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Optimizing the timing of an end- of- outbreak 
declaration: Ebola virus disease in the Democratic 
Republic of the Congo
William S. Hart1*, Jack M. Buckingham2, Mory Keita3,4, Steve Ahuka- Mundeke5, Philip K. Maini1, 
Jonathan A. Polonsky6, Robin N. Thompson1

Following the apparent final case in an Ebola virus disease (EVD) outbreak, the decision to declare the outbreak 
over must balance societal benefits of relaxing interventions against the risk of resurgence. Estimates of the end- 
of- outbreak probability (the probability that no future cases will occur) provide quantitative evidence that can 
inform the timing of an end- of- outbreak declaration. An existing modeling approach for estimating the end- of- 
outbreak probability requires comprehensive contact tracing data describing who infected whom to be available, 
but such data are often unavailable or incomplete during outbreaks. Here, we develop a Markov chain Monte 
Carlo–based approach that extends the previous method and does not require contact tracing data. Considering 
data from two EVD outbreaks in the Democratic Republic of the Congo, we find that data describing who infected 
whom are not required to resolve uncertainty about when to declare an outbreak over.

INTRODUCTION
Ebola virus infections have severe consequences, with case fatality 
rates between 25 and 90% in different Ebola virus disease (EVD) out-
breaks (1). The World Health Organization (WHO) therefore recom-
mends applying combinations of public health and social measures 
(PHSM) to bring outbreaks under control quickly, including surveil-
lance, case isolation, contact tracing, safe and dignified burials, vac-
cination, and community engagement and risk communication (1).

Following the final recorded case in an outbreak of EVD (or an-
other severe disease that necessitates stringent interventions), a key 
consideration is when the outbreak can be declared over safely and 
PHSM relaxed without a substantial risk of additional cases occur-
ring. WHO guidance for EVD recommends that the acute phase of 
the outbreak can be declared over if no further cases are detected for 
a period of 42 days (twice the theoretical maximum incubation pe-
riod for Ebola virus infection) following the last potential exposure 
to a recorded case (2). However, mathematical modeling studies have 
indicated that the probability of no future cases occurring (the end- 
of- outbreak probability) depends not only on the time since the last 
case but also on features of the specific outbreak under consideration 
(3–5). Estimates of the end- of- outbreak probability have therefore 
been proposed as an alternative basis for determining the timing of 
an end- of- outbreak declaration (3–5).

In previous work (5), we developed an approach for calculating the 
end- of- outbreak probability that can be used when the outbreak’s 
transmission tree (i.e., data describing who infected whom) is avail-
able. The approach in (5) allows for exact calculation of the end- of- 
outbreak probability using the branching process model underlying a 

widely used (6–11) approximate method developed by Nishiura et al. 
(6). However, the transmission tree typically requires substantial con-
tact tracing resources to construct and is rarely available in complete 
form during outbreaks.

Here, building upon the approach introduced in (5), we develop a 
method for inferring the end- of- outbreak probability exactly under 
the same branching process model, but without requiring the trans-
mission tree to be known. Specifically, we show how the method 
from (5) can be combined with data augmentation Markov chain 
Monte Carlo (MCMC) (12–15) to estimate and account for uncer-
tainty in the transmission tree.

We apply our MCMC- based approach to obtain quasi–real- time 
estimates of the end- of- outbreak probability using data from two his-
torical EVD outbreaks in the Democratic Republic of the Congo 
(DRC). First, we show that this method gives similar results to the 
approach from (5), but without requiring knowledge of the outbreak 
transmission tree, by applying both methods to data from a small out-
break in the Likati health zone in 2017 for which the transmission tree 
is available (16, 17). Then, we go on to apply the MCMC approach to 
disease incidence data from a larger outbreak in Équateur province in 
2020 (18, 19). We find that knowledge of the transmission tree of this 
outbreak would have been unlikely to affect model- based determina-
tion of the timing of an end- of- outbreak declaration substantially. In 
addition, our analyses suggest that both outbreaks could theoretically 
have been declared over earlier than the actual dates on which end- of- 
outbreak declarations were made (based on the WHO’s 42- day guide-
line) with only a small risk of further cases occurring.

