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INTRODUCTION

The cellular slime mould Dictyostelium discoideum (D. discoideum) has a
remarkable life cycle, incorporating many key features of morphogenesis in
higher organisms, including chemotaxis, cell differentiation and multicellular
organization. In starvation conditions, the unicellular amoebae aggregate
into a multicellular slug (containing about 10> cells), which is capable of
coordinated movement towards chemical and light sources. Within the slug,
cells begin to differentiate and sort into “prestalk’ (about 20%) and “prespore’
(about 80%); at some point the slug becomes stationary, and these cells form
the stalk and spores of a ‘fruiting body’, from which individual spore cells are
dispersed when conditions become more favourable. For detailed reviews of
this life cycle, see Bonner (1982) and Devreotes (1982). The experimental
accessibility of D. discoideum, along with the key features mentioned above,
has led to its widespread adoption as a prototype morphogenetic system.
What was once thought of as a simple system has become a rich source of
information for the processes of gene regulation during development, signal
transduction pathways, amoeboidal movement and chemotaxis. The aggre-
gation stage has been particularly well studied. The key to this process is
intercellular signalling by cyclic adenosine 3'.5-monophosphate (cAMP).
Starvation causes a small number of cells, distributed throughout a popula-
tion, to act as pacemakers, emitting cCAMP periodically (Raman et al., 1976).
Surrounding cells move towards these pacemakers because of a chemotactic
response to cAMP; they also secrete cAMP themselves in an autocatalytic
manner, propagating the signal across the spatial domain. The waves of
cAMP take the form either of target patterns, concentric circles, or spirals.
Initial mathematical models for D. discoideum morphogenesis focused on
the kinetics of cAMP, both intra- and extracellular, and the cAMP-receptor
on the cell surface (Goldbeter & Segel, 1977). Crucially, investigation of the
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spatiotemporal dynamics of this reaction predicted spiral wave formation
(Hagan & Cohen, 1981; Tyson er al., 1989), in agreement with the spiral
patterns seen in a field of aggregating D. discoideum amoebae. A number of
other aspects of D. discoideum biology have also been extensively modelled
mathematically, including slug migration (Odell & Bonner, 1986), cell sorting
within the slug (Meinhardt, 1983). mound formation at the end of aggrega-
tion (Vasiev ef al., 1989; Levine et al., 1997), and the formation of cellular
streams during aggregation. This chapter will concentrate on this last issue,
and review some of the mathematical models proposed during the past few
years. The reasons for this focus are as follows. First, it is an excellent
example of the ability of biochemical signalling in amoebae to generate
coordinated behaviour, and secondly, it is one of a very few areas of cell
biology to which a wide variety of different mathematical modelling
approaches have been applied, and comparison of the results of these
approaches provides valuable insight into the biological process.

The term ‘“streaming’ refers to the fact that, as D. discoideum cells move into
the aggregation centre, they do so not as a uniform field, but rather in discrete
streams, separated by about 50 um (Fig. 1). The wide variety of mathematical
models for this phenomenon are all based on the inclusion of cell movement
into existing models for the spatiotemporal dynamics of cAMP. This section
briefly reviews these dynamics and their mathematical modelling.

The basic reason for cAMP wave propagation during D. discoideum
aggregation is that cAMP dynamics fall into a category known as an
‘excitable system’. This refers to the fact that behaviour occurs on two
different time scales; the processes involved in the production and release of
cAMP occurring more rapidly than the competing process which turns off
cAMP production. The competing process eventually wins and ‘resets’ the
system to the original state of very low cAMP production. However, the
difference in time scales generates ‘cycles’ of ¢cAMP concentration. To
explain this, it is assumed that an initial moderate level of cAMP is added
uniformly to a field of D. discoideum amoebae. This stimulates the amoebae
to produce and release cAMP, causing cAMP levels to increase even further,
until the much slower inhibition of the production ‘catches up’. This returns
the amoebae to a low cAMP producing state, so that the cAMP concentra-
tion returns to its original level. In reality, however, cAMP is added not
uniformly, but at one point in space, by a pacemaker cell. The above cAMP-
cycle then occurs in the immediate vicinity of the pacemaker. However,
during the phase of this cycle at which cAMP levels are high, sufficient cAMP
diffuses into the surrounding regions to stimulate other amoebae, initiating a
cAMP cycle there, and this process is repeated throughout the field of cells. Tt
is this series of phase-lagged cAMP cycles that constitutes the observed
periodic and spiral waves of cAMP.

