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A B S T R A C T

This study investigates transient wave dynamics in Turing pattern formation, focusing on waves emerging
from localised disturbances. While the traditional focus of diffusion-driven instability has primarily centred
on stationary solutions, considerable attention has also been directed towards understanding spatio-temporal
behaviours, particularly the propagation of patterning from localised disturbances. We analyse these waves
of patterning using both the well-established marginal stability criterion and weakly nonlinear analysis with
envelope equations. Both methods provide estimates for the wave speed but the latter method, in addition,
approximates the wave profile and amplitude. We then compare these two approaches analytically near a
bifurcation point and reveal that the marginal stability criterion yields exactly the same estimate for the wave
speed as the weakly nonlinear analysis. Furthermore, we evaluate these estimates against numerical results for
Schnakenberg and CDIMA (chlorine dioxide–iodine–malonic acid) kinetics. In particular, our study emphasises
the importance of the characteristic speed of pattern propagation, determined by diffusion dynamics and
a complex relation with the reaction kinetics in Turing systems. This speed serves as a vital parameter
for comparison with experimental observations, akin to observed pattern length scales. Furthermore, more
generally, our findings provide systematic methodologies for analysing transient wave properties in Turing
systems, generating insight into the dynamic evolution of pattern formation.

1. Introduction

While patterns induced by self-organisation, for example by Turing’s mechanism of diffusion-driven instability, are traditionally considered in
terms of stationary solutions [1], there has also been extensive interest in spatio-temporal behaviours arising from such systems, for instance the
propagation of patterning from a localised disturbance [2–4]. As a specific example, we consider the common example of Schnakenberg kinetics [5]
on a one-dimensional spatial domain:

𝜕𝒖
𝜕𝑡

= 𝐃 𝜕2𝒖
𝜕𝑥2

+ 𝐑(𝒖), 𝒖 =
(

𝑢1
𝑢2

)

, 𝐑(𝒖) =
(

𝑎 − 𝑢1 + 𝑢21𝑢2,
𝑏 − 𝑢21𝑢2

)

, 𝐃 =
(

𝐷1 0
0 𝐷2

)

. (1)

Here 𝑎, 𝑏, 𝐷1 and 𝐷2 are positive parameters and the boundary conditions are zero flux. This system has one spatially homogeneous steady state

𝒖∗ =
(

𝑎 + 𝑏, 𝑏
(𝑎 + 𝑏)2

)

. (2)

For a localised perturbation about this steady state, a stationary Turing pattern eventually forms via a transient pattern propagating across
the domain at an approximately constant speed after initiation, as highlighted in Fig. 1. Here we focus on this transient wave and its properties,
especially its asymptotic speed, amplitude and profile. We also consider a modelling representation, albeit simplified, of the CDIMA (chlorine
dioxide–iodine–malonic acid) reaction kinetics taken from Konow et al. [6], which is based on the two-variable version of the kinetics [7], where
the short range species 𝑢1 inhibits the production of 𝑢2, with the latter promoting the production of 𝑢1. This constitutes a well known example of
pure kinetics [1], in distinct contrast to the cross kinetics of Schnakenberg, with the opposite interactions, whereby 𝑢1 catalyses the production of
𝑢2, which inhibits the production of 𝑢1.

The speed of such a wave is amenable to the application of the marginal stability criterion of Dee and Langer [8]; see also Tarumi and Mueller
[2] and Myerscough and Murray [3]. Originally formulated as a hypothesis [8], the application of the marginal stability criterion is subject to
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Fig. 1. Illustration of pattern formation behind a wave travelling at a constant speed after a localised perturbation to the steady state. We consider the Schnakenberg system,
Eq. (1), with zero-flux boundary conditions and parameter values 𝐷1 = 1, 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4 and a 1D domain with size 𝐿 = 200 (which we denote as Schnakenberg I).
The profile of 𝑢2 is out of phase with the profile of 𝑢1.

various heuristics to motivate its use. Marginal stability has been motivated as corresponding to the transition between convective and absolute
instabilities [9–13] while it is argued that the application of marginal stability relies on the observation that there is a velocity of the moving
reference frame at which the leading edge of a perturbation neither grows nor decays, as can be assessed by a Fourier representation of the
solution in a fixed reference frame [14]. The exact conditions under which this criterion can be applied are still an open question; furthermore,
marginal stability provides no information on the amplitude or profile of the transient wave. Thus we will also consider such a propagating front
in terms of weakly non-linear analysis and envelope equations [15], which is justified by multiple scale asymptotics, and additionally can provide
estimates for the wave shape and amplitude. However, we acknowledge at the outset that both techniques are unlikely to be valid if a subcritical
bifurcation is present; for instance marginal stability is considered to be limited to pulled fronts [13,16], while weakly non-linear analysis is not
sufficient to resolve complexities such as the impact of multiple steady states influencing the dynamics.

With a focus on supercritical instabilities, the primary aim of this paper is to provide systematic methodologies for determining the properties
of propagating patterning transients for Turing systems, such as those observed in Fig. 1b. Noting that it is simpler to implement, the marginal
stability approach is presented first. Then we develop a weakly non-linear analysis to determine the envelope equation, which takes the form of a
real Ginzburg–Landau equation (GLE) to determine estimates, not only for the wave speed, but also for the wave amplitude and profile, which we
compare with numerical simulations. In addition, we also compare wave speed predictions and analytical expressions from both methods, with the
objective of ascertaining whether the simpler, more tractable, marginal stability method can provide similar accuracy to that of envelope methods
for predicting the speed of patterning transients, and whether envelope methods can provide a quantitative justification for the use of marginal
stability wave-speed estimates.

2. Analytics — the foundations for determining the characteristic speed of patterning

We consider a one-dimensional reaction–diffusion (RD) system of two species,

𝜕𝒖
𝜕𝑡

= 𝐃 𝜕2𝒖
𝜕𝑥2

+ 𝐑(𝒖, 𝛼), (3)

subject to homogeneous Neumann (zero flux) boundary conditions, where 𝛼 denotes a bifurcation parameter such that 𝛼 = 0 at a bifurcation point
corresponding to the loss of stability of the homogeneous steady state (HSS), 𝒖∗(𝛼), i.e. 𝑹(𝒖∗(𝛼), 𝛼) = 0. Without loss of generality, the choice of
sign of 𝛼 entails the HSS is stable for 𝛼 < 0 and unstable for 𝛼 > 0. We shall denote vectors as 𝒖 and matrices as 𝐀 throughout the text.

2.1. Marginal stability

The marginal stability approach [2,3,8,14,17,18] identifies the location in time and space where the instability arises in the form of a travelling
wave due to a localised perturbation. We define 𝑔(𝑘) = 𝑖𝑘𝑐 + 𝜎(𝑘), where 𝑘 is the wavenumber, 𝑐 is the fixed speed of a travelling wave, and 𝜎(𝑘)
2
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is the classical dispersion relation [1,19,20]. The marginal stability criterion then states that

0 =
𝑑𝑔
𝑑𝑘

, ℜ𝑔 = 0,

evaluated at the leading edge. However, the diverse arguments supporting the formulation of marginal stability conditions are all heuristic [2,3,8,
14,17,18,21] and it is hypothesised that there is a change in the separation of variables of the solution from travelling wave (TW) coordinates to
pattern-generating envelope fronts with fixed periodicity in space [22].

For the complex derivative 𝑑𝑔
𝑑𝑘 to exist, we assume 𝑔 to be analytic in 𝑘, so that the Cauchy–Riemann conditions hold and the marginal stability

conditions can be rewritten as
𝜕ℜ𝜎
𝜕𝑘𝑅

= 𝜕ℑ𝜎
𝜕𝑘𝐼

= 0,

𝜕ℑ𝜎
𝜕𝑘𝑅

= − 𝜕ℜ𝜎
𝜕𝑘𝐼

= −𝑐, (4)

− 𝑐𝑘𝐼 +ℜ𝜎 = 0,

where 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 , 𝑘𝑅, 𝑘𝐼 ∈ R. Note that 𝑐 decouples from this set of equations (𝑐 = 1
𝑘𝐼 ℜ𝜎) and we are left with two equations for the two

unknowns 𝑘𝑅, 𝑘𝐼 .
In practical terms, Eqs. (4) are solved as follows. First, the dispersion relation 𝜎(𝑘) (recall that both 𝜎, 𝑘 ∈ C) is obtained as a solution to the

ollowing quadratic equation with complex coefficients

0 = det(𝜎𝐈 + 𝑘2𝐃 − 𝐉) = 𝜎2 + 𝜎 (𝑘2tr𝐃 − tr𝐉)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑝+𝑖𝑞

+det(𝑘2𝐃 − 𝐉)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟+𝑖𝑠

,

where 𝐉 denotes the linearised kinetics, that is 𝐽𝑖𝑗 = 𝑅𝑖,𝑢𝑗 and we denote partial derivatives via the comma notation, so that 𝑅𝑖,𝑢𝑗 = 𝜕𝑅𝑖
𝜕𝑢𝑗

|

|

|𝒖∗
.

Consequently, the following set of two equations (quadratic in 𝑘), implicitly defining the real and imaginary parts of 𝜎(𝑘), is obtained:
(

ℜ𝜎 +
𝑝
2

)2
−
(

ℑ𝜎 +
𝑞
2

)2
+

𝑞2

4
−

𝑝2

4
+ 𝑟 = 0, (5)

2
(

ℜ𝜎 +
𝑝
2

)(

ℑ𝜎 +
𝑞
2

)

+ 𝑠 −
𝑝𝑞
2

= 0. (6)

This pair of equations, together with the first two equations in Eq. (4), where we rewrite all the powers of 𝑘 in terms of its real, 𝑘𝑅, and imaginary,
𝑘𝐼 , parts constitute a set of four relations for four unknowns. Finally, the travelling wave speed is given by 𝑐 = 1

𝑘𝐼 ℜ𝜎 while the wavenumber of
the pattern can be estimated as 𝑘MS = ℑ𝑔∕𝑐 = 𝑘𝑅 +ℑ𝜎∕𝑐. The latter follows from the observation that the imaginary part of the shifted dispersion
relation to the moving frame of the travelling wave is the frequency of the pattern scaled by the wave velocity 𝑐.

2.1.1. Marginal stability close to bifurcation point
In order to have a better understanding of the marginal stability approach, we asymptotically solve the marginal stability conditions close to

the bifurcation point. To this end, we rescale the bifurcation parameter as 𝛼 = 𝜖2 and expand the linearised kinetics as 𝐉 = 𝐉0 + 𝜖2𝐉1 + 𝜖4𝐉2, where,
for example, (𝐽1)𝑖𝑗 =

𝜕2𝑅𝑖
𝜕𝑢𝑗𝜕𝑢𝑘

|

|

|𝒖∗
𝜕(𝑢∗)𝑘
𝜕𝛼

|

|

|𝛼=0
.