RESULTS
Our MCMC- based approach for estimating the end- of- outbreak 
probability (hereafter referred to as the MCMC method) is illustrated 
in Fig. 1. The MCMC method requires three inputs (Fig. 1A): (i) dis-
ease incidence time series data (i.e., daily or weekly counts of newly 
identified cases); (ii) the offspring distribution (the probability distri-
bution characterizing the number of secondary cases generated by an 
infected host); and (iii) the serial interval distribution (the probability 
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distribution describing the interval between the symptom onset times 
of an infector- infectee transmission pair). As shown in (5), if the out-
break’s transmission tree is also available (up to the current time), 
then the end- of- outbreak probability can be derived analytically un-
der a branching process transmission model [the traced transmission 
method in (5), here shortened to the traced method]. If the transmis-
sion tree is unknown, then (as shown in Materials and Methods) the 
likelihoods of different transmission trees (that are consistent with the 
disease incidence time series data) being the true transmission tree 
can be derived under the same branching process transmission model 
(Fig. 1B). The end- of- outbreak probability given the disease incidence 
data is then given by a sum, taken over all possible transmission trees, 
of the end- of- outbreak- probability conditional on each tree (calcu-
lated using the traced method), weighted by the likelihood of that tree 
(we refer to the direct evaluation of this sum by enumerating all pos-
sible transmission trees as the enumerate method).

However, for all but very small outbreaks, evaluating this sum di-
rectly requires a large number of possible transmission trees to be 
considered. Therefore, in the MCMC method, we instead use MCMC 

to obtain a sample of possible transmission trees from the likelihood, 
which can then be used to calculate an estimate of the end- of- outbreak 
probability that is equivalent to that from the enumerate method (in 
the limit of a large number of MCMC iterations). Details of the differ-
ent methods for estimating the end- of- outbreak probability are given 
in Materials and Methods.

Simulation study
Before considering real- world EVD outbreak data, we first conducted 
analyses using synthetic data. This allowed us to not only compare 
outputs from the traced and MCMC methods in an idealized setting 
in which the true outbreak transmission tree is known, but also test 
our approach using data from multiple simulated outbreaks. Initially, 
we generated two small simulated datasets with weekly disease inci-
dence data (Fig. 2) using offspring and weekly serial interval distri-
butions representative of EVD transmission (fig. S1). Using small 
datasets with weekly data enabled us to verify in a simple setting that 
the MCMC method gives almost identical end- of- outbreak probabil-
ity estimates to the enumerate method and to another theoretically 
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Fig. 1. Schematic illustrating our MCMC- based approach for estimating the end- of- outbreak probability. (A) the McMc method for calculating the end- of- outbreak 
probability requires three inputs: disease incidence time series data [input (i)], the offspring distribution [input (ii)], and the serial interval distribution [input (iii)]. the 
offspring and serial interval distributions shown are the actual distributions for evd used in our analyses (see Materials and Methods). (B) the likelihoods of different pos-
sible transmission trees being the true transmission tree given the disease incidence data (up to the current time) are derived here, and the end- of- outbreak probability 
conditioned on a particular transmission tree can be calculated using the traced method introduced in (5). the end- of- outbreak probability given inputs (i) to (iii) can be 
calculated either by combining the end- of- outbreak probabilities under every possible transmission tree, weighted by the likelihood of each tree (enumerate method), 
or, equivalently, by using McMc to sample possible transmission trees from the likelihood (McMc method). (C) end- of- outbreak probability estimates on each day during 
and following the outbreak can be obtained by applying this process using data up to and including the current day.
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equivalent (but more computationally demanding) approach: the 
simulation method, which involves estimating the end- of- outbreak 
probability by running a large number of simulations of the transmis-
sion model and then calculating, out of all simulations that match the 
observed disease incidence up to the current time, the proportion of 
those simulations in which no further cases occur.

