
Bull&n of Mothematial Biology, Vol. 59, No. 3, pp. 517-532.1997 
Elswier Science Inc. 

0 1997 Society for Mathematical Biology 
0092-8240/97 $17.00 + 0.00 

HIERARCHICALLY COUPLED ULTRADIAN 
OSCILLATORS GENERATING ROBUST’ 
CIRCADIAN RHYTHMS 

RAFAEL A. BARRIO 
Instituto de Fisica, 
UNAM, 
Apartado Postal 20-364, 
01000 M&ico, D.F., Mexico 

(E.mail: barrio@anatolia.iFsicacu.unam.mr) 

LIME1 ZHANG 
Departamento de Fisiologia, Facultad de Medicina, 
I-JNAM, 
04510 M&&o, D.F., Mexico 

PHILIP K. MAIN1 
Centre for Mathematical Biology, Mathematical Institute, 
University of Oxford, 
24-29 St. Giles, 
Oxford OX1 3LB, United Kingdom 

Ensembles of mutually coupled &radian cellular oscillators have been proposed by a 
number of authors to explain the generation of circadian rhythms in mammals. Most 
mathematical models using many coupled oscillators predict that the output period should 
vary as the square root of the number of participating units, thus being inconsistent with the 
well-established experimental result that ablation of substantial parts of the suprachiasmatic 
nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt 
circadian functions, which show no changes in the phases or periods of the rhythms. From 
these observations, we have developed a theoretical model that exhibits the robustness of 
the circadian clock to changes in the number of cells in the SCN, and that is readily 
adaptable to include the successful features of other known models of circadian regulation, 
such as the phase response curves and light resetting of the phase. 0 1997 Society for 
Mathematical Biology 

1. Introduction. Circadian rhythms provide a ubiquitous adaptation of 
most eukaryotes and some prokaryotes to the environmental day and night 
alteration, and they express the working of a mysterious endogenous 
oscillator, a clock-like mechanism that provides temporal organization. This 
clock-like mechanism (circadian pacemaker) functions autonomously but 
can be entrained by environmental cyclic changes. 
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There have been great advances in the research of the clock mechanism 
during this decade. Recent molecular studies, extensively performed on 
fruit fly Drosophila melanogaster and bread mold Neurospora crassa suggest 
that the regulation of gene expression may lie at the heart of the clock 
mechanism (Hardin et al., 1990; Edery et al., 1994; Sehgal et al., 1995; 
Gekakis et al., 1995; Myers et al., 1996; Lee et al., 1996). In the fruit fly, two 
genes, per (for period, Konopka and Benzer, 1971) and tim (timeless, 
Sehgal et aE., 1994) are essential components of the circadian clock. 
Mutations in either of these genes can produce arrythmicity or change the 
period of the rhythm by several hours. The picture of how the per and tim 
proteins interact is far from complete, although it seems that they work as a 
team to generate an oscillating cycle of activity in their genes and probably 
other genes, which in turn set up daily rhythms in the fly’s physiology and 
activity (Sehgal et al., 1995; Vosshall et al., 1994). 

In mammals, the main circadian pacemaker is located in the suprachias- 
matic nuclei (SCN) of the anterior hyphothalamus (for reviews, see Meijer 
and Rietveld, 1989; Moore, 1992). Disruption of SCN function by lesioning 
or surgical isolation abolishes circadian rythmicity, which can be restored 
by transplantation of fetal tissue into the third ventricle of SCN-lesioned 
hosts (Drucker-Colin et al., 1984; Lehman et al., 1987; Ralph et al., 1990). 
The autonomous nature of the SCN pacemaker activity has been demon- 
strated by evidences that the circadian rhythm in electrical activity persists 
when the SCN are isolated surgically from the rest of the hypothalamus 
(Inouye and Kawamura, 1979) or isolated in uitro (Gillette, 1991; Prosser 
et al., 1990; Zhang and Aguilar-Roblero, 1995). However, what composes 
the clock and how it is organized are currently matters of discussion. At 
present two possibilities are apparent: either there is a class of pacemaker 
cells capable of sustaining a 24-hour oscillation individually in its own 
activity, or the circadian pacemaker is an emergent property of circuit 
interactions within the SCN. In this paper, we explore the latter possibility 
and shall discuss the former one at the end. 