Standard linear analysis reveals that the bifurcation point is characterised by the condition

(𝐷2(𝐽0)11 +𝐷1(𝐽0)22)2 − 4𝐷1𝐷2 det 𝐉0 = 0 (7)

and the critical wavenumber 𝑘𝑐 is given by the condition for a repeated root for 𝑘2 [1]

𝑘2𝑐 =
𝐷2(𝐽0)11 +𝐷1(𝐽0)22

2𝐷1𝐷2
. (8)

As is usually the case with asymptotic solutions, the appropriate scaling can only be determined by calculation and the existence of a dominant
alance in all considered orders. When considering regular asymptotic expansions in the small parameter 𝜖, this leads to (by trial and error) the

choice of

𝑘𝑅 = 𝑘𝑅0 + 𝜖2𝜅𝑅, 𝑘𝐼 = 𝑘𝐼0 + 𝜖𝜅𝐼 , (9)

where 𝜅𝑅, 𝜅𝐼 play the role of the unknown variables while we denote ℜ𝜎 = ℜ𝜎0 + 𝜖2ℜ𝜎1 + (𝜖4) and ℑ𝜎 = ℑ𝜎0 + 𝜖2ℑ𝜎1 + (𝜖4).
The nonlinear leading order problem is satisfied exactly at the bifurcation point, i.e. when

𝑘𝐼0 = 0, 𝑘𝑅0 = 𝑘𝑐 , ℜ𝜎0 = 0, ℑ𝜎0 = 0,

and, as a result, the leading order TW speed is zero.
The first subleading problem is solved sequentially as follows. First, the implicit equations for the real and imaginary parts of 𝜎, Eqs. (5) and

(6), yield

ℜ𝜎1 = 1
2(𝐽0)21(𝐷1 −𝐷2)(𝐷1(𝐽0)22 −𝐷2(𝐽0)11)
[

𝐷2
1(𝐽0)22(2(𝐽0)21(𝐽1)22 − (𝐽0)22(𝐽1)21) +𝐷2

2(𝐽0)11
(

2(𝐽0)21
(

4𝐷1𝜅
2
𝐼 + (𝐽1)11

)

− (𝐽0)11(𝐽1)21
)

+2𝐷1𝐷2
(

2(𝐽0)221(𝐽1)12 + (𝐽0)11(𝐽0)22(𝐽1)21 − (𝐽0)21
(

(𝐽0)11(𝐽1)22 + (𝐽0)22(𝐽1)11 − 4𝐷1(𝐽0)22𝜅2
𝐼
))

]

,

and ℑ𝜎1 = 0.
From the imaginary part of the first condition for marginal stability, 𝜕ℑ𝜎

𝜕𝑘𝑅 = −𝑐, we obtain the following relation for speed 𝑐 (with the expected
caling with the distance from the bifurcation point):

𝑐MSasympt = 𝜖
8𝐷1𝐷2(𝐷1(𝐽0)22 +𝐷2(𝐽0)11) 𝜅𝐼 . (10)
3

(𝐷1 −𝐷2)(𝐷1(𝐽0)22 −𝐷2(𝐽0)11)
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Further, the second condition, ℜ𝑔 = 0, gives the relation for 𝜅𝐼 :

𝜅2
𝐼 = 1

8(𝐽0)21𝐷1𝐷2(𝐷1(𝐽0)22 +𝐷2(𝐽0)11)

[

𝐷2
1(𝐽0)22(2(𝐽0)21(𝐽1)22 − (𝐽0)22(𝐽1)21)

+ 2𝐷1𝐷2
(

(𝐽0)11(𝐽0)22(𝐽1)21 + 2(𝐽0)221(𝐽1)12 − (𝐽0)21(𝐽0)22(𝐽1)11 − (𝐽0)11(𝐽0)21(𝐽1)22
)

+𝐷2
2(𝐽0)11(2(𝐽0)21(𝐽1)11 − (𝐽0)11(𝐽1)21)

]

. (11)

By combining these two expressions, Eqs. (10) and (11), the marginal stability conditions close to the bifurcation point give the estimate of the
TW speed (in 𝑡, 𝑥 dimensional coordinates).

To obtain the correction to the wavenumber and to check that we indeed have a plausible asymptotic solution with the assumed scaling, we
calculate 𝜅𝑅 from the real part of the first condition in Eq. (4) for marginal stability

𝜅𝑅 =

√

2(𝐽0)11𝐷2 + 2(𝐽0)22𝐷1

8
√

𝐷1𝐷2(𝐽0)21(𝐷1 −𝐷2)(𝐷1(𝐽0)22 −𝐷2(𝐽0)11)(𝐷1(𝐽0)22 +𝐷2(𝐽0)11)

[

𝐷3
1(𝐽0)22

(

(𝐽0)22(𝐽1)21 − 12𝐷2(𝐽0)21𝜅2
𝐼
)

−𝐷2
1𝐷2

(

4(𝐽0)21
(

9𝐷2(𝐽0)11𝜅2
𝐼 + (𝐽0)22

(

9𝐷2𝜅
2
𝐼 − (𝐽1)11 + (𝐽1)22

))

+ (𝐽0)22(𝐽1)21(2(𝐽0)11 − (𝐽0)22) + 4(𝐽0)221(𝐽1)12
)

+𝐷1𝐷
2
2
(

−2(𝐽0)11
(

2(𝐽0)21
(

3𝐷2𝜅
2
𝐼 + (𝐽1)11 − (𝐽1)22

)

+ (𝐽0)22(𝐽1)21
)

+ (𝐽0)211(𝐽1)21 − 4(𝐽0)221(𝐽1)12
)

+𝐷3
2(𝐽0)

2
11(𝐽1)21

]

. (12)

Consequently, the wavenumber is estimated as 𝑘MSasympt = 𝑘𝑅 ∼ 𝑘𝑐 + 𝜖2(𝜅𝑅 + ℑ𝜎1∕𝑐MSasympt ) = 𝑘𝑐 + 𝜖2𝜅𝑅 when substituting the above expressions
Eqs. (8), (9) and (12), noting that the Cauchy–Riemann conditions are satisfied at both considered orders.

2.1.2. Evaluation of marginal stability criterion performance
We consider Schnakenberg and CDIMA kinetics (as two representatives of kinetics which are in phase, CDIMA, and out of phase, Schnakenberg)

to compare the marginal stability results with numerical solutions both near and far from the bifurcation point. To this end, we consider a primed
Turing system, that is, we choose parameters from the Turing space (diffusion-driven instability region).

Both models involve two morphogens. The Schnakenberg kinetics are specified above in Eq. (1) while the CDIMA kinetics are

𝑅1(𝑢1, 𝑢2) = 𝑎 − 𝑢1 − 4
𝑢1𝑢2
1 + 𝑢21

, (13a)

𝑅2(𝑢1, 𝑢2) = 𝜇𝑏

(

𝑢1 −
𝑢1𝑢2
1 + 𝑢21

)

, (13b)

where 𝑎, 𝑏, 𝜇 are (positive) model parameters.
For the case of zero flux boundary conditions, the spatially homogeneous stationary solution of the Schnakenberg model has been given in

q. (2) while, for the CDIMA kinetics, we have

𝒖∗ =
(

𝑎
5
, 1 + 𝑎2

25

)

.

We now consider the following set of parameters in the Schnakenberg kinetics above: 𝐷1 = 1, 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4 and a 1D domain with
ize 𝐿 = 200 (Schnakenberg I). This set of parameters is within the Turing space as indicated in Fig. 2, where we plot the Turing space in the 𝑎, 𝑏
arameter space for 𝐷1, 𝐷2 fixed at 1,20 respectively. We also highlight the localisation of the nearest bifurcation point 𝑏𝑐 = 1.712 for the chosen

bifurcation parameter 𝛼 = 𝑏𝑐 − 𝑏, which leads to 𝜖 =
√

𝛼 = 0.559.
We use Wolfram Mathematica 12.0 to solve the full PDE system with zero flux boundary conditions and a local perturbation of the homogeneous

teady state 𝒖∗ in the second component 𝑢2 using the method of lines and 10,000 points for spatial discretisation. Pattern formation is initiated
rom a local perturbation well inside the domain, at 𝑥 = 60, and travels in both directions at an apparently fixed speed, see Fig. 1(b), in agreement
ith the previous observations in the literature [4].

The choice of magnitude for the local perturbation, as characterised by 𝜌 (see Fig. 1(a)), impacts the duration of the transient time before the
travelling wave velocity asymptotes to its final speed, as may be observed in Fig. 3 for the Schnakenberg system in that the deviation between the
travelling wave speed and its large 𝜌 asymptote in the plot is due to the duration of the transient. Since we solve the PDE numerically on a bounded
domain and for different kinetics and various parameter values, the transient time will inevitably vary. Thus, we opt for an initial condition of
significant magnitude, as demonstrated in Fig. 3, such that the front velocity has adequately asymptoted within the considered bounded domain.
In accordance with this objective, henceforth we select an initial perturbation for all numerical computations to be three times the homogeneous
stationary solution in the second variable, that is 𝜌 = 3, with the perturbation of the first component remaining at zero. Then the numerically
determined velocity can provide a reasonable estimation of the asymptotic rate of pattern propagating in the environment. Such an estimation can
then be used for comparison.

From the numerical solution determined in this manner, we may extract all the observed characteristics from the (numerical) localisation of
the highlighted maxima of the pattern, as in Fig. 1(b), with: (i) the amplitude 𝐴RD = 0.982; (ii) the pattern wavenumber 𝑘RD = 0.571, denoting 2𝜋
ivided by the distance between the neighbouring maxima; and (iii) the speed of the travelling wave 𝑐RD = 1.288 from numerically calculating the

times when the travelling pattern has reached half of the final amplitude at the two highlighted locations.
We now compare the results of the numerical solutions to those of the marginal stability analysis. To this end, we denote the predictions of

the wavenumber and travelling wave speed from marginal stability by 𝑘MS and 𝑐MS, respectively. Numerical solution of Eqs. (4) for the above case
gives 𝑘MS = 0.555 and 𝑐MS = 1.375 for Schnakenberg I, for example.

We repeat this process for other choices of parameter values and we also consider the CDIMA kinetics. The results are summarised in Table 1,
where absolute and relative errors with respect to the numerical solution of both wave number and front speed are shown (more details for the
CDIMA calculations are given in Appendix A). Note that the longest transient time, and hence the greatest numerical error in calculated properties
𝑘RD and 𝑐RD, can be expected near the bifurcation point, when the perturbation growth rate is very slow and hence the requirement for a sufficiently
large region for determining the velocity of front propagation is greatest. Hence, the larger relative error near the bifurcation point is not necessarily
4

a sign of a poorer performance of the marginal stability criterion.
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Fig. 2. The Turing space, the set of points which allow Turing instability, for Schnakenberg kinetics with parameters 𝑎, 𝑏, is highlighted in grey, where we fix the parameter
values to 𝐷1 = 1, 𝐷2 = 20 and solve on a 1D domain with size 𝐿 = 200. The full dot represents the chosen point for numerical solution of the full problem (Schnakenberg I). The
open circle denotes the closest bifurcation point 𝑏𝑐 = 1.712 (corresponding to 𝛼 = 0) for the chosen bifurcation parameter 𝛼 = 𝑏𝑐 − 𝑏.