For one of the simulated datasets (Fig. 2A), the MCMC method 
gives slightly higher end- of- outbreak probability estimates following 
the final case than the traced method, whereas for the other dataset, 
estimates from the two methods following the final case are very sim-
ilar (Fig. 2B). Nonetheless, uncertainty in end- of- outbreak probability 
estimates obtained using the MCMC method, depending on the exact 
outbreak transmission tree, can be quantified: the blue shaded regions 
in Fig. 2 show 95% credible intervals of end- of- outbreak probability 
estimates in individual MCMC iterations (i.e., credible intervals for 
the possible end- of- outbreak probability values that could be ob-
tained if the transmission tree was constructed via contact tracing).

In addition, we calculated end- of- outbreak probability estimates 
using an existing approach (6–11) (the Nishiura method), which is 
based on the same branching process transmission model as the 
MCMC method and requires the same inputs, but only provides an 
approximation to the end- of- outbreak probability under this trans-
mission model (whereas the MCMC method infers the exact end- of- 
outbreak probability under that model; see Materials and Methods). 
For both outbreaks, estimates using the Nishiura method after the 
final recorded case are lower than those using the MCMC and traced 
methods, and are also below the lower limit of each 95% credible in-
terval obtained using the MCMC method.

We also considered three further, larger, simulated datasets with 
daily, rather than weekly, disease incidence data (fig.  S2). Because 
these simulated datasets are much larger and more detailed than 
those shown in Fig. 2 (comprising 36, 61, and 514 EVD cases), the 
enumerate and simulation methods were computationally challeng-
ing to apply. We therefore applied the MCMC and traced methods, 
and found that, for each dataset, the MCMC method gives compa-
rable end- of- outbreak probability estimates following the final case 

to the traced method (but without requiring the outbreak transmis-
sion tree to be known). Furthermore, both of those methods again 
provide different estimates to the approximate Nishiura method. Ex-
ample MCMC trace plots for end- of- outbreak probability calcula-
tions using the MCMC method are shown in fig. S3 for the largest 
simulated dataset.

As a final analysis of synthetic data, we tested the performance of 
the MCMC method when applied in scenarios with different trans-
mission patterns at the end of the outbreak. Specifically, we com-
pared end- of- outbreak probability estimates between the MCMC 
and traced methods for datasets in which a final case, which is an 
imported case, occurs after a range of possible time intervals follow-
ing the penultimate case (fig. S4). We again found that the two meth-
ods give similar end- of- outbreak probability estimates, even if the 
final case is erroneously assumed to have arisen due to local trans-
mission from previous cases when the MCMC method is used 
(fig. S4, D to F).

EVD outbreak case studies
We then applied the MCMC method to data from two historical 
EVD outbreaks in the DRC (Fig. 3). First, we considered an outbreak 
of eight EVD cases in the Likati health zone in 2017 (16, 17) (Fig. 3A). 
Because the transmission tree for this outbreak is available (17) 
(fig. S5), we were able to compare end- of- outbreak probability esti-
mates calculated using the MCMC and traced methods for this real- 
world outbreak (Fig. 3A). Then, we applied the MCMC method to 
disease incidence data from a larger outbreak of 130 EVD cases in 
Équateur province in 2020 (18–20) (Fig. 3B).

The MCMC method indicates that the risk of further cases occur-
ring (i.e., one minus the estimated end- of- outbreak probability) on 
the dates each outbreak was actually declared over based on the 42- day 
guideline (these dates are given by the orange dotted vertical lines in 
Fig. 3, A and B) was low: 0.12% for the Likati health zone outbreak on 
2 July 2017 (the corresponding risk value obtained using the traced 
method is 0.18%) and 0.01% for the Équateur province outbreak 
on 18 November 2020. This suggests that an earlier end- of- outbreak 
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Fig. 2. End- of- outbreak probability estimates for simulated datasets with weekly data. (A) disease incidence data (gray bars; values are shown on the left y axis) and 
end- of- outbreak probability estimates obtained using the McMc, traced, nishiura, enumerate, and simulation methods (values are shown on the right y axis) for the first 
simulated dataset. the blue shaded region indicates 95% credible intervals of end- of- outbreak probability estimates obtained in individual McMc iterations. (B) equiva-
lent results for the second simulated dataset.
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declaration could theoretically have been made for both outbreaks 
with only a small risk of a resurgence in cases. To explore this further, 
we considered when the two outbreaks could have been declared over, 
if a declaration was instead made based on the risk of additional cases 
occurring (obtained using the MCMC method or, for the Likati health 
zone outbreak only, the traced method) falling below a chosen thresh-
old (Fig. 3, C and D). We also calculated 95% credible intervals of 
dates on which the outbreaks could have been declared over for the 