Several mathematical models aiming to explain the circadian pacemaker 
function have been based on coupled cellular oscillators (Winfree, 1967; 
Enright, 1980; Pittendrigh, 1974; Pavlidis, 1969, 1975). These interacting 
cellular oscillators are thought to function by neuronal communication 
mediated by neurotransmitter release. However, the validity of these mod- 
els has been jeopardized by a series of experiments consisting of the 
administration of tetrodotoxin (TTX) (see, for example, Schwartz et al, 
1987; Earnest et aZ., 1991; Newman et aZ., 1992). TTX can successfully block 
sodium-dependent action potentials, and therefore block the neurotrans- 
mitter release, but cannot alter the precision of the time-keeping machine. 

These observations suggest that the classical sodium-dependent axonal 
neurotransmission may not be needed for the time-keeping machine. Thus, 
the biological basis on which previous mathematical models are based is 
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called into question. The ways in which an ultradian oscillation in the 
cellular level can induce a circadian rhythm is by no means clear, either 
experimentally or theoretically. However, recent findings suggest that the 
coupled oscillators idea cannot be ruled out. 

Ultradian Ca2+ oscillations were recently found (Van den Pol et al., 
1992) in both neurons and glia cultured from SCN cells. The phase and 
period of glia Ca2+ oscillations are affected by several neurotransmitters, 
but cannot be blocked by TTX. Astrocytes show very regular rhythms of 
cytoplasmic Ca2 + concentration with periods ranging from 7 to 20 sec. The 
oscillating wave travels from one glia cell to another through gap junctions. 
The intercellular wave can increase the period of the independently oscil- 
lating glia cells. The intracellular Ca2+ signalling in glial networks can 
discriminate the nature of the stimulus and possibly enable glial cells to 
perform long distance signalling. Moreover, this network can be modulated 
by activation of neuro-transmitter receptors, by nerve electrical activity, or 
even by the increase in [Ca2’] itself. Ca2+ signals in glia can feed back on 
neurons (for review see Verkhratsky and Kettenmann, 1996). 

Van den Pol et al. (1992) proposed that the glia Ca2+ oscillations could 
be the basis of the coupled oscillators generating the circadian signals. This 
opens a new perspective on the research of the clock machinery. Mathe- 
matical modelling has suggested that high-frequency oscillators with peri- 
ods within the same range as those shown in Van den Pol’s paper may be 
the basis for a low-frequency oscillator such as a circadian oscillator 
(Pavlidis, 1969; Winfree, 1975). However, there is an important feature that 
cannot be explained by the existing coupled oscillator models: the relative 
scale invariance of the circadian oscillator. 

There are two SCN located at the anterior hypothalamus. It is clear that 
each nucleus can function as an independent oscillator, as ablation of one 
of them does not alter the circadian function (Van den Pol and Powley, 
1979). Similarly, ablation of an entire nucleus, and components of the 
other, does not eliminate circadian functions until at least 75% of both 
nuclei are destroyed (Van den Pol and Powley, 1979; Mosko and Moore, 
1979). Moreover, in vitro studies using hypothalamic SCN slices (usually 
about 400-500 pm, representing less than 50% of the total volume) show 
circadian oscillations of electrical activity and vasopressin release for sev- 
eral circadian cycles without apparent effect on the phase or period of the 
rhythm (Gillette, 1991; Bos and Mirmiran, 1990; Watanabe et al., 1993; 
Zhang and Aguilar-Roblero, 1995). Therefore, it is clear that there is 
redundancy in the SCN pacemaker. 

