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Streaming instability of slime mold amoebae: An analytical model
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During the aggregation of amoebae of the cellular slime m@itdyostelium the interaction of chemical
waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform
cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize
the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming
instability. A simple, analytically tractable, model Dictyosteliumaggregation is developed to test this idea.
The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynam-
ics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and disper-
sion relation for cell streaming with the previous findings of model simulations and numerical stability analy-
ses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is
proposed[S1063-651X97)14408-1

PACS numbgs): 87.22—q

[. INTRODUCTION bility analysis of traveling wave solutions to aggregation
models has been attempted §9]; owing to the structure of
Spontaneous symmetry breaking under nonequi"briurﬁhe underlying models, bOth are essentiglly numerical. Apart
conditions is characteristic of a wide variety of physical andffom the common conclusion that there is a “cell streaming
chemical systems; it is found in areas as diverse as quiJﬂStab'“t_y {transverse to the direction of wave propagation,
flow, nonlinear optics, and oscillations and waves in chemii1€ Predictions of the two analyses are quite different. Levine
cal reactiong1]. On the other hand, conclusive evidence forand Reynolds{9] find a rather comphcated specFrum of
' S o . rowth rates of the unstable modes(k?), with a maximum
such processes to underly spatial patterm.ng in bIO|0gIC§.| SYSor the homogeneous mode=0 and a region of complex
te.ms is re!atlvely rar.écf. [2]). The amoeboid microorganism growth rates for large enough wave numblrspredicting
Dictyostelium discoideurhas long been considered a para-

: . . - modes oscillatory in time as well as in space. In contrast,
digm for the study of biological pattern formation, and re- 5oy ot al.[5] obtain a real dispersion relatian(k?) with a

cently_ a me_chanism of self-organizgd p_atterni_ng akin tosingle maximum at nonzera Despite a number of approxi-
those in inanimate systems has been implicated in a morphnations made, the predicted dominant wave number com-
logical transition in its life cycle. When switching from uni- pares quantitatively with the dominant wave number of the
cellular to a multicellular mode of existence, cell aggregatesmerging stream pattern in model simulations. However, the
emerge from an initially uniform layer of single cells, form- findings in[4,7] appear not to be captured by the analysis in
ing a pattern of dense cell streams which coalesce into ag5], as no provision is made for the cell density dependence
gregation centerfFig. 1(a)]. A range of mathematical mod- of the cAMP wave speed.

els based on experimentally established single-cell properties The purpose of the present paper is twofold. First, we
has been employed to investigate the mechanism of cettanslate the suggestion by Vasieval. [4] and Van Oss
streaming[3—8]. Numerical simulations of these models et al. [7] into a comparatively simple model of the cAMP
demonstrate that aggregation via cell streaming is the resulwave cell interaction. The model is developed as an approxi-
of an interaction of reaction-diffusion waves of an intercel-mation to existing models of aggregation, with the advantage

lular signaling molecule, cyclic adenosine of allowing both traveling wave solutions and their stability
3'5'-monophosphatécAMP), with chemically directed cell to be established analytically. Second, we use the explicit
movement(chemotaxis results on the parameter dependence of the streaming insta-

In the simulations, it appears that this interaction causesility obtained to reexamine the previous interpretations of
an instability of wave propagation through the uniform cellthe instability mechanism suggested by simulation studies
layer that underlies the formation of the stream patternand(numerical linear stability analyses.

Vasiev et al. [4] suggest that the dependence of the cAMP  Following a brief review of the cell biology and the ex-
wave speed on cell density plays a crucial role in the instaisting models oDictyosteliumaggregation in Sec. Il, in Sec.
bility mechanism. This assertion is substantiated by recenil we derive the model of the cAMP wave cell interaction.
results of Van Osst al.[7] that show failure of cell stream- The derivation exploits a geometrical representation of the
ing in the absence of such a dependence in the model ardAMP waves as cAMP concentration contours, which is
provide experimental evidence of its existence inithgivo  coupled with the dynamics of chemotaxis. The explicit linear
system. However, the model results are not conclusive, astability analysis of its traveling wave solutions is carried out
they are obtained from numerical simulations only, and theén Sec. IV. In Sec. V, these results are contrasted with the
potential influence of various factors is difficult to discern. numerical results obtained on aggregation in the different
In order to expose the instability mechanism, linear stamodels and the framework and results of the previous stabil-
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(b)