Fig. 3. Investigation of the role of the magnitude of the local perturbation on the numerically observed travelling wave velocity for the Schnakenberg I system. The horizontal axis
(in log scale) expresses 𝜌 > 0, the magnitude of the perturbation in the second component as described in Fig. 1(a), while on the vertical axis we plot the numerically calculated
𝑐RD using the same methodology as described in the text for the Schnakenberg I system. To this end, we use the two black vertical lines in Fig. 1(b) highlighting the locations of
two cross-sections for the assessment of the pattern amplitude 𝐴RD, wavenumber 𝑘RD and speed of the travelling wave 𝑐RD. Note that the intermediate transition around 𝜌 = 0.2 is
due to finite size effects, when slight variations in 𝜌 cause an abrupt insertion of an additional half-wave of a pattern into the domain, that is, a slight variation of the pattern
wave number 𝑘RD occurs. For the calculations throughout this manuscript we use the value 𝜌 = 3 as highlighted in this plot.

Table 1
A summary of the marginal stability results (index MS) and numerical estimation (index RD) for the key properties of the TW and resultant
pattern for CDIMA and Schnakenberg kinetics. We compare each case using relative and absolute error in both the front propagation speed
and the wavenumber of the pattern. The domain is one-dimensional with length 𝐿 = 200 and 𝐷1 = 1, with 𝑏𝑐 defined as in Figs. 2 and 7(a).

Parameters 𝜖 =
√

𝑏𝑐 − 𝑏 𝑐MS − 𝑐RD
𝑐MS−𝑐RD

𝑐RD
𝑘MS − 𝑘RD

𝑘MS−𝑘RD
𝑘RD

CDIMA I 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50 0.293 0.092 0.057 0.006 0.007
CDIMA II 𝐷2 = 2𝜇, 𝑎 = 10.5, 𝑏 = 0.4, 𝜇 = 13 0.346 0.047 0.029 −0.022 −0.028
CDIMA III 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.38, 𝜇 = 50 0.125 0.035 0.053 −0.006 −0.007
Schnakenberg I 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4 0.559 0.087 0.068 −0.016 −0.028
Schnakenberg II 𝐷2 = 20, 𝑎 = 0.13, 𝑏 = 1.4 0.241 0.062 0.131 0.016 0.028

Next, we compare the TW velocity prediction over a broader parameter space around the bifurcation point for Schnakenberg kinetics. We use
the idea of continuity of solutions of the algebraic marginal stability equations on the bifurcation parameter to estimate the localisation of their
solutions for nearby parameter values and then compute the exact solution. This allows calculation autonomy, for example, in the initial estimates
of the roots of the algebraic problem (and there might be more than one solution). However, the key property for comparison is the estimation of the
5
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Fig. 4. Travelling wave speed (given in 𝑥, 𝑡 units) as predicted from (i) the full solution of the RD problem with Schnakenberg kinetics, 𝑐RD; (ii) from the marginal stability
onditions, 𝑐MS; and (iii) from the marginal stability asymptotics, 𝑐MSasympt . Parameter values were chosen as 𝐷1 = 1, 𝐷2 = 20, 𝑎 = 0.05, and 1D domain with size 𝐿 = 200
Schnakenberg I). Note that the choice of the magnitude of the localised initial condition in the finite domain is important, as demonstrated in Fig. 3, and we consider 𝜌 = 3. In
ddition, the marginal stability approach can yield multiple solutions, as illustrated here for the whole range of parameter 𝑏 that we considered. Finally, the 𝑐RD predictions were
nly calculated from the bifurcation point 𝑏𝑐 to 𝑏 ≈ 0.6 due to finite size effects such as the discretely decreasing number of maxima used to estimate 𝑐RD and the longer duration
f transient effects before the pattern stabilises.

W speed from the numerical solution of the full RD system, 𝑐RD. When the bifurcation parameter is varied, there is a change in the characteristic
ime of pattern formation as well as the localisation of the two maxima used to determine the travelling wave velocity. Again, to automate the
rocess, we store the locations of the maxima as indicated by the two black vertical lines in the density plots, Fig. 1(b), and use the continuous
ependence of the solution on the parameter to find their localisation after a small variation of the bifurcation parameter. Finally, we use 10k
oints for spatial discretisation (further refinement does not lead to more than 1% difference in the values of the final pattern).

The results of this approach are shown in Fig. 4 with plots for the TW velocity in 𝑥, 𝑡 variables. It can be seen that we indeed observe a
ehaviour corresponding to the square root of the distance from the bifurcation point in its neighbourhood and that there is a match between the
symptotic expression for the travelling wave speed close to the bifurcation point and the numerical solution of the marginal stability criterion.
inally, note that the equations for marginal stability may have multiple solutions, as can be seen in Fig. 4, where multiple branches of 𝑐MS appear

(even close to the bifurcation point).

2.2. Envelope equation, GLE

We now consider the amplitude equation approach. We perturb the HSS 𝒗 = 𝒖− 𝒖∗ and expand to identify the approximate evolution equation
of the perturbation:

𝜕𝒗
𝜕𝑡

= 𝐋I𝒗 + 𝐋II𝒗𝒗 + 𝐋III𝒗𝒗𝒗, (14)

where the linear operator 𝐋I = 𝐃 𝜕2

𝜕𝑥2
+𝐉 is the linearised RD problem with 𝐽𝑖𝑗 = 𝑅𝑖,𝑢𝑗 evaluated at 𝒖∗, which is the case for higher derivatives below

as well. As we assume smooth kinetics 𝑹, 𝐋II and 𝐋III are symmetric and we have denoted the nonlinear terms in the following way

(𝐋II𝒗𝒗)𝑖 =
1
2
∑

𝑗,𝑘
𝑅𝑖,𝑢𝑗𝑢𝑘𝑣𝑗𝑣𝑘

(𝐋III𝒗𝒗𝒗)𝑖 =
1
6
∑

𝑗,𝑘,𝑙
𝑅𝑖,𝑢𝑗𝑢𝑘𝑢𝑙𝑣𝑗𝑣𝑘𝑣𝑙 ,

hence 𝐋II represents the quadratic, and 𝐋III the cubic, kinetics approximation.
Now, recalling the bifurcation parameter in general is 𝛼 = 𝜖2, the regular expansion of the perturbation near the bifurcation point 𝛼 = 0

𝒗 = 0 + 𝜖𝒗1 + 𝜖2𝒗2 + 𝜖3𝒗3 +⋯ ,

gives

𝐉 = 𝐉0 + 𝜖2𝐉1 + 𝜖4𝐉2 +⋯ ,

𝐋II = 𝐋II
0 + 𝜖2𝐋II

1 + 𝜖4𝐋II
2 +⋯ ,

𝐋III = 𝐋III
0 + 𝜖2𝐋III

1 + 𝜖4𝐋III
2 +⋯ .

We shall denote 𝐋I
𝑗 = 𝐃 𝜕2

𝜕𝑥2
+ 𝐉𝑗 .

Taking advantage of the known relation in scaling of time and space near a bifurcation point [15] to balance two spatial derivatives with the
one temporal derivative, we introduce the following set of slow variables:

𝜏 = 𝜖2𝑡, 𝑦 = 𝜖𝑥,
6
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while we consider the original independent variables 𝑡, 𝑥 as fast. Using the method of multiple scales, writing 𝑣𝑗 as functions of both slow and fast
ariables, that is 𝑣𝑗 (𝑡, 𝜏, 𝑥, 𝑦), where

𝜕
𝜕𝑡

→
𝜕
𝜕𝑡

+ 𝜖2 𝜕
𝜕𝜏

, 𝜕
𝜕𝑥

→
𝜕
𝜕𝑥

+ 𝜖 𝜕
𝜕𝑦

and by equating powers of 𝜖, we get:

𝜖1 ∶ 𝜕
𝜕𝑡
𝒗1 − 𝐋I

0𝒗1 = 0, (15a)

𝜖2 ∶ 𝜕
𝜕𝑡
𝒗2 − 𝐋I

0𝒗2 = 2𝐃 𝜕2

𝜕𝑥𝜕𝑦
𝒗1 + 𝐋II

0 𝒗1𝒗1, (15b)

𝜖3 ∶ 𝜕
𝜕𝑡
𝒗3 − 𝐋I

0𝒗3 = − 𝜕
𝜕𝜏

𝒗1 + 2𝐃 𝜕2

𝜕𝑥𝜕𝑦
𝒗2 + 𝐃 𝜕2

𝜕𝑦2
𝒗1 + 𝐉1𝒗1 + 2𝐋II

0 𝒗1𝒗2 + 𝐋III
0 𝒗1𝒗1𝒗1, (15c)

while we require strict periodicity in the spatial fast variable, corresponding to the microscale oscillations.
As we search for an envelope equation for a travelling wave with a stationary profile in 𝑡 close to a bifurcation point, as motivated in the

ntroduction, we look for a solution of the form [15]

𝒗1 = 𝐴(𝜏, 𝑦)𝑽 exp(𝑖𝑘𝑐𝑥) + 𝑐.𝑐., (16)

where 𝑐.𝑐. denotes complex conjugate and 𝑘𝑐 is the critical wavenumber corresponding to the bifurcation (onset of instability at the bifurcation
point), and 𝑽 exp(𝑖𝑘𝑐𝑥) is the Turing (Fourier) eigenmode of the linearised problem, i.e.

𝐋I
0𝑽 exp(𝑖𝑘𝑐𝑥) = 0,

where the explicit expression for 𝑘𝑐 is Eq. (8).
This follows from the requirement that the larger of the two eigenvalues of −𝐉𝐃, where 𝐉𝐃 = 𝑘2𝑐𝐃 − 𝐉0, is zero . Note that 𝑽 is the (right)

igenvector of 𝐉𝐃 associated with the zero eigenvalue. We remark that this assumed form of solution, Eq. (16), implicitly defines the microscale
nd hence the periodic boundary conditions are imposed at (0, 2𝜋∕𝑘𝑐 ) in the fast spatial variable 𝑥.

