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Aggregation territory formation and cell streaming in a model of the cellular
slime mould Dictyostelium discoideum

A reaction-diffusion-advection model of multicellular morphogenesis during in the aggregation phase of the microor-
ganism Dictyostelium discoideum is reviewed. Linear analysis identifies a novel chemotazis-driven instability which
appears to underlie the cell streaming phenomenon observed experimentally. Numerical simulations show that the
model captures in considerable detail the establishment of aggregation territories and the formation of branching cell
strearn patterns which characterize aggregation in situ.

1. Introduction

The establishment of pattern and form during the development of multicellular organisms remains one of the most
challenging problems of biology (for an overview of theoretical work see e.g. [8]). Here we report on a theoretical
study of the mechanisms of pattern formation in a model system of developmental biology, the cellular slime mould
Dictyostelium discoideum (Dd hereafter). The life cycle of Dd exhibits a relatively simple transition from a free-living
single cell stage to multicellularity, during which many of the cell-cell interactions characteristic of development in
more complex organisms can be observed [2]. This transition is initiated by the aggregation of about 105 cells in
distinct territories, and ca. 1-2 hours after the beginning of aggregation, a branching pattern of cell streams is
formed within these aggregation territories in which Dd amoebae establish direct cell-cell contacts (c.f. [4]). Here
. we review briefly a recently proposed model of the aggregation process [4]. Its linear analysis provides a scenario for
. the onset of cell streaming. The patterning dynamics of the full model are studied in numerical simulations which
.E extend previous work to the biologically relevant situation of more than a single aggregation centre.

2. The model

Aggregation necessitates a coordinated motile response of the amoebae in an area much larger than the typical cell
dimensions. In Dd this is achieved by the coupling of chemotaxis (i.e., directed cell motion in a chemical gradient) to
chemical cell-cell signalling. A ubiquitous biological signalling molecule, cAMP, serves as extracellular messenger,
mediating both cell communication and orientation. On the basis of the experimentally characterized biochemical
and motility dynamics of a single amoebae in response to cAMP, we derived a model of the aggregation process in
the cellular ensemble [4]. Its three dynamic variables, the cell density distribution, n(z,y,t), the extracellular cAMP
~ concentration, u(z,y,t), and the cellular sensitivity to cAMP (the fraction of cAMP receptors per cell in the active

_ state), v(z,y,t) are governed by the following reaction-diffusion-advection system:

M = V- (un - x@nva), (1)
%-’if = f(n,u,v)+ V3u, 2)
Do g+ e -, 3)

Where V = (8/0x,8/dy). Zero-flux boundary conditions are employed. System (1)-(3) is derived by coupling
_ ..a. version of a successful cAMP signalling model [7,10] with a minimal model of the chemotactic response of Dd

- amoebae [3,5]. It is based on two modes of action of cAMP: the activation of both chemotaxis and its own synthesis
00 a short timescale, and the subsequent desensitization of the cellular machinery towards further stimulation on a
- Somewhat longer timescale (primarily via a conversion of the cAMP cell surface receptors to an inactive form). We
Use the following expressions for the rates of desensitization and resensitization,

91(u) = ki,  g2(u) = k2, (4)
cyclic adenosine 3',5-monophosphate




226 ZAMM - Z. angew. Math. Mech. 76 (1996) S4

s/;
! 0.040 —
6|
§ 0.0201
£
£ &=
a = 0.000 = = —]
L} =] "‘\\
h\\\____ \\\
. -0.020 %
~,
Ay
| 11
05 1.0 1.5 A 1y 4 5 6 7 8 4] 5 10 15 20
w/mm 2 2
u qm q
(1a) (1b) (2)

Figure 1: Behaviour of system (2)—(3) with cell density “clamped” at a constant value (n = 1.0); (a) phase plane
with typical excitation trajectory, and (b) contour plot of spiral wave solution (upper left of domain) and concentric
wave (lower right; the pacemaker region in the centre is silent at the time of the snapshot) on a two-dimensional
spatial domain. Parameters: 7 = 70.0, a = 0.014, b = 0.2, d; = 1.64, d5 = 1.82, k; = ky = 2.5; timescale 2.5 min,
length scale 220 um, cAMP scale 5x10~7 M.

Figure 2. Dispersion relation A(q?) = Inp*(X = 0, ¢?) for cell patterning in the y-direction. Parameters as in Figure
1,and x =0.012, A =0.72, m = 10.0, k = 0.7, K = 0.8, xo = 0.5 (solid line), xo = 0.2 (dashed line).

and for cAMP synthesis and degradation,

rn(bv + v?)(a + u?)

HM0) = e Kn)1+u?) (

dlﬂ,
1-kn/(l+ Kn) +d2) w (5)

which are somewhat simplified versions of the corresponding terms in [7]. Expression (5) incorporates the autocat-
alytic stimulation of cAMP synthesis coupled to the cellular sensitivity (v). Extending the previous models cAMP
signalling models [10], the cell density dependence of cAMP synthesis and degradation is included. The chemotactic
drift term in (1) also depends on the cellular sensitivity to cAMP, via

x(v) = xov™/(A™ + ™), (6)

with a “Hill coefficient” m > 1 and a suitably chosen response threshold 0 < A < 1 [3]. The cell “diffusivity” p
will in general be a decreasing function of the cell density; for simplicity, we take it to be a positive constant. The

remaining model parameters (a,b,dy /3, k12,7, 5, K, o) are also positive; for numerical estimates of the parameters
see [4,5].

