
Supplementary Information

S1. Distinct switching rates in either direction

In this section, we investigate the system (5)-(7) subject to the phenotypic switching functions listed in Table S1

with different switching rates in either direction, such that cells in phenotypic state 1 switch to phenotypic state

2 at rate s12 ∈ R+ and, equivalently, cells in phenotypic state 2 switch to phenotypic state 1 at a rate given by

s21 ∈ R+. Since there is limited evidence that distinctly different switching rates are biologically relevant [61], we

only briefly discuss some of the main results for s12 ̸= s21 in this section to demonstrate these parameters’ impact

on the model solutions.

Name γ12(u1, u2,m) γ21(u1, u2,m)

Constant switching s12 s21

ECM-dependent switching s12(1−m) s21m

Space-dependent switching s12(1− u1 − u2 −m) s21(u1 + u2 +m)

Cell-dependent switching s12(1− u1 − u2) s21(u1 + u2)

Table S1: Table listing the phenotypic switching functions.

Fig. S1 shows that, in the case of constant switching, the ratio between the phenotypic switching rates, s12 and

s21, directly determines the ratio between the volume fraction of cells in phenotypic states 1 and 2 in the bulk

of the migrating cell population, as described in Appendix C.1. For s12, s21 ∈ [0, 1] the relationship between the

travelling wave speed and these parameters is symmetrical around s12 = s21, which is the maximum speed observed

numerically and predicted analytically in the fast phenotypic switching regime (see Supplementary Material S2.3).

Furthermore, changes in the individual switching rates also impact the travelling wave profile and speed of

migration. For example, when considering ECM-dependent switching, although increasing the switching rate from

phenotypic state 2 to phenotypic state 1 decreases the travelling wave speed, it also changes the distribution of

cells in the migrating front such that the front of the travelling wave is dominated by degrading cells in phenotypic

state 1, ahead of a mixed region of cells in both states, and the bulk of proliferating cells remains in the rear (see

Fig. S2).

A similar result can be observed in Fig. S2 for space-dependent switching and cell-dependent switching. In these

cases, increasing the switching rate from phenotypic state 1 to phenotypic state 2 causes a leading population of

cells in phenotypic state 2 at the front of the travelling wave. In all cases, the greater the difference between the

switching rates, the larger and more concentrated this proportion of leader cells are.
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Figure S1: Plot demonstrating the relationship between the ratio of the switching rates, s12 and s21, and the ratio between the volume

fraction of the two cell sub-populations behind the wave front, u1/u2 when simulating the system (5)-(7) subject to the initial conditions

for the cells as in Eq. (8), and for the ECM as in Eq. (4), subject to constant phenotypic switching (see Table 1). This plot was produced

by running simulations under a variety of switching rates and plotting the ratio between the resulting cell sub-population densities behind

the wave front. The initial ECM volume fraction ahead of the cells is m0 = 0.5, the ECM degradation rate is λ = 1, and the width of

the region initially invaded by migrating cells is α = 1 across all simulations. For more information regarding the numerical methods

used see Appendix D.
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Figure S2: Travelling wave profiles of the solutions of Eqs. (5)-(7) subject to the initial conditions for the cells in Eq. (8), and for

the ECM in Eq. (4), plotted as a function of the travelling wave variable z = x − ct, where c is the numerically observed travelling

wave speed. These solutions demonstrate that changing the switching rate in one direction leads to one sub-population dominating the

migrating front. For ECM-dependent switching, the switching rate from phenotypic state 1 to 2 is s12 = 1 and the switching rate from

phenotypic state 2 to 1 is s21 = 10. For space- and cell-dependent switching, the switching rate from phenotypic state 1 to 2 is s12 = 10

and the switching rate from phenotypic state 2 to 1 is s21 = 1. The initial ECM volume fraction ahead of the cells is m0 = 0.5, the

ECM degradation rate is λ = 1, the weighting of the specialists towards degrading ECM is θS,D = 0.5 and the width of the region

initially invaded by migrating cells is α = 1 in all cases. For more information regarding the numerical methods used see Appendix D.
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S2. Formal travelling wave analysis in the fast phenotypic switching regime

In a regime where phenotypic switching is faster than cell motility and proliferation, we can consider the following

rescaled model

∂u1ϵ

∂t
= (1− θS,D)

∂

∂x

[(
1− u1ϵ − u2ϵ −mϵ

)∂u1

∂x
+ u1ϵ

∂

∂x

(
u1ϵ + u2ϵ +mϵ

)]

+
1

ϵ
u2ϵγ21(u1ϵ , u2ϵ ,mϵ)−

1

ϵ
u1ϵγ12(u1ϵ , u2ϵ ,mϵ),

∂u2ϵ

∂t
= θS,Pu2ϵ

(
1− u1ϵ − u2ϵ −mϵ

)
− 1

ϵ
u2ϵγ21(u1ϵ , u2ϵ ,mϵ) +

1

ϵ
u1ϵγ12(u1ϵ , u2ϵ ,mϵ),

∂mϵ

∂t
= −θS,Dλmu1ϵ ,

where ϵ ∈ R+, x ∈ R and t ∈ R+. Here, λ ∈ R+ is the rescaled rate of ECM degradation by cells in phenotypic

state 1, whilst θS,D ∈ [0, 1] describes the weighting of cells in phenotypic state 1 towards degrading ECM, θS,P = 1

describes the weighting of cells in phenotypic state 2 towards proliferation, and

γ12 : R3
+ → R+ and γ21 : R3

+ → R+,

are the non-dimensional phenotypic switching functions.

