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Supplementary Text 

Notation 

We use the following notation throughout the Supplementary Text: 

• 𝑝(𝑦) is the probability mass function of the offspring distribution (for 𝑦 = 0,1,2, … ).

When considering a negative binomial offspring distribution with mean 𝑅 and dispersion

parameter 𝑘, we take  𝑝(𝑦) =
Γ(𝑘+𝑦)

𝑦!Γ(𝑘)
𝑞𝑦(1 − 𝑞)𝑘, where 𝑞 = 𝑅/(𝑅 + 𝑘).

• 𝑓(𝑥) is the probability mass function of the discrete (daily or weekly) serial interval

distribution (for 𝑥 = 1,2, …  days or weeks), and 𝐹(𝑥) is the corresponding cumulative

distribution function.

• 𝑡 is the time up to (and including) which data are available (at which the end-of-outbreak

probability is to be estimated), where the symptom onset time of the first case is taken to

be time 0, and all times are either in whole days or weeks (dependent on whether daily or

weekly disease incidence data are available).

• 𝑛 is the number of recorded cases to date.

• The recorded cases (up to and including time 𝑡) are labelled with integer IDs 𝑖 =

1,2, … , 𝑛, ordered by symptom onset time.

• 𝜏𝑖 is the symptom onset time of case 𝑖, and we write 𝝉 = (𝜏1, 𝜏2, … , 𝜏𝑛).

• 𝑟𝑖 is the ID of the (recorded or estimated) infector of case 𝑖, and we write 𝒓 = (𝑟1, … , 𝑟𝑛).

We define 𝑟1 = 0 to specify that the index case was an imported case, and we assume for

simplicity that all other cases arose as a result of local transmission (note that when

considering multiple imported cases in Fig. S4, we assumed that some of our results

remain valid in this scenario, as described in the caption to that figure).

• 𝑧𝑖,𝑠 is the number of cases infected by case 𝑖 who go on to develop symptoms at time 0 ≤

𝑠 ≤ 𝑡 (under a recorded or estimated transmission tree). We write 𝑍 to denote the

(𝑛 × (𝑡 + 1)) matrix with entries 𝑧𝑖,𝑠, and 𝒛𝒊 = (𝑧𝑖,0, … , 𝑧𝑖,𝑡) for the sequence of case

numbers generated by individual 𝑖, up to (and including) time 𝑡.

• 𝑎𝑖 is the number of recorded transmissions generated by individual 𝑖 up to (and including)

time 𝑡, and we write 𝒂 = (𝑎1, … , 𝑎𝑛).

• 𝑌𝑖 is a random variable giving the total number of secondary cases ever generated by

individual 𝑖, including those occurring after the current time, 𝑡, and we write 𝒀 =

(𝑌1, … , 𝑌𝑛).

Disease incidence data are characterised by the pair (𝑛, 𝝉), where the dependence on 𝑛 is 

included to specify explicitly that exactly 𝑛 cases have occurred up to time 𝑡. The 

transmission tree is characterised by the vector of infectors, 𝒓. 

Derivation of end-of-outbreak probability given the transmission tree 

Here, we derive the expression for the end-of-outbreak probability given both disease 

incidence data and the outbreak transmission tree (recorded or estimated), up to and including 

the current time, 𝑡 (i.e., the end-of-outbreak probability for the traced method – equation (1) 

in the main text). 



We calculate: 

Prob(outbreak over ∣ 𝑛, 𝝉, 𝒓) = Prob( 𝒀 = 𝒂 ∣ 𝑛, 𝝉, 𝒓 ) 

= Prob( 𝒀 = 𝒂 ∣ 𝝉, 𝑍 ) 

= ∏ Prob( 𝑌𝑖 = 𝑎𝑖 ∣∣ 𝝉, 𝑍 )

𝑛

𝑖=1

 

= ∏ Prob( 𝑌𝑖 = 𝑎𝑖 ∣∣ 𝜏𝑖 , 𝒛𝒊 )

𝑛

𝑖=1

 

= ∏
Prob( 𝑌𝑖 = 𝑎𝑖 , 𝒛𝒊 ∣∣ 𝜏𝑖 )

Prob( 𝒛𝒊 ∣∣ 𝜏𝑖 )

𝑛

𝑖=1

. 
(S1) 

Here, the second and fourth equalities follow because the probability of each recorded case 

generating future cases depends only on their symptom onset time and information on the 

transmissions they have generated to date, and the third equality follows by the assumption 

that transmissions occur according to a branching process. 

