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P K MAINI
Propagating patterns in morphogenesis and
wound healing

This paper considers two very different aspects of propagating patterns in biology
and medicine. The first concerns the development of multicellularity in the life cycle
of the microorganism Dictyostelium discoideum, which provides a paradigm model
system for the study of pattern formation. Following starvation, periodic waves of
the chemical cyclic AMP initiate the aggregation of Dictyostelium amoebae, via a cell
streaming mechanism. A coupled cell-chemical, chemotaxis-reaction-diffusion model
is presented and shown to exhibit aggregation as the consequence of the growth of a
small-amplitude pattern in cell density forced by the large amplitude cAMP waves.
The second concerns scar formation in adult dermal wounds. A crucial factor
in determining the degree of scarring is the ratio of types I and IIT collagen. A
reaction-diffusion model which focuses on the control of collagen synthesis by key
growth factors is considered. Numerical simulations of the spatially independent
version of the model lead to values of the collagen ratio consistent with those observed
experimentally. However, numerical simulations of the reaction-diffusion system do
not exhibit this sensitivity to chemical application. Mathematically, this corresponds
to the observation that behind healing wave front solutions, a particular healed state
is always selected, independent of transients, even though there is a continuum of

possible steady states.

1. Introduction.

One of the major issues in developmental biology is the formation of spatial and
spatiotemporal pattern within the developing embryo. From the almost uniform
mass of dividing cells in the very early stage of development, emerges the vast range

of pattern and structure observed in animals. Many mathematical models have been
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proposed to account for this phenomenon in a number of contexts. For example, in the
developing vertebrate limb bud, the spatial pattern of skeletal elements is laid down
in a specific spatiotemporal sequence beginning with the humerus, then radius and
ulna, and then the digits (see Maini and Solursh, 1991, for a review of experimental
results and theoretical models). In the dorsal area of the chick, feather germs are laid
down, first along the dorsal midline, and then along adjacent parallel rows leading to
a rhombic spatial pattern in germs (Cruywagen and Murray, 1992, Cruywagen et al.,
1992). Hair follicles also occur in a spatiotemporal fashion (Nagorcka, 1995a, b). In
the alligator, stripes of coloration propagate downwards from the neck (Murray et al.,
1990) while tooth primordia in the alligator are formed in a complex spatiotemporal
sequence (Kulesa et al., 1996). Temporal patterns are well-known in the Belousov-
Zhabotinskii chemical reaction (see the book by Murray, 1989 and references therein)
and spatial patterns have been observed in the chloride-iodide-malonic acid reaction
(Castets et al., 1990; Ouyang and Swinney, 1991).

Spatiotemporal patterns are observed in other areas of nature (Maini, 1995, 1996).
For example, propagating patterns occur as waves of invasion, either in population
dynamics, where a population moves into a region (see, Murray, 1989 and references
therein) or in wound healing, where cells move into a wound to close it.

To illustrate the diverse nature and role of propagating patterns in this area we
focus on two examples. In Section 2 we consider pattern formation in Dictyostelium
discoideum and in Section 3 we present a model for scar formation during wound

healing.

2. A Model for Cell Aggregation in Slime Mold.

The life cycle of the cellular slime mould Dictyostelium discoideum serves as an ex-
cellent paradigm for morphogenesis and has, over the past 50 years, attracted the
interest of developmental biologists and theoreticians alike. Under favourable con-
ditions, the amoebae feed on bacteria in the soil and divide. Starvation triggers a

developmental programme which leads to the formation of a multicellular organism

52



composed typically of 10* — 10° cells. This organism passes through an intermedi-
ate motile (slug) phase during which cells differentiate into pre-spore and pre-stalk
types, before developing a fruiting body, aiding the dispersal of spores from which,
under favourable conditions, new amoebae develop. The comparative simplicity of
morphogenesis in Dictyostelium has made it an attractive model system for the study
of self-organisation, and many of the molecular and cellular mechanisms which are
involved in cell aggregation, collective movement and differentiation have now been
identified.

