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A B S T R A C T

Real-world cellular invasion processes often take place in curved geometries. Such problems
are frequently simplified in models to neglect the curved geometry in favour of computational
simplicity, yet doing so risks inaccuracies in any model-based predictions. To quantify the
conditions under which neglecting a curved geometry is justifiable, we explore the dynamics
of a system of reaction–diffusion equations (RDEs) on a two-dimensional annular geometry
analytically. Defining 𝜖 as the ratio of the annulus thickness 𝛿 and radius 𝑟0 we derive, through
an asymptotic expansion, the conditions under which it is appropriate to ignore the domain
curvature for a general system of reaction–diffusion equations. To highlight the consequences
of these results, we simulate solutions to the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–
KPP) model, a paradigm nonlinear RDE typically used to model spatial invasion, on an annular
geometry. Thus, we quantify the size of the deviation from an analogous simulation on
the rectangle, and how this deviation changes across the width of the annulus. We further
characterise the nature of the solutions through numerical simulations for different values of 𝑟0
and 𝛿. Our results provide insight into when it is appropriate to neglect the domain curvature
in studying travelling wave behaviour in RDEs.

1. Introduction

Reaction–diffusion models are frequently used in applied mathematics to model invasion processes, finding use in collective cell
migration and wound healing [1–4], tumour growth [5], and in ecology [6]. Invasion processes on curved domains are prolific
in nature, and so an emerging trend in both experiments on, and modelling of, such processes is to examine invasion in curved
geometries [7–10]. However, it is often desirable to simplify a calculation or simulation by neglecting the curvature of the domain,
for example in modelling of the cranial neural crest, a powerful paradigm of collective cell migration [11]. Therefore, understanding
the impact of domain curvature in such models is critical to ensure that the model predictions are accurate.

The starting point for many reaction–diffusion models in two spatial dimensions is the general system of reaction–diffusion
equations (RDEs) for a collection of 𝑛 scalar fields 𝐮(𝑥, 𝑦, 𝑡) = (𝑢1(𝑥, 𝑦, 𝑡),… , 𝑢𝑛(𝑥, 𝑦, 𝑡))𝑇 . For the 𝑖th field 𝑢𝑖,

𝜕𝑢𝑖
𝜕𝑡

= ∇ ⋅ (𝐷𝑖(𝐮)∇𝑢𝑖) + 𝐹𝑖(𝐮), (1)

where 𝐷𝑖(𝐮) > 0 and 𝐹𝑖(𝐮) are components of the diffusion and reaction vectors 𝐃(𝐮) = (𝐷1(𝐮),… , 𝐷𝑛(𝐮))𝑇 and 𝐅(𝐮) =
(𝐹1(𝐮),… , 𝐹𝑛(𝐮))𝑇 , respectively. For each component 𝑖, we require that Eq. (1) has at least one positive stable steady state in the
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Fig. 1. a Definition of the annulus thickness 𝛿 and its radius 𝑟0. b Demonstration of the solution case we consider in Section 2.1. An arbitrary non-zero solution
profile 𝑢(𝜌, 𝜃, 𝑡) (magenta) is considered on the annulus on a line of constant 𝜃 (blue) at one time. The solution profile along that line of constant 𝜃 is further
represented as a function of 𝜌̂ to the right of the annulus.

absence of diffusion. To gain insight into invasion on a curved domain, we first study a generic system of RDEs on an annular
domain, exploring the deviation of their behaviour from those on rectangles.

2. Results: RDEs on an annular geometry

2.1. Asymptotic expansion of an RDE system in an annular geometry

For an annular geometry, we define its radius 𝑟0 as the radius of the circle defining all points equidistant from its inner and outer
circles, and the thickness 𝛿 as the difference between the radii of the outer and inner circles (Fig. 1a). We define the parameter
𝜖 = 𝛿∕𝑟0. In this section we argue that, on the annulus, domain curvature does not substantially affect the solution profile obtained
when 𝜖 is small. We further show that radial dynamics dominate the solution, and that the azimuthal dynamics provide only a
subleading correction of (𝜖2). We work in a modified polar coordinate system 𝜌 = 𝑟 − 𝑟0 with 𝜌 ∈ [−𝛿∕2, 𝛿∕2] and 𝜃 the usual
azimuthal angle. Eq. (1) can then be written in 𝜌 and 𝜃 coordinates as