Now, for integer 𝑙 ≥ 0, we have: 

Prob(𝑌𝑖 = 𝑎𝑖 + 𝑙, 𝒛𝒊 ∣ 𝜏𝑖) = Prob( 𝒛𝒊 ∣∣ 𝜏𝑖 , 𝑌𝑖 = 𝑎𝑖 + 𝑙 ) × Prob( 𝑌𝑖 = 𝑎𝑖 + 𝑙 ∣∣ 𝜏𝑖 ) 

= (
𝑎𝑖 + 𝑙

𝒛𝒊, 𝑙
) (∏ 𝑓(𝑠 − 𝜏𝑖)

𝑧𝑖,𝑠

𝑡

𝑠=0

) (1 − 𝐹(𝑡 − 𝜏𝑖))
𝑙
𝑝(𝑎𝑖 + 𝑙),

(S2) 

where 𝑓(𝑠 − 𝜏𝑖)𝑧𝑖,𝑠 gives the probability that 𝑧𝑖,𝑠 specified secondary cases generated by 𝑖

develop symptoms at time 𝑠 (defining this term to equal 1 when both 𝑓(𝑠 − 𝜏𝑖) and 𝑧𝑖,𝑠 are

zero), (1 − 𝐹(𝑡 − 𝜏𝑖))𝑙 gives the probability that 𝑙 specified secondary cases develop

symptoms after the current time, 𝑡, and the multinomial coefficient, 

(
𝑎𝑖 + 𝑙

𝒛𝒊, 𝑙
) =

(𝑎𝑖 + 𝑙)!

𝑧𝑖,0! 𝑧𝑖,1! … 𝑧𝑖,𝑡! 𝑙!
= (

𝑎𝑖 + 𝑙

𝑙
) × (

𝑎𝑖

𝒛𝒊
), 

(S3) 

gives the number of ways in which the (𝑎𝑖 + 𝑙) total secondary cases can be divided into

cases developing symptoms on each time up to time 𝑡 and cases developing symptoms after 

time 𝑡. Therefore, 

Prob(𝑌𝑖 = 𝑎𝑖 , 𝒛𝒊 ∣ 𝜏𝑖) = (
𝑎𝑖

𝒛𝒊
) (∏ 𝑓(𝑠 − 𝜏𝑖)𝑧𝑖,𝑠

𝑡

𝑠=0

) 𝑝(𝑎𝑖),
(S4) 

and 

Prob( 𝒛𝒊 ∣∣ 𝜏𝑖 ) = ∑ Prob(𝑌𝑖 = 𝑎𝑖 + 𝑙, 𝒛𝒊 ∣ 𝜏𝑖)

∞

𝑙=0

 

= (
𝑎𝑖

𝒛𝒊
) (∏ 𝑓(𝑠 − 𝜏𝑖)

𝑧𝑖,𝑠

𝑡

𝑠=0

) ∑ (
𝑎𝑖 + 𝑙

𝑙
) (1 − 𝐹(𝑡 − 𝜏𝑖))

𝑙
𝑝(𝑎𝑖 + 𝑙).

∞

𝑙=0 (S5) 

Substituting equations (S4) and (S5) into equation (S1) then gives 

Prob(outbreak over ∣ 𝑛, 𝝉, 𝒓) = ∏
𝑝(𝑎𝑖)

∑ (𝑎𝑖+𝑙
𝑙

)(1 − 𝐹(𝑡 − 𝜏𝑖))
𝑙
𝑝(𝑎𝑖 + 𝑙)∞

𝑙=0

𝑛

𝑖=1

. 
(S6) 



Finally, for a negative binomial offspring distribution, 

∑ (
𝑎𝑖 + 𝑙

𝑙
) (1 − 𝐹(𝑡 − 𝜏𝑖))

𝑙
𝑝(𝑎𝑖 + 𝑙)

∞

𝑙=0

= ∑
(𝑎𝑖 + 𝑙)!