MCMC method, accounting for uncertainty in the outbreak trans-
mission tree (error bars in Fig. 3, C and D).

The theoretical end- of- outbreak declaration date depends on both 
the risk threshold used and characteristics of the specific outbreak un-
der consideration—for example, for a 1% risk threshold, the MCMC 
method suggests that the Likati health zone outbreak could have been 
declared over on 20 June 2017 (40 days after the final recorded case 
developed symptoms, and 12 days before the outbreak was actually 
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Fig. 3. End- of- outbreak probability estimates for historical EVD outbreaks in the DRC. (A) disease incidence data (gray bars; values are shown on the left y axis) and 
end- of- outbreak probability estimates obtained using the McMc and traced methods (values are shown on the right y axis) for the 2017 evd outbreak in likati health 
zone, dRc. the blue shaded region indicates 95% credible intervals of end- of- outbreak probability estimates obtained in individual McMc iterations. (B) equivalent 
panel to (A) for the 2020 evd outbreak in Équateur province, dRc (end- of- outbreak probabilities are only shown for the McMc method, because the transmission tree was 
unavailable for this outbreak). (C) the earliest day following the day the final recorded case developed symptoms on which the 2017 likati health zone outbreak could 
have been declared over, based on the percentage risk of further cases calculated using the McMc or traced method falling below each of a range of threshold values. 
the error bars indicate 95% credible intervals of theoretical declaration dates obtained in individual McMc iterations. (D) equivalent panel to (c) for the 2020 Équateur 
province outbreak. in all panels, the actual day on which the outbreak was declared over (for both outbreaks, this was 42 days after the final case recovered) is indicated 
by an orange dotted line [vertical in (A) and (B) and horizontal in (c) and (d)]. example McMc trace plots for end- of- outbreak probability calculations using the McMc 
method are shown in figs. S6 and S7.
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declared over) and the Équateur province outbreak could have been 
declared over on 26 October 2020 (44 days after the final recorded 
case developed symptoms, and 23 days before the outbreak was actu-
ally declared over). For the Likati health zone outbreak, over all 
thresholds considered, the maximum difference in theoretical decla-
ration dates between the MCMC method and the traced method is 
2 days. For both outbreaks, the width of the 95% credible interval of 
the theoretical declaration date for the MCMC method (accounting 
for uncertainty in the transmission tree) is at most 4 days. These find-
ings suggest that there may be limited benefit gained from collecting 
comprehensive contact tracing data solely to refine the timing of an 
end- of- outbreak declaration (Fig. 3D).

DISCUSSION
Estimates of the probability that an EVD outbreak has ended can 
help to guide the timing of an end- of- outbreak declaration, enabling 
policy- makers to relax stringent and expensive PHSM as soon as 
possible without incurring a substantial risk of further cases. Here, 
we have built on previous work (5) to develop an MCMC- based 
modeling framework for estimating the end- of- outbreak probability. 
Unlike the traced method from (5), the MCMC method does not 
require information about who infected whom (i.e., the outbreak 
transmission tree) to be known. Applying our approach to two his-
torical EVD outbreaks in the DRC, we found that both outbreaks 
could potentially have been declared over earlier than the actual end- 
of- outbreak declaration dates with only a small risk of further cases 
occurring.

