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Abstract
In vivo observations show that oxygen levels in tumours can fluctuate on fast and slow
timescales. As a result, cancer cells can be periodically exposed to pathologically low
oxygen levels; a phenomenon known as cyclic hypoxia. Yet, little is known about
the response and adaptation of cancer cells to cyclic, rather than, constant hypoxia.
Further, existing in vitro models of cyclic hypoxia fail to capture the complex and
heterogeneous oxygen dynamics of tumours growing in vivo. Mathematical models
can help to overcome current experimental limitations and, in so doing, offer new
insights into the biologyof tumour cyclic hypoxia bypredicting cell responses to awide
range of cyclic dynamics. We develop an individual-based model to investigate how
cell cycle progression and cell fate determination of cancer cells are altered following
exposure to cyclic hypoxia. Our model can simulate standard in vitro experiments,
such as clonogenic assays and cell cycle experiments, allowing for efficient screening
of cell responses under a wide range of cyclic hypoxia conditions. Simulation results
show that the same cell line can exhibit markedly different responses to cyclic hypoxia
depending on the dynamics of the oxygen fluctuations. We also use our model to
investigate the impact of changes to cell cycle checkpoint activation and damage repair
on cell responses to cyclic hypoxia. Our simulations suggest that cyclic hypoxia can
promote heterogeneity in cellular damage repair activity within vascular tumours.
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1 Introduction

Uncontrolled proliferation is one of the hallmarks of cancer (Hanahan 2022). However,
experimental evidence shows that intra-tumour heterogeneity in proliferation activity
is a leading cause of treatment failure, with small numbers of quiescent (i.e., non-
proliferative) cancer cells driving drug resistance and relapse (Aguirre-Ghiso 2007;
Tomasin and Bruni-Cardoso 2022). This observation highlights the need to understand
what environmental and subcellular signals regulate quiescence in cancer (Tomasin
and Bruni-Cardoso 2022).

Themitotic cell cycle is commonly divided into four phases: G1 (growth in prepara-
tion for DNA replication), S (DNA synthesis), G2 (growth and preparation for mitosis)
and M (mitosis). As cells proceed through the cell cycle there are two key decisions
to make: whether to initiate DNA replication and whether to undergo mitosis. These
decisions are regulated by integrating multiple cellular signalling pathways and extra-
cellular stimuli. At the cell scale, control mechanisms (or checkpoints) guarantee
timely and accurate replication of the genome (in the S phase) and its correct segrega-
tion into two daughter cells (in the M phase). At the tissue scale, environmental cues,
such as growth factors, nutrient levels and mechanical stress, can favour re-entry into,
or arrest of, the mitotic cycle to maintain tissue homeostasis by regulating checkpoint
dynamics. To maintain high rates of proliferation, cancer cells must disrupt cell cycle
regulation mechanisms designed to prevent the replication of damaged/neoplastic
cells. Such behaviour is usually associated with mutations or dysregulation of pro-
teins that control cell cycle checkpoints; specifically, cell cycle control in response to
DNA damage and S-phase entry (Matthews et al. 2022). Nonetheless, cells may still
benefit from having functioning checkpoints that induce quiescence and enable cancer
cell survival under unfavourable conditions.

As a solid tumour develops, excessive cell proliferation leads to an imbalance
between oxygen supply and demand, resulting in pathologically low oxygen levels
(i.e., hypoxia) at distance from the vasculature. Hypoxia is a known driver of cellular
quiescence and has been associated with poor treatment outcomes. As hypoxia is toxic
for proliferating cells, particularly those actively synthesising DNA, cells that reside
in hypoxic regions may enter a quiescent state (Höckel and Vaupel 2001). By tran-
siently exiting the cell cycle, these cells are able to withstand adverse environmental
conditions.

Oxygen levels in vascularised tumours are both spatially and temporally heteroge-
neous (Kawai et al. 2022; Matsumoto et al. 2010; Saxena and Jolly 2019). As a result,
regions in which cells are periodically exposed to hypoxia can arise, a phenomenon
known as cyclic hypoxia. While constant hypoxia typically affects tumour regions at
a significant distance from vessels, cyclic hypoxia is observed both close to, and far
from, blood vessels, with periods ranging from seconds to days (Bader et al. 2021a;
Ron et al. 2019). High-frequency fluctuations are usually associated with vasomotor
activity, while vascular remodelling and treatment can generate cycles with longer
periods (Michiels et al. 2016). Recent work suggests that self-sustained fluctuations in
blood flow might be related to the topology of blood vessel networks, which is known
to be abnormal in tumours (Ben-Ami et al. 2022).
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Despite experimental evidence suggesting the potential role of cyclic hypoxia
in driving tumour aggressiveness, relatively little is known about how cancer cells
respond to fluctuating, rather than constant, oxygen levels to promote tumour growth,
invasion andmetastasis (see Saxena and Jolly 2019 for a recent review). This is because
of the several experimental challenges associated with quantifying cyclic hypoxia in
vivo and with developing in vitro models that replicate the oxygen dynamics experi-
enced by tumours growing in vivo. Mathematical modelling provides an efficient tool
to explore the role of complex oxygen dynamics across temporal and spatial scales,
from intracellular signalling within individual cancer cells to emergent population-
level tumour dynamics. For example, mathematical modelling has helped elucidate
the crosstalk between cyclic hypoxia and gene expression pattern (Zhang et al. 2014)
with a focus on HIF-signalling (Leedale et al. 2014). In previous work (Celora et al.
2022; Celora 2022), we have shown how mathematical modelling can be combined
with experimental data to study the impact of short-term exposure to a wide range
of cyclic hypoxia protocols on cell cycle progression in the colorectal RKO cancer
cell line. Here, we extend our cell cycle model to investigate the long-term impact
of time-varying oxygen levels on cancer cell survival and the emergent population
growth dynamics. The flexibility of our modelling framework allows us to investigate
how cell cycle checkpoint and damage repair signalling influence cancer cells’ adap-
tation to different forms of cyclic hypoxia. In doing so, we obtain new insight into how
cyclic hypoxia may contribute to intra-tumour heterogeneity and treatment resistance
by favouring the selection of cancer cells which differ in their ability to repair damage.

The paper is organised as follows. In Sect. 2, we review what is currently known
about cell cycle progression and cell survival in different hypoxic environments.
In Sect. 3, we present a stochastic, individual-based (IB) model of the cell cycle in
hypoxia which aims to capture aspects of the biology presented in Sect. 2. In Sect. 4.1,
we validate our model by simulating growth dynamics in constant environmental con-
ditions and comparing model output with experimental observations. In Sect. 4.2, we
use our model to study how different fluctuating hypoxic environments affect the
growth dynamics (see Sect. 4.2.1) and survival outcomes (see Sect. 4.2.2) of cancer
cell populations. In Sect. 4.3, simulations of serial passage assays reveal how alter-
ations to damage repair and cell cycle checkpoint signalling may affect cancer cell
responses and adaptation to cyclic hypoxia. In Sect. 5, we explain how our results
increase our understanding of how cyclic hypoxia may contribute to tumour hetero-
geneity by allowing the coexistence of cells with different levels of damage repair
capacity. We conclude in Sect. 6 by summarising our results and outlining possible
directions for future research.

2 Cell (dys-)regulation in Hypoxia

When characterising cell responses to hypoxia, it is important to account for the
oxygen concentration to which the cells are exposed. In this study, we use the term
“hypoxia” to refer to oxygen levels below cH = 1% O2, which is often referred to as
pathological hypoxia (McKeown 2014). In practice, a tumour’s tolerance to oxygen
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Fig. 1 Schematic representation of cell responses as a function of hypoxia duration. a Intracellular levels
of dNTP quickly drop to pathological levels in hypoxia, determining cell responses to acute hypoxia.
Levels of DNA repair factors decrease more slowly than dNTP and, hence, drive cell responses to chronic
hypoxia. b Cell cycle-specific role of dNTP and DRF levels on the regulation of intracellular mechanisms:
DNAsynthesis and damage accumulation/repair. Keys: arrow-heads indicate stimulation; bar-heads indicate
inhibition; DDR denotes DNA damage response and dNTP denotes deoxynucleotide triphosphates. More
details are given in the main text

shortages depends on its tissue of origin. As such, this threshold should be viewed as
an upper bound, rather than an absolute value (McKeown 2014).

The schematic in Fig. 1 summarises how prolonged exposure to hypoxia affects cell
physiology by disrupting two fundamental processes: DNA synthesis and repair. The
consequences of these perturbations are cell cycle phase specific (see Fig. 1b).

In vitro experiments have shown the rapid reduction in the initiation and progres-
sion of DNA synthesis in cells exposed to hypoxia (Foskolou et al. 2017; Pires et al.
2010b). This behaviour has been attributed to impaired functioning of the enzyme
ribonucleotide reductase (RNR) (Foskolou et al. 2017; Olcina et al. 2010), which
mediates de novo production of deoxynucleotide triphosphates (dNTPs). Since dNTPs
are the building blocks of DNA, the reduction in dNTP levels prevents cells from initi-
ating DNA synthesis (arrest in the G1 phase) and causes DNA synthesis to stall (arrest
in the S phase). The stalling of DNA synthesis activates the DNA damage response
(DDR), stabilising open replication forks and allowing cells in the S-phase towithstand
replication stress. However, exposure to hypoxia also activates an energy-preserving
program (Pires et al. 2010a) resulting in reduced production of DNA repair factors
(DRF) and, hence, reduced ability to stabilise stalled replication forks. If hypoxic con-
ditions are prolonged (more than 12 hours) arrest in the S phase becomes irreversible
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and leads eventually to cell death (Pires et al. 2010b; Ng et al. 2018). By contrast,
cells that arrest before initiating DNA synthesis can tolerate prolonged exposure to
hypoxia since they are not sensitive to replication stress. Differences in the time scales
associated with the decreases in levels of dNTPs and DNA repair factors enable cells
to distinguish between acute (less than 12 hours) and chronic (more than 12 hours)
hypoxia. As a result, cells can adapt their response to oxygen dynamics rather than
responding instantaneously to changes in oxygen levels.