𝜕𝑢𝑖
𝜕𝑡

= 𝜕
𝜕𝜌

(

𝐷𝑖(𝐮)
𝜕𝑢𝑖
𝜕𝜌

)

+
𝐷𝑖(𝐮)
𝑟0 + 𝜌

𝜕𝑢𝑖
𝜕𝜌

+ 1
(𝑟0 + 𝜌)2

𝜕
𝜕𝜃

(

𝐷𝑖(𝐮)
𝜕𝑢𝑖
𝜕𝜃

)

+ 𝐹𝑖(𝐮). (2)

Since we are interested in determining the relative contributions of the radial and azimuthal terms in Eq. (2), we first normalise 𝑢𝑖
over its typical scale of variation 𝐾𝑖 such that 𝑢𝑖 = 𝐾𝑖𝑢𝑖, and, assuming they exist and are of similar size between the species, define
characteristic diffusion coefficient and reaction scales

𝐷𝑖(𝐮) = 𝛥𝑖𝑑𝑖(𝐮̂), 𝐹𝑖(𝐮) = 𝑘𝑖𝑓𝑖(𝐮̂),

where 𝛥𝑖, 𝑘𝑖 are positive, dimensional constants. We then rescale to choose the timescale of interest, 𝑇 , to be the characteristic time
for diffusion across the thickness of the annulus. We also rescale the radial coordinate on this length scale, giving

𝑇𝑖 = 𝛿2𝛥−1
𝑖 , 𝑘𝑖 = 𝑇𝑖𝐾

−1
𝑖 𝑘𝑖, 𝜌̂ = 𝜌𝛿−1, 𝑡 = 𝑇 −1𝑡.

Writing 𝑢𝑖(𝜌, 𝜃, 𝑡)∕𝐾𝑖 = 𝑢𝑖(𝜌̂, 𝜃, 𝑡), we obtain

𝜕𝑢𝑖
𝜕𝑡

= 𝜕
𝜕𝜌̂

(

𝑑𝑖(𝐮̂)
𝜕𝑢𝑖
𝜕𝜌̂

)

+
𝑑𝑖(𝐮̂)
𝜌̂ + 𝑟0

𝛿

𝜕𝑢𝑖
𝜕𝜌̂

+ 1
(

𝜌̂ + 𝑟0
𝛿

)2
𝜕
𝜕𝜃

(

𝑑𝑖(𝐮̂)
𝜕𝑢𝑖
𝜕𝜃

)

+ 𝑘̄𝑓𝑖(𝐮̂). (3)

Rewriting Eq. (3) in terms of 𝜖 gives

𝜕𝑢𝑖
𝜕𝑡

= 𝜕
𝜕𝜌̂

(

𝑑𝑖(𝐮̂)
𝜕𝑢𝑖
𝜕𝜌̂

)

+
𝜖𝑑𝑖(𝐮̂)
1 + 𝜖𝜌̂

𝜕𝑢𝑖
𝜕𝜌̂

+ 𝜖2

(1 + 𝜖𝜌̂)2
𝜕
𝜕𝜃

(

𝑑𝑖(𝐮̂)
𝜕𝑢𝑖
𝜕𝜃

)

+ 𝑘̄𝑓𝑖(𝐮̂). (4)

We assume there is some variation in 𝐮 in the radial direction (Fig. 1b), which to be observable must be over a length scale ∼ 𝛿, so
that the 𝜌̂ gradients are non-zero. Assuming 𝜖 to be small, we further asymptotically expand each 𝑢𝑖(𝜌̂, 𝜃, 𝑡) = 𝑢̂𝑖,0(𝜌̂, 𝜃, 𝑡)+𝜖𝑢̂𝑖,1(𝜌̂, 𝜃, 𝑡)+
𝜖2𝑢̂𝑖,2(𝜌̂, 𝜃, 𝑡) +⋯, and the 𝑑𝑖 and 𝑓𝑖 in terms of the 𝑢𝑖. The dynamics of 𝑢̂𝑖,0, the lowest order contribution to the solution, are then
determined by

𝜕𝑢̂𝑖,0
𝜕𝑡

= 𝜕
𝜕𝜌̂

(

𝑑𝑖(𝐮0)
𝜕𝑢̂𝑖,0
𝜕𝜌̂

)

+ 𝑘̄𝑓𝑖(𝐮0). (5)