𝑙! 𝑎𝑖!
(1 − 𝐹(𝑡 − 𝜏𝑖))

𝑙 Γ(𝑘 + 𝑎𝑖 + 𝑙)

(𝑎𝑖 + 𝑙)! Γ(𝑘)
𝑞𝑎𝑖+𝑙(1 − 𝑞)𝑘

∞

𝑙=0

=
Γ(𝑘 + 𝑎𝑖)

𝑎𝑖! Γ(𝑘)
𝑞𝑎𝑖(1 − 𝑞)𝑘 (1 − 𝑞(1 − 𝐹(𝑡 − 𝜏𝑖)))

−(𝑘+𝑎𝑖)

= × ∑
Γ((𝑘 + 𝑎𝑖) + 𝑙)

𝑙! Γ(𝑘 + 𝑎𝑖)
(𝑞(1 − 𝐹(𝑡 − 𝜏𝑖)))

𝑙
(1 − 𝑞(1 − 𝐹(𝑡 − 𝜏𝑖)))

(𝑘+𝑎𝑖)
∞

𝑙=0

= 𝑝(𝑎𝑖) (1 − 𝑞(1 − 𝐹(𝑡 − 𝜏𝑖)))
−(𝑘+𝑎𝑖)

, (S7) 

where the final equality is obtained because the expression inside the sum on the previous 

line is the probability mass function of a negative binomial distribution. Substituting equation 

(S7) into equation (S6), we obtain 

Prob(outbreak over ∣ 𝑛, 𝝉, 𝒓) = ∏(1 − 𝑞(1 − 𝐹(𝑡 − 𝜏𝑖)))
(𝑘+𝑎𝑖)

𝑛

𝑖=1

. 
(S8) 

Derivation of likelihood of transmission tree given disease incidence data 

Here, we derive the likelihood, Prob( 𝒓 ∣ 𝑛, 𝝉 ), of the transmission tree characterised by 𝒓 

given disease incidence data characterised by (𝑛, 𝝉), which is used in the MCMC and 

enumerate methods for calculating the end-of-outbreak probability. 

We first consider the probability of transmission frequency matrix 𝑍 given the disease 

incidence data (where multiple distinct transmission trees may give rise to the same 𝑍, as 

quantified later): 

Prob( 𝑍 ∣ 𝑛, 𝝉 ) =
Prob( 𝑍, 𝑛 ∣ 𝝉 )

Prob(𝑛 ∣ 𝝉)

∝  Prob( 𝑍, 𝑛 ∣ 𝝉 ) 

= Prob( 𝑍 ∣ 𝝉 ) 

= Prob( 𝒛𝒏 ∣∣ 𝒛𝟏, … , 𝒛𝒏−𝟏, 𝝉 )Prob( 𝒛𝟏, … , 𝒛𝒏−𝟏 ∣∣ 𝝉 ) 

= Prob( 𝒛𝒏 ∣∣ 𝜏𝑛 )Prob( 𝒛𝟏, … , 𝒛𝒏−𝟏 ∣∣ 𝝉 ) 

= Prob( 𝒛𝒏 ∣∣ 𝜏𝑛 ) ×
Prob( 𝒛𝟏, … , 𝒛𝒏−𝟏, 𝜏𝑛 ∣∣ 𝜏1, … , 𝜏𝑛−1 )

Prob( 𝜏𝑛 ∣∣ 𝜏1, … , 𝜏𝑛−1 )

∝ Prob( 𝒛𝒏 ∣∣ 𝜏𝑛 )Prob( 𝒛𝟏, … , 𝒛𝒏−𝟏, 𝜏𝑛 ∣∣ 𝜏1, … , 𝜏𝑛−1 ) 

= Prob( 𝒛𝒏 ∣∣ 𝜏𝑛 )Prob( 𝒛𝟏, … , 𝒛𝒏−𝟏 ∣∣ 𝜏1, … , 𝜏𝑛−1 ) 