FIG. 1. Aggregation pattern ddictyostelium discoideum in viv@) and in a model simulatiofb). (a) Left: initial stage(cell density is
essentially homogeneous, and white regions correspond to moving amoebae, marking the position of cAMP wave fronts; in darker regions,
amoebae are stationarMiddle and right: developed cell stream$0 and~120 min later, respectivelidark regions in this photograph are
depleted of amoebaeThe size of the field shown is approximately 1.5>%in5 cm (courtesy of P. Newell (b) Simulation of systems
(1)—(3). Upper panel: cell density (black, low; white, high. Lower panel: corresponding cCAMP concentration contaurBomain size 0.8
cmx0.8 cm; snapshots taken at 15, 80, and 140 min. Parameters and functional d§rmps:n/(1.2—n) for 0<n<1 anda(n)=5 for
n>1, Af(u,0)=90(0.2 +v?)(0.014+ u?)/(1+u?), D=1, g(u,v)=2.91—(1+u)v], ©=0.012,x(v)=0.5, for space, time, cell density,
and concentration scales of 2¢@n, 4 min, 7.5<10° cells/cn?, and 0.5uM, respectively(for details, sed16]). Initial conditions were a
uniform cell distribution of 0.7, randomly perturbed by upt®% at each mesh point, and a planar cAMP wave with a free tip. Note the
persistence of the resulting spiral wave geometry even after breakup of the continuous front contour. Numerical scheme: ADI for diffusion,
first-order upwind scheme for chemotaxis, reaction terms explicitx201L mesh points.

ity analyses. The comparison yields a unifying picture of theDictyostelium multicellular development is induced by lack

streaming instability. of nutrients and leads, via the aggregation of up to ddlls,
to the formation of a motile sluglike organism, eventually
Il. BIOLOGY AND MODELS OF AGGREGATION transforming into a fruiting body.

The process of aggregation has been described in detail
Dictyostelium discoideurnelongs to a group of microor- (cf. [11] and references thergirFollowing starvation, amoe-
ganisms that show aggregation of single cells to form cellubae acquire the ability to respond to extracellular stimulation
lar aggregates at some phase in their life cydl&8]. In by cAMP with intracellular synthesis and secretion of CAMP
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measured by. The total production per unit area depends
on the cell density, withe(n) being an increasing function
of n [4,5,16. Upon sensing of cAMP, amoebae exhibit de-
sensitization through conversion of the cAMP receptor in an
inactive form(and similar effects on other molecular com-
ponents of the cAMP sensing systeftt7—19. The kinetics
of desensitization and the recovery of the active form are
given by g(u,v); A=100 is the ratio of the characteristic
rates for CAMP synthesis and receptor desensitization. The
. dynamics of the cell distribution is governed by the
u advection-diffusion equatio(8) [20], accounting for random
cell movement with “diffusivity” u, and chemotactic move-
FIG. 2. Sketch of phase plane of the local kinetics of H4s. ment in response to CAMP with velocity= x(v)Vu. Here
and (2), with n=n,. The solid portiondJ* of the f-nullcline are  again the response depends on the cellular sensitivity with
stable, in the sense that nearby trajectories remain close. The dashg@y) being an increasing function of [21,22. The studies
portion is unstable. of Vasievet al. [4] and Hder et al.[5,6] employ models of
the types(1)—(3), the first one with standard Fitzhugh-

(“autocatalysis”) and also with chemotactic movement t0- Naqumo excitable dynamics and the latter two with a sim-
wards Increasing CAMP  concentration. Concomitantly, lified version of the cAMP kinetics derived from a detailed
cAMP-degrading enzymes are expressed and secreted. At }:ﬁ‘?odel of CAMP signaling 23]

onset of aggregation, concentric and spiral waves of cAM : L ,
are observed in the layer of amoebae. In the cAMP gradientﬁ1 An alterpanve a_pproach consists in replacing .B)'by .

e dynamics of discrete, particle like, cells equipped with
of the wave fronts, cell movement towards the centers of the i | CAMP d . q h tacti t rul
wave patterns takes place, alternating with a stationary pha% emal ¢ ynamics and a chemotactic movement rute

in the wave backs and in between wajag,13. Typical ;7,8 In some of this work, the dynamics of CAMP signal
cAMP wave speeds are significantly larger than the maxi- transduction have been modeled in more detail than @gs.