As noted above, the major advantage of the MCMC method over 
the traced method is that the MCMC method does not require the 
outbreak transmission tree to be known. Intensive contact tracing 
typically conducted as part of EVD outbreak responses (1) may en-
able transmission trees to be constructed, particularly for smaller 
outbreaks, as was the case for the 2017 Likati health zone outbreak 
considered here (17). Because the traced method is straightforward 
to apply and leverages more data than the MCMC method, we con-
tinue to recommend that this method be used whenever the trans-
mission tree is known to ensure that the most accurate possible 
end- of- outbreak probability estimates are obtained. However, the 
primary purpose of contact tracing is not to construct the complete 
outbreak transmission tree (but rather to identify and curtail chains 
of transmission), and particularly for larger outbreaks and/or in real 
time, the full transmission tree is not usually available. Our results 
demonstrate that the MCMC method can give similar results to the 
traced method while requiring only disease incidence time series 
data to be available (in addition to the offspring and serial interval 
distributions).

In addition to providing an overall end- of- outbreak probability 
estimate, the MCMC method can be used to quantify uncertainty in 
the end- of- outbreak probability depending on the (unknown) out-
break transmission tree. This uncertainty could potentially be fac-
tored into decisions about the timing of end- of- outbreak declarations, 
or used to evaluate the benefit of constructing the outbreak trans-
mission tree through intensive contact tracing for refining end- of- 
outbreak probability estimates. For example, we found that knowledge 
of the transmission tree for the relatively large Équateur province out-
break would have been unlikely to alter the timing of an end- of- 
outbreak declaration based on end- of- outbreak probability estimates 
by more than 2 days (Fig. 3D).

We note that a range of alternative approaches exist for estimating 
the end- of- outbreak probability from disease incidence time series 
data (4, 6–11, 21–26). In particular, the most commonly used ap-
proach (6–11)—the Nishiura method—uses the same inputs as the 
MCMC method and is straightforward to apply. However, the Nishiura 
method only approximates the end- of- outbreak probability, even as-
suming that the underlying branching process transmission model 
is correct (see Materials and Methods), whereas the MCMC method 
infers the exact end- of- outbreak probability under the same transmis-
sion model. When we analyzed synthetic transmission data (Fig.  2 
and fig.  S2), we found substantial differences in end- of- outbreak 
probability estimates between the MCMC and Nishiura methods. 
This discrepancy is consistent with the findings in (5), and likely arises 
because the approximating assumption underlying the Nishiura 
method does not hold when extensive superspreading can occur 
[see (5) for details], as assumed for EVD here based on previous find-
ings (27).

Our analyses of real- world and simulated data demonstrate that 
the MCMC method can be applied to EVD datasets of a range of 
sizes. In particular, the size of the largest simulated dataset that we 
considered (514 cases; fig. S2C) exceeds the number of reported cas-
es in all but two historical EVD outbreaks (28). Application of the 
MCMC method to an entire disease incidence time series from a 
larger EVD outbreak with thousands of cases may require substantial 
computational resources. However, we note that large outbreaks are 
typically composed of multiple smaller localized outbreaks, and the 
MCMC method could be applied to these individual local outbreaks. 
A policy- maker could then choose to declare the large outbreak over 
when the risk of future cases arising from all local outbreaks is suffi-
ciently low.

As in any modeling study, there are limitations to our results. First, 
our quantitative findings are only valid under the assumed transmis-
sion model and the input EVD offspring and serial interval distribu-
tions. However, estimates of these distributions differ between EVD 
outbreaks (29), potentially because of differences in Ebola virus sub-
type, interventions, and host behavior. Therefore, for practical use of 
our method, estimates specific to the outbreak under consideration 
should be used whenever possible. Because there may be substantial 
uncertainty in these distributions, particularly for small outbreaks, 
generalizing the MCMC method to account for this uncertainty 
(alongside uncertainty in the transmission tree) in end- of- outbreak 
probability estimates would be a useful future extension of our work. 
Temporal changes in the offspring and serial interval distributions 
could also be considered in a future study, as well as incorporation of 
partial transmission tree data (when available).