Three key steps are involved in aggregation. Firstly, cells signal to each other
via the extracellular messenger cyclic 3’5'-adenosine monophosphate (cAMP), which
propagates through the medium in the form of concentric and spiral concentration
waves. Secondly, cells respond to cAMP moving chemotactically in periodic steps
towards the aggregation centre (Alcantara and Monk, 1974; Tomchik and Devreotes,
1981). Thirdly, the onset of multicellularity is marked by the appearance of a branch-
ing pattern of cell streams in which direct cell-cell contacts are established.

The elucidation of the molecular mechanisms of the cAMP signalling dynamics
since the 1980’s (e.g. Devreotes 1989 and references therein) was accompanied by the
development of mechanistic models of cAMP signalling. These models incorporate
the detailed biochemical dynamics of the binding of extracellular cAMP to its surface
receptors, and concentrate in detail on the temporal aspects of signalling (see, for
example, Martiel and Goldbeter, 1987; Monk and Othmer, 1989; Tang and Othmer,
1994; Goldbeter, 1996).

The incorporation of diffusion of extracellular cAMP into these models yields a
description of the signalling dynamics in a stationary cell layer, which is a valid ap-
proximation for the situation at the beginning of cell aggregation (Tyson et al., 1989;
Monk and Othmer, 1990; Tang and Othmer, 1995). Within the framework of the
resultant system of coupled reaction-diffusion equations, the experimentally observed

cAMP waves can be viewed as a particular case of waves in so-called excitable media
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(Tyson and Murray, 1989). However, the signalling models neglect cell movement and
thus can not describe the actual aggregation process and in particular cell streaming,

It is intuitively clear that the dynamics of the cell distribution and of cAMP
signalling are closely coupled: cell movement is induced by the cAMP waves, while
cells themselves act as sources and sinks for cAMP. A number of early models were
proposed to describe the aggregation process in slime mould (Keller and Segel, 1970;
Cohen and Robertson, 1971a,b; Parnas and Segel, 1977, 1978; MacKay, 1978). These
were largely based on phenomenological observations of the aggregation dynamics.
However, the increased understanding of cAMP signalling at the molecular level,
provides the opportunity of extending these detailed models of cAMP dynamics to
include cell-cAMP interactions. Recently, this problem has been tackled in two dif-
ferent ways. The first approach consists of modelling discrete cells equipped with
cAMP-dependent movement rules coupled to a finite-difference approximation for
the continuous cAMP dynamics (Dallon and Othmer, 1996; Van Oss et al., 1996:
Kessler and Levine 1993). A second approach, is to approximate the cell distribution
by a continuous density, resulting in a system of coupled partial differential equa-
tions for the cell density and the cAMP dynamics (Vasiev et al., 1994; Hofer et al.,
1995a,b).

In this paper, we focus on the continuum model of Hofer et al., 1995a. The model

takes the following form

%% = V- (uVn - x(v)nVu) (1)
%% = A[p(n) fi(u,v) = ($(n) + 6) fo(u)] + V?u 2)
X = g+ )1 -v) ®3)

where n, u and v denote cell density, extracellular cAMP concentration and fraction
of active cAMP receptors, respectively. We motivate each equation in turn. Equa-
tion (1) is the conservation equation for cell density. The first term models random

cell movement with a constant cell diffusion coefficient . The second term models
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chemotaxis, the name given to movement up gradients in chemical concentration. A
critical aspect of the modelling is the form of x(v), the chemotactic cell sensitivity.
We assume that this term depends on the fraction of active cAMP receptors per cell
and takes the form x(v) = xev™/(A™ + v™), m > 1, where x, and A are positive
constants. This accounts for the adaptation of the chemotactic machinery of the
cells (Devreotes and Zigmond, 1988) in the following way: an appreciable chemotac-
tic response requires a minimal fraction of active receptors, yet, for a large fraction
of active receptors, the response saturates. Note that many models of chemotaxis
assume Y to be a constant. Under that assumption, cells would respond to a pulse
of chemoattractant by moving towards the wave in the wavefront, then moving with
the wave in the waveback, resulting in a net movement away from the source of at-
tractant, rather than towards it. This is the so-called “chemotactic wave paradox”
(Soll et al., 1993). The form of x(v) chosen above resolves this paradox (Hofer et al.,
1994).

