 (𝑡)⟩∕(�̃�𝛥), at �̃� ∈ R, 𝑡 ∈ R+, respectively, where �̃� represents
he number of cells equivalent to a unit mass of ECM and serves as a
onversion factor between the density of ECM, as defined by mass of
CM per unit volume, and the number density of ECM elements, given
y �̃��̃�(�̃�, 𝑡). Under the following scalings:

lim
𝛥→0

𝑁
𝛥

= �̃�, lim
𝜏→0

𝑝𝑖,p
𝜏

= 𝑟𝑖, lim
𝛥,𝜏→0

𝑝𝑖,m𝛥2

𝜏
= �̃�𝑖,

lim
𝜏→0

1
𝜏
𝑓𝑖→𝑙

(

⟨𝑢1,𝑗 (𝑡)⟩, ⟨𝑢2,𝑗 (𝑡)⟩, ⟨𝑚𝑗 (𝑡)⟩
)

= 𝛾𝑖𝑙(𝑢1, 𝑢2, �̃�),

for all 𝑖, 𝑙 = {1, 2}, 𝑖 ≠ 𝑙, we find

𝜕𝑢𝑖
𝜕𝑡

= �̃�𝑖

[

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

𝜕2�̃�𝑖
𝜕�̃�2

+ �̃�𝑖
𝜕2

𝜕�̃�2

(
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

]

+ 𝑟𝑖�̃�𝑖

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

− 𝛾𝑖𝑙(�̃�1, �̃�2, �̃�)�̃�𝑖 + 𝛾𝑙𝑖(�̃�1, �̃�2, �̃�)�̃�𝑙 ,

= �̃�𝑖
𝜕
𝜕�̃�

[

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

𝜕�̃�𝑖
𝜕�̃�

+ �̃�𝑖
𝜕
𝜕�̃�

(
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

]

+ 𝑟𝑖�̃�𝑖

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

− 𝛾𝑖𝑙(�̃�1, �̃�2, �̃�)�̃�𝑖 + 𝛾𝑙𝑖(�̃�1, �̃�2, �̃�)�̃�𝑙 ,

where �̃� ∈ R and 𝑡 ∈ R+.

Coarse-grained model of ECM dynamics. In the same way, using prob-
abilistic assumptions of mean-field type, we can write the following
conservation equation for the evolution of ECM elements in a lattice
site 𝑗 over the time interval [𝑡, 𝑡 + 𝜏):

⟨𝑚𝑗 (𝑡 + 𝜏)⟩ = ⟨𝑚𝑗 (𝑡)⟩ −
2
∑

𝑖=1
𝑝𝑖,d⟨𝑢𝑖,𝑗 (𝑡)⟩⟨𝑚𝑗 (𝑡)⟩. (A.3)

By rearranging Eq. (A.3), dividing by 𝛥 and 𝜏 and taking limits as
𝛥, 𝜏 → 0 under the scaling

𝜆𝑖 = lim
𝛥𝑝𝑖,d ,
𝛥,𝜏→0 𝜏
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w
o

⟨𝑢𝑖,𝑗 (𝑡 + 𝜏)⟩ − ⟨𝑢𝑖,𝑗 (𝑡)⟩
𝜏

=
𝑝𝑖,m𝛥2

2𝜏

(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑚𝑗 (𝑡)⟩
𝑁

)

[

⟨𝑢𝑖,𝑗+1(𝑡)⟩ − 2⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑢𝑖,𝑗−1(𝑡)⟩

𝛥2

]

+
𝑝𝑖,m𝛥2

2𝜏
⟨𝑢𝑖,𝑗 (𝑡)⟩

[

(
∑2

𝑖=1⟨𝑢𝑖,𝑗+1(𝑡)⟩ + ⟨𝑚𝑗+1(𝑡)⟩) − 2(
∑2

𝑖=1⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑚𝑗 (𝑡)⟩) + (
∑2

𝑖=1⟨𝑢𝑖,𝑗−1(𝑡)⟩ + ⟨𝑚𝑗−1(𝑡)⟩)

𝛥2

]

+
𝑝𝑖,p
𝜏

⟨𝑢𝑖,𝑗 (𝑡)⟩
(

1 −
∑2

𝑖=1⟨𝑢𝑖,𝑗 (𝑡)⟩ + ⟨𝑚𝑗 (𝑡)⟩
𝑁

)