3. Linear analysis

If the cell density is “clamped” at a constant value, (2)—(3) essentially reduces to a two-variable description of cAMP
signalling. This is a valid approximation for the initial phase of aggregation as cells are practically homogeneously
distributed. Equations (2)-(3) then constitute a particular realisation of a generic excitable medium, and admit the
characteristic wave solutions observed experimentally (cf. [10] and references therein). Figure 1 shows the character-
istic excitable phase portrait of the local kinetics of (2)-(3) with n = 1, and typical two-dimensional wave solutions
of the reaction-diffusion system.

When the cell dynamics are included, the immediate effect of chemotaxis on cell density is determined by
the ratio of advective velocity, w = x(v)Vu, to cAMP wavespeed, ¢. Considering plane waves (a reasonable ap-
proximation for the situation away from the aggregation centres formed by pacemakers and spiral wave cores), and
neglecting the small diffusive term in (1), it is straightforward to derive the following expression for the cell density
profile N(z) in the travelling wave coordinate z = z — ct:

o
N(z)= —= 7
where ny is the initial homogeneous cell density. As in situ max w(z)/c = 0.1, the homogeneous cell density remains
practically undisturbed by the cAMP waves, and the wave solutions to the full model (1)—(2) are close to the ones
obtained with “clamped” cell density. This is supported by numerical calculations and also corresponds well to
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Figure 3: Spatio-temporal evolution of (a) cell density, and (b) cAMP concentration in a numerical simulation of
system (1)-(3). The dimensional domain size is as in Figure 1 (b) (8.5x8.5 mm); snapshots are taken after 1 min,
10 min, 40 min and 80 min (top to bottom). Initially a small random perturbation between —0.075 and 0.075 was
added to the homogeneous cell density (1.0) at every mesh point; the double spiral was initiated by a plane wavefront
with two free ends. Parameters as in Figures 1 and 2, with xo = 0.5.

experimental observations [1]. However, it is not guaranteed that the wave solutions which are known to be stable
for the “clamped” density case [9] remain stable in the full system. We proceed to show that they are in fact unstable
on a two-dimensional spatial domain. The instability is intrinsically linked to chemotactic cell movement.

Let (N(2),U(z),V(2)) = (N(z+ Z),U(z+ Z),V(2 + Z)), 2 = = — ct be a plane periodic travelling wave
solution to system (1)—(3), with period Z. The evolution of a small perturbation of this solution is governed by
the linearization of (1)-(3) around (N,U,V), in (z,y,t)-coordinates. Separable solutions are sought in the form
a(z) exp{ At +iqy}, yielding the following ordinary differential equation system for a(z) with Z-periodic coefficients,

a(z) -A — pg? x(V(2))N(z)q? 0
ay(2) | —cd'(z)+ | fu(N(2),U(2),V(2)) fu(N(2),U(2),V(2))=A—¢q* fo(N(2),U(2),V(2)) |a(z)=0,
0 0 9.(U(2),V(2)) gu(U(2),V(2)) = A
where

@ = [u(2)ay(2) — x(V(2))Nay(2) = [x(V(2))a1 + xu(V(2))Nag)U' (2)]';

this system describes the evolution of the amplitude of Fourier modes perpendicular to the direction of wave prop-
agation. We can expect disturbances in the cell distribution, as the main source of small inhomogeneities, to evolve
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essentially in the travelling wave frame, because they do not propagate with the cAMP waves. Therefore we nu.
merically track the Floquet multiplier associated with cell conservation for the homogeneous perturbation (¢ =
and marginal stability with respect to time (A = 0), p*(A = 0,¢?) (i.e., we have p*(0,0) = 1). We conjecture o
to characterize the behaviour of initial perturbations in cell density under repetitive forcing by the cAMP wayeg
The result is depicted in Figure 2. For the parameter set characterizing normal aggregation, one finds a band ¢f
unstable wavenumbers, with a maximal growth rate at a wavelength of about 500 um, that is, several cell diameterg,
Notice that the situation can be stabilized by decreasing the chemotactic cell motility. Thus we expect to find
chemotactic break-up of the initially homogeneous cell layer under the influence of the repetitive cAMP waves (cf

[5)-

4. Numerical solutions

To investigate the consequences of this instability, we solved system (1)~(3) numerically on a rectangular domain,
An alternating direction implicit finite difference method is applied to the diffusion operator, and the reaction anq
advection terms are evaluated explicitly, using an upwind method for first spatial derivatives. This resulted in 5
robust and reasonably fast numerical scheme, with which we were able to follow the evolution of several aggregation
territories in one domain. A situation frequently seen in situ is that of a counter-rotating double spiral of cAMP
waves, and a typical simulation result is depicted in Figure 3.

Very clearly one observes the break-up of the initially homogeneous cell layer in two distinct aggregation
territories in which a cell stream pattern is formed. Comparison with experimental results (e.g. Figure 1 in 4])
shows how closely our minimal model reproduces the natural aggregation sequence, with respect to the formation
of distinct aggregation territories, cell streaming within each territory, and also the cAMP spiral wave dynamics
(increase in signalling frequency). Furthermore, the characteristic wavelength of the stream pattern compares well
with the analytical prediction of the previous section.

Together with the results of the linear stability analysis, these simulations provide good evidence that the
model (1)-(3) captures the essential cellular mechanisms of the aggregation process. In particular, cell streaming is
the result of a chemotactic instability forced by repetitive cAMP waves. This phenomenon provides an interesting
example of a biological morphogenetic process based on a dynamic instability.
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