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Abstract. In this paper we review the existence of different types of travelling wave
solutions u(x,f) = ¢(x — ct) of degenerate non-linear reaction-diffusion equations of the
form u; = [D(u)ux]x + g(u) for different density-dependent diffusion coefficients D and
kinetic part g. These include the non-linear degenerate generalized Fisher-KPP and the
Nagumo equations. Also, we consider an equation whose diffusion coefficient changes
sign as the diffusive substance increases. This describes a diffusive-aggregative
process. In this case the travelling wave solutions are explored and the ill-posedness of
two boundary-value problems associated with the above equation is stated.

1. Introduction

Since the classical works by FISHER (1937) and KOLMOGOROV et al. (1937), who
introduced the model u, = Du,, + g(u) to describe the propagation of an advantageous gene
within an one-dimensional habitat, a great deal of work has been carried out to extend their
model to take into account other biological, chemical or physical factors. One of these
extensions considers non-linear diffusion terms, which can be seen as a non-linear Fick’s
diffusion law. The non-linearity can arise in terms of a space, time or density dependent
diffusion coefficient. If, in the latter case, the diffusion coefficient and its derivative
vanish at certain values of the diffusive substance, then the corresponding reaction-
diffusion equation degenerates into an ODE equation at these values.

This degeneracy has two main effects on the qualitative features of its solutions.
Firstly, they do not propagate through space with infinite speed, as for the case when the
equation has positive constant diffusion coefficient D. In fact, there is a finite speed of
propagation. In the case of constant diffusion coefficient, for suitable initial conditions,
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the corresponding boundary value problem has smooth solutions on its domain. This is not
the situation for the degenerate case; normally, we do not expect smooth solutions (some
of them can be of sharp type), and it is necessary, instead, to introduce a suitable weak
solution concept.

The classical approach to the investigation of the existence of travelling wave
solutions (t.w.s.), u(x,£) = ¢(x — ct), of linear and nonlinear reaction-diffusion systems was
introduced by KOLMOGOROV et al. (1937). It consists of re-stating the original initial and
boundary value problem (which is in an infinite dimensional space), in terms of searching
for a set of parameters (in which the speed ¢ is included) for which a finite system of ODEs
has trajectories connecting pairs of equilibrium points (heteroclinic and/or homoclinic).
The boundary conditions for the t.w.s. are re-stated in terms of the asymptotic behaviour
of the heteroclinic trajectories as time # tends to —oo and to +oo. This ODE system is ob-
tained by re-stating the problem in the appropriate travelling wave variables.

A widerange of methods have been developed to search for travelling wave solutions
using Kolmogorov’s method in many models in biology, ecology, physiology, chemistry,
etc. A first class of methods involves a direct, ad hoc examination of the dynamics of the
specific ODE system in each application, see, for example, FIFE (1979), SMOLLER (1983),
BRITTON (1986), MURRAY (1989), GRINDROD (1991), SWINNEY and KRINSKY (1992),
SANCHEZ-GARDUNO and MAINI (1994a, 1995a).

Another approach s to use the Conley Index. This is a more topological approach and
has also been used to investigate the existence of heteroclinic connections and global
bifurcations for ODE systems (SMOLLER, 1983; KAPPOS et al., 1991; see KAPPOS 1995
foran accessible presentation of the Conley index method). Shooting arguments have also
been used (see DUNBAR, 1984; SANCHEZ-GARDURNO et al., 1995) to prove the existence
ofheteroclinic trajectories corresponding to t.w.s. of certain non-linear reaction-diffusion
equations.

In cases where it is known that heteroclinic trajectories exist, one can analyse them
using numerical or analytical tools. In this direction different numerical methods have
been developed to approximate the appropriate trajectories for the corresponding ODE
system (see DOEDEL and FRIEDMAN, 1989; BEYN, 1990), as well as solving the PDE
model. For certain special cases, perturbation methods can be used to derive analytic
approximations to the t.w.s. (SANCHEZ-GARDURNO and MAINI, 1994b).

In this paper we review results on the existence of different types of t.w.s. for several
types of one-dimensional density-dependent reaction-diffusion equations. The paper is
structured as follows: In Section 2 we present an overview of the t.w.s. dynamics for the
degenerate Fisher-KPP equation. Section 3 contains a similar review for the generalized
non-linear diffusion Nagumo equation. In Section 4 we consider a density-dependent
reaction-diffusion equation in which the diffusive term changes sign. The negative
diffusive term is associated with an aggregative process. The aggregative travelling wave
dynamics is explored and the ill-posedness of a couple of initial and boundary value
problems is stated.

