Pattern Formation in Lepidopteran Wings

Two different kinds of patterns have been studied in lepidopteran wings — color pattern
and the spacing pattern of scale cells. These patterns exist on two different spatial
scales. In the early stages of adult development, precursors of scale cells differentiate
throughout each epithelial monolayer and migrate into rows that are roughly parallel
to the body axis and regularly spaced about 50 Pim apart. We develop a mathematical
model for the formation of these parallel rows of scale cells in the developing adult wings
of Lepidoptera. We show that the inclusion of biologically realistic adhesive properties
of cells, as specified by their positions, is sufficient to generate in a robust manner a
series of scale rows along the length of the wing in the correct orientation. We next
look briefly at the biology of color pattern formation, and we review some mathematical
models for this phenomenon, which, in contrast to the spatial arrangement of scale cells,
involves interactions among cells that operate over longer distances.
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1 INTRODUCTION

Lepidopteran wing markings are among the most colorful examples of
pattern formation in nature. Thousands of scale cells cover moth and
butterfly wings in highly ordered and intricate patterns, and individual
scale cells can be easily seen through a simple magnifying glass. Two
different kinds of patterns are associated with these scales — color pattern
and the spatial arrangement of scale cells. Color patterns have attracted
the interest of taxonomists and developmental biologists for decades and
have also provided some of the most dramatic examples of morphological
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diversity. The colors on wings are imparted by the colors of scale cells
that cover the entire wing. The color of scale cells can be due to the
presence of chemical pigments,! or it is sometimes due to structural
colors that arise from the interaction of light beams with the surfaces of the
intricately sculptured scales.!?] The color patterns of wings are, in general,
finely-tiled mosaic patterns produced by overlapping, monochromatic
scales and are characteristic of each lepidopteran species. On the other
hand, the arrangements of scale cells do not show species-specific
patterns, but they are, in general, common to all lepidopteran wings.
The arrangement of scale cells has a number of notable characteristics.
Firstly, precursors of scale cells in the developing adult wings rearrange
to form nearly parallel rows along the anteroposterior axis of the wing that
are maintained throughout and after adult development. Secondly, these
rows are arranged at regular spatial intervals along the proximodistal
axis. Thirdly, these rows are continuous across the veins in the wing, and
they are also continuous around the dorsal and ventral monolayers of the
wing. The color patterns of wings are in turn formed by the colors of
these regularly-arranged scale cells within each monolayer.

Between pupation and the beginning of adult development, the
epithelial cells of the wing are undifferentiated and morphologically
homogeneous. About one to three days after pupation (the time depends
on the insect and the temperature at which it develops), epithelial cells
retract from the pupal cuticle and begin the cell divisions, movements,
and morphological differentiation associated with adult development. At
this time two cell types can be readily distinguished. The smaller cells are
generalized epithelial cells (GECs) of the wing, and the larger cells are
scale precursor cells (SPCs) that differentiate from GECs at the inception
of adult development. SPCs are arranged in space such that they are
separated from each other at regular intervals by GECs. Within a few hours
of differentiation of the isotropically-arranged SPCs, these cells become
polarized along the proximodistal axis of the wing and begin to align into
rows parallel to the anteroposterior axis of the wing. This row formation
continues until a stable spatial perodicity of rows is established (Figure 1).
These parallel rows of SPCs that are established at the beginning of adult
development maintain their arrangement throughout adult development
and represent the same rows of scales that appear on the surface of the
adult wing.[>*] The density of SPCs increases during the period of cell
rearrangement in the developing adult wing, while the total number of
cells in the wing remains almost constant during cell rearrangement.
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FIGURE 1 Surface views of the dorsal epithelial monolayer of the moth Manduca
wing at various times after retraction of the epithelial cells from the pupal cuticle.
Proximal — distal = upper left — lower right; anterior — posterior = upper right —
lower left. (a) At the time of epithelial retraction from the pupal cuticle (2.5 days after
pupation), primordial scale cells (dark, circular areas) are distributed in an apparently
irregular pattern within the epithelial sheet. The cells have no obvious polarity. (b)
Primordial scale cells begin to align in anastomosing rows that lie parallel to the anterior-
posterior axis of the wing (3.5 days after pupation). (c) Once the alignment of cells is
completed (5 days after pupation), scale cells begin their outgrowth in a proximal to
distal direction. A stable periodicity of rows has been established (from Ref. 4 with
permission, bar = 50 pum).