− 1
𝜏
𝑓𝑖→𝑙

(

⟨𝑢1,𝑗 (𝑡)⟩, ⟨𝑢2,𝑗 (𝑡)⟩, ⟨𝑚𝑗 (𝑡)⟩
)

⟨𝑢𝑖,𝑗 (𝑡)⟩

+ 1
𝜏
𝑓𝑙→𝑖

(

⟨𝑢1,𝑗 (𝑡)⟩, ⟨𝑢2,𝑗 (𝑡)⟩, ⟨𝑚𝑗 (𝑡)⟩
)

⟨𝑢𝑙,𝑗 (𝑡)⟩. (A.2)

Box I.
𝛾

w
s

𝜆

r
[

A

e obtain the following differential equation governing the dynamics
f ECM density �̃�(�̃�, 𝑡) over time:

𝜕�̃�
𝜕𝑡

= −
2
∑

𝑖=1
𝜆𝑖�̃�𝑢𝑖,

where �̃� ∈ R and 𝑡 ∈ R+. The parameter 𝜆𝑖 ≥ 0 describes the
degradation rate of ECM per cell in phenotypic state 𝑖.

Full system of equations. For phenotypes 𝑖 = {1, 2}, 𝑖 ≠ 𝑙, the full system
of equations at population level is given by:

𝜕𝑢𝑖
𝜕𝑡

= �̃�𝑖
𝜕
𝜕�̃�

[

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

𝜕�̃�𝑖
𝜕�̃�

+ �̃�𝑖
𝜕
𝜕�̃�

(
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

]

+ 𝑟𝑖�̃�𝑖

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�

�̃�

)

− 𝛾𝑖𝑙(�̃�1, �̃�2, �̃�)�̃�𝑖 + 𝛾𝑙𝑖(�̃�1, �̃�2, �̃�)�̃�𝑙 ,

𝜕�̃�
𝜕𝑡

= −
2
∑

𝑖=1
𝜆𝑖�̃�𝑢𝑖.

A.3. Two populations of specialists with volume-filling

Now consider the case where cells in phenotypic state 1 can move
and degrade ECM only, and cells in phenotypic state 2 are only able
to proliferate, following the go-or-grow hypothesis. We write 𝜆𝑖 as the
rate of ECM degradation and 𝑟𝑖 as the proliferation rate of cells in
phenotypic state 𝑖 and assume

𝜆2 = 0, 𝑟1 = 0, �̃�2 = 0, 𝜆1 ∈ R+ and 𝑟2 ∈ R+.

Without loss of generality, we assume that cells have a total weight-
ing, 𝑇 = 1, to distribute across the mechanisms governing the cells’
migration, irrelevant of their phenotypic state. As such, we introduce
𝜃𝑆,𝐷 ∈ [0, 𝑇 ] to describe the weighting of cells in phenotypic state
1 towards degrading ECM, and (𝑇 − 𝜃𝑆,𝐷) describes the remaining
weighting for movement.

Under the aforementioned assumptions, the following system of
differential equations describes the evolution of cell and ECM densities
over time:

𝜕𝑢1
𝜕𝑡

= (1 − 𝜃𝑆,𝐷)�̃�1
𝜕
𝜕�̃�

[

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�
𝐾

)

𝜕�̃�1
𝜕�̃�

+ �̃�1
𝜕
𝜕�̃�

(
∑2

𝑖=1 �̃�𝑖 + �̃��̃�
𝐾

)

]

+ �̃�2�̃�21(�̃�1, �̃�2, �̃�) − �̃�1�̃�12(�̃�1, �̃�2, �̃�), (A.4)

𝜕𝑢2
𝜕𝑡

= 𝑟2�̃�2

(

1 −
∑2

𝑖=1 �̃�𝑖 + �̃��̃�
𝐾

)

− �̃� �̃� (�̃� , �̃� , �̃�) + �̃� �̃� (�̃� , �̃� , �̃�), (A.5)
12

2 21 1 2 1 12 1 2 (
𝜕�̃�
𝜕𝑡

= −𝜃𝑆,𝐷𝜆1�̃�𝑢1, (A.6)

where the diffusion coefficient of cells of type 1 is given by �̃�1 ∈ R+,
the switching between cell phenotypic states 𝑝 ∈ {1, 2} is given by the
functions

�̃�12 ∶ R3
+ → R+ and �̃�21 ∶ R3

+ → R+,

where �̃�12 represents the rate of switching from phenotypic state 1 to 2,
and �̃�21 represents the rate of switching from phenotypic state 2 to 1,
𝜃𝑆,𝐷 ∈ [0, 1] is the weighting of cells in phenotypic state 1 to degrade
ECM, and 𝜆1 ∈ R is the ECM degradation rate by cells in phenotypic
state 1 and �̃� ∈ R.