mum cell speedv, (c~200—600xmimin, wy~20—30 xm/ and (2), by. introducing e\{olution equations for a greater
min), and consequently, the initially uniform cell density "umber of intracellular variables.
away from the aggregation centers remains practically undis- These aggregation models were preceded by models fo-
turbed by chemotaxikL4]. However, cell movement subse- Cusing exclusively on the cCAMP wave phenom¢aa—26.
quently ceases to be “slaved” by the cAMP waves. RathefNeglecting the cell density dynamics, the cAMP dynamics
than simply collecting at the aggregation centers, amoebawere considered on an idealized stationary cell ldgerea-
organize in a pattern of branching cell streams, in which theysonable approximation for the very beginning of aggrega-
establish cell-cell contacts—a crucial process for postaggreion), and therefore these investigations serve as a reference
gative developmentl5]. This breakup of the cell layer be- point for the analysis of Eq9.1)—(3). Specifically, it was
comes visible after the passage of about 10—20 cAMP wavshown that a systematic reduction of a detailed biochemical
fronts, with a typical wave period of 5-8 miirig. 1(a)]. model yields the two-variable systefd) and (2) (with n

A minimal mechanistic model of the aggregation process=n,, a constant[23]. The kineticsf(u,v) andg(u,v) aris-
includes(i) the local kinetics and diffusion of the external ing in this reduced model are of standard excitable tg.
signal, extracellular cAMP(ii) the motile cell response to- 2 Below we will exploit this general property of Eq4) and

wards cAMP, andiii) the cell-internal dynamics of sensing () without resorting to detailed algebraic expression for
cAMP, involving fast processes of signal relay to CAMP syn-f(u v) andg(u,v).

thesis and motile machinery that can be eliminated adiabati-
cally, and slow processes changing the sensitivity of al
amoeba towards the cAMP sigridesensitization Denoting
by u(x,y,t), v(x,y,t), andn(x,y,t) the concentration of ex-
tracellular cAMP, the fraction of active cAMP cell mem-
brane receptors per cell and the cell dengitymber of cells
per arey, respectively, the model can be cast in the f¢&h

In numerical simulations based on those biochemical rate
"laws and parameter estimates from experimental data, one
finds concentric waves emanating from a periodic pacemaker
and spiral wave solutions that closely match the cAMP

waves observed at the beginning of aggregation in experi-
ments [24]. These wave patterns appear to be stable
asymptotic states of the dynamics, as is observed in a host of

(?_u:)\a(n)f(u v)+DV2u (1) other excitable media of physical or chemical orid2v].

ot ’ ’ However, the recent simulations of the aggregation model
v (1)—(3) and related models exhibit a slow transient, relative
27 ~9(u), (2)  to the time scale of wave propagation, in the course of which

the cell distribution undergoes a breakup transverse to the
cAMP wave fronts, accompanied by distortion and breakup
of the cAMP waves. A representative example is depicted in
Fig. 1(b). It clearly shows how the breakup leads to the for-
whereV = (d/dx,d/ dy). Briefly, f(u,v) is the rate of cAMP  mation of the cell stream pattern seienvivo. Thus the nu-
synthesis and degradation per cell; it depends on cAMP antherical results strongly suggest that t@mbineddynamics

on the sensitivity of the cell towards cAMP stimulation, of cAMP waves and cell movement give rise to an instability

an
E:MVZn—V-[X(U)nVU]: 3)
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which causes the growth of small initial perturbations of theinterfaces with rapidly changing valueswfwave fronts and
uniform cell distribution[in the case of Fig. (b)] or the  wave backy joining regions of practically constant, high, or
other variables. low values ofu (U* andU ™ in Fig. 2) [32]. For the motion
Linear stability analysis of periodic wave solutions of of the wave fronts, one obtains a parabolic eikonal equation;
Egs. (1)—(3) should expose such an instability. Before pro-in two dimensions, it reads
ceeding to construct a specific model incorporating the wave c,=c—DK. (4)
speed hypothesis ¢#,7], we outline the principle of such an
analysis(e.g.,[28]). For simplicity, we focus on the stability Herec, ¢, and K denote the speed of a planar front, the
of planar periodic waves of the aggregation mddat from  normal speed of a curved front and the local curvature, re-
the center of the wave pattern, both concentric waves origispectively. To construct a model of aggregation, we use Eq.
nating from a periodic pacemaker and spiral waves will ap{4) in place of Eqs(1) and(2) and couple it with the chemo-
pear as(locally) planar periodic waves Consider a system taxis equation(3) via a modified “chemotaxis rule.” The
of evolution equationsu/Jgt=F(V2u,Vu,u) on an infinite cell-density dependence of cAMP synthegis(n)], will re-
two-dimensional domain X,y) € (—%,%) X (—«,). Let  sultin a “constitutive relation”c(n).
U(z) denote a planar periodic traveling wave solution with  For wave fronts that are close to a planar front, we can
period A and wave speed; z=x—ct denotes the appropri- orient the coordinate system such that the front position is
ate traveling coordinate frame. Consider a small perturbatio@escribed byx=x(y,t); we write x to distinguish the front
aboutU, of the forma(z)exp{wt+iky}. Then the evolution of position from the independent space variable. In this case,
a will be governed by the linear system, arising from theusing the standard expressions for curvature and normal of a
linearization of F aboutU, da/dz=A(U(2);w,k)a, where curve (x(t),y(t)), the eikonal equatio4) can be recast in
A(z+A)=A(z). We require the perturbation to remain fi- the form