Another caveat of our study is that none of the methods for esti-
mating the end- of- outbreak probability considered here account 
for under- ascertainment of cases or delays in reporting. Because 
these are likely to be important considerations for EVD, particu-
larly when estimating the end- of- outbreak probability in real time 
to inform end- of- outbreak declarations (2, 3, 8, 22, 30), extending 
our MCMC method to account for these factors is a target for fu-
ture research. Nonetheless, we emphasize that the MCMC method 
relaxes key limitations of existing approaches that also do not ac-
count for under- reporting and/or delayed reporting (the traced 
and Nishiura methods).

In summary, we have developed an MCMC- based approach for 
estimating the end- of- outbreak probability using disease incidence 
data. This method builds on a previous one (5), with the crucial 
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difference being that the approach here does not require information 
about the outbreak transmission tree. Because the outbreak transmis-
sion tree is often unknown, this is a key extension to that previous 
research. The MCMC method suggests that two past EVD outbreaks 
could have been declared over earlier than the actual end- of- outbreak 
declaration dates determined using existing WHO guidelines (based 
on a period of 42 days passing without cases, following individuals 
last potentially being exposed to the previous case). In addition, if the 
outbreaks were instead declared over as soon as the estimated risk of 
further cases fell below a specified low threshold value, we found that 
lack of knowledge of the outbreak transmission tree would not have 
contributed substantial uncertainty to the theoretical end- of- outbreak 
declaration date. Consequently, comprehensive contact tracing may 
be unnecessary for the sole purpose of guiding the timing of an end- 
of- outbreak declaration. While EVD was our main focus here, the 
MCMC method can also be applied during outbreaks of other severe 
diseases. We hope that this will allow for informed public health 
decision- making about when stringent PHSM can be relaxed or 
removed.

MATERIALS AND METHODS
Transmission model
We considered a branching process transmission model character-
ized by two probability distributions:

1) The offspring distribution (the distribution of the number of 
secondary cases generated by each infected individual), with prob-
ability mass function p(y) for y = 0,1,2, ….

2) The discrete (daily or weekly) serial interval distribution (the 
distribution of the number of days or weeks between the symptom 
onset times of an infector- infectee pair), with probability mass func-
tion f(x) and cumulative distribution function F(x) for x = 1,2,3, …. 
We assumed that the serial interval can only take strictly positive 
values, which is a reasonable assumption for EVD (with daily data) 
as presymptomatic transmission is uncommon (31).

Specifically, in the forward transmission model, the number of 
secondary cases generated by each infected individual is sampled 
from the offspring distribution, and the symptom onset times of 
those secondary cases are then sampled according to the serial in-
terval distribution (independently for each case).

The methods for calculating the end- of- outbreak probability de-
scribed below could, in principle, be applied using any offspring dis-
tribution. However, as described below, some analytic simplifications 
are possible under the assumption of a negative binomial offspring 
distribution with mean R (the reproduction number) and dispersion 
parameter k [which characterizes the extent of superspreading, with 
a lower value of k corresponding to a greater degree of superspread-
ing (32)]. In this case, the probability mass function of the offspring 
distribution is

where we define 
The offspring and serial interval distributions used in our analy-

ses are described below (see the “EVD offspring and serial interval 
distributions” section).

End- of- outbreak probability
The end- of- outbreak probability at time t of the outbreak (where the 
symptom onset time of the first recorded case is taken to be time 0, 
and times are given in whole numbers of days or weeks) is defined as 
the probability that no further cases occur after time t, conditional on 
the outbreak data up to and including time t.

Below, we describe five methods for estimating the end- of- 
outbreak probability, each of which is based on the branching pro-
cess transmission model described above. Three of these methods 
(the simulation, enumerate, and MCMC methods) give the exact 
end- of- outbreak probability given disease incidence time series 
data (in addition to the offspring and serial interval distributions), 
and one method (the Nishiura method) gives an approximation to 
the end- of- outbreak probability. The remaining method (the traced 
method) gives the exact end- of- outbreak probability conditional 
on the disease incidence time series and the outbreak transmis-
sion tree.