In this paper we will omit the technical proof of the results, and give, instead, the
relevant references.
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2. Non-Linear Travelling Waves in the Degenerate Fisher-KKP Equations

Density-dependent dispersal has been observed in many biological populations, for
example, squirrels, small rodents, ants, etc. (see MYERS and KREBS, 1974; CARL, 1979;
SHIGUESADA et al., 1979). For some of these species, individuals may prefer to migrate
from crowded areas to sparsely populated areas, despite the possibility of adverse physical
or ecological conditions. In SANCHEZ-GARDURNO and MAINI (1994a), the different types
of one-dimensional non-linear reaction-diffusion equations which arise as descriptions of
the space-time dynamics of a single species are reviewed. It is shown there that, under
certain conditions, these models can be reduced to the equation

ou O ou
—=— D(u)— |+ , V (x,t)eRxR", 1
2L o2 rewh v (e )
where the growth rate g may be density-dependent. We require the following conditions
on D and g, both defined on the interval [0,1]:

I g0)=g(1)=0,gw)>0Vue (O,

2. ge c[zo,l] with g'(0) > 0, g'(1) < 0 and g"(0) = 0,

3. D0)=0,Du)>0VYue 0,1},

4. De C["‘OJ] with D'() > 0 YV u € [0,1].

In ecological terms Eq. (1), with the above conditions, models the space-time

dynamics of a population in which individuals disperse to avoid crowded areas in a habitat
with limited resources. Under the above conditions the following theorem holds:

Theorem 1. (sce SANCHEZ-GARDURO and MAINI, 1994a) If the functions D and g satisfy
the above conditions, then there exists a unique value, c* > 0, of ¢, such that Eq. (1) has:

1. Notw.s. for0<c<c*,

2. atravelling wave solution of sharp type satisfying: ¢(-o0) =1, $(§)=0V £= &*;
¢'(&*) =~c*/D'(0), ¢(&*) =0,

3. amonotone decreasing travelling wave of front type satisfying ¢(-o0) =1 and
¢(+o0) = 0 for each ¢ > c*.

Outline of the proof. If we substitute u(x,f) = ¢(x — ct) = ¢(&) into (1) we obtain a second
order ODE which, by setting v = ¢, can be written as a singular (at ¢ = 0) ODE system.
The singularity can be removed by introducing a new parameter, , in such a way that dv/
d&E=1/D(§(&)). Thus, the proof is based on analysing the local and global phase portrait
of the non-singular ODE system

d) = D(¢)v }
V=—cv— D'(¢)v2 —g((,b) ’

2)
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as the travelling wave speed ¢ varies. The key thing in the local analysis is that for all
positive ¢ the system (2) has: 1. two hyperbolic saddle points (P; = (1,0) and P, = (0,—c/
D'(0)) and 2. one non-hyperbolic saddle-node point (Py = (0,0)). The local phase portrait
| around Py can be determined by using the second order local approximation of (2) and
‘ applying the Centre Manifold Theorem. For the global phase portrait one needs to
; consider trajectories for extreme (very small and sufficiently large) values of ¢, the

VL @ RN (®)

Fig. 1. Phase portrait of system (2) with D(u) = [1 — exp(—¢)] and g(@) = §(1 — ¢) for different values of c:
(a) ¢ = 0.4, there are no heteroclinic connections, therefore there are no t.w.s. for the full PDE. (b) ¢ =
0.645; this is a good approximation to the critical values ¢* for which there exists the heteroclinic saddle-
saddle trajectory, which gives us the sharp type solution of the non-linear reaction-diffusion equation. (c)
¢ =1.5; here we have a saddle-saddle-node connection, which corresponds to a travelling wave solution

of front type for Eq. (1).
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Fig. 2. Numerical simulation for Eq. (1) with D and gasin Fig. 1. (a) Approximations to the sharp type solution
of (1) at regular time intervals. (b) Speed of the approximate sharp solution as a function of time.

vertical null-clines of (2) and the monotonicity property of the paths of the traj ectories of
(2) with respect to c. Then, by using the continuity of the solutions of (2) with respect to
¢, one can conclude the existence of a unique value, ¢* > 0, of ¢, such that system (2): 1.
has no heteroclinic trajectories for 0 < ¢ < ¢*, 2. has a heteroclinic trajectory connecting
the points P, and P, and 3. has a heteroclinic trajectory connecting the equilibria Py and
P, for each ¢ > c*. In light of the equivalence between the heteroclinic trajectories of (2)
and the t.w.s. of (1), the proof of Theorem 1 follows. [

For alternative proofusing ashooting argument, see SANCHEZ-GARDUNO e? al. (1995).