The central issue that concerns us here is precisely this scale invariance, 
or the insensitivity of the period of the circadian rhythms to the number of 
cellular components of the regulating organ. On the one hand, one could 
mention a group of models with a small number of oscillators, but with 
complicated interconnections and feedbacks, tending to reproduce a spe- 
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cific efferent behaviour of the clock (Carpenter and Grossberg, 1983). 
These models successfully reproduce several features of the circadian 
rhythms, like phase locking, phase response curves and resetting by light, 
but they do not address the important question of the origin of a circadian 
period. On the other hand, there is another group of mathematical models 
that are based on a network of many individual non-linear oscillators, which 
are able to obtain a circadian period from ultradian oscillators (Pavlidis, 
1969). If the coupling is linear, then one can show quite generally that the 
output period of the system of coupled oscillators varies as the square root 
of the number of participating units. From this point of view, they cannot 
explain successfully the experimental data. In the present paper, we pro- 
pose a new coupled-oscillator model that could explain the relative scale 
invariance of the circadian clock. 

2. Theoretical Background-Large Systems of Coupled Oscillators. Our 
purpose is to demonstrate that a simple coupling of many &radian oscilla- 
tors (connected in the correct way) can exhibit circadian behaviour that is 
independent of the number of components for a sufficiently large number 
of components. If we succeed, this theory will give support to the hypothesis 
that biochemical ultradian oscillators are the origin of circadian rhythms. 

The basic idea has been explored by Pavlidis (19691, who observed that a 
network of many coupled linear oscillators has a mode (minimum eigen- 
value) of frequency very much smaller than the frequency of oscillation of 
each component. Consider a system of N interconnected linear oscillators, 
xk, k = 1,. . . N, satisfying 

N 

i~+w2x,-r~2~xi=o 
i=l 
i#k 

(1) 

where there are elastic (linear) couplings of strength r among all the 
identical oscillators of natural frequency o. The system has a single mode 
of oscillation at the low frequency 

i2 = w&l - r(N - 1)) (2) 

for the sum 

s= &,. 
k-l 

(3) 

This can be seen by summing up all equations (11, and the eigenvector is 
0, 1, . . * , 1). There is another (N - l&degenerate mode at a high frequency 
(Y = OdM, with (N - 1) linearly independent eigenvectors satisfying 
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Ckxk = 0. Observe that if r becomes too large (a (iV - 1)-l>, then the 
system becomes unstable. The property displayed by equation (2) is re- 
tained by some non-linear systems used in biological modelling. For in- 
stance, consider a non-linear system of the type 

+ Ax = 0 (4) 

where x = (xi, x2,. . . , x,>~ and A is the matrix defining the elastic coupling. 
Where 

~ I;;:j(X) =f ~ Xi ( I (5) 
j=l i=l 

for all i, at least for the choice of an eigenvector column (1, 1, . . . , 1). That 
is, the system has elastic and frictional couplings that depend only on the 
sum of the outputs: 

n 

i,+f ik+w2xpyw2~xi=o. (6) 
i=l 
i+k 

It is clear that the final frequency will still be given by equation (2). A 
proper choice of f will give a limit cycle with that frequency. Other 
extensions, considering only elastic coupling in equation (6) (that is, f = 
f(xk> only) have been examined numerically by Pavlidis (19691, and a 
dependence of the frequency on the parameter r(N - 11 is still observed in 
the full non-linear model when r is sufficiently large to induce mutual 
entrainment. This led us to think that equation (2) is quite general. 