The increase in the population of SPCs is around 20% of the total cell
population with the exact value depending on the particular insect.l>~!
The spatial arrangement of scale cells in periodic rows has traditionally
not attracted the attention that the study of lepidopteran color patterns has
received. Recently, however, progress in understanding the cellular and
molecular basis of pattern formation has encouraged a fresh examination
of processes involved in generating biological periodicity.[8] In the next
section, we summarize what is known about the cellular and molecular
processes involved in parallel row formation. In Section 3, we develop a
mathematical model with origin-dependent adhesivity to account for the
orderly rearrangement of cells during the formation of the parallel rows
of scale cells. In Section 4, we look briefly at the biology of the color
pattern in lepidopteran wings, and we also review mathematical models
for color pattern formation presented so far. In the last section, we discuss
general issues related to pattern formation in lepidopteran wings.

2 MECHANISMS FOR PARALLEL ROW FORMATION OF
SCALE CELLS

(1) Cell rearrangement occurs in a monolayer

There are two monolayers (dorsal and ventral) of epithelial cells in
each lepidopteran wing. These two monolayers are separated by an
extracellular space, and cell rearrangement in the developing adult wing
has been assumed to occur autonomously within each monolayer without
influence from the other monolayerl”-?! (Figure 2). Only during a brief
period of adult development in the moth Manduca do the basal laminae
of the two monolayers break down and transiently form contacts along
their basal surfaces. These findings suggest that the process of scale
row formation in the lepidopteran wing does not involve complex three-
dimensional interactions among epithelial cells, but instead involves
simpler two-dimensional interactions.

(2) Lateral inhibition probably forms the uniform pattern of SPCs

Extrapolating from what is known about the generation of patterns in
the integument (epithelial cells and the cuticle secreted by these cells) of
Drosophila, it is possible to envisage how the regular spacing patterns of
SPCs are initially established in lepidopteran wings. The initial isotropic
spacing of SPCs is strongly suggestive of patterns generated by cells
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FIGURE 2 The dorsal and ventral monolayers of a moth wing 4 days after pupation.
Each monolayer is attached to a convoluted basal lamina (arrowheads). A large
extracellular space containing hemocytes separates the two monolayers (from Ref.
4 with permission, bar = 50 pm).

of the Drosophila integument. Bristles represent the structures of the
fly integument that are developmentally equivalent to the scales of
lepidopteran wings. Genetic analysis of regular bristle patterns in the
integument of Drosophila has revealed most of what we know about
the process of generating these spatial patterns of the integument.[10-13]
Bristle patterns arise in a stepwise fashion. First a general area is specified
in which all cells in the area have the competence to become bristle
precursors and then one of these several competent cells is specified to
be a bristle precursor cell. Genes of the achaete-scute complex as well as
trans-acting regulators of the complex are involved in specifying the group
of equivalent cells from which only one cell will be singled out to become a
bristle precursor. This cell then inhibits all nearby cells of the equivalence
group from realizing their bristle cell potentialities by a process referred
to as lateral inhibition.!'#15:3-16] The inhibitory signal emanates from the
bristle precursor cell. What molecule(s) make up the inhibitory signal is
still a mystery, but several loci are known to be required for transmission
of the signal. Two of these loci (Notch and Delta) encode cell surface
proteins and probably mediate lateral inhibition via cell contacts.