If oxygen levels are restored after acute exposure to hypoxia, cells in the S phase
can resume DNA synthesis although they may accumulate additional damage during
re-oxygenation (Bader et al. 2021b). Depending on the amount of stress/damage sus-
tained, activation of DDR signalling may cause these cells to accumulate in the G2
phase and prevent them from enteringmitosis (Bristow andHill 2008; Goto et al. 2015;
Olcina et al. 2010). Damaged cells that successfully repair any damage they have accu-
mulated eventually enter mitosis and replicate; otherwise, they undergo reproductive
death (either via activation of the senescence program or via cell death). Regulation
of the DDR signalling and damage repair is therefore crucial in determining the long-
term impact of hypoxia on cancer cell responses; conversely, hypoxia is known to shift
the damage repair capacity of cells (Begg and Tavassoli 2020).

In our previous work (Celora et al. 2022), we focussed on modelling cell responses
to acute exposure to constant and cyclic hypoxia. As such, we neglected the role of
DNA repair factors and the impact of hypoxia on cell viability. Here, we show how
these effects can be included in our framework.

3 An Individual-BasedModel of in vitro Cancer Cell Dynamics in
Hypoxia

3.1 Model Overview

Weconsider a population of cells that are in awell-mixed (i.e., spatially homogeneous)
environment and exposed to externally prescribed, time-varying oxygen levels, c =
c(t) [O2%]. This mimics typical cell culture experiments in oxygen chambers (Kim
et al. 2021). For simplicity, we focus on the early stages of population growth, when
competition for space and nutrients can be neglected.

We represent each cell as an individual which can proliferate or die with proba-
bilities that depend on their state. Each cell is characterised by five state variables
(see Table 1). The categorical variable z indicates the position along the cell cycle
(cell cycle state), while the four continuous state variables describe, respectively, DNA
content (x), damage levels (y), intracellular levels of dNTP (mdNTP) and DNA repair
factors (mDRF). Continuous state variables are included to account for the dynamics
of intracellular processes that regulate cell proliferation (via progression through the
cell cycle) and death in oxygen-fluctuating environments. Variables x and mdNTP are
introduced to describe the evolution of DNA synthesis in the S phase; variables y and
mDRF are introduced to describe the processes of damage repair.

Proliferation, death and state changes of each cancer cell are described by time-
discrete stochastic processes. We consider discrete time points: tn = n�t ∈ [0, t f ],
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Table 1 List of the variables characterising a cell (individual) state with a brief description and the range
of values that these can take

Variable Description Values

m(i)
dNTP(t) Intracellular dNTP levels in cell i at time t (a.u.) [0, 1]

m(i)
DRF(t) Intracellular DRF levels in cell i at time t (a.u.) [0, 1]

x(i)(t) DNA content in cell i at time t [1, 2]
y(i)(t) Level of DNA damage in cell i at time t per unit copy of

DNA content (a.u.)
[0, ∞)

z(i)(t) Cell cycle state of cell i at time t {G1,C1, S,G2,C2}
The notation (a.u.) stands for arbitrary units

Fig. 2 Flowchart illustrating how we implement our stochastic individual-based ( IB) model to simulate in
vitro cancer cell dynamics in hypoxia. The algorithm comprises two main subroutines: simulation of cell
proliferation and death (pink shaded area); and simulation of intracellular processes (purple shaded area).
Details of the implementation are given in Appendix A (Color figure online)

where t f is the final time of the simulations and the time-step �t ∈ R
+ is chosen to

be sufficiently small to resolve all dynamic processes included in the model. The flow
chart in Fig. 2 summarises the procedure used at each time-step to simulate cell fate
decisions (i.e., death, division or progression along the cell cycle) and intracellular
processes (i.e., DNA replication and damage repair). In the rest of this section we first
briefly describe the rules used to simulate cell fate decisions; we then outline the rules
used to simulate intracellular processes; namely, DNA synthesis, damage repair and
dNTP and DRF production. To conclude, we summarise the simulations we perform
and how they are initialised.

3.2 Modelling Cell Proliferation and Death

Following Celora et al. (2022), we assume that cells exist in one of five cell cycle
states: G1, C1, S, G2, C2. Table 2 summarises the role of each cell cycle state in
the model and how they map to (biological) cell cycle phases. At any time-step tn ,
cells can update their cell cycle state, divide or die with probabilities that depend on
the values of their state variables (see Table 1) and oxygen levels as summarised in
the schematic in Fig. 3.
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Table 2 Description of the cell cycle states included in our model and how they map to the standard
biological cell cycle phases: G1, S, G2 and M

Cell cycle state (z) Description Cell cycle phase

G1 Cells preparing to initiate DNA replication G1

C1 Cells ready to start DNA replication but arrested due to
checkpoint activation

G1

S Cells replicating DNA S

G2 Cells that have completed DNA replication and are
preparing for cell division

G2/M

C2 Cells that have completed DNA replication but can not
enter mitosis because of checkpoint activation

G2

stimulation
inhibition

hypoxia

hypoxia

cell cycle transition binary choicedeath

Fig. 3 Description of our cell cycle model. Cells can exist in one of 5 cell cycle states (z ∈
{G1,C1, S,G2,C2}). Transitions between cell cycle states and cell death depend upon a cell state or
oxygen levels as detailed in Appendix A. We illustrate how the internal variables regulate progression
through the cell cycle. At the points where the continuous arrows bifurcate, only one of the possible paths
is chosen. The symbol ∅ indicates loss of replication capacity, either via cell death and/or senescence

Wemodel the stimulatory/inhibitory effects of intracellular and environmental (i.e.,
oxygen) factors on cell cycle transitions by using the sigmoid function

σ±(ξ ; ξ̄ , s) =
exp

(
± ξ−ξ̄

s

)

exp
(
± ξ−ξ̄

s

)
+ 1

, (1)
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(a) (b)

Fig. 4 Schematic illustrating how we model the activation (a) and inhibition (b) of cell cycle transition
by a variable ξ , which can represent either an internal state variable or externally prescribed oxygen lev-
els The inhibition/activation is modelled using a shifted and rescaled sigmoid function σ (see Eq. (1)),
parametrised by ξ̄ , i.e., the location of the point of inflection, and s, which characterises the steepness of
the activation/deactivation curves

which is commonly used in modelling non-linear activation responses that are medi-
ated by multistep processes (Ferrell et al. 2011). In Eq. (1) the subscript indicates
whether the variable ξ induces a stimulatory (+) or inhibitory (−) effect. As shown
in Fig. 4, the parameter ξ̄ shifts the sigmoid function so that its inflection point is
located at ξ = ξ̄ , while the parameter s regulates the steepness of the sigmoidal curve.
For s → 0, σ± converges to a Heaviside step function (switch-like response), while
larger values of s correspond to a smoother, graded response. Given this formalism,
we translate the diagram in Fig. 3 into a set of rules that determine cell death, cell
division and how the cell cycle state of each cell is updated from time tn to time tn+1.
These rules are detailed in Appendix A.

Cells in the G1 and C1 states are both in the G1 phase; while G1 cells have not
committed to entering the S phase, C1 cells have but are transiently arrested due to
hypoxia. Transition into, and out of, the C1 state models hypoxia-mediated activa-
tion/deactivation of the G1 checkpoint (see Fig. 3). S cells remain in this state until
they complete DNA replication (i.e., when x = 2). Cells in the S state are sensi-
tive to fork collapse, which occurs when DRF levels drop below a minimal threshold
necessary to support the integrity of the DNA replication machinery. Cells in states
G2 and C2 are in the G2/M phase. While cells in G2 can attempt mitosis, C2 cells
are transiently arrested while they repair accumulated damage (G2 checkpoint). Cell
death in the G2/M phase is regulated by a cell damage level, y, and can occur either
upon transition to the C2 state or via mitotic catastrophe when G2 cells that attempt
mitosis detect irreparable damage. Upon division, a G2 cell is replaced by two G1
cells. All values of their internal variables are inherited from the parent cell, except
for the DNA content which is split equally between the two daughter cells (x = 1).
Dead/senescent cells are instantaneously removed from the population.

3.3 Modelling Intracellular Processes

We account for the impact of hypoxia on DNA synthesis and intracellular damage
dynamics by assuming that changes inmdNTP andmDRF depend on the externally pre-
scribed oxygen levels c (see Fig. 1). As discussed in Sect. 2, we assume that expression
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(a) (b) (c)
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Fig. 5 Evolution of DNA content x(t) in the S phase under three different oxygen environments: a oxygen-
rich environment; b chronic hypoxia; c (4,5)-cyclic hypoxia. The dark line and the shaded grey area indicate,
respectively, the median and 99%-confidence interval for x(t), measured in arbitrary units (a.u.), and were
obtained by simulating Eq. (2) with z(i) = S coupled to Eqs. (4) and (10). The background colours indicate
oxygen levels. Parameter values are as indicated in Tables 4 and 5 (Color figure online)

levels of dNTP and DRF decrease in hypoxia (c < cH ), and increase upon reoxygena-
tion (c > cH ). Additional noise in the evolution of dNTP and DRF levels is introduced
to account for intercellular heterogeneity. Details on the update rules for mdNTP and
mDRF can be found in Appendix A.3.

3.3.1 Modelling DNA Synthesis

The DNA content of cell i , x (i) ∈ [1, 2], is constant during the G1 (x (i) = 1) and
G2/M (x (i) = 2) phases. During the S phase, it increases from x (i) = 1 to x (i) = 2
at a rate that is assumed to be proportional to its intracellular levels of dNTPs (i.e,
m(i)

dNTP). We use the following rule to update the DNA content of cell i between times
tn and tn+1:

x (i)(tn+1) = min
{
x (i)(tn) + �x (i)

n e�−σ 2/2, 2
}

, (2a)

where � ∼ N (0, σ ) and

�x (i)
n =

{
v̄x m

(i)
dNTP(tn)�t, z(i) = S,

0, otherwise.
(2b)

In Eq. (2) the positive constant v̄x [1/hr] represents the maximum rate of DNA syn-
thesis. The random variable e� is introduced to capture inter-cellular variability in
the rate of DNA synthesis due to factors and mechanisms not captured in the model;
the choice of a lognormal noise ensures the physical constraint that DNA can not be
degraded (i.e., x (i)(tn+1) − x (i)(tn) ≥ 0) and the factor e−σ 2/2 ensures the noise has
mean 1. In Fig. 5, we show simulations of the DNA dynamics in S phase under dif-
ferent oxygen environments obtained by coupling Eq. (2) to the dynamics of mdNTP,
Eq. (10), and oxygen levels, Eq. (4).