Equation (2) models extracellular cAMP concentration. For computational sim-
plicity, slightly simplified algebraic versions of the kinetic terms derived by Martiel
and Goldbeter, 1987, are used, which, nevertheless, retain the important biochem-
ical characteristics of the latter. The rate of cAMP synthesis per cell is modelled
by fi(u,v) = (bv +v?)(a + u?)/(1 + v?). This models autocatalytic cAMP produc-
tion with saturation, mediated by cAMP binding to active receptors. The rate of
cAMP degradation per cell is taken to be fy(u) = du. The cell density dependence
is reflected in the factor ¢(n) = n/(1 — pn/(K + n)), while § accounts for cAMP
degradation in the absence of cells (see Hofer et al., 1995a, for full details). The
parameters a, b,d, p, K,d and X are all positive constants.

Similarly, in (3), the rate functions of receptor desensitization and resensitization
are simplified expressions of the corresponding terms in the Martiel-Goldbeter model.
In the first term on the right hand side, g;(u) = kju, so that receptor desensitization

in the presence of cAMP satisfies the law of mass action. The second term on the
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right hand side models resensitization of the desensitized (1 —v) fraction of receptors,
at the constant rate go(u) = kz. The parameters k, and k, are positive constants.
Good estimates of most of the parameters are available from the experimental
literature (see Hofer et al, 1995b) and, substituting these values into the model, we
find that the model captures the key features of the aggregation process. A typical
aggregation sequence is shown in Figure 1.
Periodic wave solutions of the model can be analysed by converting (1)-(3) to

travelling wave coordinates, yielding the system of ordinary differential equations:

dN dU
= i PRI e
(N —ng) + p e x(V)N o 0 (4)
d?U dU
E;+CE+/\J€(N’U’V) = 0 (5)
dVv

where f(N,U,V) = ¢(N) 1(U, V) = ($(N) +68) fo(N), g(U, V) = a1 (U)V + g2 (U)(1 -
V), z = z — ct, and n(z,y,t) = N(2) = N(z + A), etc., where ¢ and A denote
wave speed and wavelength, respectively, and ng is the unperturbed homogeneous
cell density.

From parameter estimates, u < Xo, so (4) can be approximated by N(z) =

e where w(z) = x(V(z))‘f!—Iz" is the average chemotactic velocity. As it is known

from experiment that ¥ < 0.1, this predicts that the homogeneous cell density is
perturbed in the wavefront by about 10%. This is consistent with the experimental
observation that during the initial stages of aggregation the amoebae are almost
homogeneously distributed, and movement in response to the cAMP waves does not
result in noticeable changes in cell density (Alcantra and Monk, 19.74).

Our numerical simulations indicate that large-amplitude wave propagation in one
space dimension is a stable phenomenon. To investigate the stability of wave propa-
gation in two space dimensions for the full model (1)-(3), we add small perturbations
to the solutions of (4)-(6) of the form n(z,y,t) = N(z) + n(z,y). This assumes a

special form of perturbation which has only implicit time dependence via z. We mo-
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tivate this as follows. As wave propagation in the subsystem (2)-(3), with ¢(n) = 1
and 0 = 0, is stable, any possible instability must be linked to the dynamics of cell
movement. These are forced by the cAMP waves, which may cause non-uniformities
in cell density to grow. These homogeneities will not propagate with the waves, how-
ever, as w < ¢. Therefore we expect a perturbation to evolve in the travelling wave
frame. This is confirmed by a power spectrum analysis of numerical simulations of
the equations (see Hofer et al., 1995b, for full details). Looking for separable solutions
of the form a(z)ezp(igy) to the resultant equations for the perturbations leads to a
second order differential equation system for the components of a with periodic coef-
ficients. The Floquet multipliers of the system have to be calculated numerically and
the largest multiplier can be used to obtain the dispersion relation for patterning in
the y-direction. It is found that the initial uniform state is unstable from the outset,
suggesting that the coupled dynamics of cAMP wave propagation and cell movement
exhibit a patterning instability perpendicular to the direction of wave propagation.
The dispersion relation predicts the wavelength of the fastest growing unstable mode,
and agrees closely with the results of numerical simulations and experimental obser-
vations.