In the below equations, disease incidence time series data are char-
acterized by the total number, n, of cases up to the current time, t, and 
their symptom onset times, τ = (τ1, τ2, …, τn). The outbreak transmis-
sion tree is characterized by the vector r = (r1, …, rn), where ri denotes 
the identity of the infector of individual i (and we define r1 = 0 to de-
note that the index case was an imported case).
Traced method
If the outbreak transmission tree is known up to and including time 
t, the exact end- of- outbreak probability under the assumed trans-
mission model can be calculated (5) and is given by

where the second equality applies for a negative binomial offspring 
distribution (as parameterized above), ai is the number of secondary 
transmissions generated to date by individual i, and all other nota-
tion is defined above. This expression is derived in the Supplemen-
tary Materials.
Enumerate method
If only disease incidence data are available, then an expression for the 
end- of- outbreak probability can be obtained by conditioning on the 
unknown transmission tree

Here, the sum is taken over all transmission trees that are consistent 
with the disease incidence data; Prob(outbreak over∣n, τ, r) is the 
end- of- outbreak probability for the traced method (Eq.  1 above); 
and Prob(r∣n, τ) is the likelihood of the transmission tree specified 
by r given the disease incidence time series data (an expression 
for the likelihood is derived in the Supplementary Materials—
eqs. S14 and S15).

The enumerate method involves directly evaluating the sum in 
Eq. 2 by enumerating all possible transmission trees that are consis-
tent with the disease incidence data.

p(y) =
Γ(k + y)

y !Γ(k)
qy(1−q)k, for y = 0, 1, 2, …

q = R(R + k).

(1)

Prob(outbreak over ∣n, �)=
∑

r

Prob(outbreak over ∣n, �, r)×Prob(r ∣n, �) (2)
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MCMC method
Instead of calculating the sum in Eq. 2 directly, the MCMC method 
involves calculating the end- of- outbreak probability by using data 
augmentation MCMC to obtain a sample of possible transmission 
trees from the likelihood, Prob(r∣n, τ). Specifically, a version of the 
Metropolis- Hastings algorithm is used, where in each MCMC itera-
tion, an augmented transmission tree is updated by proposing a new 
candidate infector for one randomly chosen individual. Equation 1 is 
then used to calculate the end- of- outbreak probability given the aug-
mented transmission data for each MCMC iteration. An overall end- 
of- outbreak probability estimate (which is equivalent to Eq. 2 when a 
large number of MCMC iterations are used) is then obtained by cal-
culating the average of the estimates from the individual iterations 
(after burn- in and thinning). The distribution of end- of- outbreak 
probability estimates from different MCMC iterations can also be 
used to quantify uncertainty in the end- of- outbreak probability de-
pending on the exact transmission tree, leading to the credible inter-
vals shown in Figs. 2 and 3.

Details of the MCMC algorithm are given in the Supplementa-
ry Materials. When we used the MCMC method to calculate the 
end- of- outbreak probability (at an individual time point), we car-
ried out 10,000,000 total MCMC iterations, of which we discarded 
the first 2,000,000 iterations (burn- in) and then retained only one 
in every 1000 subsequent iterations (thinning). In all our analyses 
of either simulated or real- world data (except for the analysis of 
the largest simulated dataset—fig. S2C), this gave an estimated ef-
fective sample size correcting for autocorrelation (33) [calculated 
using the ArviZ Python package (34)] of at least 1000 from an 
overall sample of 8000 end- of- outbreak probability values in indi-
vidual MCMC iterations (after burn- in and thinning). For the 
largest simulated dataset only, we carried out additional MCMC 
iterations to ensure that an estimated effective sample size of at 
least 1000 was achieved at each time point, as detailed in the cap-
tion to fig. S2.
Simulation method
The simulation method involves repeatedly simulating the forward 
branching process transmission model until a specified number of 
simulations have been obtained in which the simulated data match 
the recorded data up to the current time, t (we obtained 10,000 match-
ing simulations whenever we used this method). The end- of- outbreak 
probability can then be estimated as the proportion of matching sim-
ulations in which no cases occur following time t.

