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In this paper we prove the existence and uniqueness of a travelling-wave solution
of sharp type for the degenerate (at u = () parabolic equation u, = [D(u)u,], +
g(u) where D is a strictly increasing function and g is a function which generalizes
the kinetic part of the classical Fisher-KPP equation. The original problem is
transformed into the proper travelling-wave variables, and then a shooting
argument is used to show the existence of a saddle-saddle heteroclinic trajectory
for a critical value, ¢* >0, of the speed ¢ of an autonomous system of ordinary
differential equations. Associated with this connection is a sharp-type solution of
the nonlinear partial differential equation.

1. Introduction

A wide range of wave behaviour has been observed in biological, ecological,
physiological, and chemical systems. For example, spiral waves of concentration
with one or multiple arms in chemical reactions, or of the density in the streaming
behaviour of the amoeba Dictyostelium discoideum, scroll-like patterns in
myocardium muscle, pulses of voltage in nerve conduction, waves of invasion of
biological populations, and epizootic waves of disease spreading (see [5, 10, 17,
18, 25, 26] and the references therein). Some of these phenomena can be
described by nonlinear reaction-diffusion equations (see [5,9,17], for example).
In many such cases, the observed waves can be approximated by waves moving in
space with a constant profile and speed. These are the so-called travelling waves.
Different mathematical methods have been developed and used in analysing the
existence of travelling-wave solutions of systems of reaction-diffusion equations
in one and higher dimensions (see [2,6,12,14,15,16,21,23,24], for example).
The classical example is due to Kolmogorov et al. (see [15]) in which the problem
is restated in terms of finding the set of parameters (including the speed c) for
which heteroclinic and homoclinic trajectories exist of an autonomous ordinary-
differential-equation (ODE) system in the travelling-wave variable.
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Several authors (see [1,8,12,13,15]) have used the approach above to prove
the existence of different types of travelling-wave solutions for some nonlinear
reaction—diffusion equations, such as the classical Fisher-KPP and Nagumo
equations given by u, = [Du,], + g(u), where D is a positive constant and g is a
second- or third-order polynomial. For a strictly positive density-dependent
diffusion coefficient D, and when g is typically a second-order polynomial-like
function, the problem of the existence of travelling-wave solutions is wholly
solved [7,13]. These authors proved that this equation has travelling-wave
solutions if and only if the equation u, = u,, + D(u)g(u) exhibits travelling-wave
solutions. By using the aforementioned methodology it has been proved [23] that
under certain conditions on D and g (see Section 2) the degenerate (at u =0)
equation u, = [D(u)u,], + g(u) has: (i) a unique sharp travelling-wave solution for
a critical value, ¢* >0, of ¢; (ii) no travelling-wave solution for 0 <c <c*; and
(iii) a travelling-wave solution of monotonic decreasing front type for each ¢ > c*.
The existence and uniqueness of a sharp-type solution for the equation with
D(u)=u and with g quadratic-like has been proved in [11].

Here we prove a result on the existence and uniqueness of a travelling-wave
solution of the sharp type for equation (1); a different, less direct, proof can be
found in [23]. The paper is organized as follows: In Section 2 we state the
problem and address some background results on the nonlinear local analysis and
global behaviour of the trajectories of the ODE system for certain values of c.
Section 3 deals with the proof of the existence of the saddle—saddle heteroclinic
trajectory. In Section 4 we present a result on the uniqueness of the saddle-
saddle connection. Corresponding to this trajectory is the sharp solution of the
full partial differential equation (PDE).