An analytically-tractable caricature of the above model has been proposed by
Hofer et al., 1995b, from which it is possible to derive explicit conditions on the

parameters for the uniform steady state to go unstable.
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Figure 1 Numerical solution to (1)-(3). (a) Cell density, (b) cAMP concentration.
Snapshots are taken at t=12 min, 22 min, 32 min, 52 min, 72 min and 112 min (left

to right, top to bottom). For parameter values, see Hofer, 1996.
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Therefore, the comparatively simple model (1)-(3) can capture, both qualitatively
and quantitatively, the key aspects of spatiotemporal patterning in Dictyostelium
aggregation. The instability leading to cell streaming is similar to that found in
other biological pattern formation models in that spatial modes associated with a
real eigenvalue (or, in this case, Floquet exponent) go unstable. However, the route
to pattern formation is different to that in the standard models. The pattern is
forced by the cAMP waves of the reaction-diffusion sub-system (2)-(3) and acts as
a dynamical pre-pattern resulting in cell patterning in streams perpendicular to the
wavefronts. This provides a case study for the coupling of two biologically implicated
patterning mechanisms, reaction-diffusion and chemotaxis.

A more detailed numerical study of the model reveals a number of other important
properties. For example, as cell streams grow, they alter the propagation conditions
for the cAMP waves. This is initially equivalent to increasing A, leading to an increase
in excitability of the medium. This, in turn, leads to an increase in the rotation
frequency of the spiral core. As a result (Tyson and Keener, 1988) the wavespeed
and wavelength of the spiral patterns decrease. This is typical of Dictyostelium spiral
patterns in situ (Gross et al., 1976) and has, previously, been explained by assuming
that biochemical changes must be occurring in the cell-cAMP system. Although this
may be the case, our results show that such changes are not necessary to explain
the phenomena observed. Our numerical simulations also show that low initial cell
densities lead to the formation of a central hole. The formation of a central hole is
observed experimentally, if the system is treated with caffeine (Steinbock and Miiller,
1995). Caffeine treatment lowers the excitability of the system which corresponds, in
the model (1)-(3), to lowering A. From equation (2) this is equivalent, in some sense,
to lowering the cell density n.

We conclude that this minimal model, based on biochemical and mechanical mech-
anisms established at the cellular level, has captured in some detail the cell movement

and chemical signalling dynamics observed experimentally. Moreover, it provides a
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further link between properties at the individual cell level and the collective pattern-

ing modes of the population of cells at the onset of multicellular organisation.

3. Scar Tissue Formation.

Recent advances in molecular and cellular biology have led to the rapid development
of experimental research into the biochemical mechanisms underlying the process
of wound healing. Increasingly, mathematical modelling is playing a crucial role
by providing a theoretical framework in which these experimental results can be
understood. The study of propagating waves is essential in this context as, in many
cases, a crucial aspect of healing involves cells moving into a wound to close it (Dale
et al., 1994, 1996a; Olsen et al., 1995, 1996).

In this section we consider a model for scar formation (for full details, see Dale et
al., 1996b,c). Adult dermal wounds, in contrast to early foetal wounds, heal with the
formation of scar tissue. Scar tissue is less functional than the surrounding undamaged
tissue and is also weaker, so that the tissue can easily suffer more damage.