∝ ⋯ ∝ ∏ Prob( 𝒛𝒊 ∣∣ 𝜏𝑖 )

𝑛

𝑖=1

, 
(S9) 

where each constant of proportionality depends only on 𝑛 and 𝝉. Using equation (S5), we 

then have 



Prob(𝑍 ∣ 𝑛, 𝝉) ∝ ∏ (
𝑎𝑖

𝒛𝒊
) (∏ 𝑓(𝑠 − 𝜏𝑖)𝑧𝑖,𝑠

𝑡

𝑠=0

) ∑ (
𝑎𝑖 + 𝑙

𝑙
) (1 − 𝐹(𝑡 − 𝜏𝑖))

𝑙
𝑝(𝑎𝑖 + 𝑙)

∞

𝑙=0

𝑛

𝑖=1

. 
(S10) 

Now, the likelihood is given by 

Prob( 𝒓 ∣ 𝑛, 𝝉 ) = Prob( 𝒓, 𝑍 ∣ 𝑛, 𝝉 ) 

= Prob( 𝒓 ∣ 𝑛, 𝝉, 𝑍 )Prob( 𝑍 ∣ 𝑛, 𝝉 ). (S11) 

We note that the number of transmission trees that would give rise to specified 𝑛, 𝝉 and 𝑍 is 

∏ (
∑ 𝑧𝑖,𝑠

𝑛
𝑖=1

𝑧1,𝑠, … , 𝑧𝑛,𝑠
) ,

𝑡

𝑠=0

 
(S12) 

and each of these transmission trees is equally likely. Therefore, we have 

Prob( 𝒓 ∣ 𝑛, 𝝉, 𝑍 ) =
1

∏ ( ∑ 𝑧𝑖,𝑠
𝑛
𝑖=1

𝑧1,𝑠,…,𝑧𝑛,𝑠
)𝑡

𝑠=0

∝ ∏ ∏ 𝑧𝑖,𝑠!

𝑡

𝑠=0

𝑛

𝑖=1

, 
(S13) 

where the constant of proportionality again depends only on 𝑛 and 𝝉 (since ∑ 𝑧𝑖,𝑠
𝑛
𝑖=1  is simply 

the total number of cases arising at time 𝑠). Substituting equations (S10) and (S13) into 

equation (S11) then gives 

Prob( 𝒓 ∣ 𝑛, 𝝉 ) ∝ ∏ 𝑎𝑖! (∏ 𝑓(𝑠 − 𝜏𝑖)
𝑧𝑖,𝑠

𝑡

𝑠=0

) ∑ (
𝑎𝑖 + 𝑙

𝑙
) (1 − 𝐹(𝑡 − 𝜏𝑖))

𝑙
𝑝(𝑎𝑖 + 𝑙)

∞

𝑙=0

𝑛

𝑖=1

. 
(S14) 

Finally, for a negative binomial offspring distribution, substituting equation (S7) into 

equation (S14) gives 

Prob( 𝒓 ∣ 𝑛, 𝝉 ) ∝ ∏ 𝑎𝑖! (∏ 𝑓(𝑠 − 𝜏𝑖)
𝑧𝑖,𝑠

𝑡

𝑠=0

) 𝑝(𝑎𝑖) (1 − 𝑞(1 − 𝐹(𝑡 − 𝜏𝑖)))
−(𝑘+𝑎𝑖)

𝑛

𝑖=1

. 
(S15) 

In the MCMC method for calculating the end-of-outbreak probability, the exact constant of 

proportionality in equation (S15) is not required to sample possible transmission trees from 

the likelihood, Prob( 𝒓 ∣ 𝑛, 𝝉 ). On the other hand, when we used the enumerate method to 

calculate the end-of-outbreak probability, we used equation (S15) to calculate the relative 

likelihoods of all possible transmission trees, and then normalised these likelihood values to 

ensure that they sum to one. 