3.3.2 Modelling Damage Dynamics

We assume that the damage level y(i) of cell i increases as a result of replication
stress experienced during the S phase (see Sect. 2). Here, y is a phenomenological
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Fig. 6 Evolution of damage levels y(t) in three different oxygen environments: a oxygen-rich environment;
b chronic hypoxia; c (4,5)-cyclic hypoxia. The dark line and the shaded grey area indicate, respectively,
the median and 99%-confidence interval for y(t), measured in arbitrary units (a.u.), and were obtained
by simulating Eq. (3b) with z(i) = S coupled to Eqs. (4) and (10)-(11). The background colours indicate
oxygen levels. Parameter values are as indicated in Tables 4 and 5 (Color figure online)

variable that captures the accumulation of different forms of DNA damage associated
with hypoxic stress, such as under-replicated regions and single- and double-stranded
breaks. Damage is repaired during the S phase and via activation of checkpoint sig-
nalling (captured in the model via cells transitioning into theC2 state) in the G2 phase.
We assume that in both the S and G2 phases damage repair depends on internal levels
of damage repair factors (mDRF) and that the change in the damage level of cell i
within a time step �t satisfies:

y(i)(tn+1) = y(i)(tn) + (1 + �)�y(i), (3a)

where � ∼ N (0, σ ) and

�y(i) =

⎧⎪⎪⎨
⎪⎪⎩

γy�t
[
1 − m(i)

dNTP(tn)
]

− v̄y�t m(i)
DRF(tn) y

(i)(tn), z(i) = S,

−v̄y�t m(i)
DRF(tn) y

(i)(tn), z(i) = C2,

0, otherwise.

(3b)

In Eq. (3b), the positive constants v̄y and γy represent, respectively, the maximum rate
at which damage can be repaired and the rate at which cells accumulate damage to
both copies of DNA due to replication stress. For simplicity, we consider only damage
induced due to fork stalling at open replication forks, where we assume that damage
equally affects the original and copied version of the chromosome so that y is directly
inheritable. The model could be easily extended to account for asymmetric damage
segregation (Xing et al. 2020); we postpone the investigation of this mechanism to
futurework (see discussion in Sect. 6).As above,we usemultiplicative noise to account
for intercellular variability in the damage dynamics (see Eq. (3a)). In writing Eq. (3b),
we assume that replication stress is proportional to the slowdown in the rate of DNA
replication caused by the drop in intracellular dNTP levels (i.e., replication stress
∝ v̄x − �xin/�t = v̄x/�t(1 − m(i)

dNTP). Figure6 shows simulation of how damage
levels in S phase evolve under different oxygen environments. Results are obtained
by coupling Eq. (3b) to the dynamics of mdNTP and mDRF (see Eqs. (10)-(11)), and
oxygen levels (see Eq. (4)).
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3.4 Simulation Results

Numerical simulations of the IB model are performed in Python. More details on the
implementation are given in Appendix A; a pseudocode describing how cell prolifer-
ation and death, and intracellular processes are simulated is presented in Algorithms 1
and 2.

We use our IB model to simulate the in vitro growth of a population of cancer cells
in three oxygen environments:

• oxygen-rich:

c(t) = c+; (4a)

• chronic hypoxia:

c(t) = (c+ − c−)e−λct + c−; (4b)

• cyclic hypoxia:

dc

dt
=

{
λc(c− − c), 0 < t (mod T ) ≤ TH ,

λc(c+ − c), TH < t (mod T ) ≤ T ,

c(0) = c+,

(4c)

where t > 0, the constants c± (c− < cH < c+) are the minimum and maximum
oxygen levels to which cells are exposed, and λc is the rate at which oxygen
levels relax to their equilibrium values. In Eq. (4c), the function mod indicates the
modulus operator, T [hr ] is the periodicity of the fluctuations in oxygen levels,
and TH [hr ] indicates the time of exposure to hypoxia during an oxygen cycle.
In other words, cells are repeatedly exposed to TH hours of hypoxia followed by
TR = T − TH hours of reoxygenation. In what follows, the range of possible
cyclic hypoxia protocols are characterised by the tuple (TH , TR) and the term
“(TH , TR)–cyclic hypoxia” refers to the oxygen protocol described by Eq. (4c).

As standard in in vitro experiments, we initialise cells in a regime of (asynchronous)
balanced exponential growth (Celora et al. 2022; Webb 1987) using the procedure
outlined in Algorithm 3. This is the equilibrium regime predicted by the model when
cells are exposed to oxygen-rich environments (see Sect. 4.2). Unless otherwise stated,
simulations are initialised with n0 = 100 cells. For each numerical experiment and
set of parameters, we perform 100 realisations of the IB model and use the obtained
data to extract the statistical metrics illustrated in Figs. 7, 8, 9, 10 and 11.

3.4.1 Model Parameters

Where possible, model parameters are estimated from the literature, and based on the
colorectalRKOcell linewhichwas the focus of previous theoretical (Celora et al. 2022)
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and experimental studies (Bader et al. 2021b) on cyclic hypoxia. See Appendix C for
futher details (parameter values given in Tables 3, 4 and 5).

We account for cell lines with different regulation of damage repair by varying
parameters modulating G2 checkpoint activation (i.e., probability of cell transitioning
into and out of the cell cycle state C2) in response to damage, see Eq. (8d); namely,
parameters yonC2

, yoffC2
and sonC2

(seeTable 3).Wemodel cellswith enhanceddamage repair
activity (DDR+ cells) compared to the reference (or wild-type) behaviour (DDRwt

cells) by decreasing yonC2
, yoffC2

and sonC2
relative to their default values; we account

for defective damage repair activity (DDR− cells) compared to wild-type behaviour
(DDRwt cells) by increasing yonC2

, yoffC2
and sonC2

relative to their default values. For more
details, see Appendix C.1.

3.4.2 Clonogenic Assays

We estimate cancer cell survival in cyclic hypoxia by simulating in silico clonogenic
assays following a standard “plating before treatment” approach (Franken et al. 2006).
This means that cells are first plated and then exposed to cyclic hypoxia. After being
exposed to cyclic hypoxia for tR = 15 (TH + TR) hours, cells are cultured in ambient
oxygen conditions (21%O2) for 10 days. The survival fraction is estimated at the end
of the 10 days as the ratio

V = # of colonies formed

# cell initially plated
. (5)

In Eq. (5) we define a colony as a cluster of at least 50 cells that originate from the
same progenitor. Note that, in writing Eq. (5), we follow the standard convention
by defining survival as the ability of cells to escape replicative death and maintain
uncontrolled proliferation when exposed to toxic agents (here cyclic hypoxia). We
remark that replicative death can be due to cell death but also persistent cell cycle
arrest.

3.4.3 Serial Passage Assays

We estimate the relative fitness of distinct cancer cell lines under different cyclic
hypoxia conditions by simulating serial passage assays. We simulate co-cultures of
three cell lines; namely DDR+, DDR− and DDRwt (modelled by changing parameter
values as described in Sect. 3.4.1). We initialise the simulations with 150 cells from
each cell line, for a total of 450 cells. While being exposed to a specific cyclic hypoxia
protocol, cells are “passaged” every 	48/T 
T hours (i.e., approximately every 2 days)
where 	·
 indicates the floor function. Replating is simulated by randomly sampling
450 cells from the population; oversampling is used if the size of the population at the
time of the replating is less than 450. This procedure artificially introduces a carrying
capacity and enhances the positive selection pressure on cells that are more adapted
to cyclic hypoxia. The fitness of DDR± cells relative to DDRwt cells is quantified by
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estimating the ratio

ρDDR± = #DDR± cells

#DDRwt cells
(6)

after passaging the population 10 times. DDR± cells have a fitness advantage in cyclic
hypoxia over DDRwt cells if ρDDR± > 1 (and conversely). Since ρDDR± are stochastic
variables, statistical evidence for the alternative hypothesisρDDR± ≤ 1 andρDDR± ≥ 1
is tested using a one-sample one-tail t-test with p value 0.001.

4 Results

We use our individual-based (IB) model to simulate cancer cell responses to different
oxygen environments. In Sect. 4.1, we demonstrate that the IB model reproduces the
cell cycle and population growth dynamics observed in vitro under constant oxygen-
rich and chronically hypoxic conditions. In Sect. 4.2, we simulate cell culture and
clonogenic assay experiments in a wide range of cyclic hypoxia environments. We
identify a range of population-level dynamics for different cyclic hypoxia protocols:
sustained growth, dormancy and population extinction. Using the IB model, we can
relate population-level behaviour to the dynamics of individual cell states and specif-
ically their damage regulation. Finally, in Sect. 4.3, we study how damage repair
capacity influences cancer cell fitness under different cyclic hypoxia conditions by
simulating serial passage assays.

4.1 Model Predictions in Constant Environments

We validate our IB model by simulating the cell cycle and growth dynamics of a
population of wild-type cancer cells under constant oxygen conditions. The results
are shown in Fig. 7.

As expected, in the oxygen-rich environment (see Figs. 7a, b) the model predicts
balanced exponential growth (note that in Fig. 7b we use a log scale for the y-axis).
The total number of cells N eventually grows exponentially at a constant rate λBEG,
while the fraction of cells in each cell cycle phase asymptotes to an equilibrium value,
f BEGi for i ∈ {G1,S,G2/M}, with uncertainty in the values of the cell fractions fi
decreasing over time. This is in line with the predictions of the deterministic model
in Celora et al. (2022). The relationship between the IB and deterministic models is
discussed in Appendix B.

Under constant hypoxia (see Figs. 7c, d), after an initial transient, the average num-
ber of cells evolves to a constant value.While the number of cells increases for the first
≈ 12 hours, it then decreases due to the death of cells in the S phase as a result of fork
collapse. At long times, most cells are in the G1 phase where they arrested via activa-
tion of the G1 checkpoint, (i.e., they are locked in state C1). The delayed decrease in
population size due to the death of cells in the S phase and the predicted accumulation
of quiescent cells in chronic hypoxia agree with observations from experiments on the
RKO cell line culture (Bader et al. 2021a).