However, the behaviour of a general full non-linear system is impossible 
to describe. It could be argued that for biological systems it is very difficult 
to imagine a system of identical oscillators; therefore, it is useful to 
examine a system with a distribution of frequencies. This has been done 
numerically for a model of many simple limit-cycle oscillators (Matthews 
et cd, 1991) considering a system with a general form for a supercritical 
Hopf bifurcation: 

dzi z-= (l-lr,l~+iw,)~j+~,~~zi-zj~ 
Z-l 

(7) 

where zj is the position of the jth oscillator in the complex plane and wj 
are distributed at random according to a symmetrical frequency distribution 
g(w) around a mean Z. Among the diversity of complicated collective 
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behaviours, there are situations, for strong coupling, in which large-ampli- 
tude oscillations arise with a frequency smaller than the width of the 
frequency distribution. 

In any case, it seems that the problem is that the frequency of a 
collective mode in a large system of coupled oscillators goes to zero as 
N + ~0. This actually contradicts the experimental findings that in the SCN 
the frequency of the circadian oscillation is practically independent of the 
number of neurons or glias. Here, one has two choices: either one denies 
that the circadian oscillation could be derived from ultradian oscillations 
(like the observed biochemical oscillations), or one proposes a system in 
which one is able to show a scale invariant frequency. 

3. The Model. Suppose that we have a slightly non-linear system of the 
type of equation (6), This seems to be a very stringent condition, that we 
have to relax, but for the sake of simplicity, let us first consider this case. 
Let us change the connections to form an arbitrary network with elastic 
interactions between pairs. We know that the Hamiltonian of the linear 
system possesses a continuous symmetry, that is, it is invariant if one 
replaces xk by xk + 6. When this symmetry is broken by a mode of finite 
wavelength, one expects the presence of acoustic waves, whose frequency 
goes continuously to zero as the system becomes infinite. If the non-linear- 
ity is unable to change this property, one has to conclude that any arbitrary 
network of elastic springs has a low-frequency mode that approaches zero 
continuously as the size of the network increases. One way to get rid of this 
unwanted feature is to use a non-linear system of coupled pendulums 
(Winfree, 19671, or to capacitively couple limit-cycle oscillators (Othmer 
and Watanabe, 1992). Another way of stabilizing a low but non-zero 
frequency, without changing the elastic nature of the interaction, is to 
specify a hierarchical interconnection, that is, to consider that the oscilla- 
tors are interconnected in different levels of organization. 

Suppose that at the first level only a small number of ultradian oscillators 
with natural frequency o. are coupled elastically with strength r = 
r(0). Then, the system acts as a single oscillator with frequency wi = 
mod=. Consider k = 2, without loss of generality, as illustrated 
in Fig. 1. Then, one can couple these new oscillators with a constant 
r(l) = f(r), and obtain a new oscillating system with frequency o2 = 
~,dm < wi. Continuing this process, one eventually obtains the final 
frequency 

f_0,= Oy_lJ1 -r(y) (8) 

where N = 2”, and Y labels the level of organization, or hierarchy. This 
recurrence relation can be written as a continued fraction that could 
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Figure 1. Sketch showing the hierarchical organization of coupled oscillators. 
The anatomical units are represented by small circles (u = 1). The bigger circles 
with heavier lines represent subsequent levels of organization (v) of coupled 
oscillators. Although in this drawing only pairs of oscillators are coupled in each 
level, this is not necessarily true in reality, and it is not crucial for the model. 

converge to a positive-definite number. As a simple example, suppose that 
the spring constant at a certain level is a fraction of the previous one, 
that is 

r(v) =qr(v- 1) O<q<l; 
r(O) = Y. 

(9) 

In this case, the final frequency of the system of N oscillators can be 
calculated exactly, and is given by 

which has a limit in terms of q and r. For the particular case when r = q, 
the analytical result can be found: 
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Figure 2. Final frequency taken from equation (10) for a region of the parame- 
ter space wherein a locked solution is found. Observe that the frequency could 
readily be reduced by a factor of 10e4, as needed for a circadian oscillation. 

where $(u) are the Elliptic Theta Functions (Gradshteyn and Ryzhik, 
1980). For a general case, there is also a finite solution, except when CIJ = 1 
(constant coupling at all levels), in which case o, goes exponentially to 
zero. This can be investigated numerically, as is shown in Fig. 2, where oloo 
is plotted in the (q, r) space. Observe the logarithmic vertical scale, which 
shows that one can reduce the frequency four orders of magnitude easily 
with reasonable values of the parameters. 