(3) Long-range interaction mediated by basal processes

Scanning electron microscopy has been used to visualize the movement
of the distinctive SPCs at the surface of the wing monolayer. At the same
time, staining of individual cells within the monolayer of coherent cells



FIGURE 3 Insome areas of the wing, only primordial scale cells stain. On day 4 after
pupation these cells have begun to align in rows that are regularly spaced along the
proximodistal axis. Several basal processes can extend from a given cell. No preferential
orientation of processes is evident; they extend along transverse rows as well as between
rows (from Ref. 4 with permission, bar = 25 um).

has allowed the first detailed visualization of cellular events beneath the
surface of the monolayer.[*"17] The processes of an individual cell can be
traced to reveal the complexity of its interactions with surrounding cells.
As the alignment of SPCs into rows proceeds, extension of processes
from the basal surfaces of the epithelial cells simultaneously occurs.
These processes can extend for distances of several cell diameters and
can establish contacts not only with adjacent cells but with cells that
are four or five cell diameters away (Figure 3). The extension of basal
processes is coincident with the surface rearrangement of cells; as soon
as the SPCs have assumed their final positions in the wing monolayer and
have begun to extend their polarized scale processes, all cells within the
monolayer retract their basal processes. These complex interactions that
occur at cell surfaces as cells rearrange and extend basal processes imply
that adhesion/recognition molecules on cell surfaces provide information
for specifying the positions that cells ultimately adopt.

(4) Origin-dependent cell adhesion

Grafting experiments within the pupal wing monolayer of Manduca have
implied that differences in adhesive properties of epithelial cells exist
along the proximodistal axis of the wing. These experiments have revealed
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that the greater the distance separating host and graft cell populations
along the proximodistal axis, the more circular and constricted the
interface between graft and host cells.['82%] These results demonstrate
that the inferred adhesive properties of cells depend on their position
and the differences in these adhesive properties of graft and host cells
are a function of the distance between their original positions along the
proximodistal axis of the wing.

(5) Short-range interaction mediated by cell adhesion proteins

The temporal and spatial patterns of distribution of two surface proteins
have also been examined in the wing monolayers of developing adult
Manduca. These two proteins are fasciclin II and neuroglian, both
members of the immunoglobulin superfamily. Each protein has a well-
defined pattern of expression, and each of the two cell types of
the wing monolayer—GECs and SPCs—shows a unique pattern of
expression during the period of cell rearrangement. As cells rearrange
they differentially express these proteins on their lateral surfaces and
basal processes; but before and after the rearrangement of cells,
cells uniformly express neuroglian throughout the wing and express
fasciclin IT on only a small subset of wing cells.[”-?] The counterparts
of these proteins in Drosophila are clearly involved in homophilic
adhesive interactions when assayed following their expression in
normally nonadhesive Drosophila S2 tissue culture cells.[>!->?] Although
neither fasciclin Il nor neuroglian have been assayed for their ability
to participate in heterophilic adhesive interactions, their vertebrate
counterparts are known to participate in heterophilic interactions.[23-24]
Heterophilic as well as homophilic interactions among the surface
proteins expressed during cell rearrangement could provide a plethora
of adhesive interactions that are instrumental in establishing the final
scale patterns of lepidopteran wings.

3 A MODEL FOR PARALLEL ROW FORMATION OF SPCs WITH
ORIGIN-DEPENDENT ADHESIVITY

Based on observations of row formation, we present a general model
for cell rearrangement in which cells move up gradients of adhesivity.
Since cells can apparently respond to non-adjacent neighbors during the
time that they extend basal processes and contact cells that are several cell
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diameters away, we use integrals to represent the local average adhesivity
to which a cell responds.

3.1 Integral Representation

In this model we shall assume that there is only one cell type of importance
(SPCs) and that two cells interact with each other according to the distance
between their original locations as well as the distance between their
current locations.