123



  145 Page 14 of 40 G.L. Celora et al.

time [hours]time [hours]time [hours]

ce
ll 

fr
ac

tio
n

ce
ll 

nu
m

be
r

ce
ll 

nu
m

be
r

ce
ll 

fr
ac

tio
n

IB BEG IB BEGIB
BEG

BEGIB

(a) (b)

(c) (d)

oxygen levels

time [hours]

Fig. 7 Cell cycle and growth dynamics in constant oxygen environments generated by the IB model. We
plot the evolution of the mean and 99%-confidence interval estimates for the evolution of the fraction of
cells in each phase of the cell cycle, fm for m ∈ {G1, S,G2/M}, and the total number of cells, N , in
a, b oxygen-rich environment and c, d chronic hypoxia. The dashed green lines indicate the analytical
prediction from the balanced exponential growth (BEG) model in oxygen-rich environments (see Sect. 1).
The background colour indicates oxygen levels. Parameter values for the BEG and IB model are the same
and are as indicated in Tables 3, 4, 5 and 6 (Color figure online)

4.2 Characterising theWild-Type Responses to Different Cyclic Hypoxia
Environments

4.2.1 Growth Dynamics

We use the IB model to simulate the cell cycle and growth dynamics of a population
of cancer cells under a range of cyclic hypoxia conditions. The results presented
in Fig. 8 show that the long-term growth dynamics depend on the oxygen protocol
used.We characterise these dynamics by estimating the asymptotic population growth
rate, λ (see Fig. 8b). This is defined by fitting an exponential function to the change
in population size over a period T (see schematic in Fig. 8a). Asymptotically, and
assuming a sufficiently large population of cells, the estimated λ is expected to be
independent of the time t chosen for its estimation.

When TH is sufficiently short, the model predicts sustained population growth,
albeit at a lower rate than in oxygen-rich conditions (i.e., during the balanced expo-
nential growth regime), i.e., 0 < λ � λBEG; this is the case, for example, when cells
are exposed to (4,5)–cyclic hypoxia (see Fig. 8d). When considering the correspond-
ing cell cycle dynamics, despite the persistent fluctuations in the cell cycle fractions,
we observe a systematic increase in the fraction of cells in the G2/M phase, fG2/M
(see Fig. 8f). We note that the period of the fluctuations in fG2/M is eventually the
same as for the oxygen levels – in this case 9 hours. As TH increases, the IB model
predicts substantial inhibition of population growth (or growth arrest); this is the case,
for example, when simulating exposure of cells to (7,5)–cyclic hypoxia (see Fig. 8f).
Recall that under constant hypoxia, growth inhibition is due to cells arresting in the
G1 phase. By contrast, under (7,5)-cyclic hypoxia, cells continue proceeding through
the cell cycle (compare Figs. 7d and 8e) suggesting that cell proliferation continues
even though the total number of cells in the population is not increasing. There are
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Fig. 8 Cell cycle and growth dynamics under different cyclic oxygen environments. a Schematic showing
how the population growth rate is defined in a fluctuating environment (i.e., dN/dt = r(t)N where r is
a T -periodic function). The time-evolution of cell number N deviates from the exponential growth model
(see left-hand side plot). However, when projected onto the (N (t), N (t + T )) state space, the behaviour
is analogous to that of an exponentially growing population in a constant environment (see right-hand side

plot), with the population growth rate λ = ∫ T
0 r(ξ)dξ/T . b Estimated population growth rate λ for a range

of cyclic hypoxia protocols. Crosses indicate conditions for which the cell population goes extinct with
probability≥ 90%. c-hWe plot the evolution of the fraction of cells in each phase of the cell cycle, fm with
m ∈ {G1, S,G2/M}, and the total number of cells, N , as predicted by the IB model for (c)-(d) (4,5)–cyclic
hypoxia; (e)-(f) (7,5)–cyclic hypoxia; and (g)-(h) (11,5)–cyclic hypoxia. Parameter values, variables and
colours are as in Fig. 7 (Color figure online)

two possible causes of population growth arrest (or population dormancy) (Wells et al.
2013): cell cycle arrest or a balance between cell death and proliferation. We conclude
that population dormancy in (7,5)–cyclic hypoxia is due to an increase in cell death.
Finally, when considering cyclic hypoxia protocols with larger TH , the model predicts
population extinction with high likelihood (see crosses in Fig. 8b); this is the case,
for example, when simulating exposure to (11,5)–cyclic hypoxia (see Fig. 8h). We
note that the uncertainty in model predictions for the cell cycle dynamics increases on
the long-time scale. The widening of the confidence intervals in Fig. 8g is due to the
increased dominance of demographic noise as the number of cells approaches zero.
Nonetheless, all model realisations eventually predict population extinction.
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Fig. 9 Cell survival in different oxygen environments. a Mean estimator for the cell survival fraction V
(see Sect. 3.4.2) in a range of cyclic hypoxia conditions. b Scatter plot illustrating the relation between the
population growth rate λ (see Fig. 8b) and cell survival for the cyclic hypoxia conditions studied in a except
those that lead to extinction of the cell population (see Fig. 8b). Parameters are as indicated in Tables 3, 4,
5 and 6

4.2.2 Cell Survival

In the simulations presented in Sect. 4.2.1, we investigated the impact of fluctuating
oxygen levels on the emergent population growth dynamics. In this section, we inves-
tigate cell survival in different oxygen environments by simulating clonogenic assay
experiments (see Sect. 3.4.2).

In Fig. 9a, we report estimated values of the survival fraction V for different cyclic
hypoxia protocols. As in Fig. 8, we characterise cyclic hypoxia environments by the
hypoxia period, TH , and the reoxygenation period, TR . We find significant variation in
the survival fraction as TH and TH vary. For sufficiently large reoxygenation periods
TR , cells are likely to survive and V ≈ 1. In contrast, cells are more likely to die than
survive when the reoxygenation period is short and the hypoxia period is sufficiently
long. Overall, our results highlight that both the overall time of exposure to hypoxia
and the evolution of the oxygen dynamics are important in determining the extent to
which hypoxia is toxic for cells.

The results presented in Fig. 9b suggest that estimates of cell survival and population
growth rates in cyclic hypoxia are related. In all conditions where we predict a positive
growth rate, the survival fraction never drops below 0.5 (see red line in Fig. 9b). This
suggests that cellsmust bemore likely to survive than to die to avoid population extinc-
tion. While this is intuitive when considering a homogeneous population in which the
survival probability is the same for all cells, in our model, cell cycle heterogeneity
influences a cell’s survival probability (see Appendix D). The correlation between the
initial cell cycle distribution and the estimated survival probability is lost when cells
are exposed to fluctuating oxygen levels for sufficiently long times. The decay time
scale for such correlations depends on the oxygen dynamics and tends to infinity when
TR → 0 (i.e., under chronic hypoxia). This is because, in our model, G1 checkpoint
arrest under chronic hypoxia is irreversible (see Fig. 7c) so that the estimates of cell
survival are determined, even at long times, by the initial cell cycle distribution.
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Overall, a decrease in cell survival V corresponds to a decrease in the population
growth rateλ. Nonetheless, we identify a significant range of environmental conditions
in which the population growth rate λ decreases even though V ≈ 1. In these cases,
the reduction in the population growth rate is driven by the activation of cell cycle
checkpoints and the consequent increase in cell cycle duration, rather than increased
cell death (see, for example, Fig. 7c, d).

4.3 Characterising the Link Between Damage Repair Capacity and Cancer Cell
Responses to Cyclic Hypoxia

In the previous section, we showed how the response of a cancer cell line to cyclic
hypoxia depends on how the oxygen levels fluctuate (i.e., the values of TH and TR).
Based on these results,we nowpartition the (TH , TR) parameter space into four regions
depending on the predicted cell responses (see Fig. 10a). As TR decreases and TH

increases (i.e., transitioning from the dark green to the dark pink regions in Fig. 10a),
the environmental conditions become increasingly toxic for cancer cells. Genetic and
phenotypic heterogeneity in the regulation of DNA damage response (DDR) and cell-
cycle checkpoint signalling has been observed in solid tumours (Begg and Tavassoli
2020; Jiang et al. 2020). This includes: alterations that silence DDR signalling (Jiang
et al. 2020) (DDR− cells), thereby allowing cells to proliferate faster by suppressing
damage repair signalling; and alterations that enhanceDDR signalling (Wu et al. 2023)
(DDR+ cells), thereby promoting cell repair signalling and survival, and, therefore,
resistance to chemo- and radiotherapy.We simulate serial passage assays to investigate
how these alterations to damage repair signalling affect cancer cell fitness in different
fluctuating oxygen environments (see Sect. 3.4.3).

The results are presented in Fig. 10b. Overall, we find that the estimated relative
fitness ρ of both DDR+ and DDR− cells depends on the cyclic hypoxia protocols.
For DDR+ cells, ρ increases as the extent to which cyclic hypoxia is toxic for wild-
type cells increases. In contrast, ρDDR− depends non-monotonically on cyclic hypoxia
toxicity. Under cyclic hypoxia conditions that are harmless for wild-type cells (dark
green region in Fig. 10a; condition (A) in Fig. 10b), enhanced damage repair capacity
is deleterious (ρDDR+ < 1), while deficiencies in damage repair capacity are mildly
beneficial (ρDDR− � 1). In contrast, under cyclic hypoxia conditions that are highly
toxic for wild-type cells (dark pink region in Fig. 10a; condition (D) in Fig. 10b),
enhanced activation of the DDR increases cell fitness (ρDDR+ > 1), while deficiencies
in the DDR are significantly deleterious for cells. Between these two extremes (i.e.,
protocols within the light green and light pink regions of the schematic in Fig. 10a;
conditions (B) and (C) in Fig. 10b), the model predicts that enhanced damage repair
capacity switches from being deleterious to being beneficial, while deleterious damage
repair capacity becomes increasingly deleterious. Interestingly, these transitions are
characterised by regimes in which the composition of the population at the end of the
simulations is highly heterogeneous, with DDR+, DDR− and DDRwt cells coexisting
even after several passages. For example, in case (C) in Fig. 10b, the coexistence of
different cell types is reflected in ρDDR+ and ρDDR− being both close to one. This
suggests that cyclic hypoxia can give rise to conditions in which the fitness landscape
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Fig. 10 a Schematic summarising the characteristic responses of wild-type cells to different cyclic hypoxia
protocols. We decompose the (TH ,TR) space into four regions characterised by the estimated values of the
population growth rate λ (see Fig. 8) and survival fraction V (see Fig. 9). bHistograms showing the relative
fitness ρDDR± (see Eq. (6)) for different cyclic hypoxia protocols: (A) (2,7)–cyclic hypoxia; (B) (4,5)–
cyclic hypoxia; (C) (7,5)–cyclic hypoxia; (D) (11,4)–cyclic hypoxia. Red, grey and blue stars indicate DDR
alterations that are, respectively, beneficial (ρi > 1, p-value=0.001), deleterious (ρi < 1, p value=0.001)
or neutral (if neither beneficial or deleterious). More details on how we quantify relative fitness are given
in Sect. 3.4.3. Parameter values are as indicated in Tables 3, 4, 5 and 6 (Color figure online)

associated with DDR regulation is flat and, consequently, natural selection is very
slow.