Details of MCMC algorithm 

The algorithm used in the MCMC method for calculating the end-of-outbreak probability 

given disease incidence data (characterised by the pair (𝑛, 𝝉)) is detailed below. We denote 

the total number of MCMC iterations by 𝑀 = 𝑀𝐵 + 𝑀𝑇𝑀𝐾, where 𝑀𝐾 is the number of

iterations retained after discarding the first 𝑀𝐵 iterations (to allow the chain to converge to its

stationary distribution – burn-in) and then keeping only one in 𝑀𝑇 subsequent iterations (to

reduce autocorrelation – thinning). 



The MCMC algorithm, which is a version of the Metropolis-Hastings algorithm, involves the 

following steps: 

1. Initialise the augmented transmission tree, 𝒓 = 𝒓(0) (we sampled the identity of the

infector of each locally infected case according to the serial interval distribution, as

described below).

2. For each MCMC iteration, 𝑚 = 1,2, … , 𝑀, do the following:

a. Sample a new transmission tree, 𝒓(prop), from the proposal distribution,

denoted 𝑄(𝒓(prop) ∣ 𝑛, 𝝉, 𝒓(𝑚−1)). Here, we describe the MCMC algorithm for

a general proposal distribution; the specific proposal distribution used in our

analyses is given below.

b. Calculate the acceptance probability,

 𝛼 = min (
Prob( 𝒓(prop) ∣∣ 𝑛, 𝝉 )𝑄(𝒓(𝑚−1) ∣ 𝑛, 𝝉, 𝒓(prop))

Prob( 𝒓(𝑚−1)
∣∣ 𝑛, 𝝉 )𝑄(𝒓(prop) ∣ 𝑛, 𝝉, 𝒓(𝑚−1))

, 1), 
(S16) 

where the likelihood, Prob( 𝒓 ∣ 𝑛, 𝝉 ), is given in equation (S15) above (a 

simplified version of equation (S16) under our specific choice of proposal 

distribution is given below). 

c. Generate a random number, 𝑢, uniformly distributed between 0 and 1.

d. If 𝑢 ≤ 𝛼, set 𝒓(𝑚) = 𝒓(prop) (i.e., accept the proposed transmission tree).

Otherwise, set 𝒓(𝑚) = 𝒓(𝑚−1).

e. If iteration 𝑚 is kept after burn-in and thinning, use the traced method

(equation (1) in the main text) to calculate the end-of-outbreak probability,

Prob(outbreak over ∣ 𝑛, 𝝉, 𝒓(𝑚)), given the current transmission tree.

3. Calculate the overall end-of outbreak probability estimate,

Prob(outbreak over ∣ 𝑛, 𝝉) ≈
1

𝑀𝐾
∑ Prob(outbreak over ∣ 𝑛, 𝝉, 𝒓(𝑀𝐵+𝑚𝐾𝑀𝑇))

𝑀𝐾

𝑚𝐾=1

. 
(S17) 

Choice of proposal distribution and algebraic simplification 

In each MCMC iteration, 𝑚, we generated a proposed transmission tree, 𝒓(prop), by

resampling the imputed infector of a single locally infected case, 𝑖 (with 𝒓(prop) otherwise

identical to 𝒓(𝑚−1)). Specifically, individual 𝑖 was selected uniformly at random from the set

of all locally infected cases. The proposed infector, 𝑟𝑖
(prop)

= 𝑙, was then sampled according

to the serial interval distribution, i.e., individual 𝑙 was chosen with probability 

𝑓(𝜏𝑖 − 𝜏𝑙)

∑ 𝑓(𝜏𝑖 − 𝜏𝑙)𝑖−1
𝑙=1

, 
(S18) 

independently of the imputed infector, 𝑗, from the previous MCMC step. We found this 

choice to be more efficient than sampling a proposed infector uniformly at random (out of the 

set of all possible infectors). Note that we assumed that 𝑓(0) = 0, so that an infector who 

developed symptoms at the same time point as individual 𝑖 is never selected. The initial 

transmission tree, 𝒓(0), was also generated by sampling an infector for each locally infected

case in this manner. 