This is a RDE in one spatial dimension, with spatial variation in the radial coordinate 𝜌̂. Thus the dynamics of 𝑢̂𝑖,0, in the radial
direction, are the leading order contribution to the solution. It is easy to show that the dynamics of 𝑢̂𝑖,1 are determined again only by
terms which depend on gradients in 𝜌̂. Then, 𝑢̂𝑖,0 and 𝑢̂𝑖,1, and zeroth and first order terms from expansion of the other scalar fields
(𝑢̂ and 𝑢̂ with 𝑗 ≠ 𝑖), influence higher order terms, whose temporal evolution is determined by a combination of azimuthal and
𝑗,0 𝑗,1
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Fig. 2. Solution profiles for the Fisher–KPP equation simulated in two dimensions on the rectangle and annulus. Only the upper half of the half-annulus is shown
for simplicity. a Demonstration of the simulated geometry. Solutions with a Dirichlet boundary condition 𝑢 = 1 on the boundaries 𝛤 , 𝛤 ′, and no-flux boundary
conditions on the others, evaluated at 𝑡 = 1, 3, 5. The 𝑢(𝑥𝑖 , 𝑦𝑖 , 𝑡) = 0.5 isoline, found by selecting coordinates (𝑥𝑖 , 𝑦𝑖) with 𝑢 satisfying 𝑢 ∈ {|𝑢 − 0.5| ≤ 0.005},
is indicated by a black line. b Solutions with two-dimensional Gaussian initial condition and Dirichlet boundary condition on boundary 𝛤 evaluated at
𝑡 = 0.01, 0.50, 1.00 and 2.00.

radial gradients at (𝜖2). Thus, the dominant behaviour of the solution is in the radial direction to (𝜖). The equations governing
the dynamics at (𝜖) and (𝜖2) are provided in the Supplementary Information.

To demonstrate the consequences of these analytic calculations numerically, we now focus on the paradigm RDE for studying
spatial invasion, the single-species Fisher–KPP equation [12,13]. The Fisher–KPP equation is given by

𝜕𝑢
𝜕𝑡

= 𝐷∇2𝑢 + 𝑘𝑢
(

1 − 𝑢
𝐾

)

, (6)

with 𝐷, 𝑘 and 𝐾 positive constants. The Fisher–KPP equation is well-studied in one spatial dimension and permits travelling wave
solutions with speed 𝑐 ≥ 2

√

𝐷𝑘 [14], with equality achieved as 𝑡 → ∞ when compactly supported initial data are used [15,16]. For
the Fisher–KPP equation, Eq. (6), the analogous (1) result from the asymptotic analysis is

𝜕𝑢̂0
𝜕𝑡

= 𝜕
𝜕𝜌̂

(

𝜕𝑢̂0
𝜕𝜌̂

)

+ 𝑘̄𝐾𝑢0(1 − 𝑢0), (7)

where we have dropped the index 𝑖 since there is only one scalar field. The associated non-dimensionalisation is

𝑇 = 𝛿2𝐷−1, 𝑘̄ = 𝑇𝐾−1𝑘, 𝜌 = 𝛿𝜌̂, 𝑡 = 𝑇 𝑡.

Notice that here, by design, 𝐾 cancels out of the non-dimensionalisation. As we shall see numerically, for the Fisher–KPP equation,
the existence of a spatially homogeneous stable steady state allows the gradients in the radial direction to become zero; if this
steady state were not present, then the (1) dynamics would remain the significant contribution to the solution dynamics. Thus,
the (1) and (𝜖) equations become identically zero after a short time, allowing the dynamics in the azimuthal direction at (𝜖2)
to eventually dominate. The following sections explore numerically the consequences of this result for differing 𝜖.

2.2. Numerical simulation demonstrates similarity to solutions on the rectangle and a timescale separation between radial and azimuthal
dynamics

Consider a half-annular domain 𝛺, with radius 𝑟0 and thickness 𝛿 as above, spanning 𝜃 ∈ [𝜋∕2,−𝜋∕2]. Taking 𝛿 = 0.4 and
𝑟0 = 1 to set 𝜖 = 0.4, we simulated Eq. (6) on a realisation of 𝛺 generated using Gmsh [17] and by applying the finite element
method implemented in FENICSX [18–20], choosing 𝐾 = 1, 𝐷 = 0.005, 𝑘 = 1 in appropriate units. In the one-dimensional infinite
spatial domain case, the width of the wavefront scales as (