Appendix B. Non-dimensionalisation of Eqs. (A.4)–(A.6)

Without loss of generality, we introduce the following non-
dimensional variables:

𝑥 =

√

𝑟2
�̃�1

�̃�, 𝑡 = 𝑟2𝑡, 𝑢1 =
𝑢1
𝐾

, 𝑢2 =
𝑢2
𝐾

, 𝑚 =
�̃��̃�
𝐾

,

alongside the following non-dimensional form of the switching func-
tions

𝛾12 = 𝛾12(𝑢1, 𝑢2, 𝑚) =
1
𝑟2

̃𝛾12(𝑢1, 𝑢2, �̃�),

21 = 𝛾21(𝑢1, 𝑢2, 𝑚) =
1
𝑟2

̃𝛾21(𝑢1, 𝑢2, �̃�),

hich, substituting into Eqs. (A.4)–(A.6), yields the non-dimensional
ystem

𝜕𝑢1
𝜕𝑡

= (1 − 𝜃𝑆,𝐷)
𝜕
𝜕𝑥

[

(

1 − 𝑢1 − 𝑢2 − 𝑚
) 𝜕𝑢1
𝜕𝑥

+ 𝑢1
𝜕
𝜕𝑥

(

𝑢1 + 𝑢2 + 𝑚
)

]

+ 𝑢2𝛾21(𝑢1, 𝑢2, 𝑚) − 𝑢1𝛾12(𝑢1, 𝑢2, 𝑚),
𝜕𝑢2
𝜕𝑡

= 𝑢2
(

1 − 𝑢1 − 𝑢2 − 𝑚
)

− 𝑢2𝛾21(𝑢1, 𝑢2, 𝑚) + 𝑢1𝛾12(𝑢1, 𝑢2, 𝑚),
𝜕𝑚
𝜕𝑡

= −𝜃𝑆,𝐷𝜆𝑚𝑢1,

where we have introduced the non-dimensional parameter

=
𝜆1𝐾
𝑟2

,

epresenting the rescaled ECM degradation rate, noting that 𝜃𝑆,𝐷 ∈
0, 1] is already a dimensionless parameter.

ppendix C. Spatially homogeneous steady states

In this section, we perform a steady state analysis for the system (5)–
7) subject to each of the phenotypic switching functions listed in
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Table 1. Since we are interested in travelling wave solutions, we seek
spatially homogeneous steady states.

For all phenotypic switching mechanisms we consider, the spatially
homogeneous steady states satisfy

𝑢2(1 − 𝑢1 − 𝑢2 − 𝑚) = 0, (C.1)

𝑚𝑢1 = 0. (C.2)

Eq. (C.2) implies that either 𝑚 = 0, or 𝑢1 = 0, and Eq (C.1) gives 𝑢2 = 0
or 𝑢1 + 𝑢2 + 𝑚 = 1.

C.1. Constant switching

For the case that 𝛾12(𝑢1, 𝑢2, 𝑚) = 𝛾21(𝑢1, 𝑢2, 𝑚) = 𝑠, the spatially
homogeneous steady states of the system (5)–(7) also satisfy

−𝑢1 + 𝑢2 = 0,

and the continuum of spatially homogeneous steady states is given by

1 ∶= (𝑢∗1 , 𝑢
∗
2 , 𝑚

∗) = (0, 0, �̄�),

2 ∶= (𝑢∗1 , 𝑢
∗
2 , 𝑚

∗) =
(

𝑢1, 𝑢2, 0
)

,

where 𝑢1, 𝑢2, �̄� ∈ [0, 1], prescribed by initial conditions, and 𝑢1 =
𝑢2 = 0.5 (see Supplementary Material S1 for values of 𝑢1 and 𝑢2 when
switching rates differ in either direction). The steady state 1 describes
the case with no cells present and only ECM. Alternatively, 2 describes
a mixed population of cells, and no ECM, where the ratio between cells
in phenotypic state 1 and 2 is determined by the phenotypic switching
rates in either direction (see Supplementary Fig. S1).

