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1 Introduction

The cellular slime mould Dictyostelium discoideum provides a paradigm model
system for the study of multicellular pattern formation. Its life cycle involves a
route to primitive multicellular organization which has independently evolved
in terrestrial species of at least four groups of microorganisms (myxobacte-
ria, acrasiomycota—the cellular slime moulds, myxomycota, and ciliata [1]).
In these species a large number of single cells (nuclei in myxomycota) form.
through a process of aggregation and differentiation, a fruiting body.

Of these Dictyostelium in particular has been the subject of much exper-
imental and theoretical research; a detailed description of its life cycle can be
found for example in [2]. Briefly, under favourable conditions Dictyostelium
exists in the form of single amoeboid cells which feed on bacteria in the soil and
multiply. Eventually this leads to the exhaustion of the bacterial food sources.
which induces cells to actively aggregate into streams. The cell streams coalesce
into mounds containing typically 10*~10° cells. Passing through a migratory
slug-like stage during which cells differentiate in prespore and prestalk cells
(and a number of other cell (sub)types), a fruiting body develops. It aids the
dispersal of the spores which then develop again into single amoebae.

Here we focus specifically on the aggregation stage; cf. for example Figure
1in [10]. Cell-cell communication via macroscopic waves of cyclic adenosine
3’,5’-monophosphate (cAMP) organizes periodic cell movement towards the ag-
gregation centres [3,4]. These chemical waves take the form of rotating spirals
([10], Figure 1 (a)). The cell layer becomes divided into aggregation territo-
ries ([10], Figure 1 (b)), and eventually amoebae form a conspicuous pattern
of branching cell streams which radiate from the aggregation centre outwards
([10],Figure 1 (c)). Cell streaming is accompanied by the establishment of di-
rect cell-cell contacts and thus marks the onset of multicellular organization in
Dictyostelium.

The purpose of the present paper is to integrate the available experimental
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information at the cellular level into a quantitative model of the aggregation
phase in this ensemble of communicating cells. By means of this model we
attempt to show how the individual cell properties conspire to produce the
sequence of patterning events observed during aggregation. Particular em-
phasis will be given to the interaction of intercellular signalling and motile
cell behaviour which will turn out to be at the heart of the cell streaming
phenomenon.

2 Individual cell behaviour

Experimental research on Dictyostelium has elucidated many of the cellular and
molecular mechanisms involved in morphogenesis and differentiation. Subse-
quent to starvation cells acquire aggregation competence through the expres-
sion of a number of gene products. These equip cells with the ability (1) to
svnthesize cAMP in an “autocatalytic” feedback loop which plays a central role
in establishing long-range cell communication, and (2) to react mechanically
to cAMP with directed movement towards increasing cAMP concentration
(positive chemotaxis). In particular, elements of the cAMP signalling system
are expressed which are responsible for sensing (cAMP receptors), synthesiz-
ing (adenylate cyclase, AC) and degrading (cAMP-phosphodiesterases, PDE)
cAMP [5]. The major cAMP receptor type, cAR1, also mediates the chemo-
tactic response. In addition, other components of the AC and chemotactic
pathways, such as specific G-proteins, accumulate after starvation [6].

A central feature of both pathways is their activation as well as desensiti-
zation by cAMP. This is particularly well characterized in the case of the AC
pathway. Binding of extracellular cAMP to the cAMP receptors leads to a rel-
atively fast G-protein mediated activation of AC, and the synthesized cAMP is
rapidly transported into the extracellular medium (response time of the order
of seconds). This provides a self-enhancement mechanism for the cAMP signal.
The “autocatalytic” response is terminated by a desensitization (adaptation)
of the pathway to further stimulation, brought about by cAMP on a somewhat
slower timescale (order of minutes). Multiple desensitization mechanisms have
been characterized [7]; most relevant for the timecourse of the cAMP signals

during aggregation appears to be desensitization at the receptor/G-protein
level.