4.3.1 Heterogeneity in Cell Damage Repair Capacity Shapes Damage Distribution
Under Cyclic Hypoxia

To better understand the relation between damage repair and cell fitness in cyclic
hypoxia, we look at how selection reshapes the damage distribution within the cell
population. We quantify this by comparing the cell damage distribution in the co-
culture experiment with the distribution under control conditions where serial passage
assays are only performed with DDRwt cells (i.e., default values of the model param-
eters). The use of the control case for comparison is important since cell passaging
can alter both the cell cycle and cell damage distributions. In general, because cells
are exposed to fluctuating oxygen levels, the damage distribution eventually con-
verges to a periodic function that fluctuates with the same frequency as the passaging,
(see Appendix E). The results, therefore, depend on the time t at which the damage
distribution is computed. Here we focus on the damage distribution at the end of the
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Fig. 11 Median mD and interquartile range IQRD of the damage distribution (defined in Eq. (7)) for co-
culture (light grey) and control (dark grey) conditions for cells grown in the same cyclic hypoxia conditions
investigated in Fig. 10: A (2,7)–cyclic hypoxia; B (4,5)–cyclic hypoxia; C (7,5)–cyclic hypoxia; D (11,4)–
cyclic hypoxia. Parameters are as indicated in Tables 3, 4, 5 and 6

final hypoxic phase:

fd(y) = P
(
a cell has damage level y at time t = (n f − 1)T + TH

)
, y ≥ 0, (7)

where n f = 10	48/T 
 indicates the total number of oxygen cycles to which the cells
have been exposed during the serial passage assay. This is the time at which selection
(via cell passaging) operates.

The results presented in Fig. 11 show that damage levels in the co-culture and
control experiments can differ markedly depending on the cyclic hypoxia protocol
considered. For (2,7)-cyclic hypoxia, despite the reported mild advantage of DDR−
cells (see (A) Fig. 10b), damage levels are comparable between the co-culture and
control experiments. The brief exposure to hypoxia is not sufficient to drive significant
damage accumulation even in cancer cells with deficiencies in damage repair capacity.
When considering (4,5)-cyclic hypoxia, DDR− cells are predicted to have a significant
advantage (see (B) Fig. 10b). However, unlike in (2,7)–cyclic hypoxia, accumulation
of DDR− cells is associated with the median damage level in co-culture conditions
being significantly higher than in the control conditions. In this intermediate regime,
deficiencies in damage repair capacity are most beneficial for cancer cells as they
promote proliferation in the face of higher, but not lethal, damage/levels. For more
toxic cyclic hypoxia conditions (i.e., light and dark pink regions in Fig. 10a), the trend
reverses; lower levels of damage are recorded for the co-culture than control conditions
(see results for (C) (7,5)-cyclic hypoxia and (D) (11,4)-cyclic hypoxia in Fig. 11). The
environmental toxicity is such that there is no benefit in attempting to proliferate; and
cells are better off prioritising their survival by enhancing damage repair signalling
and, thereby, maintaining low damage levels (see Fig. 10).

5 Application of the Result to Intra-Tumour Heterogeneity

Changes to the regulation of cell cycle checkpoints and damage repair pathways
are common in cancer as they sustain uncontrolled proliferation (Viner-Breuer et al.
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2019; Jiang et al. 2020). However, in conditions where proliferation can not be sus-
tained, functioning checkpoint regulation can play an essential role in favouring cancer
cell survival. For example, in tumour regions that are chronically exposed to severe
hypoxia, cells experience replication stress and, therefore, activation of cell cycle
checkpoints in response to low oxygen levels (i.e., hypoxic stress) can be crucial for
cancer cell survival (Qiu et al. 2017; Pires et al. 2010b, a). The different roles of cell
cycle checkpoints in well-oxygenated and hypoxic regions influence the regulation of
cancer cell proliferation, thus favouring heterogeneity in hypoxic tumours (Begg and
Tavassoli 2020; Emami Nejad et al. 2021).

Heterogenous blood flow in vascularised tumours can generate tissues in which
oxygen levels fluctuate, exposing cells to cyclic hypoxia. The period and amplitude of
such fluctuations may vary with the distance from the closest vessel. In Ardaševa et al.
2020, it was proposed that spatiotemporal variability in oxygen levels creates ecolog-
ical niches that foster intratumour phenotypic heterogeneity along the cell metabolic
axis. Our results suggest that spatiotemporal heterogeneity in tumour oxygen levels
can contribute to intratumour heterogeneity in damage repair capacity. This is because
the impact of damage repair capacity on cellular fitness under cyclic hypoxia depends
on both the frequency and duration of hypoxia periods (see Fig. 10). While deficient
damage repair capacity is advantageous for cancer cells when hypoxia periods are rare,
it is deleterious when hypoxia periods are long and frequent. Under such environmen-
tal conditions, enhanced damage repair capacity is necessary to sustain prolonged
checkpoint activation and allow cell survival. Interestingly, we can identify interme-
diate cyclic hypoxia conditions under which cancer cells with different damage repair
capabilities coexist. This suggests that cells with enhanced damage repair capacity,
which is usually associated with resistance to treatment, may be located in regions
that are primarily hypoxic and highly toxic for cancer cells, and also in regions that
are frequently reoxygenated and can sustain cancer cell proliferation, albeit at a lower
rate than in better oxygenated areas.

6 Conclusion

We have developed a stochastic, individual-based (IB) model of in vitro cancer cell
cultures to study the impact of hypoxia-driven cell cycle dysregulation on cancer cell
responses (e.g., proliferation, survival and damage regulation) to different dynamic
oxygen environments. Our model extends previous work on modelling cell cycle pro-
gression in cyclic hypoxia (Celora et al. 2022) by coupling cell cycle progression to
damage repair dynamics. Interestingly, we find that cancer cell responses significantly
change depending on the dynamics of the oxygen levels to which cells are exposed as
well as their damage repair capacity.

Our model describes how oxygen fluctuations impact cell cycle progression and
cell survival by affecting DNA replication and repair within cells. In Sect. 4.2, we
showed the cell cycle and growth dynamics predicted by themodel for different oxygen
environments. In constant oxygen environments, the model reproduces the expected
population dynamics for non-confluent cell cultures: balanced exponential growth and
growth arrest driven by cell quiescence in the G1 phase. Interestingly, we found that,
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depending on the duration and frequency of hypoxia periods, cyclic hypoxia can yield
very different growth patterns in the same cancer cell population: exponential growth,
saturated growth or population extinction. By simulating in vitro clonogenic assays,
wewere further able to characterise cell survival in different cyclic hypoxia conditions.
By combining population growth rate and survival estimates, we partitioned the space
of possible cyclic hypoxia protocols (i.e., (TH , TR)-space) into four regions, each
associated with qualitatively distinct cancer cell responses (see Fig. 10a).

In Sect. 4.3, we studied how alterations to DNA damage response and cell cycle
checkpoint signalling (or, in brief, cell damage repair capacity) influence cancer cell
responses to cyclic hypoxia. We considered two types of alterations: deficient damage
repair capacity (DDR−), which promotes uncontrolled proliferation while hindering
damage repair; and enhanced damage repair capacity (DDR+), which promotes dam-
age repair and cell survival.Our results suggest that cyclic hypoxiamay define different
environmental niches: those in which either DDR+ or DDR− cells localise; and those
in which cells with different DDR signalling coexist. We concluded by discussing the
predictions of our model in the context of intratumour heterogeneity in vascularised
tumours.

There are several ways in which our work could be extended. We developed our IB
model to replicate in vitromonolayer conditions to allow for comparison and validation
with experimental data. While cell culture experiments are effective for building a
mechanistic understanding, they can not capture the complexity of interactions and
3D organisation of tumours growing in vivo. Hence, there is a growing interest in
advancing 3D tumour cultures, such asmulticellular spheroids and organoids, to bridge
the gap between in vitro and in vivo conditions. A natural extension of our work would
be to integrate our cell cycle model within a multiscale framework to study spheroid
growth, using either IB (Bull et al. 2020; Hamis et al. 2021; Ghaffarizadeh et al. 2018;
Jiménez-Sánchez et al. 2021) or continuous modelling (Murphy et al. 2023; Pérez-
Aliacar et al. 2023) approaches. This framework would allow us to explore the broader
impact of cyclic hypoxia on tumour development, not only in regulating tumour growth
but also in influencing tumour invasion and metastasis (Saxena and Jolly 2019).