2. The problem and some previous results

The problem we consider is that of looking for a travelling-wave solution
u(x,t)=¢(x —ct)=¢(£) of sharp type (see Definition 1) to the nonlinear,
degenerate (at u = 0), one-dimensional, reaction—diffusion equation

%‘:aix [D(u)z—:] +gu) V(x,1) e RXR*, 1)

where D and g are functions defined on [0, 1] satisfying the following conditions:

(i) g(0)=g(1)=0, gu)>0 Vue(0,1),
(i) g € Chonp,  8'(0)>0, g'(1)<0,
(iii) D(0) =0, Dw)>0 Yue(01],
(iv) DeCh,y, D'(w)>0 Vue (0, 1], with D"(0)#0, -
together with the initial condition u(x, 0) = ug(x) such that 0 uy(x) <1. Also we
require 0=< (€)1 V&

For the biological and ecological motivation for analysing the above equation,
see [3,4,18,19,23]. Note that, because of condition (i), u,(x,7)=0 and
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ux(x, 1)=1 are homogeneous and stationary solutions of (1). Thus it is natural to
consider those travelling-wave solutions of (1) which connect these two equilib-
rium states.

Before we begin the analysis we introduce the following definition.

DeriniTion 1 If there exists a value ¢* >0 of the speed ¢ and a value &* e
(—o, +o) of £ such that u(x, 1) = ¢(x — c*1) = p(£) satisfies

L. D($)"+c*e' + D'($)SP +g(#) =0 VE e (-, £*), @)
2. $(-2)=0, SE*")=d(¢**)=0, and G(§)=0 VEe (%, +],

34 ) ==,  $(&**)=0, and $'(§)<0 VEe (-, £¥),
D'(0)

then the function u(x, t) = ¢(x — c*t) is called a travelling-wave solution of sharp
type for equation (1).

By substituting u(x, t) = ¢(£) into (1) we obtain a second-order ODE of the
form given by (2), which can be written, on introducing v = ¢'(£), as the singular -
(at ¢ =0) system

¢’ =v,
D(¢)' = —cv— D'(dv* —g(¢),

where the primes on ¢ and v denote the derivative with respect to £ and the
prime on D denotes the derivative with respect to ¢. The singularity can be
removed by using a standard reparametrization (see [3,23]) of (3). Thus, letting 7
be such that

3

de__ 1

dé D(#(8)
and defining ¢(7)=¢(£(r)) and v(r)=v(£(r)), we can rewrite (3) as the
nonsingular system

4

¢ =D(e)v,
v=—cv—D'(¢p)v’ - g(4),

where the overdots on ¢ and v denote the derivative with respect to 7. This
system, together with the boundary conditions ¢(—»)=1, v(—»)=0, and
¢(+2)=0, with 0=¢(1)=<1 and v(1r)=0 V7 e (~x, +»), constitutes the
restatement of problem (1).

It can be proved that systems (3) and (5) give the same dynamics in the strip
{($,v):0< ¢ =<1, —o<v< +x}; that is, they are topologically equivalent in this
region of the (¢, v)-plane.

®)
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FIG. 1. The local behaviour of the trajectories of (5) around each equilibrium point for different
values of ¢: (a) ¢ =0, and (b) ¢ >0.

We begin the analysis by considering the local behaviour. System (5) has three
equilibria: Py=(0,0), P,=(1,0), and P.= (0, —c/D’(O)); P. and P, are hyper-
bolic saddle points for all positive values of ¢; F, is a nonhyperbolic saddle-node
point which runs away monotonically on the negative v-axis as ¢ increases. The
local phase portrait of (5) is illustrated in Fig. 1. For full details of the nonlinear
local analysis, see [23].

For the global phase portrait of (5) we introduce the following notation: Wi(P;)
is the left unstable manifold of P,, and Wi(P,) is the right stable manifold of P..
We also define the region R={(¢,v):0sd =<1, —~o<v=<0}. We need the
following results which give us the global behaviour of W¢(P) and Wi(P,) for
some values of ¢. The proof can be seen in [23].

ProrosiTion 1 For sufficiently small positive values of ¢, the path, v.(¢), of
W4(P,) tends to — as ¢ — 0" while Wi(P,) leaves (in reverse time) the region
R at some point ¢, situated to the right of P, but sufficiently close to F,. The
phase portrait of (5) is illustrated in Fig. 2(a).