Dermal tissue contains two main types of collagen, types I and III. Two key differ-
ences between normal and scar tissue are the orientation of collagen fibres and their
thickness. In unwounded dermis, the collagen fibres are arranged in a basketweave
pattern, while in scar tissue, the fibres are oriented perpendicular to the basement
membrane. The collagen fibres in scar tissue are longer and thinner than in normal
tissue, due to higher levels of type III collagen (Mast et al., 1992). As type III col-
lagen decorates the surface of the type I collagen fibres, a higher ratio of type III to
type I results in thinner fibres (Whitby and Ferguson, 1991). Therefore, one way to
investigate the formation and control of scar tissue is to investigate how the ratio of
collagen types I to III is determined during the healing process.

In response to injury, fibroblasts migrate into the wound domain and synthesize
chains of amino acids called procollagens (McDonald, 1988). This process is activated
by growth factors such as Transforming Growth Factor § (TGFS) (Appling et al.,

1989). Enzymes activate the procollagens leading to the formation of collagen. At the
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same time, fibroblasts synthesize zymogens, which when activated form collagenases.
The model consists of sixteen variables — fibroblasts, four variables to account for the
latent and active forms of TGF#31 and 3, six variables to account for collagen types
I and III and the associated procollagens and collagenases, two zymogens, and three
activaﬁing enzymes.

The fibroblast population, f, is modelled by the equation

Mitotic Generation

Migration Natural Loss
of r—"—~? f —_—
il DiVf+ (A1 + AB + AsBs) f |1 = 2= Asf . (7)

The first term models movement of fibroblasts from unwounded tissue by Fickian
diffusion, with constant coefficient, D;. There are two possible sources of fibroblasts
— the surrounding unwounded dermal tissue, and the underlying subcutaneous tissue.
The exact source is an area of much biological debate. We assume that the fibroblast
population obeys a logistic growth law in which the linear growth rate is enhanced
by the presence of TGFS1 and 3, concentrations §; and (33, respectively (Krummel
et al., 1988).
TGFf1 is assumed to satisfy the equation

o6
at

where we use the law of mass action to model activation of latent TGF/1 (concentra-

Chemical Diffusion  Activation  Natural Decay

— s el —_—
=  D,V°B + Aseily — AsH (8)

tion [;), by the enzyme e, (Sinclair and Ryan, 1994). Experiments have shown that
active TGF 8 undergoes rapid decay, which we model as a first order process (Roberts
and Sporn, 1990).

Similarly, TGF 33 satisfies the equation

d
_3%: = D3V2ﬁ3 -+ A';el!g = ASﬁS: (9)

where 5 is the concentration of latent TGF 3.

The latent forms [; and [3 are, in turn, taken to satisfy the equations

. Production by Fibroblasts
Diffusion e Natural Decay  Activation

Agfly et —
— — Al — Ajzeql
1+ Ajpols + A“h 2k REIEL (10)

al
El = DV, +



and

ol
‘5:3 = D5V +

respectively. The latent forms of TGFf are secreted by the fibroblasts, stimulated

Aafls
1+ A15£3

— Asels — Arrerls, (11)
by the corresponding growth factors (Wakefield et al., 1988), but their production
does not increase unboundedly, hence the saturating functional form. Latent TGFg
also undergoes an autocrine mechanism, whereby it induces self-secretion (Roberts
and Sporn, 1990). Natural decay is modelled as a first order process (Wakefield, et
al., 1990). Activation by specific enzymes decreases the concentration of the latent
growth factors.

The enzymes, e, e; and e; satisfy the equations

de
d_tl = —61(;‘113!14‘1‘117!3) (12)
de
d_; = —ey(Aispr + Arops) (13)
de
—d't—a = —83(A2021+A2153). (14}

The procollagens, concentrations p; and p3, are synthesized by the fibroblasts (Miller
and Gay, 1992) but do not diffuse. We assume that the production rate is increased
by the growth factors, in line with experimental observations (Appling et al., 1989).