A simple mathematical representation of cAMP dynamics, which high-
lights its excitability, was developed by Martiel and Goldbeter (1984). The
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Fig. 1. Aggregation of Dictvostelium (str NP377) on an agar plate, showing the formation of
spiral cAMP waves which induce (a) cell movement, (b) the onset of cell streaming, and (c) the
developed cell stream morphology in the whole aggregation territory. Pictures are taken ca.
15 min apart. The position of the cAMP waves in (@), (b) can be inferred from the different light
scattering responses of elongated (moving) and rounded (stationary) cells; amoebae elongate
under the influence of the cAMP waves and form the bright bands in the photograph. (Courtesy
of P.C. Newell.)

model consists of differential equations for three variables, extracellular
cAMP concentration (u), active cAMP-receptor concentration (v). and
intracellular cAMP concentration (w):

du/dt = kyw — kou + DV:u (1a)
/ot = —fi(u) + fr(u) - (1 —v) (1b)
aw /ot = kafa(u, v) — kqw (1c)
where
, ks 4+ keu . ke + kgu kio(1 + u)* + 1?2
=— folu)=—— u,v) = 5
filw) == T ) Tk b S3(u,v) PRTECEX.

Here f) and f> are kinetic rate functions for receptor desensitization and
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resensitization respectively, and f3 describes the activation of adenylate
cyclase by bound and active receptors; the ks are positive constants.
Numerical simulations of these equations, illustrating spiral waves, were
presented by Tyson er al. (1989). A more mathematical account of spiral
wave formation in an excitable system such as this is given in the book of
Grindrod (1991).

The representation of signal transduction in the Martiel-Goldbeter model
is extremely simplistic. A great deal is known about the details of cAMP
dynamics. Briefly, the binding of cAMP to cell surface receptors induces
excitation and adaptation of guanylyl cyclase and adenylyl cyclase, on time
scales of seconds and minutes respectively. The first of these controls the
chemotactic response of the amoeba (see below), while the second causes
synthesis and secretion of cAMP. These processes are regulated by the G
proteins in a complicated manner which is not yet fully understood. A
mathematical model reflecting this level of detail was proposed by Tang and
Othmer (1994, 1995) for the pathway involving adenylyl cyclase: their later
paper simplifies the system to five differential equations, of the form

dw

—— = @4l — W] — UgllaW) (2a)
dt
dw
T B2Bicaus — Bswa + Becaws — cafauywy — Bafscaug(wy + c3ws)  (2b)
dw
d—g = —(Bs + Be)ws + Bauyw (2¢)
T
dc; +ys(l ) i (©) d)
—_— = W —wy) = —sr(C; 24
s Viyawir s 1 },4(.“,-+y3
ac‘[; 7. ~ C{J :0 ( C(J
=ANVC,— +—— | s1(C;) — - 2
57 | 0 }’9C0+y8 = (C) }/?Cg-i—}"ﬁ (2e)
where
ur = WG+ (Bs —awCowy aazciui(l —wy) __BCs
T a + aoC, + B 2T T+ as +oasciuy —agwy B+ BoCo

In these equations C; represents internal cAMP, C, external cAMP, u; (uy)
the fraction of stimulatory (inhibitory) receptors bound with cAMP, w5 the
fraction of the activated subunit of the stimulatory G protein, w; the activated
adenylyl cyclase complex, w, a subunit of the hypothesized inhibitory G
protein and w; represents a complex of w, and u;. Further details of the signal
transduction mechanism are reviewed by H. G. Othmer and P. Schaap
(unpublished data).

A DISCRETE MODEL FOR D. DISCOIDEUM AGGREGATION

The phenomenon of cell streaming results from the interaction of the
spatiotemporal dynamics of cAMP with the movement of D. discoideum
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cells up gradients of cAMP. Mathematical models for streaming differ in two
basic ways. First, they use representations of cAMP kinetics with various
levels of detail, ranging from caricatures to fairly accurate accounts of the
current level of knowledge. Secondly, models differ in the way in which the
cell populations are represented, varying between continuum models which
average over the cells, and discrete models in which individual cells are
represented as discrete objects. Mathematically this latter difference is the
most fundamental, giving completely different types of equation system. Two
detailed models at opposite ends of both of these spectra will be discussed. In
this section the model of Dallon and Othmer (1997) is described, in which a
realistic representation of cAMP kinetics is used (taken from Tang &
Othmer, 1994), and in which the D. discoideum amoebae are represented as
discrete objects. In the following section the model of Héfer et al. (1995a.b) is
described, which uses a caricature of cAMP dynamics and represents the
amoebae as a continuous population. Various other models are mentioned in
the Discussion.