Activation of the chemotactic pathway follows a very similar pattern [8].
Here inositol 1,4,5-trisphosphate, calcium and cyclic GMP function as intra-
cellular messengers linking the cAMP receptors to the motile machinery of the
cell. Again several desensitization mechanisms are known, and it appears that
a somewhat faster desensitization reaction than that of the AC pathway is

¥
|

17
required to achieve accurate cell orientation [8,9].

3 A model of pattern formation in the cellular ensemble

On the basis of this information on individual cell behaviour we can derive a
minimal model for pattern formation in the cellular ensemble. The model takes
into account three dynamic variables; cell density, n(z,y,t), concentration of
extracellular cAMP, u(z,y,t), and fraction of active cAMP receptors per cell
(that is, cellular sensitivity towards the cAMP signal), v(z,y,t), all dependent
on space, (z,y), and time, t. The evolution equations for these variables take
the form [10]
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where V = (8/8z,8/8y). We briefly discuss each of these equations in turn.
The dynamics of the cell distribution will be a central element of the model.
To monitor it, we introduce the cell density variable n which can be crudely
viewed as a continuous space-dependent average of the (discrete) cell distri-
bution obtained over a characteristic length of a few cell diameters. It is gov-
erned by the advection-diffusion equation (1) which accounts for random cell
migration (“diffusion”), directed movement in cAMP gradients, Vu (chen.m-
taxis), and, in conjunction with equation (3), for a time-dependent adaptation
response towards the cAMP signal. This last feature is realized by the depen-
dence of the chemotactic coefficient y on the fraction of active cAMP receptors,
v. The chemotactic coefficient represents a combined measure of sensitivity to
the signal and motile response and should therefore record the effect of adap-
tation. We choose it to be of the form x(v) = xov™/(A™ +v™), m > 1,
that is, there is a threshold value of active receptors, A, which is required for
efficient sensing of the signal. In [11] we have shown that such an extension of
the standard chemotaxis model [12] is necessary if the characteristic timescales
of changes in the chemoattractant (cAMP) concentration and adaptation t"?'
wards the chemoattractant are of comparable magnitudes. This is the case in
Dictyostelium aggregation (cf. discussion in [11]), and probably ensures that
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cells aggregate by rendering cells unresponsive to the cAMP gradient in the
wavebacks of the periodic cAMP waves.

Equations (2)—(3) for the signalling dynamics are adapted from a model of
cAMP signalling by Martiel & Goldbeter [13-15]. For computational reasons
we take somewhat simpler functional forms for the reaction rates fi and g4
in equations (2) and (3) than those derived in [13] which, nevertheless, retain
the important characteristics of the latter: f, = kyu, f- =k_, g4+ = (v +
v?)(a+u?)/(1+u?), g— = du. The adaptation and cAMP degradation kinetics
follow simple linear or bilinear rate laws, while the rate of the AC pathway
(g+) accounts for stimulation by cAMP depended on the cellular sensitivity.
Estimates for the majority of model parameters can be extracted from the
experimental literature [10]; see legends to Figures 1 and 3. In contrast to the
original model, which was developed for suspensions of constant cell density,
we have to account explicitly for the feedback of the cell distribution into the
local cAMP dynamics. As both cAMP synthesis and hydrolysis are linked to
cells (intracellular AC pathway, PDE carried on cell membranes), the cAMP
production and degradation rates at a certain point in the medium depend on
the cell density at this point. This gives rise to the cell density factor ¢(n) in
(2). In general it will be an increasing function of the cell density. Specifically,
we take the form ¢(n) = n/((1 — pn/(K + n))); see [10] for details. A small
background activity of secreted PDE independent of cell density is added (4).