We set M =max [4D’'($)g(¢)]), where the maximum is taken on the interval
[0, 1]. The following lemma holds:

Lemma 1 For each ¢ >0 such that ¢* = M there exists a heteroclinic trajectory
of (5) connecting P, with F,. Moreover, the trajectory Wi(F.) leaves (in reverse
time) the region # somewhere on the semi-infinite interval —o <y <0 with
¢ =1. The phase portrait of (5) is illustrated in Fig. 2(b).

RemarRk 1  Given the equivalence between looking for travelling-wave solutions
for (1) satisfying appropriate boundary conditions and looking for heteroclinic
trajectories for system (5), the meaning of Proposition 1 and Lemma 1 is as
follows: (i) for sufficiently small positive values of ¢ there are no travelling-wave
solutions for (1); (ii) for each ¢ >0, such that c>= M, there exists a monotone
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F1G. 2. The phase portrait of (5) for extremum values of c¢. (a) For sufficiently small positive values
there are no connections; that is, there are no travelling-wave solutions. (b) For each ¢ >0 such that
c2= M, for which there exists a saddle-saddle-node heteroclinic trajectory which corresponds to a
travelling-wave solution for (1) of the front type.

I N

decreasing travelling-wave solution of the front type for equation (1) satisfying
the boundary conditions, ¢(—o)=1, ¢(—*)=0, and ¢(+x)=0, $(+x)=0,
with0=<¢(r)<1lforall =

Hereafter we let ¢, denote a sufficiently small positive value of ¢ and we set
Iy = [co, Mi]. Let ¢, and ¢, be two arbitrary values of the speed ¢ on /), with
¢1<c, Define v, (¢) and v,(¢d) as the path of Wi (P,) and W{(F.,),
respectively, whose graphs belong to the region &. In a similar way we define
v.(¢) and vui(¢). The following proposition can be proved (see [23]):

ProrosiTION 2 For ¢y < ¢; < ¢, < M? the following inequalities hold

vMi(d)) < vc;(d’) < vc1(¢) < UCo(dJ),
for all ¢ € [0, 1).

Remark 2 By Proposition 2, if W{ (P,) and Wi (P.,) leave & somewhere on
(0,1), then W{(F.) does so to the right of W¢(F,). If both leave & on
{(¢,v): =1, v <0}, then W (P.,) does so below Wi (F.).

Now we proceed to analyse the dynamics given by (5), firstly focusing on the
existence of the saddle~saddle heteroclinic trajectory connecting P, with P.

3. Shooting arguments and the existence of the saddle-saddle connection

Here we use some shooting arguments to prove the existence of the saddle—saddle
heteroclinic trajectory of (5) for a suitable value, ¢* > 0, of the speed c.

We begin by constructing the set ¥=AA'UA'B’' U B’'B, where A and B are
the exit (in reverse time) points of Wi(P.) from R for c=c, and ¢ =M},
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v/

F1G. 3. Construction of the region 2.

respectively, and the arc A'B’' is the boundary of a small circular neighbourhood
of P, belonging to the region & The set & will be useful for shooting (see Fig. 3).
The following lemma holds.

Lemma 2 The stable manifold Wi(P.), for ¢ e [co, Mi], has a monotone,
continuous intersection with the set AA'B’'B.

From Lemma 2 we have the following corollary.

CororLLary 1 There exist values ¢; <c, such that, for ¢, <c<c;, Wi(P.)
intersects the arc A'B’ monotonically and continuously (and similarly for the
subarc A'B").

For the proof of Lemma 2 we need to address one continuity result and to
prove a number of preliminary results. The fundamental continuity result we need
can be found in many dynamics texts, for example in [22]. This result simply says
that, for a hyperbolic equilibrium point, the local stable manifolds not only exist,
but they are also continuously dependent on the vector field, in the C" topology
(r =1). In particular, if the vector field depends smoothly on a parameter (in our
case c¢) then the stable manifold depends smoothly (and hence continuously) on
that parameter.