The results from our in silico serial passage assays highlight the role of damage
repair capacity in shaping cancer cell responses and adaptation in fluctuating oxygen
environments. Here, we have modelled pre-existing alteration of the damage repair
capacity of cells, neglecting behavioural changes that may occur over the time scale of
the experiments. In practice, cell cycle progression and damage repair are regulated at
the genetic and epigenetic levels. While genetic mutations lead to irreversible changes
in cancer cell behaviour, phenotypic changes are reversible and dynamically regulated,
allowing cells to cope with unfavourable dynamic environments. For example, asym-
metric damage segregation has been identified as a driver of cell-to-cell heterogeneity
and a strategy to increase population-level fitness and counteract ageing under stress
in bacteria, yeasts and stem cells (Vedel et al. 2016). In the context of cancer, there
is evidence that replication stress leads to increased nonrandom segregation of dam-
aged chromosomes (Xing et al. 2020) thus promoting genomic instability. It would
be interesting to extend our modelling framework to include the finding of Xing et al.
(2020) and study how different forms of hypoxia affect asymmetric cell division via
replication stress, thus contributing to intratumour phenotypic heterogeneity (Buss
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et al. 2024; Jain et al. 2022). Other key players in cell adaptation to hypoxia are the
hypoxia-inducible factors (HIFs). HIF-signalling has been linked to dedifferentiation
and metabolic reprogramming of cancer cells (Saxena and Jolly 2019), which reduces
damage accumulation while enhancing repair under hypoxia. Building on previous
work on structured-population modelling (Ardaševa et al. 2020; Celora et al. 2023;
Lorenzi and Painter 2022), it would be interesting to investigate the interplay between
damage repair, phenotypic heterogeneity and cyclic hypoxia in shaping intratumour
heterogeneity.

ADetailed Implementationof in vitroCancerCellDynamics inHypoxia

Wedetail the implementation of cell proliferation anddeath, and intracellular processes
in our individual-based (IB)model inAlgorithm1 andAlgorithm2.As shown in Fig. 3,
for each cell, we first update its cell cycle state (as discussed in Appendix A.1). We
then check for cell division/death (as discussed in Appendix A.2) and finally update
its internal variables (as discussed in Appendix A.3). Given a sufficiently small time
step �t and denoting by cn the oxygen levels at time tn , the following rules are used
to simulate cell cycle progression and cell fate decisions (i.e., cell death) in the time
interval [tn, tn + �t):

A.1 Cell-Cycle Transitions and Checkpoint Dynamics

At each time step, any surviving cell in G1, C1, S, or C2 can transition to the next cell
cycle phase, arrest due to activation of a checkpoint, or re-enter the cell cycle upon
checkpoint deactivation. The dynamics of cells in states G1 and C1 are modelled as
in Celora et al. (2022). New rules are introduced to describe the evolution of S,G2 and
C2 cells (see Appendix A). Based on experimental evidence (see Sect. 2), cell cycle
progression is implemented as follows:

• A cell in state z(i) = C1 may re-enter the cell cycle by transitioning to the S phase
with probability

Poff
C1

(cn) = K1�t σ+
(
cn; cH , sC1

)
, (8a)

where σ+ is given by Eq. (1), cH is the oxygen threshold for hypoxia, and the
positive constant K1 denotes the maximum rate at which cells exit theC1 state and
initiateDNAsynthesis by entering the S state. Eq. (8a) captures the inhibitory effect
of hypoxia (c < cH ) on the C1 → S transition; based on previous work (Celora
et al. 2022), we assume a switch-like behaviour and fix 0 < sC1 � 1.

• A cell in state z(i) = G1 may arrest in the G1 phase (z(i) → C1) or proceed to the
S phase (z(i) → S) with probabilities

Pon
C1

(cn) = k1�t σ−
(
cn; cH , sC1

)
, (8b)

PG1→S(cn) = k1�t − Pon
C1

(cn). (8c)
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Algorithm 1 Pseudocode outlining the procedure used to simulate cell proliferation
and death. The functions Pon/off

C1
, Pon/off

C2
, PG1→S, PG2→M, PM→∅, PS→∅ and PG2→∅

are defined by Eqs. (8)-(9) and MdNTP by Eq. (10c).
Input: i – index of the cell, oxygen levels (cn )
Sample a random number r ∼ Unif(0, 1)
if z(i) = C1 then

if r < Poff
C1

(cn) then

z(i) ← S
end if

else if z(i) = C2 then
if r < Poff

C2
(y(i)) then

z(i) ← G2
end if

else if z(i) = G1 then
if r < Pon

C1
(cn) then

z(i) ← C1, m
(i)
dNTP ← MdNTP(cn) � Activation G1 checkpoint

else if r − Pon
C1

(cn) < PG1→S(cn) then

z(i) ← S, m(i)
dNTP ← MdNTP(cn)

end if
else if z(i) = G2 then

if r < PG2→M then
if r < PM→∅(y(i)) then � Mitotic Catastrophy

Delete cell
else � Successful mitosis

z(i) ← G1 and x(i) ← 1
Create a copy of the cell

end if
end if

else
if x(i) = 2 then

Sample a random number r2 ∈ Unif(0, 1)
if r < Pon

C2
(y(i)) then

if r2 < PG2→∅(y(i)) then � Detection of irreparable damage
Delete cell

else � Activation G2 checkpoint

z(i) ← C2, m
(i)
dNTP ← 0

end if
else

z(i) ← G2, m
(i)
dNTP ← 0

end if
else

if r2 < PS→∅(m(i)
DRF) then � Fork Collapse

Delete cell
end if

end if
end if
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In Eqs. (8b)-(8c), the positive constant k1 represents the rate at which cells exit the
G1 phase in oxygen-rich conditions, while cH and sC1 are as above. In Eq. (8b), the
hypoxia-mediated activation of the G1 checkpoint is captured by the σ− activation
function, which is defined as in Eq. (1).

• A cell in state z(i) = C2 may exit G2 arrest (z(i) → G2) with probability which
depends on its damage level y(i)

Poff
C2

(y(i)) = K2�t σ−
(
y(i); ȳoffC2

, soffC2

)
(8d)

where the positive constants K2, ȳoffC2
and soffC2

represent, respectively, themaximum
rate at which cells leave the G2 checkpoint, the threshold damage level for G2
checkpoint deactivation and the sensitivity of the G2 checkpoint deactivation to
damage levels. Eq. (8d) implies that cells are allowed to re-enter the cell cycle by
transitioning to state G2 only if their damage levels are sufficiently low. By setting
ȳM→∅ � ȳoffC2

, we ensure that cells exiting the G2 checkpoint will successfully
undergo mitosis.

• A cell in state z(i) = S, upon completing DNA synthesis (x (i) = 2), may arrest
due to damage-mediated activation of the G2 checkpoint (z(i) → C2) or transition
to the next cell cycle phase (z(i) → G2) with probabilities

Pon
C2

(y(i)) = σ+
(
y(i); ȳonC2

, sonC2

)
, (8e)

PS→G2/M(y(i)) = 1 − Pon
C2

(y(i)), (8f)

where the positive constants ȳonC2
and sonC2

represent, respectively, the threshold
damage level for activation of the G2 checkpoint and the sensitivity of G2 check-
point activation to damage levels. Eq. (8e) captures the graded damage-mediated
activation of the G2 checkpoint (i.e., transition to state C2) that slows a cell’s
progression through the G2 phase, to allow damage repair.

A.2 Cell Fate Decision: Cell Death & Division

Based on experimental evidence (see Sect. 2), we include different forms of replica-
tion/cell death which are cell cycle specific. We assume that cells in the G1 phase
(i.e., z = G1,C1) are not sensitive to hypoxia-mediated death, whereas cells in other
cell-cycle states, z(i) ∈ {S,G2,C2}, die with probabilities Pz(i)→∅

which depend on

their damage level y(i) and/or their DRF expression levels m(i)
DRF (see Fig. 3) in the

following way.

• A cell that remains in the S phase may die due to fork collapse with probability

PS→∅(m(i)
DRF) = μS�t σ−

(
m(i)

DRF; m̄S→∅, sS→∅

)
, (9a)

where the positive constants μS, m̄S→∅ and sS→∅ represent, respectively, the
maximum rate of cell death due to fork collapse, the threshold of DRF levels for
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activation of fork collapse, and the sensitivity of fork collapse to DRF levels. In
line with the discussion in Section 2, fork collapse is regulated by the intracellular
levels of DNA repair factors.

• A cell in state z(i) = G2 may attempt mitosis (i.e., cell division) with probability

PG2→M = k2�t, (9b)

where k2 > 0 is the constant rate at which cells in stateG2 attempt mitosis. During
this process, a cell may die via mitotic catastrophe (Matthews et al. 2022) due to
the accumulated damage with probability

PM→∅(y(i)) = σ+
(
y(i); ȳM→∅, sM→∅

)
. (9c)

Here, ȳM→∅ and sM→∅ are positive constants representing, respectively, the
threshold damage level for mitotic catastrophe and the sensitivity of mitotic catas-
trophe to damage levels.Without loss of generality, the damage levels y are rescaled
so that ȳM→∅ = 1.

• A cell that enters the G2 checkpoint, i.e., it has transitioned to state C2, may
permanently exit the cell-cycle due to accumulation of irreparable damage with
probability

PG2→∅(y(i)) = σ+
(
y(i); ȳG2→∅, sG2→∅

)
. (9d)

In Eq. (9d), ȳG2→∅ and sG2→∅ are positive constants representing respectively the
threshold damage level for replicative death upon activation of the G2 checkpoint
and the sensitivity of replicative death to damage levels. We here take ȳG2→∅ >

ȳM→∅ to account for the protective effect of the G2 checkpoint activation. More
specifically, for a given value of y(i), a cell’s chances of successfully dividing are
increased by activation of the G2 checkpoint. Given the form of Eqs. (9c)-(9d),
the benefit of activation of the G2 checkpoint is maximal for intermediate values
of cell damage, and minimal for very low (y � ȳM→∅) and very high damage
(y � ȳG2→∅) levels.

When a cell dies, it is simply removed from the system. When a cell divides, the
original parent cell is removed and two G1 daughter cells are added. These inherit the
values of the state variables y, mdNTP and mDRF from the parent cell.