Equations (2)-(3) with the cell density “clamped” at a constant value es-
sentially reduce to the system investigated by Tyson et al. [14] as a model
of cAMP signalling at the onset of aggregation. Alternative models for this
situation have been developed [16,17]. The models differ in particular with
respect to the actual mechanism of cAMP-induced desensitization of the AC
pathway. While more elaborate models can perform better when simulating
certain experimental procedures, the two-variable model incorporated here cer-
tainly captures the essence of the cAMP signalling system in Dictyostelium:
fast cAMP production in a positive feedback loop and slow cAMP-induced
desensitization. In a spatially extended (2D) medium with cAMP diffusion
as the only transport process, the system has the typical properties of an ex-
citable medium, and in particular supports stable spiral wave solutions (Figure
1) [14,18]. In addition, a slight shift in parameters (for example an increase in
AC activity [13]) can cause amoebae to produce cAMP in a periodic fashion.
This is what normally happens at the beginning of aggregation when the es-
tablishment of a number of autonomously oscillating centres (pacemakers) can
be observed. From these the cAMP signal is relayed as a series of expanding
concentric waves. Inhomogeneities in the medium can break these waves, and
the resulting free wave tips give rise to cAMP spirals.
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Figure 1: Behaviour of system (2)-(3) with cell depsity “clamped” at a conista.nl;‘ va‘luel

(n = 1.0); (a) phase plane with typical excitation trajectory, a.nd_ (b) contour plot of spiral

wave solution (upper left of domain) and concentric wave (lower l"‘lght; 'the pacerl'{aker region

in the centre is silent at the time of the snapshot) on a two-dimensional spatial doma.ul.

Nondimenional parameters: A = 70.0, a = 0.0014, b=0.2,d=0.0234,0 = 0.111$+ — 4
2.5, D = 1.0; timescale 2.5 min, length scale 220 pm, cAMP scale 5x10 M.

However, in previous models these wave solutions have been obtained with
the idealization of a stationary homogeneous cell layer. We now turn to the
investigation of the full model (1)-(3) which includes the dynamics of the cell

distribution.

4 Cell streaming—the patterning mechanism

As discussed above, equations (2)—(3), with cell density viewed as a constant
and spatially homogeneous parameter, exhibit travelling wave solutions and, in
particular, spiral waves. For the full model (1)-(3) it can be shown that tra_vel-
ling wave solutions again exist, which are almost identical to the wave solutlogs
obtained for cell density “clamped” at a constant value. The reason for thls
is essentially the very small ratio of typical cAMP wavespeed (300' pm/min)
to chemotactic (advective) cell velocity (20 pm/min). ‘ E\‘qm equation (1) an
estimate for the disturbance of a homogeneous cell distribution, ng = constant,
in the front of a cCAMP wave can be obtained as n = no/(l — w./c), where ¢
and w denote the cCAMP wavespeed and the average chemotactic cell veloc-
ity, respectively. Thus wave-induced cell rnov_ement leaves the homoggneqt:s
cell layer practically undisturbed—an observation also reported for the in situ
situation [19].

There[forle the basic ideas on the initiation of pattern formation by cAMP
waves carry over to the full model incorporating cell movement. However, we
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shall show that there is a crucial difference between the density-clamped case
and the full model: Whereas the cAMP spiral waves and periodically forced
target patterns constitute stable dynamical attractors in the previous mod-
els, they will function as a slowly evolving “chemical prepattern” for cellular
morphogenesis when cell chemotaxis is included.

This can be best understood by considering the stability of the wave solu-
tions in the full model. For this purpose one looks at the evolution of a small
perturbation of the wave solution with time. Such perturbations are naturally
supplied by small random inhomogeneities in the cell distribution. The linear
stability analysis of the model around two-dimensional periodic wave solutions
is carried out in detail in [20]. It essentially reduces to considering a linear
problem of the form

da(z;¢%) 9 9
T:A(:;q}a(z;q); z=1x+ct. (4)
Here periodic plane waves are assumed to propagate in z-direction with speed
¢, hence z denotes a coordinate frame moving with the waves: a(-: ¢*) denotes
the amplitude of the ¢g-th Fourier mode of a spatial perturbation of the sys-
tem variables in the y-direction, that is perpendicular to the direction of wave
propagation. Hence the total perturbation in the y-direction is

perturbation(y, z) = /a(::qg)exp{iqy}dq (3)