When representing each amoeba individually, the key mathematical
assumptions are those made on cell movement. In the work of Dallon and
Othmer (1997), the following movement rules were used:

(1) The cell moves if the time derivative of the extracellular cAMP
concentration is greater than 0.02uMmin'. This ensures that a
triangular wave of cAMP of duration 200s above baseline and ampli-
tude 0.1 pM initiates movement.

(ii) All cells move for a fixed duration (100s for wild-type cells) in the
direction of the cAMP gradient at the cell when the motion started. This
level of persistence is based on experimental observations of the time for
which cells move during aggregation (Alcantara & Monk, 1974; Tom-
chick & Devreotes, 1981). However, it is somewhat arbitrary, and is an
important parameter to vary in model simulations.

(iii) The cells move at a fixed speed of 30 ummin ', which is the maximum
cell speed measured in experiments of Alcantara and Monk (1974). In
reality, cells will move more slowly initially, speeding up as a result of
successive stimulation by cAMP or when they form streams (Varnum et
al., 1985). However, such variations in speed would represent a sig-
nificant increase in mathematical complexity.

Using these rules, Dallon and Othmer (1997) followed the movement of a
fixed number of cells, varying between 120 000 and 160 000, in a 1 cm? area.
In parallel with this cell tracking, the Tang-Othmer equations (2) were used
to determine the concentration of cAMP and related variables. This
combined system was solved numerically using techniques similar to the
particle-in-cell method developed for combustion problems (details in
Dallon & Othmer, 1997). Figure 2(a) shows a model simulation for
parameter values corresponding to wild-type D. discoideum. The model
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(a)

Fig. 2. Aggregation patterns for simulated wild-type (@) and mutant (b), (¢) cells. (@) The
predicted pattern for wild-type cells, with a movement duration of 100s. (b) The pattern for
streamer F mutants, with a movement duration of 500s. (¢) The pattern for jittery mutants, with
movement duration 20s. The solutions are shown after a model run of 95 min duration; cells in
the centre are oscillatory, with parameter 7 ranging between 0.4 and 0.17.

predicts spiral waves of cAMP (not shown), with cell aggregation induced by
the cAMP wave, and the formation of cell streams. Both this overall
behaviour and the predicted space and time scales agree very closely with
experimental observations.

The discrete nature of the model enables it to be used to predict the
implications of mutations. Figure 2(h) shows a simulation corresponding to
the streamer F mutant studied by Ross and Newell (1981); here, the time over
which cells move between direction changes has been increased from 100s
(wild-type) to 500s (streamer F). This change causes the cell streams to be
fewer in number, but larger and more compact, again in close agreement with
experimental observations. Figure 2(c¢) shows the results of reducing the
duration of movement to 20s; this is an artificial mutation, which Dallon and
Othmer named jittery. In this case, thin and highly fragmented streams form
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so that aggregation to the pacemaker does not occurs. These differences can
be explained by reference to the time scale of a cAMP wave pulse, which
takes about two minutes for both the wave front and wave back to move past
a fixed point in space. Therefore, jittery cells reorient several times during the
passage of a single cAMP pulse. Since these global waves of cAMP are the
sum of small cAMP bursts from each cell, as described above, they can have
very rough profiles, with several local maxima and minima. Reorienting
several times during a wave front will cause the cell to become caught at a
local maximum. In contrast. in the wild type cells, and to an even greater
extent for the streamer F mutant, cell direction is primarily set in the wave-
front and not reset until the cAMP pulse has passed.

A CONTINUOUS MATHEMATICAL MODEL

The representation of the D. discoideum amoebae as discrete objects in the
model of Dallon and Othmer (1997) discussed above is relatively unusual
within mathematical models for cell biology. Other examples are few: for
example, work of Weliky et al. (1991) on Xenopus gastrulation, and the study
of juxtacrine signalling by Collier et al. (1996); there are also some other
examples of application to D. discoideum signalling that will be discussed
later. These various discrete models have all been proposed by individual
investigators, on a somewhat ad hoc basis. In contrast, an established body of
theory exists for models of a ‘continuum’ type. In these, cells are not
represented as discrete objects, but rather via a “cell density’, which denotes
the number of cells per unit area at a point in the domain. Models of this type
have a long history of application to developmental biology and medicine;
see Murray (1989) for review. Hofer er al. (1995a) studied streaming using
such a continuum representation of D. discoideum amoebae, coupled to the
simple Martiel-Goldbeter representation of cAMP kinetics. In this section
the model of Hoéfer et al. (1995a) is described and the results compared with
those of Dallon and Othmer (1997).