Modelling natural decay as a first order process, the equations are

d;
% = (A + Anfi + Aufs) f — Asspr — Argeapr (15)
)
% = (Az + Ayt + A2sfs)f — A29ps — Argeaps. (16)

The third terms on the right hand side of both the above equations model conversion
of procollagen by enzyme e, to collagen. The collagens themselves are degraded by
the collagenases. As there is no experimental evidence for significant movement of
intact collagen fibres, we therefore have the following equations for collagen type I,
¢;, and type III, ¢;3

dCl

T Agopres — Azis10 (17)
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de.
d_: = Asnpsez — Apsics. (18)

Collagenases I and III, concentrations s, and ss3, respectively, are the active form of

zymogens I and III, which arise via enzymatic activation. Therefore, they satisfy the

equations
ds
"d—tl = A342183'"A35S1 (19)
ds
—d'f" = A352383—A3753. (20)

Finally, the zymogens, concentrations z, and z3, are synthesized and secreted by the
fibroblasts but the secretion is inhibited by the presence of active TGFJ (Jeffrey,
1992). Taking the natural decay of zymogens to be first order, and including the loss

of zymogen due to activation to collagenase by enzyme e3, we have

dzl Agg

o T o 21

dt 1+ A3z + Asofs fer e e (21)
dzs Ag

—_— = - A —A : 72

dt 14+ AgB + Awubs fes e A (22)

Equations (7)-(22) constitute the model, and k, D;...Ds, A,...A4s are constant
parameters. The estimation of dimensional parameter values is essential for biolog-
ically realistic model predictions. The governing equations contain a large number
of parameters whereas there is a limited source of experimental data. However, we
know the time scale of the healing process and can hence obtain order of magnitude
estimates for some of the remaining parameters (see Dale, et al., 1996b). Note that,
at steady state s; = s3 = 0. Therefore, from (17) and (18) there is a continuum of
steady states for ¢; and c;.

The model is applied to “slash” wounds, in which the length of the wound is
much greater than its depth or width. Therefore, to a good approximation, the
wound can be represented by a one-dimensional domain, with zero flux boundary
conditions for the diffusing variables and Dirichlet conditions for the other variables,

fixed at steady state. The wounded domain can be normalised to be the unit interval.
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However, to fully investigate the properties of the propagating solutions to (7)-(22)
it is necessary to solve the system on a large spatial domain. Numerical solutions
of the model equations for parameters appropriate to the foetal case show waves of
cells and growth factors moving into the wound with constant speed and shape, with
the steady states corresponding to the unwounded nondimensional level (Figure 2).
The solution profiles for collagen I and III also show fronts moving into the wound
domain, evolving to new steady state levels for both collagen I and III, with a ratio of
3:1, in agreement with the unwounded dermal tissue. The collagenase equations show
wave pulses moving into the wounded domain and both collagenase I and III decay to
the zero dermal level. Solutions for parameters appropriate for the adult case again
exhibit travelling waves, but in this case the ratio of collagen I to III coresponds to
thinner collagen fibres and thus scar tissue formation.

The model, therefore, captures a crucial aspect of dermal wound healing, namely
that adult wounds heal by scarring, while early foetal wounds heal with substantially
reduced scar tissue formation. A further test of the model is to consider the effect of
altering the amount of TGFS1 by changing the initial conditions. For the case of the
model with all diffusion coefficients set to zero, the final levels of collagen I and III
predicted by the model suggest that addition of TGF/1 results in increased scarring.
This is what is observed experimentally (Shah et al., 1992). The model predicts that
topical application of TGFA3 increases the amount of collagen I compared to type
111, thus causing thicker fibres and a reduction in scar tissue. Furthermore, numerical
solutions show that early addition of growth factor is essential for effective control of
scar tissue formation.

The model framework above can be used to investigate the source of fibroblasts.
Numerically, we find that diffusion of fibroblasts into the wound from surrounding
undamaged tissue appears to select and stabilise a unique steady state for ¢; and
cs, regardless of the initial conditions. This contradicts experimental observations.

However, if the underlying tissue is the source of fibroblasts, so that D; = 0 in (7)



but initially the wound is seeded with fibroblasts from below, then the final steady
state values do depend on the initial conditions and are consistent with experimental
observations.