Whether a perturbation with a certain spatial wavelength 27 /q will grow or
decay with time depends on the evolution of its amplitude which is determined
by (6). The system matrix A(z: q°), the actual form of which is derived in
(20], is periodic in z through a dependence on the unperturbed periodic wave
solutions of (1)~(3), that is, the evolution of the perturbation is forced by the
periodic cAMP waves. This is further emphasized by the fact that the time-
like variable in (6) and (7) is the travelling wave variable z: the perturbation
essentially evolves in the travelling wave frame. Standard Floquet theory can
be employed to obtain the dispersion relation from (6), that is the graph of
the characteristic linear growth rates of the Fourier modes [20]. The result is
depicted in Figure 2. One can clearly see that there is a band of unstable spatial
wavenumbers. Thus cAMP wave propagation in the initially homogeneous cell
layer is unstable from the outset, and the waves force the slow growth of a
pattern parallel to the wavefronts with a characteristic length scale roughly an
order of magnitude larger than the typical cell diameter. As we shall see in
the next section, it is this patterning instability which gives rise to cell streams
observed in situ. A more detailed investigation of the instability mechanism
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Figure 2: Dispersion relation for patterning parallel to cAM_P waveffents resultir_lg from {f:l )

The ordinata measures the linear growth rate of the spla.tlai ‘Fou‘rler modes given on .t e

abscissa. The solid line is obtained with the parameters given in Figures 3 a:nd 5; there is a

band of unstable wavenumbers (small positive growth ra.tes).' The dashed lu_1e corresponds
to a weaker chemotactic response xp = 0.2; here the uniform cell layer is stable.

uncovers the typical features of a chemotazis-driven instability [12], .in the
present case forced by periodic chemoattractant waves [20]. We conjecture
from the linear analysis that cAMP wave propagation gives rise to‘a. si_ow
break-up of the initially homogeneous cell layer perpendicul‘ar to the direction
of wave propagation, that will eventually lead to the formation of a cell stream
pattern.

5 Numerical explorations

To investigate the instability mechanism in the full?f non}linegr model, we solve
(1)-(3) numerically. A standard finite difference dlscre.tlzat‘lo.n on a rectangu-
lar domain is employed, with an alternating direction implicit scheme for the
diffusion operator and an upwind scheme for the chemotaxis term.

A typical simulation result is shown in Figure 3. One clearly sees the devey
opment of a counter-rotating spiral pair from a disrupFed bwavefrcmt, the parti-
tioning of the domain in two distinct aggregation tf&rntones roughly along Fhe
diagonal, and finally the break-up of the cell layer mtg a pattern of branching
cell streams, that is, the onset of multicellularity. During cell stream de?relop-
ment the cAMP waves retain their principal spiral geometry, though with an
increasingly rugged and irregular concentration profile (Figure 3 (b))A.

Thus the model (1)—(3) captures the essential dyna:x}lcs of gggregatlon, and
we can now proceed to compare different model predictions with the results of
the linear analysis and experimental observations.

(i) Cell streams arise on a characteristic spatial scale
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Figure 3: Spatio-temporal evolution of (a) cell density, and (b) cAMP concentration in

a numerical simulation of system (1)-(3). The dimensional domain size is as in Figure

3 (b); snapshots are taken in intervals of 15 min (from top left downwards, to bottom

right). Initially a small random perturbation between —0.075 and 0.075 was added to the

homogeneous cell density (1.0) at every mesh point. Boundary conditions are zero-fux.

Parameters as in Figure 3, and u = 0.012, xo = 0.5, A = 0.72, m = 10.0, p = 0.7 and
K = 0.8; reference cell density 1.5 )<].{Zl“',1-'-::rr12
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Figure 3: continued.
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Figure 4: (a) Evolution of cAMP concentration in a spatial slice through an aggregation

territory with a cAMP spiral; (b) corresponding wave velocities (), compared to the ex-

perimental data in [21], Figure 3 (A). The spatial slice is taken parallel to the horizontal
boundary through the spiral wave core.