Let Wi ..(P.) denote the local stable manifold of P.. Now define the region &
as the shaded area in Fig. 3.

The following proposition holds:

PROPOSITION 3 D =U < ap{WLP.)N R} and, furthermore, for each point
(¢, v) € 9, there is a unique ¢ € [co, M3] such that (¢, v) € Wi(P.).

Proof. First note that, since 9 is compact, every local stable manifold W{,,.(P.)
can be extended to a global stable manifold in 9, denoted by W{(P.). To
complete the proof we prove the following proposition.

ProrosiTion 4 For ¢ € [co, M), Wi(P.) intersects AA’B'B transversally.

Proof. We know that the ¢-coordinate of each W{ is monotonically increasing
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(in negative time); that is, the path of Wi can be written as the graph of a
function v = Wi(¢). Note that we are slightly abusing the notation, since we
retain the symbol W3 to denote the graph and the stable manifold of F..

Now it is clear that the right end-point of such a graph must lie on the line
AA'B'B. To verify transversality on AA’ and on B’'B is an easy matter, since
v<0on AA’ and ¢ <0 on B'B.

To check transversality on the open arc A'B’ we use the outward normal
(¢ — 1, v)T to the arc

A'B ={($,v) € Ro: (¢~ 1) +v?=¢%} (>0 small).
We have

(¢-1,v)- (D(@), —cv - D'(¢)* - g(¢))"
=(¢ - DD($)v +v[-cv - D'(¢)v* — g(¢)] <0

for 1-¢e)<¢ <1, v<0, (¢,v) e A'B’. Thus the flow, in particular Wi, is
transversal to A’'B’. O

Now we can finish the proof of Proposition 3. For uniqueness, suppose (¢, v)
lies both on W% and on Wi, for ¢ #¢’, say ¢ <c¢'. But we know that W}. < W} as
graphs, this implies a contradiction. For existence, we need only translate the
continuous dependence of W{ on ¢ into the continuous dependence of the
intersection with AA'B’B. To do this, one way is to use what we call Lyapunov
surfaces (or complete transverse sections or Poincaré sections): First let [, =
{(¢,v) e D: ¢ =7} for n>0 and small (n to the left of A; see Fig. 4). We can
prove the following claim.

VA

oY

FiG. 4. Intersection of Wi and /,.
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Cramv  Every Wi intersects [, at a unique point. Let v, be the point of
intersection; that is, v, = WiN/,. Then v, is a continuous, monotone function of
c € [Co, M‘i]

Proof. Every W{ is transverse to the v-axis (since the eigenspace Ej is
transverse). Thus, by openness of transverse intersections, /,, is transverse to We
Continuous dependence of W. on ¢ means that the graphs Wi(¢) depend
continuously on ¢ and so, since v. = Wi(n), v, is continuous and is uniquely
defined. It is monotone because Wi.(d) < Wi(¢) for ¢ <c¢’, as we know. O

We use the term complete transverse section in 9, to denote a segment, such as
I, transverse to every W5, ¢ € [co, M?] (and in particular intersecting all W<).

Define a ‘low’ in @ as follows: ¥(v,, )= ®.((n, v.), 1), v. €, 1 € R, where
@, is the flow

@Z: [Py, Po) X (~%, 0] > D R?,
such that,
(i) 920, —c/D'(0)) =P,
(ii) @0, —c/D*(0)) = ($(v), u(r)) € Wi(F.).

The map ¥ uses the stable manifold W to propagate the complete transverse
section /,. By the compactness of 9, and since every W3 exits & in negative time,
we have UW (v, 1) N 9 = D, where the union is taken on t € R and on v, €/,
But U¥(v,, 1) N D =WiN P. Thus we get Proposition 3. O

To complete the proof of Lemma 2, we need the following key proposition.
ProrosimioN S AA'B’B is a piecewise smooth complete transverse section.