By looking at the (𝜖2) problem in Eq. (15b) while taking into account the form of 𝒗1, see Eq. (16), one can see that 𝒗2 has to be of the form

𝒗2 = 𝒁0(𝜏, 𝑦) +𝒁1(𝜏, 𝑦) exp(𝑖𝑘𝑐𝑥) +𝒁2(𝜏, 𝑦) exp(2𝑖𝑘𝑐𝑥) + 𝑐.𝑐. . (17)

n particular, by comparing the coefficients of eigenvectors (invoking their orthogonality, see below), we obtain

1 ∶ − (𝐉0𝒁0)𝑗 = 2|𝐴|2(𝐋II
0 𝑽 𝑽̄ )𝑗 ,

exp(𝑖𝑘𝑐𝑥) ∶ 𝑘2𝑐 (𝐃𝒁1)𝑗 − (𝐉0𝒁1)𝑗 = 𝑖𝑘𝑐2
𝜕𝐴
𝜕𝑦

(𝐃𝑽 )𝑗 ,

exp(2𝑖𝑘𝑐𝑥) ∶ 4𝑘2𝑐 (𝐃𝒁2)𝑗 − (𝐉0𝒁2)𝑗 = 𝐴2(𝐋II
0 𝑽 𝑽 )𝑗 ,

noting that the relations for the complex conjugate are exactly the same. From the first and last equations we directly have:

𝒁0 = −2|𝐴|2𝐉−10 ⋅ (𝐋II
0 𝑽 𝑽̄ ), (18a)

𝒁2 = 𝐴2(4𝑘2𝑐𝐃 − 𝐉0)−1 ⋅ (𝐋II
0 𝑽 𝑽 ), (18b)

while for the unknown 𝒁1 we obtain the singular equation

(𝑘2𝑐𝐃 − 𝐉0) ⋅𝒁1 = 2𝑖𝑘𝑐
𝜕𝐴
𝜕𝑦

𝐃 ⋅ 𝑽 , (18c)

as (𝑘2𝑐𝐃−𝐉0) = 𝐉𝐃 and the critical wavenumber 𝑘𝑐 is such that 𝐉𝐃 has a zero eigenvalue. As we shall see below, after the discussion of the solvability
condition for 𝒗3, the solvability condition for this singular set of equations is equivalent to the definition of the critical wavenumber 𝑘𝑐 and hence

1 is well defined (although not unique).
We now return to the second subleading order problem in Eq. (15c). As its left-hand side is the same as the leading order problem which has

solution for zero right-hand side, we know from the Fredholm alternative (recalling that we assume 𝒗𝑗 is independent of the fast variable 𝑡) that
he right-hand side of Eq. (15c) has to be perpendicular to the solution 𝒇 of the adjoint homogeneous problem (𝐋I

0)
∗𝑓 = 0.

From the definition of the adjoint operator, ⟨𝐋I
0𝑓, 𝑔⟩ = ⟨𝑓, (𝐋I

0)
∗𝑔⟩, and recalling the strict periodicity on (0, 2𝜋∕𝑘𝑐 ), we have

⟨𝐋I
0𝑓, 𝑔⟩ = ∫

2𝜋∕𝑘𝑐

0
(𝐋I

0𝑓 )
𝑇 𝑔̄𝑑𝑥 = ∫

2𝜋∕𝑘𝑐

0

(

𝜕2𝒇𝑇

𝜕𝑥2
⋅ 𝐃 + (𝐉0𝒇 )𝑇

)

𝒈̄𝑑𝑥 = ∫

2𝜋∕𝑘𝑐

0
𝒇𝑇

(

𝐃 𝜕2𝒈̄
𝜕𝑥2

+ 𝐉𝑇0 𝒈̄
)

𝑑𝑥,

nd hence (𝐋I
0)

∗𝒈 = 𝐃 𝜕2𝒈
𝜕𝑥2

+ 𝐉𝑇0 𝒈.
Therefore, the solvability condition is the requirement of perpendicularity to the solution to (𝐋I

0)
∗𝒈 = 0. We claim that such solutions are the

eft eigenvectors of 𝐉𝐃, i.e. 𝒈 = 𝐴(𝜏, 𝑦)𝑾 exp(𝑖𝑘𝑐𝑥) + 𝑐.𝑐., where, without the loss of generality, 𝑾 𝑇 ⋅ 𝑽 = 1 (considering simple eigenvalues of 𝐉).
Choosing 𝑽 = (1, 𝑣)𝑇 and 𝑾 = 1

1+𝑣𝑤 (1, 𝑤)𝑇 , we have 𝑾 𝑇 ⋅ 𝑽 = 1, while for 𝑽 to be the (right) eigenvector of 𝐉𝐃 corresponding to the zero
igenvalue we require

𝑣 = − 1
(𝐽0)12

((𝐽0)11 − 𝑘2𝑐𝐷1) = −
(𝐽0)21

((𝐽0)22 − 𝑘2𝑐𝐷2)
. (19)

Similarly, 𝑤 follows from the fact that 𝑾 has to be the (right) eigenvector of 𝐉𝐃𝑇 corresponding to the zero eigenvalue, i.e.

𝑤 = − 1 ((𝐽0)11 − 𝑘2𝑐𝐷1) = −
(𝐽0)12

2
. (20)
7

(𝐽0)21 ((𝐽0)22 − 𝑘𝑐𝐷2)
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n

Hence, we may now write the first order correction 𝒗2, Eq. (17), explicitly as

𝒁0 = −2|𝐴|2 1
det 𝐉0

(

(𝐽0)22𝑟1 − (𝐽0)12𝑟2
−(𝐽0)21𝑟1 + (𝐽0)11𝑟2

)

, (21a)

where we set 𝑟𝑗 =
1
2

(

𝑅𝑗,𝑣1𝑣1 + 2𝑣𝑅𝑗,𝑣1𝑣2 + 𝑣2𝑅𝑗,𝑣2𝑣2

)

. Furthermore,

𝒁2 = −𝐴2 1
det(4𝑘2𝑐𝐃 − 𝐉0)

(

(4𝑘2𝑐𝐷 − 𝐽0)22𝑟1 − (4𝑘2𝑐𝐷 − 𝐽0)12𝑟2
−(4𝑘2𝑐 − 𝐽0)21𝑟1 + (4𝑘2𝑐𝐷 − 𝐽0)11𝑟2

)

, (21b)

𝒁1 =

(

𝑧
𝑣𝑧 − 2𝑖𝑘𝑐

𝜕𝐴
𝜕𝑦

𝐷1
(𝐽0)12

)

, (21c)

where 𝑧 is arbitrary and the solvability condition for 𝒁1, Eq. (18c), reads 𝐷1 + 𝑣𝑤𝐷2 = 0 (being equivalent to the definition of 𝑘𝑐). Note that
the arbitrariness of 𝑧, and hence non-uniqueness of 𝒁1, is manifested by the fact that any multiple of the vector (1, 𝑣)𝑇 = 𝑽 can be added to 𝒁1.
However, this corresponds to the fact that we can add any product 𝑽 exp(𝑖𝑘𝑐𝑥) to 𝒗2, i.e. the solution of the equation with zero right-hand side.
This part of the solution is already included in the leading order solution, i.e. in the solution of the problem Eq. (15a), and hence we can set 𝑧 = 0
without loss of generality.

Finally, the solvability condition for the second subleading problem, Eq. (15c), then requires (again, the c.c. terms generate the same expression)

0 =
⟨ 𝜕
𝜕𝑡
𝒗3 − 𝐋I

0𝒗3,𝑾 exp(𝑖𝑘𝑐𝑥)
⟩

= ∫

2𝜋∕𝑘𝑐

0
exp(𝑖𝑘𝑐𝑥)𝑾 𝑇 .

[

− 𝜕
𝜕𝜏

𝒗1 + 2𝐃 ⋅
𝜕2

𝜕𝑥𝜕𝑦
𝒗2 + 𝐃 ⋅

𝜕2

𝜕𝑦2
𝒗1 + 𝐉1 ⋅ 𝒗1 + 2𝐋II

0 𝒗1𝒗2 + 𝐋III
0 𝒗1𝒗1𝒗1

]

𝑑𝑥

= 𝑾 𝑇 ⋅

[

− 𝜕𝐴
𝜕𝜏

𝑽 + 𝐃 ⋅ 𝑽 𝜕2𝐴
𝜕𝑦2

+ 𝐴𝐉1 ⋅ 𝑽 + 2𝐋II
0 (𝐴𝑽 𝒁0 + 𝐴̄𝑽̄ 𝒁2) + 3𝐴|𝐴|2𝐋III

0 𝑽 𝑽̄ 𝑽 + 2𝐃 ⋅

(

0
2𝑘2𝑐

𝐷1
(𝐽0)12

𝜕2𝐴
𝜕𝑦2

)]

= − 𝜕𝐴
𝜕𝜏

+ 4𝑘2𝑐
𝐷1𝐷2𝑤

(1 + 𝑣𝑤)(𝐽0)12
𝜕2𝐴
𝜕𝑦2

+ 𝐴𝑾 𝑇 ⋅ 𝐉1 ⋅ 𝑽 + 𝐴|𝐴|2𝑾 𝑇 ⋅
[

2𝐋II
0 (𝑽 𝒁0∕|𝐴|

2) + 3𝐋III
0 (𝑽 𝑽 𝑽 ) + 2𝐋II

0 (𝑽 𝒁2∕𝐴2)
]

(22)

oting that 𝑾 𝑇 ⋅ 𝐃 ⋅ 𝑽 = 0 from the solvability condition of 𝒁1.
Therefore the scalar envelope equation is the real Ginzburg–Landau equation

𝜕𝐴
𝜕𝜏

= 𝑑 𝜕
2𝐴
𝜕𝑦2

+ 𝑐1𝐴 − 𝑐3𝐴|𝐴|
2, (23)

where 𝑑 = 4𝑘2𝑐
𝐷1𝐷2𝑤

(1+𝑣𝑤)(𝐽0)12
and the coefficient of the linear term is

𝑐1 = 𝑾 𝑇 ⋅ 𝐉1 ⋅ 𝑽 = 1
1 + 𝑣𝑤

(

(𝐽1)11 + 𝑣(𝐽1)12 +𝑤(𝐽1)21 + 𝑣𝑤(𝐽1)22
)

,

while the cubic term is

𝑐3 = −𝑾 𝑇 ⋅
[

2𝐋II
0 (𝑽 𝒁0∕|𝐴|

2) + 3𝐋III
0 (𝑽 𝑽 𝑽 ) + 2𝐋II

0 (𝑽 𝒁2∕𝐴2)
]

= − 1
1 + 𝑣𝑤

{

− 2
det 𝐉0

[

𝑟1

(

(𝐽0)22
(

𝑅1,𝑣1𝑣1 + 𝑣𝑅1,𝑣2𝑣1 +𝑤𝑅2,𝑣1𝑣1 + 𝑣𝑤𝑅2,𝑣2𝑣1

)

− (𝐽0)21
(

𝑅1,𝑣1𝑣2 + 𝑣𝑅1,𝑣2𝑣2 +𝑤𝑅2,𝑣1𝑣2 + 𝑣𝑤𝑅2,𝑣2𝑣2

)

)

+ 𝑟2

(

(𝐽0)11
(

𝑅1,𝑣1𝑣2 + 𝑣𝑅1,𝑣2𝑣2 +𝑤𝑅2,𝑣1𝑣2 + 𝑣𝑤𝑅2,𝑣2𝑣2

)