Letn(x, a, t) signify the cell density at position x = (x, y) at time ¢ for
the cells of a given adhesivity a that originate from a position that is & units
of distance away from the body axis (the base of the wing). Suppose that
cell movement is due to two processes, diffusion and convection (directed
movement) in response to gradients of adhesivity. Due to the evidence for
long-range interactions we shall consider a cell to respond to gradients in
a spatially averaged adhesivity. As an evolution equation for cell density
in space we write

nn=Dv’n—v- [nc, (3.1)

where D is the diffusion coefficient. The convection velocity, ¢, is given

by
e=0Cwy [fff n(x—y,a—s)w(y,s)dsdy d}-‘z}, (3.2)

where X = (x,y) and y = (y1,y2) are position variables, and C
is a positive constant. The integral represents the spatially averaged
adhesivity. The degree of adhesivity as a function of distance, y, and
adhesivity distance (distance in adhesivity space), s, are incorporated in
the kernel w(y, s). For simplicity, we shall suppose that this is separable
(i.e., that the effects of distance in physical and adhesivity space are
independent of each other). We therefore write

w(y,s) = g(y)h(s). (3:3)

We assume that g displays rotational symmetry in the two spatial
dimensions, and / is symmetric in the adhesivity difference. We assume
that there is a threshold in adhesivity marking a transition from attraction
to repulsion. Also, the spatial kernel is such that very short range attraction
is weaker than middle distance attraction. This reflects the fact that
scale cells appear not to come into contact with one another during
reorganization.
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3.2 Mathematical Discussion of the Model and Numerical Simulation

Here we briefly study the mathematical model proposed above for
describing the mechanisms underlying the spatial arrangement of SPCs in
lepidopteran wings. Our goal is to investigate this model mathematically
and numerically to test if it generates the parallel row pattern observed in
the wing.

Using the assumption that |y| < 1 and |s| <« 1, we can simplify Eq.
(3.1) by Taylor expanding Eq. (3.2):

ne=Dvn—Cv-[nv@m+yvin+pBna+06*+Iy*)] (3.4

where

B = 1f53h(.s)ds. (3.5)

2
1
F=3 f f yfg(y)dn dy. (3.6)

The parameters f and y are related directly to the effects of cell adhesion
and distance, respectively.

This procedure reduces the integro-partial differential equation (3.1)
to a partial differential equation and we carry out all our analyses on
the latter. We consider the following two cases: origin-independent cell
adhesion and origin-dependent cell adhesion.

Origin-independent cell adhesion ~We first consider a simple version
of Eq. (3.4) in which we neglect the O(s?, |y|*) terms, and assume that
B L y, that s,

n;:van—va[nv[n+VV2n}]. (3.7)

Hence, this version of the model ignores the effect of any origin-dependent
cell adhesion mechanism. We impose periodic boundary conditions.

To determine the ultimate spatial patterns generated by the nonlinear
model Eq. (3.7), we investigate the behavior of the amplitude functions
in large time through a weakly nonlinear analysis. We use a singular
perturbation technique to study the weakly nonlinear behavior of the
amplitude functions in the vicinity of the primary bifurcation point. This
analysis reveals that patterns of rows (stripes) and spots are possible.
More precisely, if the uniform steady state is perturbed by a small initial
random perturbation, then, depending on the parameter values, either a
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stable striped spatial pattern or a stable spotted pattern will be generated
eventually. However, we cannot determine the orientation of the striped
pattern. In fact, stripes parallel or perpendicular to the body axis are
equally likely (for full details, see Ref. 25).

Numerical simulation Here we numerically solve the model Eq. (3.7)
by using a finite difference method with the aim of verifying our analytic
predictions. The model parameters used in the numerical simulations
are chosen to satisfy the conditions for generating spatial pattern (see
Ref. 25, Table 1). We use a randomly distributed cell density as our
initial condition and impose periodic boundary conditions. We choose
the critical parameter values for C and D at the bifurcation point to be
C. = 0.006, D, = 0.09C,, and y = 0.0228 which satisfy the condition
for generating stripes. The numerical results obtained are shown in Figure
4, where the cell density distributions are shown at r = 0, t+ = 2,
and + = 40. The lighter color represents higher cell density while the
darker color represents lower cell density. The results clearly show that a
striped pattern is generated by our model equation, in accordance with the
results of our weakly nonlinear analysis (see Ref. 25, for a more detailed
numerical study).