4. Numerical Calculations with a Simple Model. Let us now introduce a 
more realistic model to test the conclusions of the preceding arguments. 
Let us represent a single ultradian oscillator i by a simple system with a 
limit cycle, the Van den Pol equation 

jtj + (X” - V)ij + Wo2Xi = 

which could be coupled to k identical oscillators 
(in units of &>, and written as 

0 (11) 

with elastic connections r 

(12) 

where u > 0 is the bifurcation parameter. 
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Let us build up a network with connections defined by a self-similar, 
hierarchical rule. The hierarchy is denoted by the index Y. Then, the 
system is fractal and it is represented by 

ii = Ov-lyib,t) 

gv,t) = -fl&_1 

i 

Xi(V,t> - irijCV't)Xj(vlt) I (13) 
j#i 

where now, in order to mimic the actual Ca2+ oscillators and assuming that 
the coupling is only taking place if the Ca channels are open at the time 
when the wave arrives, we define 

rjj(v,t) =G(zJ- 1) tanh 
[ ( ‘ijyyl)i] 

(14) 

where the bar denotes a time average. A,(v, t) = l&(t) - $(t)l, with 
tan( e,(t)) = yi( v, t)/xi( v, t), and a the width of the switching. The output at 
level v is taken to be 

S(V,t) = $ ,~x,(V,r). 
I-1 

The frequency at any level W, is calculated by taking the Fourier 
transform of the system output s(v, w): 

1 
dv, w,) = ~1 

t+At 
e-‘“u’s(v,t) dt. 

t 
(15) 

There are two parameters: r and a. A large portion of the two-dimen- 
sional parameter space was explored using a simple improved Euler method, 
and it was found that the frequency stabilizes at a small value for some 
minimal N, provided r is sufficiently large. In the case of r = 0.91 and 
a = 0.34, the final frequency w = 3.85 x 10-40, is attained for N = 8192 
oscillators and remains constant, within O.l%, for many more oscillators. 
This can simulate the actual biological system with the correct quantities 
(Van den Pol, 1980). 

All calculations were made for k = 2, but results can also be obtained for 
other values of k. A network of N = 2” oscillators was examined more 
carefully using a Runge-Kutta method, and adding a random deviation to 
the frequencies of N lo%, following both a flat and a Gaussian distribu- 
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Figure 3. Final frequency of a hierarchical system of N = 2” oscillators of 
fundamental frequency o0 = 1, a = 0.34 and r = 0.94 (circles). The analytical 
result for the simpler fractal model with q = 0.9 (broken line) also gives the 
same limiting value for large v, but is less effective in attaining stability. For 
comparison, the continuous line shows the dramatical square root dependence 
predicted by equation (2). The dash-dot line shows an exponential decay 
obtained with q = 1. 

tion. We verified that the frequency is stabilized for large N. Figure 3 
illustrates a typical numerical calculation including noise; the values were 
chosen to give constant frequency for N z 212 = 4096 cells, and to obtain a 
reduction factor of N 10V4, in order to represent a real clock. By allowing 
k > 2, the hierarchical couplings could be less strong to obtain the same 
values. 

5. Discussion. Here we discuss other possibilities of obtaining a robust 
clock without using a hierarchical network. It was pointed out a long time 
ago that some experimental results from the circadian pacemaker seemed 
to be in contradiction with the properties of models using limit-cycle 
oscillators (Winfree, 1967). Although it has been proved that these models 
can satisfactorily explain such experiments (Pavlidis, 1975, 1992), it is 
interesting to discuss the possibility of an array of pendulum-like oscillators 
since this system can present a cutoff frequency. 