− (𝐽0)12
(

𝑅1,𝑣1𝑣1 + 𝑣𝑅1,𝑣2𝑣1 +𝑤𝑅2,𝑣1𝑣1 + 𝑣𝑤𝑅2,𝑣2𝑣1

)

)]

+ 1
2

[

𝑅1,𝑣1𝑣1𝑣1 + 3𝑣𝑅1,𝑣1𝑣1𝑣2 + 3𝑣2𝑅1,𝑣1𝑣2𝑣2 + 𝑣3𝑅1,𝑣2𝑣2𝑣2

+𝑤
(

𝑅2,𝑣1𝑣1𝑣1 + 3𝑣𝑅2,𝑣1𝑣1𝑣2 + 3𝑣2𝑅2,𝑣1𝑣2𝑣2 + 𝑣3𝑅2,𝑣2𝑣2𝑣2

)]

+ 1
det(𝐉0 − 4𝑘2𝑐𝐃)

[

([

(𝐽0)11 − 4𝑘2𝑐𝐷1
]

𝑟2 − (𝐽0)21𝑟1
)

(

𝑅1,𝑣1𝑣2 + 𝑣𝑅1,𝑣2𝑣2 +𝑤𝑅2,𝑣1𝑣2 + 𝑣𝑤𝑅2,𝑣2𝑣2

)

+
([

(𝐽0)22 − 4𝑘2𝑐𝐷2
]

𝑟1 − (𝐽0)12𝑟2
)

(

𝑅1,𝑣1𝑣1 + 𝑣𝑅1,𝑣2𝑣1 +𝑤𝑅2,𝑣1𝑣1 + 𝑣𝑤𝑅2,𝑣2𝑣1

)

]}

.

2.3. Travelling wave analysis

First, let us rewrite the amplitude equation, Eq. (23), in a more suitable form for the travelling wave analysis. Note that in our studied case, we
know that 𝑐1 > 0 because we are considering a primed Turing system where a travelling wave develops due to a localised perturbation. Specifically,
we are concerned with the system with parameter values in the Turing space and hence the homogeneous steady state solution corresponding to
8

𝐴 = 0 is linearly unstable, i.e. 𝑐1 > 0. Similarly, we naturally expect the existence of a fixed profile of the desired travelling wave, hence the
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existence of a positive stationary and homogeneous root of the amplitude equation 𝐴∗ > 0. Thus we have 𝑐3 > 0 to allow for such a solution. We
ow rewrite the amplitude equation Eq. (23) as

𝜕𝐴
𝜕𝜏

= 𝑑 𝜕
2𝐴
𝜕𝑦2

− 𝑐3(𝐴 + 𝐴∗)𝐴(𝐴 − 𝐴∗), (24)

where 0 < 𝐴∗ =
√

𝑐1
𝑐3

and we look for a non-negative solution (amplitude).

We introduce the wave variable 𝜉 = 𝑦∕
√

𝑑− 𝑐𝜏, consider a particular direction 𝑐 > 0, and look for a travelling wave solution with a fixed profile
ravelling with a speed 𝑐 = 𝑐

√

𝑑. Phase plane analysis to show the existence of the travelling wave is then standard. We rewrite the amplitude
equation Eq. (24) as a first order system in 𝜉

𝐴′ = 𝑊 ,

𝑊 ′ = −𝑐𝑊 + 𝑐3(𝐴 + 𝐴∗)𝐴(𝐴 − 𝐴∗),

where ′ denotes the derivative with respect to the wave variable 𝜉. The corresponding boundary conditions (𝐴,𝑊 ) = (𝐴∗, 0) at 𝜉 = −∞,
(𝐴,𝑊 ) = (0, 0) at 𝜉 = +∞ represent the sought heteroclinic connection between (unstable) 𝐴 = 0 and (stable) 𝐴 = 𝐴∗.

The fixed point (0, 0) is a focus for 𝑐 > 2
√

𝑐1 and a spiral for 𝑐 ∈ (0, 2
√

𝑐1), while (𝐴∗, 0) is always a saddle with the unstable manifold in the
direction

(

1,− 𝑐
2

(

1 −
√

1 + 8𝑐3(𝐴∗∕𝑐)2
))

.

From these observations we can argue that there is a critical speed, 𝑐∗ = 𝑐∗
√

𝑑 = 2
√

𝑐1𝑑 = 2𝐴∗√𝑐3𝑑, below which a travelling wave does not
occur. However, there is no unique speed 𝑐 of a travelling wave as for any 𝑐 > 𝑐∗ one can construct a heteroclinic connection between the two
fixed points satisfying the desired boundary conditions.

We now use the well known Kolmogorov [23] results about the asymptotics of the speed of a compactly supported initial condition entailing a
travelling wave. Namely, as the cubic kinetics satisfy the requirement of two zeros (which can be scaled to be 0 and 1, respectively), while being
positive between them and with the highest derivative at zero, the observed travelling wave speed matches the critical speed (corresponding to
the transition from a spiral to a focus) for sufficiently large times.

The analytic profile of the travelling wave corresponding to the critical wave speed is not available. However, we can readily find the profile
of a heteroclinic connection for 𝑐 = 𝑐𝐴 = 3

√

𝑐1
2 = 3𝐴∗

√

𝑐3
2 as

𝐴𝐴(𝜉) =
𝐴∗

2

(

1 − tanh

(

1
2

√

𝑐1
2
𝜉

))

= 𝐴∗

2

(

1 − tanh

(

𝐴∗

2

√

𝑐3
2
𝜉

))

, (25)

matching the desired boundary conditions. As 𝑐∗ = 𝑐𝐴
2
√

2
3 = 𝑐𝐴(1 − 𝛿) with 𝛿 ≈ 0.057, we can rewrite the equation for the travelling wave profile

s

0 = 𝑐𝐴(1 − 𝛿)𝐴′ + 𝐴′′ − 𝑐3(𝐴 + 𝐴∗)𝐴(𝐴 − 𝐴∗), (26)

and hence expect the profile to be closely represented by the analytic profile 𝐴𝐴(𝜉), Eq. (25), for 𝛿 = 0.
It can be shown that the appropriate form of the asymptotic expansion for 𝐴 is

𝐴 = 𝐴0 + 𝛿1∕2𝐴1 + 𝛿𝐴2 + (𝛿3∕2),

and collecting powers of 𝛿 after substituting this into Eq. (26) gives 𝐴0(𝜉) = 𝐴𝐴(𝜉) and

𝛿1∕2 ∶ 0 = 𝑐𝐴𝐴
′
1 + 𝐴′′

1 − 𝑐3𝐴1(3𝐴2
0 − (𝐴∗)2),

𝛿 ∶ 3𝑐3𝐴2
1𝐴0 + 𝑐𝐴𝐴

′
0 = 𝑐𝐴𝐴

′
2 + 𝐴′′

2 − 𝑐3𝐴2(3𝐴2
0 − (𝐴∗)2).

As the solution to the first equation is 𝐴1(𝜉) = 𝐾𝐴′
0(𝜉), which satisfies the required homogeneous Dirichlet boundary conditions at ±∞, the solvability

condition for the second equation is

0 = ∫𝑅

(

3𝑐3𝐴2
1(𝜉)𝐴0(𝜉) + 𝑐𝐴𝐴

′
0(𝜉)

)

𝐴′
0(𝜉)𝑑𝜉.

Using the expected form of solution 𝐴1 = 𝐾𝐴′
0, and invoking the exact form of 𝐴0(𝜉), Eq. (25), a direct calculation yields

𝐾 = 𝑐−3∕21
10

√

2
3

.

inally, the profile of the travelling wave has the following analytical approximation

𝐴(𝜉) ≈ 𝐴𝐴(𝜉) + 𝛿1∕2
10

√

2
3

𝑐−3∕21 𝐴1(𝜉)

≈ 𝐴∗

2

(

1 − tanh

(

𝐴∗

2

√

𝑐3
2
𝜉

))

− 5
6

(

1 −
2
√

2
3

)1∕2
(𝐴∗)1∕2

𝑐1∕43

1

cosh2
(

𝐴∗

2

√

𝑐3
2 𝜉

)
. (27)

Note that this profile corresponds to a heteroclinic connection for a cubic reaction kinetics between an unstable node and a saddle that is unique
in the above sense due to Kolmogorov’s result.

In short, the concept of a characteristic speed of pattern propagation in a reaction-diffusion system is well founded (thanks to the dominance
of the critical wave speed) and corresponds to

𝑐 = 𝜖𝑐 = 𝜖𝑐∗ = 2𝜖
√

𝑐 𝑑 = 2𝜖
√

𝑑 (

(𝐽 ) + 𝑣(𝐽 ) +𝑤(𝐽 ) + 𝑣𝑤(𝐽 )
)

, (28)
9

env 1 1 + 𝑣𝑤 1 11 1 12 1 21 1 22
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in the original 𝑥, 𝑡 dimensional variables. We recall that 𝑑 = 4𝑘2𝑐
𝐷1𝐷2𝑤

(1+𝑣𝑤)(𝐽0)12
, 𝑣 = − (𝐽0)21

((𝐽0)22−𝑘2𝑐𝐷2)
and 𝑤 = − (𝐽0)12

((𝐽0)22−𝑘2𝑐𝐷2)
, see Eqs. (19), (20). The

travelling wave profile can be approximated by Eq. (27).
Crucially, it can be shown that the expression for the TW speed obtained from the envelope equation, Eq. (28), and from the marginal stability

conditions close to the bifurcation point, Eqs. (10) and (11), are exactly equivalent, when we take into account the conditions that hold at the
bifurcation point, Eq. (7), and 𝐷1 + 𝑣𝑤𝐷2 = 0 (being equivalent to the definition of 𝑘𝑐). To see this, let us compare the ratios of the coefficients

(𝐽1)12
(𝐽1)11

,
(𝐽1)21
(𝐽1)11

, and
(𝐽1)22
(𝐽1)11

in the squared expression for the TW velocity near a bifurcation point in the marginal stability approach, Eqs. (10) and (11). If we show that they
are respectively in the ratio 𝑣, 𝑤 and 𝑣𝑤 then, from Eq. (28), we will be left with proving that the coefficients of (𝐽1)11 match in both expressions.