Proof. We have seen that AA'B’B is transverse to every Wi and that every W3
intersects it. [

We now have the correct setting to apply the long-flow-box result to get a map
from /,, to AA'B’B (see {20]). A long flow box is nothing but a concatenation of
local flow boxes.

Let x. be the intersection of AA’B’'B and Wi Parametrize the curve AA’'B'B
by using some map y:[0,1]—>AA'B’'B so that y(0)=A, y(})=A", y3)=B’,
and y(1) = B, where v is a homeomorphism.

For x,,x, € AA'B'B, we shall say x, <x, if x, = y(t;), xo= y(t,), and 1, <t,.
This allows us to talk about monotone intersections.

In order to conclude the proof of Lemma 2 we need one final proposition.

. . . 1
ProrosITION 6 x, is a continuous, monotone function of ¢ e {¢y, M2].

Proof. Use, for every v. el,, a long flow box to map to AA'B'B (a homeo-
morphism can always be found between two complete transverse sections).
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Xc

FI1G. 5. Proof of Proposition 6. See text for details.

Continuity follows from the continuity of v. and monotonicity similarly follows
(see Fig. 5). O

With this we have proved Lemma 2. O

Now, let us go back to Corollary 1. By using our parametrization y of AA'B’B,
we have a map from [co, M?] to [0, 1] which is a homeomorphism and is such that
co is mapped to 0 and M} is mapped to 1 (see Fig. 6).

By the monotonicity, we thus have values ¢, < ¢; < ¢, < M? such that [cy, ¢,] is
mapped 1:1 and onto the closed interval [}, §], in other words (using y) to A'B’.
This proves Corollary 1. O

4. Uniqueness of the saddle-saddle heteroclinic trajectory

Finally, to prove that there is a unique value c* e (co, M) such that W;. connects
P.. to P;, we note that this reduces to the elementary question of the existence
of a fixed point of a continuous map from an interval to itself: x, establishes a
homeomorphism between [c,, ¢;] and [3,3], x.: [c;, c2]— [3, §]=A'B’. Now we

2/3

< M

FIG. 6. The map from [c,, M3] to [0, 1].
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use the fact that the unstable manifold of P, for ¢ € [¢,, ¢;), intersects A’B’. Call
the point of intersection x.. This is also monotone, but in the opposite direction.
Thus we have overall a map from the interval [}, 3] to itself that is monotone
decreasing

Xe X
[%) % - [Cl) CZ] R [%r %]

Thus there must be a fixed point, that is, a r € [}, §], such that x.(t) = x/(¢). This is
based on the fact that any map of a compact, connected interval into itself has a
fixed point (this is the simplest version of the classical fixed-point theorem). Since
our map is monotone, the fixed point is unique.

We have thus given an alternative proof to that given in [23] of the uniqueness
of a value of ¢, c*, such that Wi.(P..) connects P, and P...

Associated with the P, — P.. heteroclinic saddle connection, whose existence
and uniqueness we have just proved, we have the unique travelling-wave solution
of sharp type for equation (1). This is because the trajectory Wi.(P), of (5),
leaving the point P, through the unstable manifold approaches P.. on the negative
vertical v-axis as time increases. This means that ¢(—) =1, ¢(7)— —c*/D’(0)
with v(1) = ¢(1) <0, and 0 < ¢(7) <1, for all 7 (see Definition 1).

If we compare the method carried out here with that given in [23} we see that
the method used here involves a more direct dynamical analysis. Hence, the
method developed in this paper to prove the existence and uniqueness of the
saddle—saddle trajectory of (5) appears to be sufficiently powerful to be applicable
in proofs of similar results on heteroclinic connections for other parameter-
dependent ODE systems, particularly those which come from looking for
travelling-wave solutions of parabolic degenerate equations.
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