The power spectrum of the evolving small-amplitude pattern in cell distribu-
tion clearly shows a distribution of modes around a dominant spatial frequency
([20], Figure T). This agrees with the analytical prediction of a dispersion rela-
tion with a single maximum. Moreover, the numerical values for the dominant
modes are in good agreement [20]. Obviously, such a characteristic spatial scale
together with the spiral or concentric geometry of the cAMP waves provides
a recipe for the formation of a branching stream pattern. Quantitative in situ
data do not exist, but within an aggregation territory streams usually appear
to be distributed around a characteristic width. Both a certain “freezing” of
initial inhomogeneities and nonlinear competition are familiar phenomena in
chemotaxis systems which can contribute to such a width distribution, which
is also seen in the simulations. X

(11) Spiral period and wavespeed depend on “wave time”

It has long been recognized that the basic geometry of the cAMP spiral waves
changes as aggregation proceeds: the wave frequency increases while the prop-
agation speed drops [21]. This behaviour, which has not been observed in
any other excitable medium, has been attributed to somewhat speculative bio-
chemical changes which are thought to be stimulated directly by the cAMP
waves. However, our minimal model exhibits this phenomenon with constant
parameter values (Figure 4). This certainly does not rule out slow biochemical
modifications which may enhance it [5]. On the other hand, the model (1)-
(3) offers an explanation of the basic phenomenon within the framework of

I

M il

A i IR

ST e

25

l.SH
0.5

Figure 5: Competition of two aggregation territories, organized by a spiral wave of cAMP
and a periodic pacemaker. Shown is the cell density, and in the first three snapshots also
the cAMP wave contours. Details of simulation as in Figure 3.

excitable media in terms of slowly evolving inhomogeneous excitability prop-
erties of the cell layer, caused by aggregation and streaming (10,20].

(iii) Caffeine induces rotating cell loops

Caffeine is known as a pharmacological agent to affect both aggregation and
subsequent development. It inhibits the AC pathway [22], and applied in large
quantities stops cAMP wave propagation (P. Newell, personal communication).
A simulation of moderate caffeine application, reflected in a decrease of the
activity of the AC pathway by about 25 %, shows the formation of a cell
loop in the centre of the aggregation territory; cf. [10], Figure 5. The core
of the cAMP spiral continuously cycles around this cell loop and consequently
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Introduction

The complex role of biochemical pathways in the intracellular mediation of
synaptically induced effects in neurons 1s increasingly being recognized. The
analysis of such pathways has much to offer, particularly in respect to the non-
classical transmitters that exert "modulatory” metabotropic effects in the central
nervous system. Such a "modulatory” transmitter is dopamine, which is known to
influence intracellular cyclic adenosine monophosphate (cAMP) concentrations in
the striatum via G proteins and adenylate cyclase (AC)'. However, cAMP levels are
also affected by calcium™, a second messenger whose intracellular concentration
increases, for example, in response to synaptically released glutamate*®. A previous
equilibrium model of dopamine and calcium interactions in the mammalian striatum
provided important insights into distinct concentration-dependent modes of
postsynaptic signal intcgra!ionf'. Here we present a kinetic model of cAMP
regulation by calmodulin/calcium complex and dopamine via AC and
phosphodiesterase (PDE) in order to further investigate the responses of
intraneuronal cAMP concentrations to brief calcium and dopamine pulses.

Methods

An established scheme of intracellular second messenger pathways was adopted in
the present study®® (Fig. 1): As a first approximation, AC activity in the striatum is
controlled by three factors: It is stimulated by dopamine (DA) and
calmodulin/calcium complex (CaMCa4), and inhibited by intracellular free calcium
(Ca). Adenylate cyclase forms cAMP from its substrate adenosine triphosphate
(ATP). Cyclic AMP is hydrolyzed to AMP by phosphodiesterase (PDE), whose
activity depends on CaMCa4.
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