We can interpret the above t.w.s. as a wave of invasion of the individuals of the
population into the habitat. Figure 1 shows the phase portrait of a particular case of system
(2) as ¢ varies. In Fig. 2 different approximations to the sharp type solution of the
corresponding density dependent reaction-diffusion equation are shown.

3. Travelling Wave Solutions in Degenerate Nagumo Equations

In this section we consider Eq. (1) but instead of conditions 1-4 in the previous
section, for some number a € (0,1), we impose the following conditions on the functions
g and D, which are defined on the interval [0,1]:

1. g0)=g@)=g(1)=0,gu) <0V ue (0, ),gr)>0V(al),

2. ge C[ZO,I]’ 2'(0)<0, g'(a)>0, g'(1) <0and g"(0) > 0,

3. D0)=0,Dm)>0Vue(1l]
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4. De c[zo,l], D'(u) >0V u € [0,1] and D"(0) > 0.

Our interest is to look for t.w.s. u(x,f) = ¢(x — cr) = K &) for Eq. (1) where D and g
satisfy the above conditions. We also require u(x,0) = uo(x) with 0 < up(x) <1 and 0 <
u(x,)) <1V (x,f) € R x R*.

One can verify that, for D and g as above, the functions u(x,f) = 0, u(x,f) = ¢ and
us(x,) = 1, are homogeneous and stationary solutions of Eq. (1).

With the above features of g and D, the corresponding Eq. (1) can describe the
following situations:

1. Ecological: the individuals of the population migrate from crowded areas into
sparse ones by observing an Allee effect. By this we mean the situation in which the net
rate of growth of a biological population is negative if its density falls below a certain
threshold level ().

2. Genetical: suppose a population has two alleles 4 and a with probabilities of
occurrence given by: P(4) = u, P(a) = 1 — u. Then the probability of the three genotypes
AA, Aa and aa are: u?, 2u(1 — u) and (1 — u)?, respectively. Under the assumptions: i) the
population has no structure, ii) Hardy-Wienberg equilibrium and iii) growth in overlap-
ping generations, one can prove that, in an one-dimensional space, u satisfies the equation
U = Uyy + g(u) where g has the qualitative features listed above.

3. Physiological: if we interpret u as the membrane potential in a nerve axon, Eq.
(1) can be seen as a generalization of Nagumo’s equation arising in nerve conduction
models. Here the stationary and homogeneous solution uo(x,f) = 0 is the resting state,
u1(x,f) = a is the threshold that a stimulus must exceed to excite the nerve and uy(x,f) =1
is the excited state.

To state the main result of this section letus define the function ©:[0,1]— R as follows:

¢
D(g)= [ Dls)els)ds.
The following theorem gives us the whole t.w.s. dynamics associated with Eq. (1):

Theorem 2. (see SANCHEZ-GARDUNO and MAINL, 1995b) If the functions D and g satisfy
the conditions stated in this section, then there exists a critical value, ¢* > 0, of the speed
¢, such that Eq. (1): :

1. has: (a) an isolated pulse based at Py if ¢ =0 and (1) > 0; (b) an isolated pulse
based at P; if ¢ =0 and D(1) < 0; (¢) two stationary monotonic fronts: one connecting the
states 0 and 1 and the other connecting 1 to 0, if ¢ = 0 and (1) =0,

2. has an oscillatory front from 0 to a and another from 1 to « for each ¢ such that

0<c<c*<.4D(a)g (a),
3. has aunique travelling wave solution of sharp type from 1 to 0 for the critical
value, c*, of the speed c. For this value of ¢ there exists an oscillatory travelling wave from