In scenarios in which the transmission tree is known, this method 
could, in principle, be extended to match simulations to the recorded 
transmission tree. However, here we only considered matching simu-
lations to disease incidence data (this is because our main aim when 
using the simulation method was to verify that, given identical 
data, the MCMC and simulation methods give very similar end- of- 
outbreak probability estimates).
Nishiura method
The Nishiura method is based on the following approximate formula 
for the end- of- outbreak probability given disease incidence data

where the second equality again applies for a negative binomial off-
spring distribution. This formula involves an assumption that the 
probability that an existing infected individual generates future in-
fections (after time t) is independent of the number of infections that 
the individual has already generated. However, this assumption does 
not always hold in the underlying transmission model—specifically, 
for a negative binomial offspring distribution, this assumption does 
not hold except in the limit k → ∞ in which transmission is not 
overdispersed (this limit corresponds to a Poisson offspring distri-
bution). Therefore, the Nishiura method only provides an approx-
imation to the end- of- outbreak probability (even if the assumed 
transmission model is correct) (5).

EVD offspring and serial interval distributions
In our analyses considering both simulated and real- world data, we 
assumed the following probability distributions characterizing EVD 
transmission:

1) A negative binomial offspring distribution with mean R = 0.95 
and dispersion parameter k = 0.18 (27).

2) A gamma- distributed continuous serial interval (i.e., distribu-
tion of intervals between the precise symptom onset times of infector- 
infectee pairs) with mean 15.3 days and SD 9.3 days (29, 35). We 
discretized this distribution using the method described in (36) to 
obtain a daily discrete serial interval distribution, ensuring a strictly 
positive serial interval by reassigning probability mass from 0 days to 
1 day. In addition, when we considered weekly simulated data 
(Fig. 2), we used the same continuous distribution in units of weeks 
(i.e., a gamma distribution with mean 2.2 weeks and SD 1.3 weeks) 
and used the same discretization method to obtain a weekly discrete 
serial interval distribution.

The distributions described above are shown in the Supplemen-
tary Materials (fig. S1), and the offspring and daily serial interval 
distributions are also shown in Fig. 1 [inputs (ii) and (iii) in (A), 
respectively].

Simulation study
We generated synthetic EVD outbreak data by simulating the as-
sumed branching process transmission model using the EVD off-
spring and serial interval distributions described above. Specifically, 
we used the weekly serial interval distribution to generate datasets 
with weekly disease incidence data (Fig. 2), and the daily serial inter-
val distribution to generate datasets with daily data (fig. S2). In addi-
tion, we considered datasets (with daily data) in which a single 
additional imported case was assumed to occur after a specified inter-
val (14, 21, or 28 days) following the (otherwise) final case in a simu-
lated outbreak (with no further cases occurring; fig. S4).

EVD outbreak case studies
We considered real- world data from two past EVD outbreaks in the 
DRC. The first outbreak occurred in the Likati health zone in 2017 
and comprised eight EVD cases occurring between 27 March and 11 
May (16, 17). The outbreak was declared over on 2 July, 42 days after 
the final case recovered (16). Daily disease incidence data (Fig. 3A) 
and the outbreak transmission tree (fig. S5) were available for this out-
break (17). For the purposes of our analyses, we shifted the symptom 
onset date of one case (ID 4 in fig. S5) to later than the date reported 
in (17) (24 April to 1 May) to avoid a 0- day serial interval. We did this 
because a 0- day serial interval is highly unlikely for EVD as transmis-
sion is typically only possible after symptom onset (31). Furthermore, 

Prob(outbreak over∣n, �)≈

n
∏

i=1

∞
∑

y=0

p(y)F(t−τi)
y =

n
∏

i=1

[

1−q

1−qF(t−τi)

]k
(3)
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we note that this later symptom onset date is consistent with epide-
miological investigations undertaken at the time that suggest that in-
dividual ID 4 developed symptoms in May.

The second outbreak occurred in Équateur province in 2020 and 
comprised 130 EVD cases occurring between 9 May and 12 September 
(18–20). The outbreak was declared over on 18 November, 42 days 
after the final case recovered (18). Daily disease incidence data were 
available (20) (Fig. 3B).

Supplementary Materials
This PDF file includes:
Supplementary text
Figs. S1 to S7
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