Within a continuum model, cellular dynamics are represented by a
‘conservation equation’, in which the various contributions to overall cell
movement are represented by separate terms. In the case of D. discoideum
amoebae, there is a background level of random migration, in addition to
directed movement up gradients of cAMP. Mathematically, this gives the
equation:

an/ot = V- [u(n)Vn] —V - [x(v)nVu] (3)

random migration chemotaxis

where n(x, ¢) denotes the cell density; recall that u(x, ) and v(x, ) represent
the concentrations of extracellular cAMP and active cAMP- receptor,
respectively. It would be straightforward to include terms representing cell
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division and death in this equation, but these are omitted because the extent of
these processes is essentially negligible during aggregation. Hofer er al. (1994)
studied equation 3 coupled to the Martiel-Goldbeter equations 1 for cAMP
kinetics. The most immediate outcome of these simulations was an explana-
tion for the so-called ‘chemotactic wave paradox’ (Soll e al., 1993). As a pulse
of cAMP passes an amoeba, it is observed to move in the wave front, but not
in the wave back, giving significant cell movement in the opposite direction to
that of the pulse. This is intuitively suprising, since there are equal (but
opposite) cAMP gradients in both the wavefront and waveback: because the
gradient in the waveback would promote movement with the cAMP pulse, the
cell should spend longer in the waveback than in the wavefront, causing a
small net movement in the same direction as the pulse. This contradiction was
resolved by Héfer er al. (1994), using simulations of a slightly simplified
version of equations (1, 3). Briefly, because the time scales of cell movement
and desensitization to cAMP are similar for D. discoideum, the cell becomes
sensitized while they are moving in the wavefront of the cAMP pulse, and by
the time the waveback reaches the cell, it is no longer sensitive to cAMP
gradients, so that little further movement occurs (illustrated in Fig. 3).

Having confirmed that the model predicts the correct timecourse of cell
movement in cAMP gradients, Hofer e al. (1995a) used the model (1,3) to
simulate aggregation on an agar plate; a typical example is illustrated in Fig.
4. Initially, a rotating spiral wave pattern of cAMP develops from a disrupted
wave front, inducing cell movement towards the wave core. The interaction
of the cAMP waves and cell chemotaxis then causes initial inhomogeneities
in cell density to grow, leading to the formation of cell streams. This in turn
disrupts the cAMP wave, which reinforces the streaming pattern. Thus this
model predicts that the observed streaming pattern is the result of an
instability along the length of an advancing front of cells, with cells gradually
sorting into clumps, via movement up small cAMP gradients, as successive
arms of the cAMP spiral wave move past them.

There are two very notable points of difference between the Hofer et al.
(19954) model, and that of Dallon & Othmer presented in the previous
section. The first is that Hofer ez al. (19954) are unable to predict initiation of
the spiral wave of cAMP. Rather, the spiral is induced rather artificially in
simulations such as that illustrated in Fig. 4. This is common practice: studies
such as those of Tyson er al. (1989) showed that cAMP dynamics are able to
support spiral waves, but do not explain their initiation. In contrast, Dallon
and Othmer’s (1997) model does predict spiral wave generation, caused by
small asymmetries in cell locations around pacemaker cells (see above).
Subsequently, spiral wave generation has been demonstrated in continuum
models, based on desynchronization of cells on the developmental path
(Lauzeral et al., 1997).

The second key difference between the models concerns mathematical
tractability. The differential equations in terms of which the model of Hofer
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Fig. 3. Travelling pulse solutions of equations (1,3) in one space dimension (solid line),
compared to wave solution of (1) with cell density » fixed at the value 1 (dashed line). (a) cAMP
concentration, () fraction of active receptors, (¢) cell density, () cell velocity. Parameter values
and details of numerical solution are given in Héfer er al. (1995b). The numerically determined
wave speed in the full model is about 4% lower than for the clamped cell density; the v and v
profiles are approximately the same in both cases.

et al. (1995a) was formulated is amenable to many standard techniques of
mathematical analysis that cannot be applied to the discrete formulation of
Dallon and Othmer. This analysis was presented by Hofer e al. (1995b). and
enables the separation of the cell streams during D. discoideum aggregation
to be predicted in terms of model parameters. Most significantly, this predicts
that stream separation increases with the chemotactic parameter y., with
streams not appearing if x is less than a critical value. Hofer et al. (1995b)
derived a simple formula for the dependence of this initial value on other
parameters, suggesting a range of possible experimental tests.