A.3 Modelling the Impact of Hypoxia on Intracellular Factors

At each time step, the dynamics of intracellular processes (namely, DNA synthesis,
damage repair, dNTP and DRF synthesis/degradation) are simulated within each cell
following the procedure detailed in Algorithm 2. Details on the modelling of DNA
synthesis and damage repair have been discussed in Sections 3.3.1 and 3.3.2, respec-
tively. We now explain how we account for the impact of hypoxia on dNTP levels
(mdNTP) and DRF levels (mDRF) in our IB model.
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Algorithm 2 Pseudocode outlining the procedure used to simulate intracellular pro-
cesses.
Input: i – index of the cell, oxygen levels cn
for i = 1, . . . , n0 do

if z(i) = S then
Update x(i) using Eq. (2)
Update y(i) using Eq. (3)

end if
if z(i) ∈ {S,C2} then

Update y(i) using Eq. (3)
end if
if z(i) ∈ {C1, S} then

Update m(i)
dNTP using Eq. (10)

end if
Update m(i)

DRF using Eq. (11)
end for

A.3.1 Modelling the Dynamics of Intracellular dNTP Levels

Levels of intracellular dNTPs are known to increase upon entry to the S phase (before
initiation of DNA synthesis) and to decrease when a cell completes DNA synthe-
sis (Stillman 2013). In line with these observations, we fix m(i)

dNTP = 0 for all cells i
except those in statesC1 and S. Since de-novo production of dNTPs is impaired under
low-oxygen, we assume that the change in m(i)

dNTP over a time-step �t satisfies:

m(i)
dNTP(tn+1) = m(i)

dNTP(tn) + (1 + �)�m(i)
dNTP, (10a)

where themultiplicative noise term� ∼ N (0, σ ) accounts for intercellular variability
and we define

�m(i)
dNTP =

{
RdNTP(cn)�t [MdNTP(cn) − m(i)

dNTP(tn)], z(i) = C1, S,

0, otherwise.
(10b)

In Eq. (10b), the function MdNTP(c) ≤ 1 indicates the baseline expression levels
of dNTPs as a function of oxygen, while the positive function RdNTP(c) indicates
the rate at which dNTP levels relax to such baseline values as a function of oxygen.
Following Celora et al. (2022), we account for differences in the dynamics of dNTP
levels under physiological and hypoxic oxygen conditions by setting:

RdNTP(c) =
{
R+
dNTP, c > cH ,

R−
dNTP, c < cH ,

, MdNTP(c) =
{
1, c > cH ,

M−
dNTP, c < cH ,

. (10c)

In Eq. (10c) the positive constants R+
dNTP, R

−
dNTP and M−

dNTP < 1 represent, respec-
tively, the rate of recovery under oxygen-rich conditions, the rate of inhibition in
hypoxia, and baseline expression levels under hypoxia. When a cell exits the G1 state,
its dNTP levels are set to the baseline value MdNTP(c).
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A.3.2 Modelling the Dynamics of Intracellular DRF Levels

We assume that the dynamics of the DNA repair factors do not depend on the cell cycle
state (Bindra et al. 2004) and are regulated uniquely by oxygen levels (see Sect. 2).
As for mdNTP, we model the impact of hypoxia on the expression level m(i)

DRF in cell i
(see Fig. 1) by using the following rule to update the DRF expression levels in cell i
from time tn to time tn+1:

m(i)
DRF(tn+1) = m(i)

DRF(tn) + (1 + �)�m(i)
DRF, (11a)

where � ∼ N (0, σ ),

�m(i)
DRF = RDRF(cn)�t [MDRF(cn) − m(i)

DRF(tn)], (11b)

RDRF(c) =
{
R+
DRF, c > cH ,

R−
DRF, c < cH ,

, MDRF(c) =
{
1, c > cH ,

M−
DRF, c < cH ,

, (11c)

and R+
DRF, R

−
DRF and M−

DRF < 1 are constant positive parameters representing, respec-
tively, the rate at which DRF levels increase under oxygen-rich conditions, the rate at
which DRF levels decrease under hypoxia and the baseline expression levels of DRF
under hypoxia. As above, we account for intercellular variability by adding multi-
plicative noise in Eq. (11a).

B Balanced exponential growth (BEG)

The concept of balanced (or asynchronous) exponential growth (BEG) was first intro-
duced by cell biologists to describe the growth of cell populations (Webb 1987). This
regime describes a situation where the total number of cells, N , grows exponentially at
a constant rate λBEG (i.e., N ∝ exp

[
λBEGt

]
) and the distribution of cells in the differ-

ent phases of the cell-cycle tends to a constant profile, which is independent of how the
cells were initially distributed along the cell cycle. Experimentally, BEG is observed
in cultures of cells and bacteria at low density (i.e., in the absence of competition for
space and nutrients).

In an oxygen-rich environment (i.e., in physiological conditions), cells have no
damage (see Fig. 6a), and levels of dNTP and DRF are sufficiently high to guarantee
normal cell cycle progress. As a result, cell death is negligible and the number of cells
in the checkpoint compartments will tend to zero (i.e., no cells in states C1 and C2).
The only difference in the intracellular state of cells is, therefore, their DNA content,
x . We investigated BEG for DNA-structured populations in our previous work (Celora
et al. 2022) and found that the cell cycle distribution (i.e., the fraction of cells in each
cell cycle phase: f BEGG1 , f BEGS and f BEGG2/M) and the growth rate during BEG are related
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BEG Eq.(B7)
IBM

Fig. 12 S-type cell DNA distribution PS(x) during balance exponential growth. The blue curve represents
the theoretical prediction from Celora et al. (2022) (see Eq. (13)). The histogram is obtained from a simula-
tion of the IB model (as in Fig. 7). While we simulate the model for 100 hours, we neglect the first 75 hours
of the simulation when estimating the DNA distribution; this limits the influence of the initial conditions
on the estimated distribution

to model parameters as follows

f BEGG2/M = λBEG

k2
, (12a)

f BEGG1 = 2λBEG

λBEG + k1
, (12b)

f BEGS = 1 − f BEGG2/M − f BEGG1 , (12c)

(λBEG + k1)(λ
BEG + k2) − 2k1k2e

−λBEG/v̄x = 0. (12d)

In Eq. (12), the positive constants k1, k2 and v̄x are as in Tables 3-4. The existence
and uniqueness of real solutions for Eq. (12d) are discussed in Celora et al. (2022).
As shown in Figure 7a, the asymptotic behaviour predicted by the IB model agrees
with Eq. (12). Using the results in Celora et al. (2022), we can also derive the DNA
distribution of cells in the S phase

PS(x) = ks
e−ks (x−1)

1 − e−ks
, where ks = λBEG

v̄x
. (13)

Here PS(x) is the probability that a randomly sampled S-type cell has DNA content
x (i) = x . In Eq. (13), the variable x has a truncated exponential distribution on the
interval [1, 2] with rate ks , x ∼ Exp[1,2](ks). In Fig. 12, we compare Eq. (13) with the
shape of PS estimated from simulations of the IBM model for physiological oxygen
levels. The two profiles are in excellent agreement.

We start each simulation with 100 cells. At the beginning of each simulation, an ini-
tial state is assigned to each cell as outlined in Algorithm 3. The cell cycle state z(i) and
DNA content x (i) are assigned by sampling from the BEG distribution. This requires
the values of f BEGG1,S,G2/M and ks (see Table 6) and the definition of the cumulative
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DNA distribution Yx0

Yx0 =
∫ x0

1
PS(ξ)dξ = 1 − e−ks (x−x0)

1 − e−ks
, x0 ∈ [1, 2] (14)

where PS is defined by Eq. (13). The other state variables are initialised to their default
physiological values, so that y(i) = 0, m(i)

DRF = 1, and m(i)
dNTP = 1 if z(i) = S and

m(i)
dNTP = 0 otherwise.

Algorithm 3 Pseudocode outlining the procedure used to initialise the simulations
of our IB model. The function Y−1

x0 indicates the inverse of the cumulative DNA
distribution Yx0 (see Eq. (14)).
Input: n0 – initial size of the cell culture
for i = 1, . . . , n0 do

Sample a random number θ ∼ Unif(0, 1)

y(i) = 0, m(i)
DRF = 1

if θ ≤ f BEGG2/M then

z(i) ← G2, x(i) ← 2, m(i)
dNTP = 0

else if θ ≤ f BEGG2/M + G1 then

z(i) ← G1, x(i) ← 1, m(i)
dNTP = 0

else
z(i) ← S, m(i)

dNTP = 1

X0 = θ/ f BEGS
x(i) = Y−1

x0 (X0)

end if
end for

B.1 Balanced Exponential Growth in Periodic Environment

If we consider an asynchronous population of cells that grows in a periodically chang-
ing environment in the absence of competition then, the total number of cells can be
described by the following ordinary differential equations:

dN

dt
= r(t)N (t), (15)

where r(t) is a T -periodic function and represents the instantaneous growth rate.
As the instantaneous growth rate r(t) captures information about fluctuations in the
population size, it fails to characterise the long-term dynamics of the population (i.e.,
whether it will grow or go extinct). A more natural and informative way of studying
the evolution of N in periodically changing conditions is to look at the overall change
in the population over a period T . Solving Eq. (15) in the time interval [t, t + T ) we
find that:

N (t + T ) = eR(t)N (t), R(t) =
∫ t+T

t
r(ξ)dξ. (16)
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Since r(t) is a periodic function, it follows that R(t) is constant since R′(t) = r(t +
T ) − r(t) = 0. Hence, we can define the constant population growth rate λ = R/T .
Then we can rewrite Eq. (16) as:

N (t + T ) = eλ(nT +1)T N (t0), nT =
⌊
t

T

⌋
, t0 = t − nT T , (17)

where 	·
 is the floor function. Inspecting Eq. (17), it is now apparent that for λ < 0,
the population is driven to extinction, while if λ > 0 it grows unbounded. The time-
averaged growth rate λ is therefore able to capture the long-term dynamics of the
population.

C Parameter values

Tables 3-6 contain the model parameters used in the simulations. Where multiple val-
ues are indicated, these correspond to cell populations with different damage repair
capacities (see Sect. 3.4.1 and Sect. 4.3). Where no reference is given, the parameter
values have been chosen to produce biologically reasonable behaviour and a justifi-
cation is given. In particular, the values were chosen to give growth and cell-cycle
dynamics in line with experimental and theoretical predictions (Celora et al. 2022;
Bader et al. 2021b).

C.1 Cell Cycle Transitions, Checkpoint Dynamics and Cell Fate Decisions

Table 3 lists the values of model parameters associated with cell cycle transition and
activation/deactivation of cell cycle checkpoints, i.e., Eqs. (8), and cell-fate decisions,
i.e., Eqs. (9).