Now, defining 𝑖, 𝑗 and 𝑙 as in the previous paragraph, we have 

𝑄(𝒓(𝑚−1) ∣ 𝑛, 𝝉, 𝒓(prop))

𝑄(𝒓(prop) ∣ 𝑛, 𝝉, 𝒓(𝑚−1))
=

𝑓(𝜏𝑖 − 𝜏𝑗)

𝑓(𝜏𝑖 − 𝜏𝑙)
. 

(S19) 

Further, we note that under a negative binomial offspring distribution, only the 𝑗th and 𝑙th

terms in the product defining the likelihood in equation (S15) differ between the previous and 

proposed transmission trees. Specifically, for 𝑙 ≠ 𝑗, 

Prob( 𝒓(prop) ∣∣ 𝑛, 𝝉 )

Prob( 𝒓(𝑚−1) ∣∣ 𝑛, 𝝉 )
=

𝑓(𝜏𝑖 − 𝜏𝑙)

𝑓(𝜏𝑖 − 𝜏𝑗)
×

𝐿𝑗−
(𝑚−1)

𝐿𝑙+
(𝑚−1)

𝐿𝑗
(𝑚−1)

𝐿𝑙
(𝑚−1)

,
(S20) 

Here, 𝐿𝑗
(𝑚−1)

 denotes the components of the 𝑗th term in the likelihood of the previous

transmission tree (as given by equation (S15)) that do not involve realised serial intervals, 

i.e.,

𝐿𝑗
(𝑚−1)

= 𝑎𝑗
(𝑚−1)

! 𝑝(𝑎𝑗
(𝑚−1)

) (1 − 𝑞 (1 − 𝐹(𝑡 − 𝜏𝑗)))
−(𝑘+𝑎𝑗

(𝑚−1)
)

,
(S21) 

where 𝑎𝑗
(𝑚−1)

 is the total number of secondary cases generated to date by individual 𝑗 under

the previous transmission tree. 𝐿𝑗±
(𝑚−1)

is the corresponding quantity to 𝐿𝑗
(𝑚−1)

 but with

𝑎𝑗
(𝑚−1)

 replaced by 𝑎𝑗
(𝑚−1)

± 1.

Finally, combining equations (S19) and (S20) and simplifying, the acceptance ratio in 

equation (S16) is given (for 𝑙 ≠ 𝑗) by 

Prob( 𝒓(prop) ∣∣ 𝑛, 𝝉 )𝑄(𝒓(𝑚−1) ∣ 𝑛, 𝝉, 𝒓(prop))

Prob( 𝒓(𝑚−1) ∣∣ 𝑛, 𝝉 )𝑄(𝒓(prop) ∣ 𝑛, 𝝉, 𝒓(𝑚−1))

=
(𝑘 + 𝑎𝑙

(𝑚−1)) (1 − 𝑞 (1 − 𝐹(𝑡 − 𝜏𝑗)))

(𝑘 + 𝑎𝑗
(𝑚−1)

− 1) (1 − 𝑞(1 − 𝐹(𝑡 − 𝜏𝑙)))
. 

(S22) 



Supplementary Figures 

Fig. S1. Assumed offspring and serial interval distributions characterising EVD transmission. A. 

Offspring distribution. B. Daily serial interval distribution. C. Weekly serial interval distribution used in the 

simulation study when considering weekly disease incidence data. The choice of these distributions is described 

in Materials and Methods in the main text. 



Fig. S2. End-of-outbreak probability estimates for simulated datasets with daily data. A. Disease incidence 

data (grey bars; values are shown on the left y-axis) and end-of-outbreak probability estimates obtained using 

the MCMC, traced and Nishiura methods (values are shown on the right y-axis) for the first simulated dataset 

with daily disease incidence data (note that this is an entirely different dataset from that considered in Fig. 2A of 

the main text). The blue shaded region indicates 95% credible intervals of end-of-outbreak probability estimates 

obtained in individual MCMC iterations. B. Equivalent panel for the second simulated dataset with daily data. 