0to a,
4. does not possesses t.w.s. connecting the homogeneous and stationary steady
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states u(x,f) = 1 and u(x,f) = 0, for D(1)<0and ¢ > 0,
and g 5 has two oscillatory travelling fronts for ¢* < ¢ < /4D(a)g'(a): one from 0 to
d 0 < o and another from 1 to a,
6. has a monotonic decreasing front from 1 to « for each ¢ such that ¢ =
o and \J4D(a)g' (). For the same values of c ithas a monotonic increasing front from 0 to ¢.
e the . . . . .
Outline of the proof. Except for some additional technical difficulties, the proof follows
s into the same lines of the proof of Theorem 1. Firstly, we note that, for ¢ >0, the corresponding
1e net
srtain
v
ies of / (a) N\
types /
i) the N
:tlap- —
lation I ’ // )
1, Eq. l( \ 2 Nk ¢ l[ ) N/ y
ction ’ N Y A ~" N
state, ~ /A‘\ S \// ” Ny
H=1 \‘ /
\ 4
lows: r
v v
Pt ‘ \\\ (o) /;‘/ f \\ \ @
] A
(1): \\\// / L\ \
//j \~\ \ \'\/,
itisfy N N \/
! Wy S ’ p > et
A T NN
ﬁ \3\ / < N
pulse \// N -
g the \ \/—// .\\.\.\ )t\__"_’;’;;;"’-_,_—,«—.f':—';—ﬁ:
1that \ / \\“ﬁ/
. Fig. 3. Phase portrait of system (2) with D(p)=Q2¢+ ¢%) and g(¢) = ¢(1 — $)(¢—0.5) for different values of
itical ¢: (a) ¢ = 0.1: There exists only the Pg to P,, connection which corresponds to an oscillatory front.
from (b) ¢ = 0.201: This is an approximation to the critical vatue of ¢ for which there exists a saddle-saddle
heteroclinic trajectory, associated with this connection Eq. (1) has a sharp type solution. Note that for this
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Fig. 4. Numerical solution of (1) for D and g as in Fig. 3. (a) Approximations to the sharp type solution of
(1) at regular time intervals. (b) Diagram of the calculated speed (as a function of time) of one point on
the graph of the sharp type solution.

ODE system (2) has four equilibria: P; = (0,1) and P, = (0,—c/D'(0)) are hyperbolic
saddles, Po(a,0)is ahyperbolic: locally stable node if ¢ > 4D(a)g' (), locally stable focus
if ¢ < 4D(a)g'(a). Po = (0,0) is a non-hyperbolic saddle-node point. Because of the
number of equilibrium points of (2), as ¢ varies it has a greater richness of heteroclinic and

homoclinic trajectories. Full details of the proof can be found in SANCHEZ-GARDURNO and
MAINI (1995b). O

Figure 3 shows the phase portrait of system (2) for different values of ¢ where D and
g have the geometrical properties mentioned in this section. Figure 4 illustrates different
numerical approximations to the sharp type solution for the corresponding degenerate
reaction-diffusion Nagumo equation.

4. Aggregative Travelling Waves and I11-Posed Problems in a Negative Non-Linear
Diffusion Equation

The mutual attraction of individuals of populations is a well documented phenom-
enon. We distinguish between two types of attraction: indirect and direct. In the former,
for individuals to meet each other requires a secondary agent which, for example,
produces an attracting substance; in the latter, because of social behaviour, the individuals
of the population attract other conspecifics. This gregarious behaviour of the individuals
of ecological populations is an important factor for survival (to defend themselves against
predators) and also for reproduction.

There are several approaches to model the aggregation phenomenon. For instance,
the well known chemotactic-reaction-diffusion systems describe a type of indirect attrac-
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tion, typically the aggregative process of the amoeba Dictyostelium discoideum. For di-
rect aggregation there exist a wider range of models. These include: 1. Fourth order
diffusion equations derived by usinga Ginzburg-Landau approach (COHEN and MURRAY,
1981), 2. Integralpartial differential equations which consider non-local effects over
space (see MIMURA and YAMAGUTI, 1982; NAGAI and MIMURA, 1983; ALT, 1985a,b)and
3. Negative diffusion equations (sce ALT, 1985b; ARONSON, 1985; TURCHIN, 1989;
SANCHEZ-GARDURNO and MAINI, in prep.).