We can understand this behaviour by considering the following analytically-tractable

caricature model

ou &u

E = D@ + 11(1 — U) (23)
ov

5 = au(l —u) — (1 — v, (24)

where D and a are positive constants. Equation (23) is the Fisher equation (Fisher,
1937) and decouples from (24). This mimics the fact that, in the full model, (7)-(12)
decouple from (13)-(22). Moreover, in addition to the trivial steady state (0, 0), there
is a continuum of steady states (1,v*) where v* can take any value. For the case
D =0, (23) and (24) can be solved easily for the initial conditions 4 = ug, v = 0 and,
ast — oo,u — 1and v = v* = a1 — ud)/2.

For the case where D is non-zero, the corresponding travelling wave problem is

U dU
DEE+CE+UU_U} =0 (25)
ci—z +aU(1-U)-(1-U)V = 0, (26)

where z = z — ct,u(z,t) = U(z), etc and ¢ denotes the wavespeed. Far behind
the wave, U is at the unwounded state U(—oo) = 1, while far ahead of the wave
U(+c0) = 0. These conditions determine U uniquely from equation (25). Therefore,
with the condition V' (4+00) = 0, equation (26) determines, for a fixed value of c, a
unique value of V' far behind the wave, that is, a unique healed steady state. An

analytic approximation to this value can be found and is given by

.. a aD
U:§+T2? (27)

(see Dale et al., 1996c¢, for full details).
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However, if the underlying tissue is the source of fibroblasts, so that D, = 0 in (7)
but initially the wound is seeded with fibroblasts from below, then the final steady
state values do depend on the initial conditions and are consistent with experimental
observations.

We can understand this behaviour by considering the following analytically-tractable

caricature model

0 9*
a—? = DB_;; +u(l — u) (23)
% = ou(l —u)—(1—u)v, (24)

where D and « are positive constants. Equation (23) is the Fisher equation (Fisher,
1937) and decouples from (24). This mimics the fact that, in the full model, (7)-(12)
decouple from (13)-(22). Moreover, in addition to the trivial steady state (0,0), there
is a continuum of steady states (1,v*) where v* can take any value. For the case
D =0, (23) and (24) can be solved easily for the initial conditions u = ug, v = 0 and,
ast —oo,u—1and v = v* = ol —ud)/2.

For the case where D is non-zero, the corresponding travelling wave problem is

d*U dU

cﬂf—%—aU(l—U) -(1-0)Vv
dz

Il
o

) (26)

where z = = — ct,u(z,t) = U(z), etc and c denotes the wavespeed. Far behind
the wave, U is at the unwounded state U(—oco) = 1, while far ahead of the wave
U(+o0) = 0. These conditions determine U uniquely from equation (25). Therefore,
with the condition V(+0c0) = 0, equation (26) determines, for a fixed value of ¢, a
unique value of V far behind the wave, that is, a unique healed steady state. An

analytic approximation to this value can be found and is given by

o o wlD
‘UZE-i-@ (27)

(see Dale et al., 1996c, for full details).
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Figure 2 Numerical solution of equations (7)-(22) in one dimensional space, with zero
flux boundary conditions. We impose step function initial conditions, with the model
variables at their normal dermal level outside the wound domain. The field variables
move into the wound as travelling waves and the ratio of collagen types I to III is 3:1.

For parameter values, see Dale et al., 1996a.
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This simple caricature model, therefore, enables us to understand the behaviour of
the full model and helps to shed light on the role of fibroblast migration in collagen

formation.

4. Discussion.

In this paper we have illustrated the key role that propagating patterns play in biol-
ogy and medicine by reviewing, in detail, two recently proposed mathematical mod-
els for two very different problems. The first application concerned aggregation in
Dictyostelium discoideum and involved cell-chemotaxis driven by reaction-diffusion
waves. The second concerned scar tissue formation as a consequence of the dynamics

of collagen secretion driven by waves of cells propagating into the wound.
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