C.2. ECM-dependent switching

When we consider ECM-dependent switching, we find that the
spatially homogeneous steady states must satisfy Eqs. (C.1) and (C.2)
along with

−𝑢1(1 − 𝑚) + 𝑢2𝑚 = 0.

By the same arguments as before, the resulting steady states are given
by

1 ∶= (𝑢∗1 , 𝑢
∗
2 , 𝑚

∗) = (0, 0, �̄�),

2 ∶= (𝑢∗1 , 𝑢
∗
2 , 𝑚

∗) = (0, 1, 0).

Once again, the steady state described by no cells and only ECM (far
ahead of the travelling wave) is given by 1, but now 2 describes a
steady state consisting only of cells in phenotypic state 2.

C.3. Space-dependent switching

By considering phenotypic switching dependent on available space,
the spatially homogeneous steady states satisfy

−𝑠𝑢1(1 − 𝑢1 − 𝑢2 − 𝑚) + 𝑠𝑢2(𝑢1 + 𝑢2 + 𝑚) = 0,

such that the spatially homogeneous steady states are given by

1 ∶= (𝑢∗1 , 𝑢
∗
2 , 𝑚

∗) = (0, 0, �̄�), (C.3)

2 ∶= (𝑢∗1 , 𝑢
∗
2 , 𝑚

∗) = (1, 0, 0). (C.4)

1 is the same steady state described for constant and ECM-dependent
switching, where only ECM is present. 2 represents a steady state with
only cells in phenotypic state 1, and no cells in phenotypic state 2 or
ECM present.

C.4. Cell-dependent switching

Finally, the spatially homogeneous steady states under cell-
13

dependent phenotypic switching satisfy Eqs. (C.1)–(C.2) and
−𝑠𝑢1(1 − 𝑢1 − 𝑢2) + 𝑠𝑢2(𝑢1 + 𝑢2) = 0,

to give the spatially homogeneous steady states, 1 and 2 (see Eqs.
(C.3) and (C.4)), that are the same as those observed under space-
dependent switching.

Appendix D. Numerical simulation methods

The system (5)–(7) subject to zero flux boundary conditions and
initial conditions for the cells as in Eq. (8), and for the ECM as in
Eq. (4), are solved numerically using the method of lines on a one-
dimensional spatial domain 𝑥 ∈ [0, 𝐿], where 𝐿 > 0 is chosen to be
sufficiently large to remove the impacts of the boundary conditions and
enable convergence to a constant speed travelling wave.

To employ the method of lines, the spatial domain is uniformly
discretised into 𝑄 spatial points, with separation ℎ. An explicit central
differencing scheme, as described in [58], is then employed to solve the
system, taking the following form:

𝜕
𝜕𝑥

[

𝐷𝜕𝑎
𝜕𝑥

]

≈ 1
2ℎ2

[

(𝐷𝑞−1 +𝐷𝑞)𝑎𝑞−1 + (𝐷𝑖 +𝐷𝑞+1)𝑎𝑞+1

− (𝐷𝑞−1 + 2𝐷𝑞 +𝐷𝑞+1)𝑎𝑞

]

,

here 𝑎𝑞 represents the value of the function 𝑎 at the spatial point 𝑥𝑞 .
he system (5)–(7) can then be re-written as a system of 3𝑄 ordinary
ifferential equations, which is solved with zero flux boundary condi-
ions by simulating the ghost points 𝑥−1 and 𝑥𝑄+1 outside of the initial
patial domain, as described in [59]. The remaining system of equa-
ions, which has been discretised in space, is then solved numerically
n python using the built-in solver scipy.integrate.solve_ivp
ith the explicit Runge–Kutta integration method of order 5 and time

tep 𝛥𝑡 = 0.1.
To estimate the wave speeds numerically, for each time point that

e save a solution, we interpolate to find 𝑋(𝑡) such that

1(𝑋(𝑡), 𝑡) + 𝑢2(𝑋(𝑡), 𝑡) = 𝑦∗ ∈ (0, 1),

here we choose 𝑦∗ = 0.1 arbitrarily and then calculate

estimated(𝑡, 𝑡 + 𝛥𝑡) =
𝑋(𝑡 + 𝛥𝑡) −𝑋(𝑡)

𝛥𝑡
.

When the calculated wave speeds are observed to have converged to
a constant speed, such that the difference between two subsequent
measurements is of an order smaller than the order of error of the nu-
merical scheme, we record this as the travelling wave speed estimated
numerically.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mbs.2024.109240.
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