√

𝐷𝑘) [14], and so for this parameter choice we anticipated observing the
formation of a travelling wave solution in the azimuthal direction with the front localised far from the boundary at 𝜃 = −𝜋∕2. In the
Supplementary Information, we summarise results from equivalent simulations over a range of 𝑘, 𝑟0 and 𝛿. The top vertical edge 𝛤
(see Fig. 2a), specified by

{

(𝑟, 𝜃) | 𝜃 = 𝜋∕2, 𝑟 ∈ [𝑟0−𝛿∕2, 𝑟0+𝛿∕2]
}

, was supplied with the Dirichlet boundary condition 𝑢(𝑟, 𝜋∕2, 𝑡) = 1
to mimic a constant solution density entering from outside the domain; Neumann no-flux boundary conditions were imposed on the
three other edges. An initial condition 𝑢(𝑟, 𝜃, 0) = 0 for (𝑟, 𝜃) ∈ 𝛺∕𝛤 was used. For comparison, we performed equivalent simulations
on a rectangle of width 𝛿 and length 𝜋𝑟0. We imposed the Dirichlet boundary condition 𝑢(0, 𝑦, 𝑡) = 1 on the edge 𝛤 ′ specified by
{

(𝑥, 𝑦) | 𝑥 = 0, 𝑦 ∈ [0, 𝛿]
}

.
Fig. 2a shows the solutions on the annulus and rectangle, which are qualitatively similar, and for longer times appeared as

travelling waves in the 𝜃 (annulus) or 𝑥 (rectangle) coordinates, respectively. Since we observed this close qualitative match, and
since our analytic result implies that radial gradients should quickly go to zero, we examined the solution on the annulus for
small times in Fig. 2b with a radially varying initial condition on 𝛺. Taking 𝑢(𝑥, 𝑦, 0) = exp

(

−
(

𝑥2 + (𝑦 − 1)2
)

∕𝛼2
)

, {(𝑥, 𝑦) ∉ 𝛤 } with
𝛼2 = 0.05, we found that the radial dynamics dominate the solution at early times. The solution approaches the stable steady state
𝑢∗ = 1 in the radial direction, and over a longer timescale begins to propagate in the azimuthal direction with little variation of 𝑢
in the radial coordinate.
3 
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Fig. 3. Properties of the 𝑢 = 0.5 isoline in equivalent simulations on the rectangle and annulus at different times. a Deviation of 𝜃𝑖 of the isoline positions from
he mean angle 𝜃𝑖 in simulations on the annulus, and of the 𝑥𝑖 from the mean 𝑥-coordinate 𝑥̄ on the rectangle. Both isolines are displayed at 𝑡 = 2.0. b Values
f the mean angular speed 𝜔̄ = ⟨𝜔𝑖(𝑡)⟩ of the points on the isoline on the annulus (blue) and linear speed 𝑣 = ⟨𝑣𝑖(𝑡)⟩ on the annulus. The range of values of
𝑖(𝑡) for the annulus are shown (gold overlay). The minimum speed for a travelling wave solution allowed by Fisher’s equation on an infinite line is also shown

magenta). Note that all points sampled within the tolerance of the isoline are shown, so the profiles appear slightly jagged and thick due to the imperfect
lignment between the isoline position and element positions on the mesh.

.3. Differences between the solution on the rectangle and annulus

Despite being qualitatively similar, the solution on the annulus does not perfectly match the solution on the rectangle. To examine
o what extent the solution deviates, we investigated the coordinates (𝑥𝑖, 𝑦𝑖) and (𝑟𝑖, 𝜃𝑖) on the 𝑢 = 0.5 isoline on the rectangle and
he annulus, respectively. We plotted the angles 𝜃𝑖 (annulus) or 𝑥-coordinates 𝑥𝑖 (rectangle) for points on the isoline (Fig. 3a). On
he rectangle we found, as expected, that the isoline lies on a line of constant 𝑥 at any given time, with the solution propagating
n the 𝑥-direction. For the annulus, the solution propagates azimuthally, similar to the rectangle, but points on the isoline deviated
rom the mean 𝜃𝑖 of the 𝜃𝑖, with the points at the inner radius being at smaller angles than those at the outer radius. Interestingly,
e saw the variation in 𝜃𝑖 was preserved at later times.