In this section we deal with the third approach. For derivation purposes we consider
an ecological interpretation. Thus we consider a one-dimensional habitat, using a biased
random walk approach and the following assumptions:

1. the size of the population is a constant N, i.e., there are no births and no deaths,

2 when there are no other individuals of the same species (conspecific) atadjacent

positions the animal moves randomly,
3. ifthere is a conspecific on an adjacent position, the individual moves there with

_conditional probability (conditioned on the existence of the individual) with probability

k, or ignores its neighbour with probability (1 — k),

4. atlowpopulation density we can ignore the probability of having more than one
conspecific in the immediate vicinity of each moving individual.
In the papers by TURCHIN (1989) and SANCHEZ-GARDUNO and MAINI (in prep.) the au-
thors derive an one-dimensional negative-density dependent diffusion equation. In the
former paper there is an application of a strictly diffusive equation whose density-
dependent diffusion coefficient changes sign, to describe the aggregation process of Aphis
varians, a herbivore which lives in the stem of some leguminosae plants. The equationis:

u_20 (f-—zk u+—2-kiu2)§f‘- (3)
2 0 w ’

o ox x

where u, ko and o are positive constants. For ko > /o the density-dependent diffusion
coefficient in Eq. (3) has two positive real roots and u,. Thus Eq. (3): 1. degenerates
atu, and uz and 2. given that the non-linear diffusive coefficient is negative on the interval
(u1,u2), Eq. (3) is not of parabolic type there. In interpretative terms, we have that for

values of u within (u1,u2), Bq. (3) describes an aggregative process.
To state the first result, we consider a finite dimensional space with length L > 0.

Lemma 1. For ko > p/w, the solutions of the problem

%:%[(3_2/@1«!“'2%142)%1 Vv (x,1) €(0,L)x R", (4)

with u(x,0) =f(x) V x € [0,L] and u(0,£) = u(L,t) =uo >0,V >0, are not continuous with
respect to small perturbations in the initial conditions.
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Outline of the proof. The key idea is to write down the solution of the above problem
as a space-time dependent perturbation to the corresponding solution for the stationary
problem, i.e., by setting u(x,£) = u; + v(x,f) where u; is a stationary solution of the previous
problem. One can verify that v satisfies a linear heat equation whose solution can be
written as [Csingx + Cacosgx]expot. This leads to the dispersion relation o= AU
where v is the non-linear coefficient arising in Eq. (4). From this dispersion relation it
follows that for y/(;) <0 the perturbation v grows without bound as time 7 goes to infinity.

O

Depending on the geometrical features of the density-dependent diffusion coeffi-
cient in Eq. (4) the aggregative phenomenon can be classified as weak or Strong.

Now we turn towards exploring aggregative t.w.s. u(x,f) = #(x — ct) = ¢(&) for an
equation which includes a density-dependent growth rate g. This is:

ou 0 ou
—=—|D(u)— |+g(u), V (x,t)eRxR", 5
22 o2 e v () )
where D and g are defined on [0,1] and satisfy:

1. 2(0)=¢g(1)=0,g) >0V ue (0, 1),

2. ge Gy g0)>0,g(1)<0,

3. D@0)=0,Du)<0VYuce(01],

4. De C[ZO,I], D'(u)<0Vu € (0,1],and D"(u) <0V u € [0,1]. We distinguish two
cases: a) D'(0) = 0 and b) D'(0) < 0.
Also we require the following conditions: u(x,0) = ug(x) where 0 < up(x) <1 VxeR,
0<u(x) <1V (xt) € RxR", ¢(—0)=1 and ¢(+w) = 0.

We will refer to Eq. (5) as the reaction-aggregation equation. Adopting the definition
of well-posed problems for partial differential equations from A MES (1992), the following
theorem can be proved (SANCHEZ-GARDURNO and MAINI, in prep.):

Theorem 3. For each ¢ such that ¢2<4g'(1)D(1) problem (5)is I1l-posed (has no solution).
Meanwhile for each ¢ such that ¢ > 4g’(1)D(1) it is well-posed. Moreover, for each c as
above, problem (5) has a t.w.s. of front type. '

Outline of the proof. As in previous proofs, we substitute u(x,r) = d(x — ct) = ¢(&) into
(5) to obtain a second order ODE for ¢ which, by putting ¢’ = v can be written as a singular
ODE system. Although the singularity can bes\removed, it is important to realize that the
reparametrization as it was stated in the proof of Theorem 1, does not work. Thus, instead
of introducing 7 such that dv/d& = 1/D(¢(£)), we choose 7 such that dt/dé=—1/D(¢(&)).
With this selection of 7, the orientation of the trajectories of the singular system and those
of the non-singular one is the same and they are equivalent on the first and fourth
quadrants. Thus the ODE system becomes:




Non-Linear t.w.s. of One-Dimensional Reaction-Diffusion Equations 55
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nfinity, We now analyse the local and global phase portrait of the above system. Depending
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56 F. SANCHEZ-GARDURNO et al.