The effect of origin-dependent adhesivity The above study shows that
the simple, origin-independent adhesivity model exhibits three possible
arrangements of SPCs: rows, either parallel or perpendicular to the body
axis, and spots. However, only rows parallel to the body axis are observed
in the actual wing. Here we investigate the effect of including origin-
dependent adhesivity in the model. With the origin-dependent adhesivity
term the model equation becomes

n=Dv'n—Cv-[nv®+y v n+Bnu)l (3-8)

Note that n(x, a, t) is the cell density at position x = (x, y) at time
t for the cells that originated a distance a away from the body axis.
We assume that n,, = Eny,, where E is a proportionality constant.
The motivation for making this assumpticn is as follows: Note that the
Y v2n = y(ne + n,y) is a long range diffusion term. With the origin-
dependent effect, cells are less likely to diffuse in the x-direction (i.e.,
perpendicular to the body axis), so Bn,, is acting as a negative diffusion
term in the x-direction and reduces the net diffusion in the x-direction.
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Periodic Boundary Conditions
(b) t=2

FIGURE 4 Results of simulation, where the cell density distributions are shown at
(a)t = 0,(b) ¢ = 2, and (¢) + = 40. The lighter color represents high cell density
while the darker color represents low cell density. We use a randomly distributed cell
density as our initial condition and impose periodic boundary conditions. The critical
parameter values for D and C at the bifurcation point are C,. = 0.006, D, = 0.09C,,
and y = 0.0228.

Therefore, Eq. (3.8) becomes
n=DVn—-Cvy-nv@m+yvin+8ny)), (39
where f* = EfB. Note that although B* is negative, we assume that
vy + B* = 0, i.e., the effective diffusion in the x-direction is still positive.
When we add origin-dependent adhesion to the simple model Eq. (3.7),

further nonlinear analysis shows that rows predominate in a larger region
of parameter space. More importantly, the rows are predictably aligned,

79



that is, stripes can only lie parallel to the body axis under the effect
of origin-dependent adhesivity. We also note that as long as the effect of
origin-dependent adhesivity is sufficiently strong, spotted patterns cannot
be generated. Our analysis is based on perturbations about a homogeneous
steady state (see Ref. 25). We recognize that other factors such as initial
and boundary conditions could potentially influence orientation of rows,
but such additional factors are not necessary in this case.

4 COLOR PATTERN AND ARRANGEMENT PATTERN OF
SCALE CELLS

4.1 Color Pattern Formation on Lepidopteran Wings

(1) Pattern formation mechanisms

As noted in the Introduction, there exist two different kinds of patterns in
lepidopteran wings — color pattern and the spatial arrangement of scale
cells. It is known that the formation of the color pattern is independent
of the pattern of scale cell arrangement, even though the color patterns
are formed by the colors of regularly-arranged scale cells. The time
scales on which these patterns are generated are different from each
other. The pattern of scale cell arrangement occurs in the early stages
of adult development, while color patterns appear in later stages of adult
development after completion of cell rearrangement.!'2°] In addition, the
spatial scale of color pattern extends from tens to several hundreds of cell
diameters, and no cell migration occurs during the period of color pattern
determination. On the other hand, direct cell-cell interactions through
filopodia during the period of cell rearrangement can only extend several
cell diameters at most, which is very short relative to the scale of the
color pattern (see Section 2 for details and Figure 3). Thus, a mechanism
different from that proposed in Section 3 to account for the generation
of scale spacing patterns is probably operating in the case of wing color
patterns. Diffusion of small molecules through gap junctions is assumed
to be a feasible mechanism for long distance cell-to-cell communication
involved in forming color patterns.[!]