We also examined the angular speed 𝜔𝑖 (annulus) and linear speed 𝑣𝑖 (rectangle) of the points on the isoline (Fig. 3b), by
alculating their velocity as in [10], giving

𝐯𝑖(𝑥𝑖, 𝑦𝑖) =
𝜕𝑢
𝜕𝑡

1
|∇𝑢|2

∇𝑢 = 𝐯𝑖(𝑟𝑖, 𝜃𝑖) ⟹ 𝜔𝑖 =
𝐯𝑖(𝑟𝑖, 𝜃𝑖) ⋅ 𝜽̂𝑖

𝑟𝑖
,

with 𝜽𝐢 = 𝐱̂ cos 𝜃𝑖 − 𝐲̂ sin 𝜃𝑖 the usual polar azimuthal vector in terms of 𝐱̂, 𝐲̂, the cartesian unit vectors in two dimensions. The mean
speed of both isolines is similar and for later times, both mean speeds approach the theoretical speed for the Fisher–KPP equation
in one dimension. On both the rectangle and annulus, it is important to stress that we have not observed the constant speed, fixed
profile travelling waves typically used in analysis of the Fisher–KPP equation as we are not in the 𝑡 → ∞ infinite domain limit.

2.4. Annulus width and radius determine size of deviation of solutions

As we showed in Section 2.1, radial gradients in the Fisher–KPP equation are on the length scale 𝛿 (annulus thickness), whereas
derivatives in 𝜃 are coupled to 𝑟 and thus are related to both 𝑟0 (annulus radius) and 𝛿. To characterise the range of 𝜖 that may
be considered small, we simulated the Fisher–KPP equation with the same initial and boundary conditions as in Section 2.2 but
varying either 𝑟0 or 𝛿 independently (Fig. 4). For all cases, the 𝜃𝑖 lagged behind 𝜃−𝛿∕2 (the angle of the 𝑢 = 0.5 isoline at the inner
radius of the annulus). For annuluses with decreasing 𝑟0 but constant 𝛿, there was an increased spread in the angles of the isoline.
Increasing 𝛿 with 𝑟0 constant showed an increasing spread in the 𝜃𝑖 from the inner to outer edge of the annulus. Varying both 𝛿 and
𝑟0 between simulations by the same factor, however, showed only a small difference in the 𝜃𝑖 between simulations (not shown).
This provides further evidence that 𝜖 governs the magnitude of azimuthal variations in the solution. In fact, we found that even
for 𝜖 ∼ 0.6, the solution on the annulus is still close to forming azimuthal wavefronts with lines of constant 𝜃𝑖, analogous to the
rectangle. In the Supplementary Information, we perform a more complete characterisation of combinations 𝑟0, 𝛿 and 𝑘 where the
approximation error is small.

3. Discussion

We showed that a general system of autonomous RDEs with characteristic diffusion and reaction scales can be described to lowest
order in an annular geometry by considering only a radial version of the same RDE in 𝐮, and that the azimuthal dynamics provide

a subleading correction. The result is applicable to annuluses with a small ratio 𝜖 of the annulus thickness to radius. To emphasise
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Fig. 4. Profiles for the 𝑢 = 0.5 isoline at 𝑡 = 4 for varying radius 𝑟0 or thickness 𝛿. a Simulations utilising different values of 𝑟0 = 0.25, 0.4, 0.67 (𝜖 = 1.6, 1, 0.6)
with fixed thickness 𝛿 = 0.4. The difference between 𝜃𝑖 and the angle of the 𝑢 = 0.5 isoline at the inner radius 𝑟0 − 𝛿∕2, 𝜃−𝛿∕2 over the radial coordinate at
= 3.0 is shown. The inset illustrates the definition of 𝜃−𝛿∕2. b Simulations utilising different values of 𝛿 = 0.6, 1.0, 1.6 with fixed radius 𝑟0 = 1 (𝜖 = 1.6, 1, 0.6). The
ifference between 𝜃𝑖 and the angle of the 𝑢 = 0.5 isoline at the inner radius (𝑟0 − 𝛿∕2), 𝜃−𝛿∕2, over the radial coordinate at 𝑡 = 3.0, is shown.

he consequences of the result, we have demonstrated that the solutions exhibited by the Fisher–KPP equation on annuluses with a
mall ratio of thickness to radius do not vary substantially from those on the rectangle. This is counter-intuitive; naively, we might
xpect that how the solutions differ from the rectangle might be dependent only on the radius 𝑟0, which affects the tightness of
he bend the solution propagates around. However, considering 𝛿 → 0 returns a one-dimensional Fisher–KPP equation only in 𝜃,
n which there is trivially no variation in 𝑟. The small 𝜖 limit thus arises when the annulus approaches a circular arc. We further
uantified the deviations between computed numerical solutions on the rectangle and annulus when 𝜖 is increased, showing that
here is spreading in the angle of the travelling wave profile as a function of the radial coordinate.