nite asz— *«; standard theory then shows the(tz; w,k) Dx..
itself must beA periodic. If there exists such a periodic X;=T—=5+C\V1+Xx]. (5)
solution for a pair {,k) with >0, then the underlying 1+

wave solutiorlJ is unstable towards a mode with wave num-

berk in the transverse direction. If no periodic solutions existOri inal derivation, Eq(5) describes the narrow, “boundar

for any positivew, thenU is (usually stable[29]. Let ©(z) gin: » =4 . X 1 y
h . layer” wave front, with a typical width of ordek ™" in the

denote a fundamental solution of the linear system. Then the

existence of a periodic solution requires the period-advancaé‘ppmp”‘f’lte scaling. Here we will relax this interpretation and

mappingM = ®(z+ A)®(2) ~* to have at least one eigen- assumall u contours to obey Ed5). This trivially holds for
value (Floquet multipiie} of unity a planar front, and as we will be concerned with small per-

. ; turbations around planar waves, this assumption appears rea-
In general, analytical expressions for the monodromy ma-

trix M will not be available, and for Eq€¢1)—(3) not even sonable. Thus Eq5) now defines a continuous field of

the unperturbed statd(z) can be obtained explicitly. Hence contours. To mak_e this idea epr|c!t, we interprgl as a
the above procedure, though applicable in principie, can Onlg:lrameter specifying the concentration contour, and thus for

Clearly, this is solved by a planar wavgt) = xo+ct. In the

be carried out using repeated numerical integration, so tha ach contour we have=x(xo,y,t). Specifically, we may
the parameter dependence of a potential instability cann
easily be establishedf. [6]). (Problems of similar nature are

encountered in the analysis of transverse front or pulse inst

G¢hoose the parametrizatiog=x. Introducing the traveling
Qramez=x+ ct, we transform from X,y,t) to (z,y,t) coor-
ag_inates, to obtain

bilities in chemical systems, and various attempts to circum- — = Xyy —

vent these have been maB0,31.) We now derive a sim- X= Ot 1+Xy2 +tevl+x. ©6)
plified model from Egs.(1)—(3) which allows explicit o

stability calculations for its periodic wave solutions. This equation has the plane wave solutienz, representing

a continuum of parallel contour lines, parametrized by the
traveling wave coordinate, which are stationary in the
frame.
The evolution of the cell density is governed by E8).
Intuitively, the interaction of cell movement dynamics In the present model, we replace the specific choice of the
and cAMP waves involves two crucial effects. First, propa-chemotactic cell velocity,w=y(v)Vu, with a similar
gation speed and amplitude of the cAMP waves will depend'chemotaxis rule” using the cAMP front contours. Trans-
on the local cell density. This may be important, as smalformation of Eq.(3) to (z,y,t) coordinates yields
deviations from the average uniform density will always be N=u(Ny+Nyy) —Cn,—(d,,3,) - (NW). (7)
present. Second, these inhomogeneities will in turn feed back
into cell movement(determining the cell distributionas  The orienting influence of the cAMP gradient and the peri-
cells will be attracted by the local peaks in the cAMP land-odic character of cell movement are encapsulated in the fol-
scape. To describe this interaction, the details ofuhend  lowing definition forw. When a specific CAMP contou; ,
and v fields are not strictly necessary; in principle, the marking the beginning of a wave front, reaches a location in
knowledge of theu-concentration contours of the wave the field of amoebae, the amoebae at this location start to
fronts and their cell density dependence would be sufficientmove with constant speed, for a fixed time intervalAt,
Exploiting the disparate time scales of theandv kinetics,  being equal to the duration of the wave front, perpendicular
the problem of wave motion can be reduced to the motion ofo the cAMP contours:

Ill. GEOMETRICAL MODEL
OF WAVE CELL INTERACTION
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W o where we have rescalezt=c,é. Noting thatu/cj<1, we
o —— | —| for x;=<z<x;+CAt, have neglected the term
wx(z,y,t)=9{ Vi+x; | 7%y u & (0
0 otherwise. T2 de (ﬁ)

8

Finally, the local wave speed in E(6) will be a function
of the cell density,

9

c=c(n).

In models of the typ&l)—(3), c(n) is monotonically increas-
ing. However, in more complex models employing detailed

on the right-hand side of Eq12). It can be shown that this
perturbation, albeit singular, retains the solutions relevant for
the stability of underlying wave solutions in the perturbed
system(12) [28]. In addition, we verified in sample calcula-
tions that the effect of the perturbation on the solutions of
Eqg. (12) is indeed smal[16].

Equation (12) has the principal structurdu/dé=A"*u

intracellular dynamics, one can find more complicated relafor ¢e |J.Jr and du/dé=A"u(¢) for £el;, where |j+

tionships, typically showing an increasing(n) for small

=(A(G+a)A), 17 =((+a)A(+1A), j=012...,

densities with a slight decrease or an approximately constanf=z /A, andA* are constant regular matrices. This spe-

region for higher values af [7,25]. The experimental results
in [7] show an increase with cell density. However, wave

cial, piecewise constant, case of a linear system with periodic
coefficients can be treated analytically as follows. Denote the

speed was only measured for two different densities and so {fjndamental solutions for the" intervals by®™*. They have

is difficult to infer a continuous relationshig(n).

Equations(6)—(9) constitute the model of the cell wave
interaction. It is possible to obtain order-of-magnitude esti-
mates of the parameters from the experimental literature. W
have c~400 xm/min, wy=~20 xm/min, D~10* xwm?min,
and u~70 um?min (cf. [6]); with space and time scales of
200 um and 5 min, respectively, this givesy=10, wy
=0.5,D=1, andu=10"2.

Planar periodic traveling wavesX(N) are y- and
t-independent solutions of systef@)—(9). Neglecting fast-
decaying exponentials associated with the smallnesg, of
they take the form

X(z)=z(mod A),
n{=ng/(1+wy/c) for O0<z(modA)<z;,
for zz=<z(mod A)<A,

N(z):[

No

wherez;=cAt, andA denotes the spatial period. The loca-
tions of the wave fronts are taken to kejA, j=0,+1,

+2,.... Inaddition, define
W wo for 0=<z(modA)<z, 11
(2)= 0 for z;<z(modA)<A. 1

Clearly, the uniform density is only insignificantly perturbed
by the wave fronts.

IV. INSTABILITY OF PLANAR WAVES

Now introduce the perturbation of the planar wave
solution x(z,y,t)=X(2) +X exglot+iky}, n(z,y,t)=N(2)
+n(z,y,t)expwt+iky}. Relation(9) is simply expanded
=co(Ng) +¢1(Ng)N, where we take the coordinate frame to
move withcy, z=x+cgt. From direct simulations of Egs.
(1)-(3), we can estimate,;~5 for the parameter set of Fig.
1(b) [16]. In a first approximation, we assume that cell
movement still sets in a&=j A, irrespective of perturbations
of the fronts. Under this assumption, we obtain the following
linear system for X,n):

TMCE

X
(L+W(&)/co)n

X

n
(12

—w—k?D
K2W(EN(&)

C1

dé

—w—Kku

the form @~ (&)=Z*diagle $C*, whereZ~ and\;" are

the matrices of eigenvectors and corresponding eigenvalues,
%espectively;ci are constant matrices. The fundamental
solution for a complete period can be found by match-
ing these at é=(j+a)A, requiring O ((j+a)A)