Case 1. g satisfies 1-2 and D satisfies 3—4a). Here (6) has two equilibria: Po=(0,0) and
P1=(1,0). The point Py is a non-hyperbolic saddle-like point and P, is a hyperbolic point
which, depending on the values of ¢, has different qualitative behaviour:

1. For ¢2>4g'(1)D(1), P; is an unstable node,

2. For ¢? <4g'(1)D(1), P; is an unstable focus.

Case 2. g satisfies 1-2 and D satisfies 3—4b). Here, in addition to Py and Py, system (6)
hasathird equilibrium: P.=(0,—¢/D'(0)), which is a hyperbolic saddle point. Py is a saddle-
node point, while the behaviour of the trajectories of (6) around P is the same as in Case
1.

Since any oscillation around P; implies the violation of one of the conditions 0=
¢ < 1) of our problem, we avoid those values of ¢ for which such oscillations occur. The
remaining part of the proof consists of constructing the proper positive invariant set for
system (6). The details are presented in SANCHEZ-GARDUNO and MAINI (in prep.).

Toillustrate the ideas we consider a couple of examples corresponding to Cases 1 and

(a) T () T

(c)

Fig. 6. Different potential t.w.s. for Eq. (5) with D and g as in Fig. 5. (a) Oscillatory front, (b) damped front
and (c) monotonic front. Only (c) is consistent with the require conditions on ¢.
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2, respectively.

Figure 5 shows the phase portrait of system (6) where D and g are as in Case 1 for
different values of c.

Figure 6 shows the t.w.s. of system (6) corresponding to each heteroclinic connection
from P, to Py. Not all of them are consistent with the conditions imposed on .

InFig. 7 we illustrate the phase portrait of system (6) with D and g as in Case 2. Again,

Fig. 7. Phase portrait of system (2) with D and g as in Case 2 (D($)=-2¢— ¢? and g(¢) = ¢(1 - ¢)) for different
values of ¢: (a) Homoclinic trajectory for ¢ = 0, (b) a focus to saddle-node connection for ¢ = 1.5 and (c)
a node to saddle-node heteroclinic trajectory for ¢ = 3.0. Again, not all these connections are consistent

with the conditions imposed on ¢. See text for details.
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not all the connections from P; to Po correspond to t.w.s. of the problem for the full PDE
as was stated in this section. This agrees with our last result.

5. Some Open Problems in Non-Linear T.W.S.

Here, we list some open problems in this field. Of course this list is not exhaustive.

1. Convergence to t.w.s. In addition to proving the existence of t.w.s. for non-
linear reaction-diffusion equations it is important to determine the set of initial conditions
for which the corresponding solutions converge to the t.w.s. This is important, for
instance, for those equations analysed in this paper.

2. Density-dependent diffusive systems. When we consider the interactions
between two species in such a way that each one disperses avoiding crowded areas, this
means that the corresponding diffusion coefficient depends on both population densities.
Moreover, they should vanish at certain points within their domain implying that the
equations are degenerate there. Therefore the problem becomes one of investigating the
existence of t.w.s. for degenerate reaction-diffusion systems. The direct analysis of the
dynamics of systems of dimension greater than two is hard, so alternative methods may
be useful, for example using the Conley index.

3. Regularization problems. As we have seen, some boundary and initial condi-
tions problems associated with degenerate non-linear diffusion equations (here we
include those with negative diffusion) have no strong or classical solutions. Nevertheless,
if we extend the set of solutions in such a way that include a proper weak solution concept
(with discontinuous derivatives), the above mentioned problems have solutions in this
new space. In this technique, there exist other tools for anlaysing ill-posed problems
arising in partial differential equations (see AMES, 1992).

4. Approximation of: 1. the speed and 2. the profile of t.w.s. Once we have
proved the existence of a certain type of t.w.s. (of sharp type, for instance) it is important,
from a practical point of view, to have an approximation to the travelling wave solution
itself and to the speed for which that t.w.s. exists.
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