It is well known that a chain of pendulums coupled with springs presents 
a low cutoff frequency, which is independent of the number of oscillators. 
The problem with this system is that the low frequency is the Same as for 
the normal mode of a single pendulum. This system is analogous to a 
high-pass electric filter. 

One could obtain a lower value of the frequency by coupling the 
oscillators through a medium with high relative capacity. The possible 
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realization of capacitively-coupled oscillators in biological systems has been 
discussed recently (Othmer and Watanabe, 19921, and it has been shown 
that one can obtain circadian periods from ultradian limit-cycle oscillators 
if this sort of coupling is strong. While the analysis is carried out for linear 
coupling, there are indications that similar behaviour is obtained for more 
general ways of coupling. At present, it is unclear if this model is more 
convenient than the one presented here, except that the latter does not 
depend on the nature of the limit-cycle function or on the way one couples 
the oscillators. In the analytical discussion, we presented a simple elastic 
coupling, but in the numerical calculation we used a more complicated 
coupling function, and the conclusions were unchanged (see Fig. 3). 

It remains to be seen if the inclusion of non-linear (anharmonic) cou- 
pling results in a lower bound to the frequency and stabilization of the 
system with respect to the number of components. A general treatment is 
not possible, but we can gain further insight if we consider any oscillator 
still obeying equation (5), but with anharmonic coupling terms in A(x). 
These terms have to have only odd powers of x since we want a bound 
state. A simplified version would be a sine function, for example. In that 
case, one obtains 

N 

s’+f(s)i + w,2s - 0i(N- 1)r C sin(x,) = 0 
k=l 

which, for the low-frequency mode (x1 =x2 = *** =xN), can be reduced to 
a form similar to equation (6). In the case of a simple pendulum, one 
arrives at a sine-Gordon equation, as in an array of Josephson junctions, 
and one expects the possibility of soliton solutions at finite frequency. 
These non-linear effects are expected to be present in a capacitively 
coupled network as well. The appearance of a lower limit for the frequency 
of this mode when one constructs a hierarchical array of oscillators with 
this kind of non-linear coupling still holds, which suggests that this feature 
is model independent, and one could use more sophisticated oscillators to 
be applied for specific biological modelling. 

Welsh et al. (1995) observed circadian rhythms in the firing rate of 
individual SCN neurons living in a dissociated culture. They also observed 
that circadian oscillations from different neurons in the same culture were 
not synchronized. These observations seemed to be enough to conclude 
that SCN circadian pacemaker is formed from single cell circadian oscilla- 
tors. However, a careful reading of the recent literature reveals that the 
question of the origin of circadian oscillations, either by coupled ultradian 
oscillators or by a collection of individual cells with circadian rhythms, is 
not settled yet. 
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The acrophase of the circadian oscillations observed by Welsh et al. 
(1995) was related to the regular firing pattern. It is well known that this 
pattern is presented at all circadian times (Shibata et al., 1984; Thomson et 
al., 1984; Zhang et al., 1995). This means that if one could monitor the 
single-cell firing rate rhythms in SCN slice preparations, or even in vivo, for 
more than one day, they could be found not synchronized, although the 
clock would function normally. 

Furthermore, Watanabe et al. (1993) measured vasopressin release in the 
same type of dissociated SCN culture, with neurons resting on a syncitium 
of astrocytes, and mentioned that in more than one hundred cultures a 
clear circadian oscillation of vasopressin was observed (monophasic oscilla- 
tion), with the exception of few cultures in which plating cells were 
damaged by accident, or their density was very low. This seems to show that 
a minimum number of cells is needed for the clock to work properly, and 
supports the idea that coupled ultradian oscillators do play an important 
role in circadian clock generation. 