First, via detailed but basic calculation, the ratio of the coefficients of (𝐽1)22 and (𝐽1)11 can be shown to be −𝐷1∕𝐷2, which is equivalent to 𝑣𝑤,
n recalling that 𝐷1 = −𝑣𝑤𝐷2 at the bifurcation point. Next, the ratio of the coefficients of (𝐽1)12 and (𝐽1)11 is

2𝐷1(𝐽0)21
𝐷2(𝐽0)11 −𝐷1(𝐽0)22

hich is equivalent to

𝑣 = −
(𝐽0)21

(𝐽0)22 − 𝑘2𝑐𝐷2

ia the expression for the critical wavenumber 𝑘𝑐 , Eq. (8). Finally, the ratio of the coefficients of (𝐽1)21 and (𝐽1)11 is
𝐷1(𝐽0)22 −𝐷2(𝐽0)11

2𝐷2(𝐽0)21
,

hich is equivalent to

𝑤 = −
(𝐽0)12

(𝐽0)22 − 𝑘2𝑐𝐷2

when using the expression for the critical wavenumber 𝑘𝑐 and the relation 𝑤 = −𝐷1
𝐷2

𝑣. Therefore, all that remains is to show that the coefficients of
the (𝐽1)11 terms are equal in both expressions Eqs. (10), (11) and (28). This follows from the fact that the bifurcation point enforces the condition
(𝐷2(𝐽0)11 +𝐷1(𝐽0)22)2 = 4𝐷1𝐷2 det 𝐉0.

However, in addition to the prediction of the travelling front wave speed and the spatial frequency of the resultant pattern, the amplitude
equation approach estimates the amplitude of the final pattern. Hence, in addition to the above numerical verification of the asymptotic version
of the marginal stability criterion, we shall assess the estimation of the amplitude of the pattern.

2.3.1. Assessment of envelope equation performance
It is worth mentioning that several key characteristics follow from the amplitude equation itself, as estimated by Eq. (27). Firstly the asymptotic

amplitude of the leading order pattern in 𝒗 is equal to 2𝜖 multiplied by the positive stationary solution of the envelope equation, i.e. 2𝜖𝐴∗, with
𝐴∗ =

√

𝑐1∕𝑐3, noting the associated component of 𝑽 = (1, 𝑣) and the factor of two arising from a complex conjugate, as follows from Eq. (16).
e may also compare this leading asymptotic amplitude directly with the amplitude of the first component 𝑢1 of the solution to the full problem.

Second, the speed of the travelling wave is 2𝜖
√

𝑐1𝑑 and we have an analytical expression for this in terms of the model parameters, as given by
the expressions following Eq. (23). Third, an estimate of the wave number is immediately available, since the weakly nonlinear theory is based on
the localisation of the bifurcation point, which is analytically determinable from linear stability theory, see Eq. (8).

We again consider Schnakenberg and the CDIMA kinetics with the same parameter values as above when testing the marginal stability criterion,
hence we consider a primed Turing system. Note that the physical parameter we vary as the bifurcation parameter, denoted 𝛼, is subject to choice
and hence can potentially affect the precision of the analytical results. Nonetheless, the methodology of deriving the envelope equation is not
affected by this choice, though the expansion of the Jacobian given by 𝑱 = 𝑱 0 + 𝛼𝑱 1 + (𝛼2) generates expressions that ultimately are dependent
on the choice of 𝛼. Finally, on comparing the full problem with the envelope equation, note that the initial perturbation is of the same magnitude
(rescaled by 𝜖) and location for both problems, allowing us to use the envelope equation for comparison. However, one distinction is that the
perturbation is about a non-trivial homogeneous steady state for the full problem but about the trivial solution for the envelope equation (simply
being the zero amplitude of the pattern corresponding to the homogeneous steady state), though this does not invalidate direct comparison between
the two solutions.

As a particular example, we consider Schnakenberg kinetics with zero flux boundary conditions, the parameter values 𝐷1 = 1, 𝐷2 = 20, 𝑎 =
0.05, 𝑏 = 1.4 and a 1D domain with size 𝐿 = 200 (Schnakenberg I), see Appendix A.2 for the other studied cases. Using the above analysis, we
obtain, for this choice of reaction kinetics and parameter values, the following form of the envelope equation

𝜕𝐴
𝜕𝜏

= 3.020 𝜕
2𝐴
𝜕𝑦2

+ 0.446𝐴 − 0.541𝐴3, (29)

nd that 𝜖 = 0.559. Hence, we may simply read out the predicted amplitude of the pattern 𝐴env = 2𝜖𝐴∗ = 1.015 and using Eq. (28) we have an
stimate of the travelling wave speed 𝑐env = 1.297. The wavenumber 𝑘env is equal to the critical wavenumber 𝑘𝑐 , Eq. (8), which follows from the

leading order expansion Eq. (16) and has the value 𝑘env = 𝑘𝑐 = 0.628. In addition, we solve this scalar reaction-diffusion equation with the same
zero flux boundary conditions and the same initial condition as above in the full problem, that is, a localised perturbation of the same magnitude,
𝜌 = 3, and location 𝑥 = 60 about the unstable trivial homogeneous steady state. Plotting this solution reveals a good match with the solution to the
full problem, see Fig. 5, where we plot the solutions in their natural coordinates.

In addition, from the numerical solution to the envelope equation, we determine the numerically observed speed of the travelling wave 𝑐numenv as
described above in the two highlighted locations giving 𝑐numenv = 1.288, showing a good match with the critical wave speed determined analytically
from the Kolmogorov asymptotic arguments.

Finally, we plot the solutions, see Figs. 6(a), 6(b), to both the full problem and the envelope equation for the two highlighted cross-sections in
Fig. 5 corresponding to 𝑥 = 91.46 and 𝑥 = 170.92. In this way we can compare the predicted travelling wave profile together with its amplitude
10
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Fig. 5. Schnakenberg kinetics with 𝐷1 = 1, 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4 and a 1D domain with size 𝐿 = 200 (Schnakenberg I). Density plot of 𝑢1 of the numerical solution to the
full problem is presented, where the black region is the set of points (𝑥, 𝑡) where 𝐴(𝑡, 𝑥) < 𝐴RD∕2, while the white region shows its complement. In addition, we plot a contour of
the solution to the envelope equation at half its maximal value, that is at 𝐴env∕2, in the rescaled coordinates 𝑡 = 𝜖−2𝜏, 𝑥 = 𝜖−1𝑦 (with 𝜖 = 0.559 for the listed parameter values)
using a white dashed curve. Note that the two thresholded solutions are almost overlapping once the pattern is established and has started to propagate. Again, the vertical black
lines highlight the positions of cross-sections for determining the travelling wave speed and amplitudes. Note the similarity in both the time and location of the pattern initiation
and also the development of the spatial pattern behind a front travelling with a fixed velocity (neglecting the initial transition behaviour and boundary effects).

and velocity. We also plot the asymptotic estimate of the travelling wave profile, Eq. (27), shifted in time by 𝑡0 to match the arrival of the wave
at the first cross-section with the numerical solution to the envelope equation. This time shift 𝑡0 is necessary as the determination of the travelling
wave profile does not consider initiation and development of the front and thus is free up to a translational shift, which we fix by specifying 𝑡0. Its
value is determined manually by choosing a value which results in the best match (visually overlapping) between the analytical profile, Eq. (27),
and plotted as a green curve, together with a plot of the numerical solution to the envelope problem at the first cross-section (blue). In particular,
we present the function (𝑢∗)1 + 2𝜖𝐴(𝜉) where 𝐴(𝜉) is the identified asymptotic approximation for the amplitude in Eq. (27) evaluated at a point
𝜉(𝑡, 𝑥) = 𝜖

√

𝑑
(𝑥 − 𝑐env𝜖(𝑡 + 𝑡0)). Therefore, there is a single fitting parameter, the time shift 𝑡0. Therefore, the precision of the analytical estimate of

the front velocity 𝑐env is visually immediate as the difference between the time of arrival of the wave at the second cross-section profile, Fig. 5.
We also show the numerical solution to the full RD problem where there is no need to provide a time shift correction. Thus, from the figure we

are able to determine the velocities observed in all three approaches: (i) the full reaction-diffusion system with numerically estimated speed, 𝑐RD;
(ii) the analytical estimate for the asymptotic travelling wave speed from the envelope equation 𝑐env; and (iii) the numerically estimated asymptotic
travelling wave speed from the numerical solution of the envelope equation, 𝑐numenv . In addition, we can also assess the closeness of fit for the front
profiles and the time taken for the pattern to develop from the small localised disturbance.

3. Discussion and conclusions

The marginal stability criterion was put forward as a conjecture forty years ago [8] and while there are several hypotheses for its derivation [2,
3,8,14,17,18,21], for example, being a transition between convective and absolute instabilities [8–13], its validity still remains an open problem.
In addition, the marginal stability equations may not entail a unique speed of the travelling front, see Fig. 4, and do not provide information on
the profile or amplitude of the wave.

As an alternative route, we derived the envelope equation for the spatial pattern deposited after the front but it is restricted in validity to be
close to the primary bifurcation point. However, we were able to show that there is a uniquely selected TW speed via Kolmogorov’s argument of
dynamical selection via a linear mechanism, also known as the pulled case. Note, however, that the selection of TW speed along the lines discussed
above, when the TW speed is determined only by what is happening at the front, is limited only to the pulled front case, where its dynamics are
driven by linear kinetics around the unstable homogeneous steady state, see Chomaz and Couairon [18], Van Saarloos [17], Berestycki and Hamel
[24]. Pushed fronts require different approaches and will be the subject of future research.

The amplitude equation approach offers several benefits. It not only estimates the front velocity and pattern wavenumber, but also the magnitude
of the deposited pattern amplitude and front shape. We derived explicit analytical expressions for all of these properties from the original model
11
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Fig. 6. Schnakenberg kinetics with 𝐷1 = 1, 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4 and a 1D domain with size 𝐿 = 200 (Schnakenberg I). Temporal profiles for the solutions at the highlighted
ositions — vertical black lines in the preceding density plots. The red curve corresponds to the numerical solution 𝑢1(𝑡, 𝑥) to the full problem. The blue curve is the numerical
olution to the corresponding envelope problem (𝑢∗)1 +2𝜖𝐴(𝜖2𝑡, 𝜖𝑥), and the green curve (significantly overlapping with the dashed curve) is the shifted in time estimated analytical
rofile (𝑢∗)1 + 2𝜖𝐴

(

𝜖
√

𝑑
(𝑥 − 𝑐env𝜖(𝑡 + 𝑡0))

)

from Eq. (27). This shift 𝑡0 = 41 in the plot of the analytical profile is necessary because it was obtained from the phase space in TW
oordinates and therefore is subject to the translational invariance of the travelling wave, see text for more details. As one can observe from the comparison of the two panels,
ll the three speeds 𝑐RD , 𝑐env , 𝑐numenv of the travelling wave are similar and the approximate analytical profile matches the numerically calculated ones, see the text for more details.
inally, note that there is a disparity in the predicted amplitude of the pattern, the error being 3% of the numerically calculated amplitude from the full problem.

arameters. Moreover, the asymptotic solution to the marginal stability criterion yields exactly the same estimate near the bifurcation point. Our
nalysis establishes a firm basis for the notion of the characteristic speed of pattern propagation in a reaction-diffusion system, while strengthening
he motivation for using the marginal stability criterion and providing a footing for the further exploration of a wave of competence [4].