Our results imply that on annuluses of sufficiently small thickness or large radius, it is justifiable to replace this geometry
ith a rectangle. Our analytic results show this justification holds for systems of RDEs with autonomous reaction and diffusion

erms. Our numerical results (see the Supplementary Information for details) confirm that the approximation error is small over a
ange of parameters. However, the result relies on the coupling of 𝑟 to 𝜃 in the azimuthal derivatives, and so can break down for
on-autonomous reaction–diffusion equations. This is potentially of interest in growing domain problems, which include spatially
ependent advection terms, or in systems with externally imposed perturbations that introduce a spatial dependence. In these cases,
n external characteristic length scale for the advection or spatial perturbation requires care to be taken in deriving the lowest order
ontributions. Additionally, the result relies on being able to write down characteristic scales for the diffusion and reaction terms,
hich may not necessarily hold in, e.g. fast-slow systems. In such systems, we envision that additional care should be taken, with
ach timescale treated separately and compared. Further, if 𝐷𝑖(𝐮) < 0 for any 𝐮, it has been shown that such negative diffusivities
ay lead to shock fronts [21]. The presence of shock fronts in 𝜃 but not 𝑟 would also require more careful treatment, since an

rder-by-order asymptotic expansion is not appropriate.
Here, we have examined a half-annular domain embedded in two spatial dimensions. Extensions to this geometry could be

onsidered, for example motion in tortuous microchannels [22]. In this case, where there are a series of repeated half-annular
ends with the same width (analogous to constant 𝛿 but varying 𝑟0), these findings can be iterated for each bend separately. For
ore general domains that are not annular, the analytic results can still be useful. In this more general construction, one could

onsider a strip-like domain bounded by two 𝐶1 curves 𝐫𝟏(𝑠1) and 𝐫𝟐(𝑠2), where 𝑠1, 𝑠2 are arc length parameters for each curve.
or any simply-connected domain like this, it is possible to construct a curve 𝐫(𝑠) and associated set of coordinate vectors 𝑠̂, 𝜌̂ such
hat 𝐫(𝑠) describes a curve inside the domain, 𝜌̂ describes a direction perpendicular to this curve and also to the curve boundaries.
he Riemann mapping theorem [23] then guarantees the existence of a conformal map between this strip-like domain and a half-
nnulus. This conformal map maps the domain boundaries to the inner and outer radii of a half-annulus, and the curve inside
o a circular arc. The thickness, 𝛿, of this half-annulus depends on the exact mapping for a given geometry. For problems with
(𝐮) = constant, since the Laplacian is also conformally variant, the steps of the derivation in Section 2.1 can be performed, and the
roblem then transformed back to coordinates in the original domain. However, the use of the conformal map does not necessarily
reserve the curvature of the wavefront. Instead, the main point that carries over from our results and numerics is that propagation
f the solution (for the case of RDEs with travelling wave solutions) obeys a timescale separation if the width of the strip is thin,
ith propagation of the wave along the length of the strip slower than along its width. For the 𝐃(𝐮) ≠ constant case, our scale

eparation may no longer hold. In this case, we expect that the exact nature of the scale separation will depend on the shape of
he domain and upon what length scale the two curves which define the domain vary relative to each other. Additionally, our
esults considered a two-dimensional geometry embedded in two spatial dimensions. However, problems of collective migration
n a two-dimensional geometry embedded in three spatial dimensions, and three-dimensional geometries are also of relevance,
or example, to fully describe active swimmers in three spatial dimensions [24]. We leave these geometric extensions as an open
roblem.
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Overall, our findings have important implications for simulation of invasion processes on relevant natural geometries. In
articular, we see that we can neglect the effect of curvature for a range of situations that may be relevant, for example, in the
ranial neural crest, collective cell migration through torturous microchannels and other complex environments [24,25], or reactions
n annular geometries.
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