As mentioned in Sect. 2, heterogeneity in the regulation of the DNA damage
response (DDR) is commonly found in in vivo tumours. We model alteration to DDR
response by changing model parameters associated with the probability of activa-
tion (Pon

C2
) and deactivation (Poff

C2
) of the G2 checkpoint in response to damage (see

Eqs. (8d)-(8e)). To model enhanced DDR activation, we decrease ȳonC2
, sonC2

and ȳoffC2
with respect to their default values. To model silencing of DDR signalling, we instead
increase ȳonC2

, sonC2
and ȳoffC2

with respect to their default values. Fig. 13 shows the profile

of Pon
C2

and Poff
C2

in the three cases: default (DDRwt cells), enhanced DDR activation
(DDR+ cells) and silenced DDR signalling (DDR− cells).
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damage levels (  )

(a)

damage levels (  )

(b)

Fig. 13 Plots of the profiles of a Pon
C2

(Eq. (8e)) and b Poff
C2

(Eq. (8d)) for cells with different damage repair
capacity. The red dotted line in Fig. 13a indicates the curve y = ȳM→∅, where ȳM→∅ corresponds to the
threshold damage level for mitotic catastrophy. Parameter values are as indicated in Table 3 (Color figure
online)

C.2 Intracellular Dynamics

Table 4 lists the values of model parameters associated with intracellular dynam-
ics, i.e., Eqs. (2)-(3) and (10)-(11). We estimate the parameters associated with the
expected evolution of repair protein expression levels, mDRF(t) (see Eq. (11)), using
the data from Pires et al. (2010a) on the time-evolution of expression levels of the
DNA repair protein RAD51 in RKO cells in constant hypoxia. While in our model
mDRF(t) corresponds to the expression of multiple different damage repair proteins,
we assume they behave similarly in response to hypoxia and use RAD51 dynamics as
a prototypical response. As shown in Fig. 14, the expression levels relative to physio-
logical conditions show a clear trend: the expression levels decrease monotonically as
the period of exposure to hypoxia increases. The profile can be fitted to an exponential
function (see the continuous curve in Fig. 14) justifying the functional form chosen
for mDRF(t) (see Eq. (11b)). We estimate model parameters by fitting the exponen-
tial function (mDRF(t) = (1 − M−

DRF)e
−R−

DRFt + M−
DRF) to the experimental data. We

could not find similarly detailed data for RKO cells to estimate R+
DRF, i.e., the rate at

which protein expression levels are restored upon reoxygenation. Estimates of R+
DRF

were informed by Western-blot data from Bindra et al. (2004). We note that these
experiments were not conducted on the RKO cell line.

Using the data in Fig. 14, we find that mDRF drops to m̃ = 0.223 after 12 hours in
hypoxia. As discussed in Sect. 2, experimentally it is observed that, when exposed to
hypoxia for more than 12 hours, cells become sensitive to the collapse of replication
forks and repress repair mechanisms. Accordingly, we require that the death rate for
cells in the S phase is half of its maximum value when cells are exposed to constant
hypoxia for 12 hours, i.e., we set m̄S→∅ = m̃ in Eq. (9a).
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Table 4 Summary of the parameters associated with the evolution of intracellular levels of dNTP and DRF
used in the simulations that we can estimate from the literature

Description Typical value Justification (Refs)

�t Timestep 1/50 (hours) as in Table 3

γ Rate at which DNA damage is
accumulated in response to
replication stress

0.2 (hours−1) match activation G2 checkpoint in
2/2 cyclic hypoxia Celora et al.
(2022)

v̄x Maximum velocity of DNA synthesis 0.083 (hours−1) Celora et al. (2022)

v̄y Rate of damage repair in
physiological levels

0.3 (hours−1) in line with values estimated in at
low radiation Liu et al. (2021)*

R−
DRF Rate of change in the expression of

DRFs for c < cH

0.13 (hours−1) Fig. 14 Pires et al. (2010a)

R+
DRF Rate of change in the expression of

DRFs for c > cH

0.05 (hours−1) ≈ 90% recovery in 48hours (Bindra
et al. 2004)*

R−
dNTP Rate of change in the intracellular

levels of dNTPs for c < cH

0.3 (hours−1) Celora et al. (2022)

R+
dNTP Rate of change in the intracellular

levels of dNTPs for c > cH

0.26 (hours−1) Celora et al. (2022)

M−
DRF Equilibrium levels of DRFs

expression levels in hypoxia
0.0154 (a.u.) Fig. 14 Pires et al. (2010a)

M−
dNTP equilibrium levels of dNTPs levels in

hypoxia
0.06 (a.u.) minimal rate of DNA synthesis as

in Celora et al. (2022)

Typical values are given for the RKO cancer cell line except those taken from other cell lines (indicated
with *)

experimental data

least-square fit to 
parameters estimated value

(%)

(hours-1)
acute hypoxia

chronic hypoxia

(a) (b)

Fig. 14 a Data from Pires et al. (2010a) on the time-evolution of expression levels of the DNA repair
protein RAD51 in constant hypoxia (yellow dots). The pink curve indicates the value of the function

mDRF(t) = (1− M−
DRF)eR

−
DRFt + M−

DRF for parameter values as specified in the panel (b). The functional
form for mDRF is obtained by solving the deterministic version of Eq. (11) starting with mDRF(0) = 1 and
setting c(t) ≡ c− < cH for all t > 0. bEstimates of the parametersM−

DRF and R−
DRF are obtained by fitting

the function mDRF(t) = (1 − M−
DRF)eR

−
DRFt + M−

DRF to the experimental data using the curve_fit
function in the SciPy library in Python. For each parameter, we indicate the computed 67% confidence
interval (Color figure online)
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C.3 Oxygen Dynamics in the Chamber

Table 5 lists the values of model parameters used to simulate the evolution of oxygen
levels within the oxygen chamber for different experimental setups (see Eqs. (4)).

Table 5 Summary of the parameters associated with the evolution of oxygen levels within the chamber
used in the simulations (see Eqs. (4))

Description Typical value Justification (Refs)

cH Hypoxia threshold ≈ 1.0 (% O2) Celora et al. (2022)

c+ Re-oxygenation oxygen levels 2.0 (% O2) Celora et al. (2022)

c− Minimum oxygen levels 0.1 (% O2) Celora et al. (2022)

λc Rate at which oxygen levels equilibrate 10 (hours−1) Equilibration takes ≈ 10min

C.4 Initial Conditions: BEG

Table 6 lists the values ofmodel parameters used to initialise the numerical simulations
(details can be found in Sect. 1).

Table 6 Summary of the parameters associated with the initialisation of the numerical simulations
(see Sect. 1)

Description Typical value Justification (Refs)

f +
G1 Initial fraction of cells in the G1 phase 29 (%) Celora et al. (2022)

f +
S Initial fraction of cells in the S phase 56 (%) Celora et al. (2022)

f +
G2 Initial fraction of cells in the G2 phase 15 (%) Celora et al. (2022)

ks Rate at which cell leaves the S phase in the
BEG regime

≈ 0.4(hours−1) Eq. (13) with v̄x and λBEG

from Celora et al. (2022)
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D Initial Cell Cycle State Influences Cell Survival

Figure15 shows the estimates of survival obtained via numerical simulations of clono-
genic assays (see Sect. 3.4.2) stratified by the cell cycle phase of the initially seeded
cells. We compare results for four cyclic hypoxia conditions; namely, (4,5)-, (7,5)- ,
(11,5)- and (11.05)-cyclic hypoxia. For oxygen conditions where overall population
survival is high (e.g., (4,5)-cyclic hypoxia) or low (e.g., (11,5)-cyclic hypoxia), there
is no significant difference in cell survival for cells starting in different cell cycle
phases. Larger deviations are observed for conditions where the overall population
survival V ≈ 0.5 (e.g., (7,5)-cyclic hypoxia). In this example, progenitor cells ini-
tially in the late stages of the cell cycle – i.e. in the S and G2/M phases – are more
likely to survive. As the duration of TR decreases and we approach conditions analo-
gous to constant hypoxia (e.g., (11,0.5)-cyclic hypoxia), we observe an even stronger
correlation between cell survival and the initial cell cycle phase of the progenitor cell.
Overall, the results presented in Fig. 15 highlight the importance of deconvoluting cell
cycle-specific sensitivities when accessing survival in toxic environments.

(4,5)-cyclic 
hypoxia

(7,5)-cyclic 
hypoxia

(11,5)-cyclic 
hypoxia

(11,0.5)-cyclic 
hypoxia

su
rv

iv
al

 (
  
 )

G1
G2/M

S

Fig. 15 Characterising the dependence on survival of the initial cell cycle distribution. Barplots indicate
the probability of survival, V , estimated via simulation of clonogenic assay experiments (see Sect. 3.4.2)
stratified by the cell cycle phase of the progenitor cell. We compare the results for four cyclic hypoxia
conditions: (4,5), (7,5), (11,5), and (11,0.5)-cyclic hypoxia. Values of the parameters are as in Fig. 7

E Long-TermDamage Distribution in Serial Passage Experiments.

In Sect. 4.3 we claim that, during serial passage experiments in cyclic hypoxia, the
distribution of damage within the population does not converge to a stationary dis-
tribution at long times; rather it fluctuates with the oxygen levels, and it eventually
settles to a time-periodic function whose period coincides with the interval between
passages of the cell population. In this section, we present additional results in support
of our claim.

Figure16 illustrates the time-evolution of the median and IQR of the damage
distribution in the population during serial passage assays (see Sect. 3.4.3) for cells
exposed to (4,5)-cyclic hypoxia. We report the simulated time-evolution for both the
co-culturing (see Fig. 16a) and control experiments (see Fig. 16b). The results show
that the mean and interquartile range of the damage distribution do not settle to sta-
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Fig. 16 Plots of the time-evolution of the damage distribution during simulations of serial passage experi-
ments in (4,5)-cyclic hypoxia for a co-culture and b control conditions. We indicate the median (see violet
curve) and the interquartile range (see shaded area) of the damage distribution extracted from the simulations
from Fig. 11. The vertical dotted lines indicate the time at which cells are passed (i.e., replated)

tionary values but rather they fluctuate over timewith the oxygen levels. At long times,
the distribution converges to a time-periodic function, whose period is equivalent to
the interval between contiguous passages of the cell population (here 45hours).
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