In particular, we have shown that the marginal stability criterion and the amplitude equation give exactly the same estimates of the travelling
ave speed near primary bifurcation points. Hence, Fig. 4 can be also viewed as a comparison of the marginal stability criterion and the amplitude
quation approach. This exact match is surprising given the very distinct foundations of the two frameworks but it serves as a confirmation of the
arginal stability criterion at least in the vicinity of primary bifurcation points.

Note that other choices of the bifurcation parameter 𝛼 may yield different predictions as the measure of the distance to the bifurcation point
aries. We leave a more thorough discussion of this effect for future research. Nevertheless, we remark that, for example in the CDIMA kinetics case,
he choice 𝛼 = (𝑎 − 𝑎𝑐 )∕𝑎𝑐 , where 𝑎𝑐 = 11.058 is the critical parameter value, yields 𝜖 = 0.292 and hence different predictions of the characteristic
eatures of the travelling wave solutions. Similarly, we also consider the choice 𝛼 = (𝜇𝑐 − 𝜇)∕𝜇𝑐 , where 𝜇𝑐 = 63.813 is the bifurcation point. The
ssociated predictions are listed below in Table 2 and further details including the envelope equations are given in Appendix A.

We now summarise the results in the above considered scenarios in Table 2, restricting the results to relative errors for brevity. Note that
lthough we use the same 𝜖 as a measure of the distance to the bifurcation point in all the cases listed, its value is not directly comparable between
ifferent models, or even between different choices of the bifurcation parameter (e.g. the lines 1–3 in the table, where the parameter values are kept
he same but the bifurcation parameter is chosen differently). In this sense, only CDIMA I (the first row) and CDIMA III (the fifth row) are directly
omparable, where we expect an increase in accuracy as 𝜖 decreases. Note, however, that we express the results in relative errors. Therefore, as
he travelling wave speed 𝑐 and amplitude 𝐴 scale as (𝜖1∕2) near the bifurcation point (both the estimated and the numerically determined), the
elative errors of 𝑐 and 𝐴 are expected to remain as (1). On the other hand, the wavenumber 𝑘 is (1) near the bifurcation point and hence the
elative error scales as (1) for sufficiently small 𝜖. These trends can be observed for the two comparable cases in Table 2, row 1, CDIMA I, and row
, CDIMA III, though the oscillatory nature of the convergence hides this trend for (𝑘𝑅𝐷 − 𝑘𝑀𝑆 )∕𝑘𝑅𝐷, with only two values of 𝜖. More generally,
ote that that Fig. 4 shows the expected increase in precision with smaller 𝜖 in absolute terms. Finally, it has been observed that while the accuracy
f the asymptotic analysis increases with reductions in 𝜖, the numerical accuracy decreases (because the closer one gets to the bifurcation points,
he longer the transients are).

The linear marginal stability criterion showed a good estimation of the TW speed and wavenumber in the studied examples. Similar results were
hen obtained for these two properties using a weakly nonlinear analysis and the envelope equation, which we showed to exactly satisfy the marginal
tability criterion close to the bifurcation point. Furthermore, while one might expect a loss of accuracy of the amplitude equation approach with
ncreasing distance from the bifurcation point, the marginal stability condition is not restricted to the neighbourhood of the bifurcation point and
hows good estimates even outside this neighbourhood. However, as we have shown, there is the problem of multiple possible solutions, among
hich the correct solution corresponding to the characteristic TW speed cannot be selected without further analysis or insight. The envelope
quation approach predicted that the evolution of the travelling wave in the envelope equation is slightly delayed compared to the actual full
eaction-diffusion problem, while the amplitude approach allows us to capture, qualitatively, the shape of the solution and, in many cases, is also
easonably accurate quantitatively, see Table 2.

This study demonstrates the existence of a characteristic speed of pattern propagation determined from detailed reaction kinetics together with
iffusion and thus is a hallmark of each Turing pattern formation system. Thus, in turn, each Turing system has an associated wave propagation
peed that may be compared to experimental results in the same way as the length scale characteristic of the observed pattern [6,25–28].
12
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Table 2
A summary of marginal stability results (index MS), numerical estimation (index RD) and envelope equation results (index env) of the key properties of the TW and the deposited
pattern for 𝐷1 = 1. Note that these models are defined in detail and explored in the main text and in the Appendix. We discuss each case via the relative error in both the front
propagation speed and the wavenumber of the deposited pattern. In addition, we show the comparison of pattern amplitude and the role of the bifurcation parameter choice.

Parameters 𝜖 = 𝛼1∕2 𝑐RD−𝑐MS

𝑐RD

𝑐RD−𝑐env
𝑐RD

𝑘RD−𝑘MS

𝑘RD

𝑘RD−𝑘env
𝑘RD

𝐴RD−𝐴env

𝐴RD

CDIMA I 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50
√

𝑏𝑐 − 𝑏 = 0.293 −0.057 0.010 −0.007 −0.096 0.529
CDIMA I same as above

√

𝑎−𝑎𝑐
𝑎𝑐

= 0.292 −0.057 −0.222 −0.007 −0.107 0.678

CDIMA I same as above
√

𝜇𝑐−𝜇
𝜇𝑐

= 0.465 −0.057 0.010 −0.007 −0.096 0.529
CDIMA II 𝐷2 = 2𝜇, 𝑎 = 10.5, 𝑏 = 0.4, 𝜇 = 13

√

𝑏𝑐 − 𝑏 = 0.346 −0.029 0.040 0.028 −0.074 0.132
CDIMA III 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.38, 𝜇 = 50

√

𝑏𝑐 − 𝑏 = 0.125 −0.053 −0.042 0.007 −0.007 0.217
Schnakenberg I 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4

√

𝑏𝑐 − 𝑏 = 0.559 −0.068 −0.007 0.028 −0.010 0.034
Schnakenberg II 𝐷2 = 20, 𝑎 = 0.13, 𝑏 = 1.4

√

𝑏𝑐 − 𝑏 = 0.241 −0.131 −0.125 −0.028 −0.053 0.005

CRediT authorship contribution statement

Václav Klika: Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, Conceptualization. Eamonn A.
affney: Writing – review & editing, Methodology, Formal analysis, Conceptualization. Philip K. Maini: Writing – review & editing, Methodology,
ormal analysis, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the
ork reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

We are grateful to Yue Liu for helpful discussions.

ppendix A. CDIMA reaction kinetics

In the main text, we provide a detailed illustration of the analytical results for both the marginal stability and envelope equation method with
chnakenberg reaction kinetics with particular choices of parameter values. For instance, for the case labelled as Schnakenberg I, we have the
arameter choice 𝐷1 = 1, 𝐷2 = 20, 𝑎 = 0.05, 𝑏 = 1.4 and with the domain size 𝐿 = 200, the evolution of the localised initial condition with 𝜌 = 3

results in the formation of a pattern behind a front travelling with an approximately constant speed, see Fig. 1(b), which can be associated with
the Turing space and the bifurcation point given in Fig. 2. In this Supplementary section, we present analogous results for the CDIMA reaction
kinetics not presented in the main text, except via the summary statistics of Tables 1 and 2.

A.1. Preliminaries

We consider the reaction-diffusion problem, Eq. (1), with the, albeit simplified, modelling representation of the CDIMA (chlorine dioxide–iodine–
malonic acid) reaction kinetics taken from Konow et al. [6], which is based on the two-variable version of the kinetics [7], that is CDIMA reaction
kinetics (given in Eq. (13)) on a one-dimensional spatial domain with zero-flux boundary conditions.

We take the parameters as 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50 and a 1D domain with size 𝐿 = 200 (CDIMA I). This set of parameters is
within the Turing space as indicated in Fig. 7(a), where we plot the Turing space in the 𝑎, 𝑏 parameter space for 𝐷1, 𝐷2 fixed at 1,50 respectively.

e also highlight the localisation of the nearest bifurcation point 𝑏𝑐 = 0.396 for the chosen bifurcation parameter 𝛼 = 𝑏𝑐 − 𝑏, which leads to
𝜖 =

√

𝛼 = 0.293. With this choice of parameter values, the evolution of the localised initial condition with 𝜌 = 3 results in the formation of a pattern
behind a front travelling with an approximately constant speed, see Fig. 7(b). In addition, from the numerical solution determined in this manner,
we may extract all the observed characteristics from the (numerical) localisation of the highlighted maxima of the pattern, as in Fig. 7(b) with: (i)
the amplitude 𝐴RD = 1.223; (ii) the pattern wavenumber 𝑘RD = 0.835, denoting 2𝜋 divided by the distance between the neighbouring maxima; and
iii) the speed of the travelling wave 𝑐RD = 1.626 from numerically calculating the times when the travelling pattern has reached half of the final
mplitude at the two highlighted locations.

.2. Envelope method

For the CDIMA kinetics, similar details are given here, analogously to the above-mentioned example in the main text: Schnakenberg kinetics
13
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Fig. 7. Illustration of pattern formation behind a wave travelling at a constant speed after a localised perturbation to the steady state. We consider the CDIMA system, Eq. (1),
with zero-flux boundary conditions and parameter values 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50 and a 1D domain with size 𝐿 = 200 (CDIMA I), using an initial perturbation of
the form of that presented in Fig. 1(a) with 𝜌 = 3. The profile of 𝑢2 is in phase with the profile of 𝑢1.

CDIMA I. We consider CDIMA kinetics with 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50 and a 1D domain with size 𝐿 = 200 (CDIMA I). Using the
above analysis, we obtain, for this choice of reaction kinetics and parameter values, the following form of the envelope equation

𝜕𝐴
𝜕𝜏

= 3.496 𝜕
2𝐴
𝜕𝑦2

+ 2.161𝐴 − 0.212𝐴3, (30)

and that 𝜖 = 0.293. Hence, we may simply read out the predicted amplitude of the pattern 𝐴env = 2𝜖𝐴∗ = 1.869 and, using Eq. (28), we have
an estimate for the travelling wave speed 𝑐env = 1.609. The wavenumber 𝑘env is equal to the critical wavenumber 𝑘𝑐 , Eq. (8), and has the value
𝑘env = 𝑘𝑐 = 0.915. In addition, we solve this scalar reaction-diffusion equation with the same zero flux boundary conditions and the same initial
condition as above in the full problem, that is, a localised perturbation of the same magnitude, 𝜌 = 3, and location 𝑥 = 60 about the unstable trivial
homogeneous steady state. Plotting this solution reveals a good qualitative agreement with the solution to the full problem, see Fig. 8, when we
plot the solutions in the original (slow) coordinates.

In addition, from the numerical solution to the envelope equation we determine the numerically observed speed of the travelling wave 𝑐numenv as
described above in the two highlighted locations giving 𝑐numenv = 1.562, showing a good match with the critical wave speed determined analytically
from Kolmogorov asymptotic arguments.