=0 ((j + @)A). From this one obtains the monodromy ma-
trix M=0®(z+A)O(z) %, as

M=(Z*C")~ 1z diagfeN (TVA}
X[Z diagle 179411z diagleM (T @A1Ct. (13

For Eq.(12) there exists a straightforward correspondence
between the spectrum @faxima) growth ratesw(k?) and
the spectrum of maximal Floquet multipliers;(w,k?),
which allows the stability properties of system to be estab-
lished in a compact manner. Realizing that the monodromy
matrix has the structurlel = M yexpg{—wA}, whereMy is the
monodromy matrix corresponding t©=0, one can easily
show that

w(k?)=A"tno(0K?). (14)

Hence all we need to calculate is the spectrunMgffrom
Egs.(10) and(13). One of the two eigenvalues lies always in
the interval(—1,1), while the modulus of the other,

a(0k?)=3[trMo+ (trPMo—4 dety)¥?], (15)

can be greater than 1. One obtains!§=[k3(A\] —\;)(u
—D)] (M HKED) (h5 k) (€01 Mt 4 glhz Dk
—(\] ) (5 +KED) (1 DN g Kiaty),
deMo=exp{—k¥ u+D)A}, and \{,=3{—k*(D+pu)
+[k*(D— u)?+4k?c;won;1¥3. Inserting these expressions
in Eq. (15), one can show that a positive growth rai€k?)

is obtained if and only if

trMo>1+deMy. (16)
This implies that an instability is associated withpassing
through 1 and, consequently(kz) being always real, pre-
dicting the growth of a stationary pattern transverse to the
wave fronts. The homogeneous mddeO0 is always a neu-
tral mode, due to the conservation of total cell number. Thus
we can expect an instability to set in at large wavelengths,
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and expanding Eq16) aboutk?=0, one finds that the peri- 0.2
odic waves are unstable towards large wavelengths for
c1N;Wy>0 and stable foc;n,wy=<0. Hence, in this simpli-
fied model, the presence of chemotactic cell movement com- 0.1
bined with a “positive” dependence of cAMP wave speed
on cell densityc;=dc(n)/dn>0, always leads to an insta- (1)(k2)
bility. This result is a clear confirmation of the assertion of
[4,7).
The actual range of unstable modes and associated growth
rates can be inferred from the dispersion relatigk?). For
sufficiently large cAMP wave period§>[k*(D+ )] %, it
is well approximated by

o
w(k?)~ 5 [—K3(D+3u)+ Vk*(D — u)?+4k?cin;wo; FIG. 3. Dispersion relationsp(k?)=A~"1na(0k?), for A=2,
(17) a=0.1,1=0.01,D=1, and in ascending ordesn,;wy=0, 0.5, 1.5,
and 2.5. The dashed curve shows the approximatitn for
sample calculations show that even for snkaind A=0(1) ~ C1N1Wo=2.5.
Eq. (17) is rather close to the actual dispersion relatioh . _
Fig. 3. [In Eq. (17) was assumed that<D as estimated tial wavelength of the emerging stream pattern has been ob-
above; the relation f0p>D is found by interchangingL tained in model Simu|ati0n\_66,16]. The model Simu|ati0ﬂs )
and D.] Relation (17) predicts a range of unstable wave appear to match the_experlmental res_ults, b_ut a quantitative
numbers B<k?<c;yn;wo/[2u(u+D)] with a single maxi- analysis of the experimental patterns is lacking at present.
mum; or, alternatively, a mode?>0 is unstable, if
C1Won1>2k2M(M+ D), (19) B. Comparison with previous stability analyses
Starting from a rather different set of assumptions, the
and stable otherwise. Typical dispersion relations are showmodel(6)—(9) yields essentially the same dispersion relation
in Fig. 3. as the previous analysis [6]. The analysis of6] did not
For realistic parameter valugs,;=5, n;=1, wy=0.5), incorporate wave front curvature explicitly; it was based on
we have a maximum growth rate of about 0.16r  following the amplitudes ofu, v, andn in Egs. (1)—(3)
0.04 min'Y) and a dominant wave number 0f3.7 (or a  perpendicular to the direction of wave propagtion as a per-
wavelength of 340um). Given a typical cell diameter of turbation of the periodic planar wave is being introduced.
about 10um, the analysis thus predicts the formation of The close correspondence between the results of the two
clusters of a few cells. This happens on a relatively slow timganalyses also extends to the instability criteria. By means of
scale; the linear doubling time of the patterning amplitude is2 rough, qualitative, “caricature” of the numerical stability

equivalent to the passage of three to four cAMP pulses.  calculations of Eqs(1)—(3), in [6] the following instability
criterion was derived: Periodic waves are unstable if