Simulations reveal that the model admits constant profile, constant speed travelling wave solutions, so we

introduce the travelling wave ansatz

Upϵ
(z) = Upϵ

(x− ct) = upϵ
(x, t),

Mϵ(z) = Mϵ(x− ct) = mϵ(x, t),

for p = {1, 2}, where c ∈ R+, that satisfy the following system of ODEs:

−c
dU1ϵ

dz
= (1− θS,D)

d

dz

[
(1− U1ϵ − U2ϵ −Mϵ)

dU1ϵ

dz
+ U1ϵ

d

dz
(U1ϵ + U2ϵ +Mϵ)

]
− 1

ϵ
U1ϵγ12(U1ϵ , U2ϵ ,Mϵ) +

1

ϵ
U2ϵγ21(U1ϵ , U2ϵ ,Mϵ), (S1)

−c
dU2ϵ

dz
= U2ϵ(1− U1ϵ − U2ϵ −Mϵ)

+
1

ϵ
U1ϵγ12(U1ϵ , U2ϵ ,Mϵ)−

1

ϵ
U2ϵγ21(U1ϵ , U2ϵ ,Mϵ), (S2)

−c
dMϵ

dz
= −λθS,DU1ϵMϵ. (S3)

Combining Eqs. (S1) and (S2) we find that the total cell volume fraction

Uϵ(z) = U1ϵ(z) + U2ϵ(z),

satisfies the ODE

−c
dUϵ

dz
= (1− θS,D)

d

dz

[
(1− Uϵ −Mϵ)

dU1ϵ

dz
+ U1ϵ

d

dz
(Uϵ +Mϵ)

]
+ U2ϵ(1− Uϵ −Mϵ), (S4)

for z ∈ R.
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Now consider constant phenotypic switching as defined in Table S1 and look for an analytical expression for the

travelling wave speed in asymptotic regions of λ, following the ideas in [3].

By considering the asymptotic expansions around Uϵ, U1ϵ , U2ϵ and Mϵ such that the leading-order terms are

given by U, U1, U2 and M , respectively, then as ϵ → 0+ we formally find, from Eqs. (S1) and (S2), that

Up(z) = ωp(U1, U2,M)U, (S5)

where

ω1 =
s21

s12 + s21
,

ω2 =
s12

s12 + s21
.

By substitution, Eq. (S4) becomes

−c
dU

dz
= ω1(1− θS,D)

d

dz

[
(1− U −M)

dU

dz
+ U

d

dz
(U +M)

]
+ ω2U(1− U −M),

which can be expanded and written as

ω1(1− θS,D)(1−M)
d2U

dz2
+ c

dU

dz
+ ω2U(1− U −M) = −ω1(1− θS,D)U

d2M

dz2
. (S6)

Furthermore, Eq. (S3) can be written as

c
dM

dz
= λθS,Dω1UM, (S7)

which yields

d2M

dz2
=

λθS,Dω1

c

(
U
dM

dz
+M

dU

dz

)
=

λθS,Dω1

c

(
λθS,Dω1

c
MU2 +M

dU

dz

)
. (S8)

Substituting Eq. (S8) into Eq. (S6) we find

ω1(1− θS,D)(1−M)
d2U

dz2
+ c

dU

dz
+ ω2U(1− U −M)

= −λθS,Dω2
1(1− θS,D)

c
MU

[
λθS,Dω1

c
U2 +

dU

dz

]
. (S9)

Moreover, solving Eq. (S7) subject to the boundary condition M(z) → m0 as z → ∞, where m0 ∈ [0, 1], gives

M(z) = m0exp
{
− λθS,Dω1

c

∫ ∞

z

U(s)ds

}
. (S10)

Under the boundary conditions Up(z) → 0 as z → ∞ for p = 1, 2 we have U(z) → 0 as z → ∞. At the migrating

front of the travelling wave (i.e., for z ∈ (ℓ,∞) with 1 ≪ ℓ < ∞), we can use the ansatz

U(z) ≈ exp
{
− βz

}
,

where β ∈ (0,∞) to give

M(z) = m0exp
{
− λθS,Dω1

βc
U(z)

}
, (S11)

for z ∈ (ℓ,∞).
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Figure S3: Plot showing the analytically predicted minimum travelling wave speed, cana, and the numerically estimated travelling wave

speed, csim, of solutions of the system (5)-(7) subject to the initial conditions for the cells as in Eq. (8), and for the ECM as in Eq. (4)

for very low ECM degradation rates, λ → 0+, and various initial ECM volume fractions ahead of the cells, m0, in fast phenotypic

switching regimes, defined by simulations with s12 = s21 = s = 104. The numerically estimated travelling wave speeds plotted in green

are for simulations with λ ≤ 10−2, while the analytical wave speeds plotted in red are given by Eq. (S15). The width of the region

initially invaded by migrating cells is α = 1 and the weighting of specialists towards degradation is θS,D = 0.5 across all simulations.