Finally, we plot the solutions, see Figs. 9(a), 9(b), to both the full problem and the envelope equation for the two highlighted cross-sections in
Fig. 7(b) corresponding to 𝑥 = 98.83 and 𝑥 = 165.9. In this way we can compare the predicted travelling wave profile together with its amplitude
and velocity. We also plot the asymptotic estimate of the travelling wave profile, Eq. (27), shifted in time by 𝑡0 to match the arrival at the first
cross-section with the numerical solution to the envelope equation. This time shift 𝑡0 is necessary as the determination of the travelling wave
profile does not consider initiation and development of the front and thus is free up to a translational shift, which we fix by specifying 𝑡0. Its value
is determined manually by choosing a value which results in the best match (visually overlapping) between the analytical profile, Eq. (27) and
plotted as a green curve, together with a plot of the numerical solution for the envelope problem at the first cross-section (blue). In particular,
we plot the function (𝑢∗)1 + 2𝜖𝐴(𝜉) where 𝐴(𝜉) is the identified asymptotic approximation for the amplitude in Eq. (27) evaluated at the point
𝜉(𝑡, 𝑥) = 𝜖

√

𝑑
(𝑥 − 𝑐env𝜖(𝑡 + 𝑡0)). Hence, there is a single fitting parameter, the time shift 𝑡0. Therefore, the precision of the analytical estimate of the

front velocity 𝑐env is visually immediate as the difference between the times of arrival of the waves (red, blue, and green curves) at the second
cross-section profile, Fig. 9(b).

We also show a solution to the full RD problem where there is no need to provide a time shift correction. Thus, from the figure we are able
to determine the velocities observed in all three approaches: (i) the full reaction-diffusion system with numerically estimated speed, 𝑐RD; (ii)
the analytical estimate for the asymptotic travelling wave speed from the envelope equation 𝑐env; and (iii) the numerically estimated asymptotic
travelling wave speed from the numerical solution of the envelope equation, 𝑐numenv . In addition, we can also assess the closeness of fit for the front
profiles and the time taken for the pattern to develop from the small localised disturbance.
14
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Fig. 8. CDIMA kinetics with 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50 and a 1D domain with size 𝐿 = 200 (CDIMA I) using the initial conditions given by Fig. 1(a) with 𝜌 = 3.
Density plot of 𝑢1 of the numerical solution to the full problem is presented, where the black region is the set of points (𝑥, 𝑡) where 𝐴(𝑡, 𝑥) < 𝐴RD∕2, while the white region shows
its complement. In addition, we plot a contour of the solution to the envelope equation Eq. (30) at half its maximal value, that is at 𝐴env∕2, in the rescaled coordinates 𝑡 = 𝜖−2𝜏,
𝑥 = 𝜖−1𝑦 (with 𝜖 = 0.293 for the listed parameter values) using a white dashed curve. Note that the two thresholded solutions are similar. Again, the vertical black lines highlight
the positions of cross-sections for determining the travelling wave speed and amplitudes. Note the similarity in both the time and location of the pattern initiation and also the
development of the spatial pattern behind a front travelling with a fixed velocity (neglecting the initial transition behaviour and boundary effects).

Fig. 9. CDIMA kinetics with 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.31, 𝜇 = 50 and a 1D domain with size 𝐿 = 200 (CDIMA I) using the initial conditions given by Fig. 1(a) with 𝜌 = 3.
Temporal profiles of the solutions at the highlighted positions — vertical black lines in the preceding density plots, namely in Figs. 7(b) and 8b. The red curve corresponds to
the solution 𝑢1(𝑡, 𝑥) to the full problem. The blue curve is the numerical solution to the corresponding envelope problem (𝑢∗)1 + 2𝜖𝐴(𝜖2𝑡, 𝜖𝑥), and the green curve (significantly
overlapping with the dashed curve) is the shifted in time estimated analytical profile (𝑢∗)1 +2𝜖𝐴

(

𝜖
√

𝑑
(𝑥 − 𝑐env𝜖(𝑡 + 𝑡0))

)

from Eq. (27). This shift 𝑡0 = 29 in the plot of the analytical
profile is necessary because it was obtained from the phase space in TW coordinates and therefore is subject to the translational invariance of the travelling wave which therefore
must be fixed, see text for more details. As one can observe from the comparison of the two panels, all the three speeds 𝑐RD , 𝑐env , 𝑐numenv of the travelling wave are similar and
the approximate analytical profile matches the numerically calculated ones, see the text for more details. Finally, note that there is a disparity in the predicted amplitude of the
pattern, the error being 53% of the numerically calculated amplitude from the full problem. We expect this error to reduce with 𝜖.

CDIMA II. We consider CDIMA kinetics with parameter values 𝐷1 = 1, 𝐷2 = 2𝜇, 𝑎 = 10.5, 𝑏 = 0.4, 𝜇 = 13 and 𝐿 = 200 referred to as CDIMA II.
In this situation, from the envelope equation analysis, we obtain

𝜕𝐴 = 3.644 𝜕
2𝐴 + 1.421𝐴 − 0.582𝐴3.
15
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Fig. 10. CDIMA kinetics with 𝐷1 = 1, 𝐷2 = 2𝜇, 𝑎 = 10.5, 𝑏 = 0.4, 𝜇 = 13 and a 1D domain with size 𝐿 = 200 (CDIMA II) using the initial conditions given by Fig. 1(a) with 𝜌 = 3.
emporal profiles for the solutions at the highlighted positions. The red curve corresponds to the solution 𝑢1(𝑡, 𝑥) to the full problem. The blue curve is the numerical solution to
he corresponding envelope problem (𝑢∗)1 + 2𝜖𝐴(𝜖2𝑡, 𝜖𝑥), and the green curve (significantly overlapping with the dashed curve) is the shifted in time estimated analytical profile
𝑢∗)1 + 2𝜖𝐴

(

𝜖
√

𝑑
(𝑥 − 𝑐env𝜖(𝑡 + 𝑡0))

)

from Eq. (27). This shift 𝑡0 = 31 in the plot of the analytical profile is necessary because it was obtained from the phase space in TW coordinates
and therefore is subject to the translational invariance of the travelling wave, see text for more details. Note that all the three speeds 𝑐RD , 𝑐env , 𝑐numenv of the travelling wave are
similar and the approximate analytical profile matches the numerically calculated ones, see text for more details. Finally, note that there is a disparity in the predicted amplitude
of the pattern but it is smaller than in the main text (e.g. Fig. 6), the error being 13%.

and 𝜖 = 0.346, 𝑘env = 𝑘𝑐 = 0.843, 𝐴env = 1.082, 𝑐env = 1.575, 𝑐numenv = 1.477.
In Fig. 10 we again compare the travelling wave profile, amplitude, and speed as a solution to the full problem and envelope equation, while

e also plot the estimated analytical profile of the travelling wave. We again determine the shift 𝑡0 of the analytical amplitude profile as described
bove in CDIMA I. As a result, we can directly compare the travelling wave velocity and the profile from the three considered approaches, see
ig. 10 and the discussion in the main text.

DIMA III. As a final CDIMA example, we consider parameter values 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝑏 = 0.38, 𝜇 = 50 and 𝐿 = 200 (CDIMA III). This is a
ariation of CDIMA I where we have moved the bifurcation parameter 𝑏 closer to the bifurcation point 𝑏𝑐 while keeping the remaining parameters
ixed.

The envelope equation analysis yields
𝜕𝐴
𝜕𝜏

= 3.496 𝜕
2𝐴
𝜕𝑦2

+ 2.161𝐴 − 0.213𝐴3.

nd 𝜖 = 0.125, 𝑘env = 0.915, 𝐴env = 0.796, 𝑐env = 0.686, 𝑐numenv = 0.645. We do not plot the solution to this problem but we list the key characteristics
n Table 2.

.3. Other choices of bifurcation parameters

As mentioned in the main text, the choice of the bifurcation parameter may play a role in the weakly nonlinear analysis of behaviour near the
ifurcation point.

We remark that the choice 𝛼 = (𝑎− 𝑎𝑐 )∕𝑎𝑐 for the CDIMA I model, where 𝑎𝑐 = 11.058 is the critical parameter value, gives the following results

𝜕𝐴
𝜕𝜏

= 4.494 𝜕
2𝐴
𝜕𝑦2

+ 2.578𝐴 − 0.209𝐴3.

nd 𝜖 = 0.292, 𝐴env = 2.052, 𝑐env = 1.987, 𝑐numenv = 1.885. The wavenumber is affected by this change in 𝛼 as it follows from the properties of 𝐉 at the
bifurcation point 𝑎 = 𝑎𝑐 . In particular, with the considered choice of the bifurcation parameter 𝛼, the wavenumber is approximated by 𝑘𝑐 = 0.924.

Similarly, the choice 𝛼 = (𝜇𝑐 − 𝜇)∕𝜇𝑐 in CDIMA I model, where 𝜇𝑐 = 63.813 is the bifurcation point, yields

𝜕𝐴
𝜕𝜏

= 3.496 𝜕
2𝐴
𝜕𝑦2

+ 0.855𝐴 − 0.212𝐴3.

nd 𝜖 = 0.465, 𝐴env = 1.869, 𝑐env = 1.609, 𝑐numenv = 1.521. In this situation, the wavenumber is estimated as 𝑘𝑐 = 0.915.
We do not plot the solutions with these choices but we list the key characteristics for comparison in the first three rows of Table 2. One can

ee that even though the estimates are carried out for exactly the same system (the same kinetics, diffusion and parameter values), the choice of
he bifurcation parameter 𝛼 affects the accuracy of predictions from the envelope approach.

.4. Comparison of all methods

As a final illustration, we show the comparison of marginal stability criterion results (and its multiple roots), envelope method, and the
haracteristics stemming from the numerical solution to the full problem, as an analogue to Fig. 4 for the Schnakenberg case in the main text.
n Fig. 11, we plot the TW velocity in 𝑥, 𝑡 variables. We again observe a behaviour corresponding to the square root of the distance from the
ifurcation point in its local neighbourhood and that there is a match between the asymptotic expression for the travelling wave speed close to the
ifurcation point and the numerical solution of the marginal stability criterion. Finally, note once more that the equations for marginal stability
ay have multiple solutions, where multiple branches of 𝑐MS appear (even close to the bifurcation point).
16
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Fig. 11. Travelling wave speed (given in 𝑥, 𝑡 units) as predicted from (i) the full solution of RD problem with CDIMA kinetics, 𝑐RD; (ii) from the marginal stability conditions,
𝑐MS; and (iii) from the marginal stability asymptotics, 𝑐MSasympt . Parameter values were chosen as 𝐷1 = 1, 𝐷2 = 𝜇, 𝑎 = 12, 𝜇 = 50 and 1D domain with size 𝐿 = 200 (CDIMA I).

ote that the choice of the magnitude of the localised initial condition in the finite domains is important as demonstrated in Fig. 3 and we consider 𝜌 = 3. Note that the marginal
tability approach can yield multiple solutions, as illustrated here for 𝑏 ∈ (0.08, 0.12) where two branches appear.
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