DISCUSSION

The formation of cell streams is arguably the most visible outcome of
D. discoideum aggregation. Both the Héfer er al. and Dallon-Othmer
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(b)

Fig. 4. Spatiotemporal evolution of () cell density and () cAMP concentration in a numerical
simulation of (3,1). Solutions are plotted every 12 minutes. The initial conditions were chosen to
be a plane wavefront with a free end at the centre of the domain and homogeneous cell density.
with random perturbations (£7.5%) throughout. Boundary conditions are zero flux. Parameter
values and details of numerical solution are given in Hdéfer er al. (19955).
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mathematical models predict that this behaviour is the combined results of
cAMP signalling and chemotaxis. Intuitively, the streams arise because cells
both produce cAMP and move up cAMP gradients; therefore, a region of
high cell density will produce cAMP at high levels, thus inducing surround-
ing cells to move towards the region of higher density. This is an auto-
catalytic mechanism that leads to stream formation. The models differ in
their prediction of the extent of initial aggregation required to produce this
pattern. In the Hofer et al. model, very slight degrees of streaming are rapidly
reinforced, while Dallon and Othmer predict that a more pronounced initial
pattern is required. This is an experimentally testable difference, since in the
latter case, a fairly uniform initial distribution of cells would aggregate
without stream formation.

A number of other mathematical models have been proposed for the
aggregation phase of D. discoideum modelling. The continuum models of
Vasiev ef al. (1994) and van Oss et al. (1996) are particularly relevant to our
considerations, since they propose a rather different mechanism for stream
formation, in which the dependence of the speed of cAMP waves on cell
density is the key phenomenon. This would imply that the directed move-
ment of cells is less significant than their effect on ¢cAMP wave speed.
Recently, Hofer and Maini (1997) have attempted to investigate this alter-
native via a mathematically simpler “caricature’ model, concluding that while
this density-dependent speed may contribute to the streaming phenomenon,
it is not consistent as an underlying explanation. A very different mathema-
tical model has been proposed by Savill and Hogeweg (1997), focussing on
the role of direct cell-cell adhesion in D. discoideum morphogenesis, a
phenomenon neglected in the models we have discussed. They show that
this provides a quite distinct potential explanation for the formation of cell
streams, although precise predictions are difficult because of an absence of
appropriate data on which to base parameter values. Were such data
available, their model could potentially be combined with that of Dallon
and Othmer (1997), since it is also based on a discrete representation of the
amoebae.

Aggregation in D. discoideum is an elegant example of complex behaviour
coordinated by microbial signalling. At the heart of the process are the
‘excitability” of extracellular cAMP kinetics and the chemotactic response of
D. discoideum amoebae to cAMP gradients. Many experimental observations
are direct consequences of these two processes. An instructive example of this
is the affect of reducing the extent to which cAMP activates its own secretion,
which decreases the degree of cAMP excitability. Experimentally, this can be
achieved by the addition of caffeine, and causes cellular aggregation to occur
around a central hole, rather than as a solid mound (Siegert & Weijer, 1989).
The majority of mathematical models simulate this phenomenon (Hoéfer et
al., 19954: van Oss, 1996; Dallon & Othmer, 1997), confirming that it is a
simple consequence of their basic common ingredients, namely excitability
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and chemotaxis. Similarly, the positive correlation between wave speed and
spatial wavelength, which is observed experimentally (Gross et al., 1974), is a
prediction shared by most models, including those of Dallon and Othmer
and Hofer er al. In contrast, predicted explanations for cell streaming show
more variation, suggesting that it represents a more delicate balance of the
interaction between biochemical signalling and cell mechanics. Mathematical
models provide an excellent vehicle for investigation of such interactions,
with a strong track record within D. discoideum biology. The combination of
this, and the high volume of experimental work on D. discoideum, suggests
that the next few years will yield exciting developments in understanding D.
discoideum morphogenesis.
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