C. Equivalent panel for the third simulated dataset with daily data. In panel C only, for each end-of-outbreak

probability calculation using the MCMC method, 20,000,000 total MCMC iterations were carried out, of which

the first 4,000,000 iterations were discarded (burn-in) and then only one in every 2,000 subsequent iterations

were retained (thinning); the number of MCMC iterations used in panels A-B is given in Materials and Methods

in the main text.



Fig. S3. Example MCMC trace plots from the simulation study. A-C. Trace plots for calculations of the end-

of-outbreak probability for the simulated outbreak shown in Fig. S2C using the MCMC method with data from 

up to day 325 (A), day 575 (B) and day 675 (C) of the outbreak. The end-of-outbreak probability conditional on 

the current augmented transmission tree is plotted for each of the one in 2,000 MCMC iterations retained after 

thinning (note that the x-axis numbering includes iterations removed after thinning). The initial burn-in period 

of 4,000,000 iterations is indicated by the vertical black dashed line. Estimated effective sample sizes for the 

chains shown in panels A-C (each from a sample size of 8,000 iterations retained after burn-in and thinning) are 

6,700, 3,300 and 3,100, respectively (to two significant figures). D-F. Corresponding trace plots of the log-

likelihood. 



Fig. S4. End-of-outbreak probability estimates for simulated datasets with an additional imported case. 

A. Disease incidence data (bars; values are shown on the left y-axis) are shown for a dataset in which a final,

imported, case (shown in red) occurs 14 days after the penultimate case. Estimated end-of-outbreak probabilities

(lines; values are shown on the right y-axis) are shown for the MCMC method, assuming the final case is known

to be an imported case, and for the traced method. Note that we assumed that the likelihood expression in

equation (S15) remains valid with an additional imported case (the end-of-outbreak probability formula for the

traced method in equation (1) was shown to hold in this scenario in (5)). B-C. Equivalent panels to A except

with the final imported case occurring 21 days (B) or 28 days (C) following the penultimate case (the datasets

shown in each panel are identical other than the timing of the final case). D-F. Equivalent panels to A-C, except

assuming the final case to have arisen as a result of local transmission from one of the previous cases when

using the MCMC method to estimate the end-of-outbreak probability.



Fig. S5. Transmission tree for 2017 Likati EVD outbreak. Dates are in DD/MM format (all 2017). Note that 

in our analyses, we shifted the symptom date of one case (ID 4) to a later date than the date reported in (17) to 

avoid a zero-day serial interval (24 April to 1 May). This later symptom onset date is consistent with 

epidemiological investigations undertaken at the time that suggest that individual ID 4 developed symptoms in 

May. 



Fig. S6. Example MCMC trace plots for the 2017 Likati health zone EVD outbreak. A-C. Trace plots for 

calculations of the end-of-outbreak probability using the MCMC method with data from up to day 30 (A), day 

50 (B) and day 70 (C) of the outbreak. The end-of-outbreak probability conditional on the current augmented 

transmission tree is plotted for each of the one in 1,000 MCMC iterations retained after thinning (note that the x-

axis numbering includes iterations removed after thinning). The initial burn-in period of 2,000,000 iterations is 

indicated by the vertical black dashed line. Estimated effective sample sizes for the chains shown in panels A-C 

(each from a sample size of 8,000 iterations retained after burn-in and thinning) are 7,900, 8,300 and 7,900, 

respectively (to two significant figures). D-F. Corresponding trace plots of the log-likelihood. 



Fig. S7. Example MCMC trace plots for the 2020 Équateur province EVD outbreak. A-C. Trace plots for 

calculations of the end-of-outbreak probability using the MCMC method with data from up to day 25 (A), day 

130 (B) and day 150 (C) of the outbreak. The end-of-outbreak probability conditional on the current augmented 

transmission tree is plotted for each of the one in 1,000 MCMC iterations retained after thinning (note that the x-

axis numbering includes iterations removed after thinning). The initial burn-in period of 2,000,000 iterations is 

indicated by the vertical black dashed line. Estimated effective sample sizes for the chains shown in panels A-C 

(each from a sample size of 8,000 iterations retained after burn-in and thinning) are 7,600, 4,300 and 3,900, 

respectively (to two significant figures). D-F. Corresponding trace plots of the log-likelihood. 