V. DISCUSSION PNoxo>2u(k?D + yng). (19)

A. Comparison with model simulations Herep, ng, xo, andy denote a measure of the production

The analysis can be thought of as investigating a situationate of cAMP, the unperturbed initial cell density, the
in which stable periodic waves exigt.g., forwyg=0) and chemotactic coefficienfbeing proportional to cell spegd
then a parameter is switched to render the waves unstabénd the degradation rate of cAMP; the meaninguadnd D
(wg>0). The natural situation of aggregation is of courseis the same as in the present model. Thus in both models it is
somewhat different. Here the waves are “switched on” andthe competition between the combined effect of CAMP pro-
start to propagate from distinct sources, and the combineduction and chemotactic cell movement, on the one hand,
dynamics of cAMP signaling and cell movement are un-and the dissipative effects of random cell movement and
stable from the outset. Therefore the instability develops asAMP diffusion[and cAMP degradation in Eq19)], on the
the wave patterns expand. It will become visible first in theother, that determines whether the streaming instability oc-
neighborhood of the aggregation centers, propagating outurs.
wards with the waves. This conjecture is borne out both by The two approaches to stability analysis in the present
experiments and model simulatiofSigs. 1@ and Xb), re-  paper and if6] therefore emphasizsomplementaryeatures
spectively. of the instability mechanism, and the exclusive focus on

The stability analysis is confined to patterning perpen-cAMP wave front curvature ih4,7] appears somewhat one
dicular to the direction of wave propagation and does nosided. For streaming to occur, it is important that local
address the issue of pattern selection on the two-dimensionaAMP synthesis increase with cell density. This will mani-
domain. However, it is intuitive that the distortions of the fest itself both in local front curvaturéi.e., propagation
wave fronts cause continuous cell streams to form. The prespeed and cAMP amplitude.
ence of a dominant wave number provides a recipe for a Itis not straightforward to see where the discrepancy with
branching network of cell streams in the quasicircular geomihe results if9], and in particular the very different shape of
etry of an aggregation territory. Evidence of a dominant spathe dispersion relation, arises, since they are obtained by a
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numerical procedure. In addition, the detailed forms of thecollect in clusters separated by a characteristic distance by
chemotaxis terms differ in the models ¢9,6] and the responding chemotactically to a signal they emit in a con-
present model. 1(9] separate dynamics are assumedadn  tinuous fashior.In this sense, the streaming instability is a
the wave frontsdw/dt=—Tw+kVu, while in [6] wxVu  chemical-wave-driven chemotactic instability. This is further
in the wave fronts. Here E8) corresponds essentially to underlined by another feature of aggregation, namely, the
w=woVu/||Vul. Hence in all three models the direction of progressive “coarsening” of the initial pattern, seen bisth
cell movement follows the cCAMP gradient, but in the presentyjyo and in model simulatioricf. Fig. 1). Such a coarsening
model the speed is constant rather than gradient dependeRks also been observed in simulations of a discrete-particle
(This latter as:?‘umptlon in the present model is forceq by th%malog of the Keller-Segel systef84]. Similar phenomena
contour description of the. cAMP waves whlch retains theg e found in other types of aggregative patterning, such as
direction but not the magnitude of the chemical gradients; endritic growth[35]
constant “intrinsic speed may actual_ly be more realls'_uc Recently, there have been experimental studies of other
biologically) This may account for differences in detail. . : . . C
microbial systems in which chemotactic instabilities are
However, the agreement of the results of the present analyslu?( . ) . .
ikely to be involved in the formation of collective cell pat-

with that of[6] together with the evidence from model simu- 36-39. M th deli h ted
lations argues strongly in favor of a generic single-humpeiems[ —38. Moreover, the modeling approach presente
ere may be applied to other excitable systems in which

dispersion relation. X :
wave propagation alters the state of the medium.
C. Conclusion

The “pattern” of the instability criterig 18) and(19) em-
phasizes the connection of the streaming instability with the T.H. thanks Markus Ba Matthias Bode, and Jonathan
chemotactic instability found in a simpler system by Keller Sherratt for fruitful discussions, and gratefully acknowledges
and Segel33]. [In the Keller-Segel system, actively moving support from the Boehringer Ingelheim Fonds and Balliol
particles, such as cellglescribed by a continuous dengjty College, Oxford.
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