For more information regarding the numerical methods used see Appendix D.

S2.1. Formal asymptotic analysis for λ → 0+

Using Eq. (S11), it is clear that

M(z) ≈ m0exp
{
− λθS,Dω1

βc
U(z)

}
→ m0 as λ → 0+, (S12)

for z ∈ (ℓ,∞). In the asymptotic regime λ → 0+, since 0 < U(z) < 1 and dU(z)/dz ≈ −βU(z) for z ∈ (ℓ,∞),

substituting Eq. (S12) into Eq. (S9) results in the asymptotic relation

U(z)m0exp
{
− λθS,Dω1

βc
U(z)

}[
λθS,Dω1

c
U2(z) +

dU(z)

dz

]
→ 0 as λ → 0+,

for z ∈ (ℓ,∞). Formally, we find

ω1(1− θS,D)(1−M)
d2U

dz2
+ c

dU

dz
+ ω2U(1− U −M) ≈ 0, (S13)

for z ∈ (ℓ,∞). We notice that Eq. (S13) is equivalent to the Fisher-KPP model [9, 10] in travelling-wave co-ordinates:

D̃
d2Ũ(z)

dz2
+ c̃

dŨ

dz
+ r̃Ũ

(
1− Ũ

K̃

)
= 0, (S14)

where we have D̃ = ω1(1− θS,D)(1−m0), r̃ = ω2(1−m0) and K̃ = (1−m0). This correctly predicts (see Fig. S3),

as λ → 0+, a minimum travelling wave speed given by

cmin = 2(1−m0)
√
ω1ω2(1− θS,D), (S15)

which can be observed in Fig. S3 to agree with the numerically estimated wave speed for the system (5)-(7) when

λ → 0+.
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S2.2. Formal asymptotic analysis for λ → ∞

Revisiting the semi-explicit solution for M given by Eq. (S11), we find

M(z) ≈ m0exp
{
− λθS,Dω1

βc
U(z)

}
→ 0 as λ → ∞, (S16)

for z ∈ (ℓ,∞). In the asymptotic regime λ → ∞, since 0 < U(z) < 1 and dU(z)/dz ≈ −βU(z) for z ∈ (ℓ,∞),

substituting Eq. (S16) into Eq. (S6) results in the asymptotic relation

U(z)m0exp
{
− λθS,Dω1

βc
U(z)

}[
λθS,Dω1

c
U2(z) +

dU(z)

dz

]
→ 0 as λ → ∞,

for z ∈ (ℓ,∞). By substitution, we then find

ω1(1− θS,D)
d2U

dz2
+ c

dU

dz
+ ω2U(1− U) ≈ 0, (S17)

for z ∈ (ℓ,∞). In this case, Eq. (S17) is equivalent to the Fisher-KPP model (see Eq. (S14)) with parameters

D̃ = ω1(1− θS,D), r̃ = ω2 and K̃ = 1, so when λ → ∞ we have

cmin = 2
√
ω1ω2(1− θS,D). (S18)

Fig. S4 shows the convergence of the solutions to the system (5)-(7) to the solution of the Fisher-KPP model (see

Eq. (S14)) with parameters D̃ = ω1(1− θS,D), r̃ = ω2 and K̃ = 1 as λ → ∞.
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Figure S4: Plot of the total cell volume fraction obtained through numerical simulations of Eqs. (5)-(7) with constant phenotypic

switching (see Table 1) subject to the initial conditions for the cells as in Eq. (8) and for the ECM as in Eq. (4) for large values of

λ (solid lines), and numerical simulations of the Fisher-KPP model given by Eq. (S17) (dashed red line). In all simulations, solutions

are shown at t = 100 and the initial ECM volume fraction ahead of the cells is m0 = 0.1. The width of the region initially invaded

by migrating cells is α = 1, the weighting of specialists towards degradation is θS,D = 0.1 and the switching rate for all functions is

s = λ. Qualitatively, the same behaviour is observed for all m0 ∈ [0, 1). For more information regarding the numerical methods used

see Appendix D.
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S2.3. Maximising the travelling wave speed

In both λ → 0+ and λ → ∞ regimes, the travelling wave speeds, determined by Eq. (S15) and Eq. (S18),

respectively, are maximised when ω1ω2 is maximised. By considering

ω1ω2 =
s12s21

(s12 + s21)2
, (S19)

and differentiating twice with respect to s12, it is clear that

max(ω1ω2) = 0.25, (S20)

which is obtained when s12 = s21. As such, we can conclude that the travelling wave speed is always maximised

when phenotypic switching between states 1 and 2 occurs at the same rate in either direction.
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