Moreover, there is presently detailed quantitative evidence (Davis and 
Gorski, 1984) that the period of circadian rhythms is a function of the total 
volume of undamaged SCN. This phenomenon can be explained by the 
present model. 

In the SCN, Ca2+ currents are involved in the generation of action 
potentials and phase shifts in the circadian rhythms of electrical activity in 
vitro (Meijer and Rietveld, 1989; Aguilar-Roblero et al., 1996). Release of 
Ca2+ from intracellular deposits into the cytoplasm has been shown to be 
critical in the regulation of several neural processes (Aguilar-Roblero et al., 
1996). The intracellular Ca2+ homeostasis has not been studied sufficiently 
in SCN. The present model is based on the intracellular Ca2+ ultradian 
oscillation in SCN glial cells (Van den Pol et al., 1992). The result of this 
heirarchical coupling leads to a stabilization of the output frequency of 
Ca2+ population oscillation to a circadian value that is robust. Recently, 
circadian oscillations of intracellular Ca2+ release channels, expressed by 
number of Ryanodine receptor, in SCN slice preparation were observed 
~o~;ar-Robl ero et al., 1996). This is consistent with the output of our 

The hierarchical coupling has to be dynamical, therefore any sigmoidal 
function of the type f(x) = tanh(x), assumed in the model, could mimic the 
dynamical state of the gap junction of astrocytes. It is well known that 
astrocytes are extensively coupled by gap junctions composed mainly of 
connexin43 and can form a large syncitium. The permeability, and conse- 
quently the gap junction mediated communication, is regulated by particu- 
lar conditions (Giaume and McCarthy, 1996; Verkhratsky and Kettenmann, 
1996); although research in this area is still at its early stages, both 
theoretically and experimentally, and significant progress requires a transi- 
tion from the understanding of basic properties to the study of function. On 
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the other hand, preventing undesirable variations of the parameters of the 
&radian oscillators from modifying the output circadian frequency, addi- 
tional mechanisms would be required. These mechanisms should be ruled 
by the phylogeny and the ontogeny of the circadian function and are 
beyond the scope of this paper. 

In all mathematical models of the biological clock, there are parameters 
that have to be used to make them fit the experiments quantitatively. In the 
present model, there are two basic parameters that fix the low-frequency 
solution of the equations. One could ask how, in reality, these parameters 
are determined. This question is, in general, far beyond the scope of 
mathematical models. However, the value of the low-level interaction 
r = r(O) and the factor needed for frequency demultiplication could be 
encoded in the phylogeny and ontogeny of the circadian function. 

6. Conclusions. One can summarize the results of the present study as 
follows: 

1. This simple model shows that a hierarchical network of simple non- 
linear oscillators presents scale invariance with respect to the number 
of components. 

2. The stabilization of the frequency is very efficient, and with reason- 
able values of the parameters, one is able to lower the period four 
orders of magnitude, as needed for a circadian oscillation. 

3. The model is general and may be easily elaborated to obtain more 
realistic properties of circadian rhythms, without modifying the scale- 
invariance property. 

4. The model is stable over a wide range of parameter values, and it is 
not crucial that these are not precisely defined, a very convenient 
property to model biological systems. 

As we mentioned before, the use of multicomponent oscillator models 
has been successful in reproducing available experimental data. In any case, 
if one models the circadian rhythm with simple pendulums or limit-cycle 
oscillators, there remains the central question of obtaining a low-frequency 
oscillation that is stable and robust. As we have shown, the period of a set 
of coupled oscillators is a complicated function of the periods of the 
components, and under certain restrictions, one can still think of a long 
period behaviour. We discussed the case in which oscillators (harmonic or 
limit-cycle) are (elastically or non-linearly) coupled in a network, and we 
found that the frequency of the output is generally dependent on the 
number of oscillators. On the contrary, if one uses a hierarchical coupling, 
one can obtain a scale-invariant output frequency for sufficiently strong 
coupling that is practically model independent. 
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