(2) Characteristics of color patterns

The color patterns on wings are species-specific, and they are often
used for identification of species, while the arrangement of scale cells
is not species-specific. Color patterns of dorsal and ventral monolayers
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of wings are seldom alike in most Lepidoptera. They are also affected
by the veins. However, due to the pioneering work of Schwanwitsch(27]
and Siiffert?®] on the ground plan for nymphalid butterfly color patterns,
the complicated patterns on lepidopteran wings can be represented as a
composite of a relatively small number of pattern elements. For example,
(1) the symmetry system consists of color bands that run anterior to
posterior across the wing; (2) the border ocelli system consists of a series
of eyespots in the distal half of the wing; (3) the marginal bands are
a pair of narrow bands near the wing’s distal margin; (4) the dependent
patterns are venous stripes, that is, a color pattern of the outline of the wing
veins. This shows that the wing veins serve as the source of determination
for this pattern element; (5) the ripple patterns run perpendicular to the
proximodistal axis of the wing in a manner similar to the ripples in
windblown sand.[?%1]

In spite of these simplifications, the problem of color pattern formation
in wings is still not fully resolved. A few theoretical or mathematical
models for color pattern formation have been proposed to account for
specific features of the pattern, and we review these briefly in the next
section.

4.2 Models for Color Pattern Formation

(1) Diffusion model

A simple model for the development of the commonly observed
crossbands of pigmentation (see (2) in Section 4.1) shortly after pupation
was proposed by Murray (see Ref. 29 or 30 and references therein).
This model is based on a diffusing-morphogen-gene-activation system
and extends the idea of a determination stream proposed by Kiihn and
von Engelhardt,3!] namely, that the anterior and posterior margins of
the wing are sources from which there emanates a wave of morphogen
concentration. Murray’s model hypothesizes that the morphogen,
concentration S, activates a gene product, concentration g, which, in turn,
determines color pattern. The model, in non-dimensionalized form, is

S, = v S —ykS, (4.10)
dg k2g?

= =y(Ks — kg ), 4.11
T ( 1§+ 7 g s (4.11)

where y, k1, k2, k3 and k are positive constants. The first equation models

81



y'dg/dt

FIGURE 5 (a) Biochemical switch mechanism with typical bistable kinetics such as
from Eq. (4.11). The graph shows y~! dg/dt against g for appropriate ky, k3, k3 and
several values of S. The critical S is defined as having two stable steady states for
S < S. and one, like g = g3, for § = 5. (b) Schematic behavior of g as a function
of t from Eq. (4.11) for various pulses of § which increase from § = 0 to a maximum
Smax and then decrease to § = 0 again. The lowest curve is for the pulse with the
smallest Sypqy. The final state of g, for large time, changes discontinuously from g = 0
to g = g3 if Sy passes through a critical threshold S, (= S;) (from Ref. 29).

diffusion and linear degradation of §, where y is a scaling parameter.
The second equation models production and linear degradation of gene
product. The interaction occurs via the activation of g by S. The kinetic
parameters in the g equation are chosen so that the dynamics exhibit
switch behavior (see Figure 5).

The equations are solved either on a sector of a circle, representing a
wing, or a rectangle, representing a wing cell (i.c., the area of the wing
delimited by two adjacent wing veins). The boundary conditions for S
are a mixture of zero flux on some boundaries which are impermeable to
S and fixed on other boundaries to represent sources of S.

Murray showed that this simple model could account for a wide variety
of observed patterns. For example, it models patterns consistent with
those observed after microcautery surgery. He also showed that for a
given amount of § released, the width of the pattern on either side of the
boundary is fixed for a given set of parameters. This is consistent with the
observation of Schwanwitsch.?”! Varying the scale and geometry of the
model wing leads to more complicated patterns that are consistent with
those observed on certain butterfly and moth wings, while considering
the model on a wing cell and varying the source strengths also leads to
commonly observed patterns.

(2) Composite diffusion—lateral-inhibition model
Nijhout!*2] presented a model for color patterns that incorporates the
idea of sources and sinks of chemicals (extending the diffusion model
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of 4.2.(1)), where the positions of the sources and sinks are determined by
the concentration of an activator in a lateral inhibition reaction-diffusion
model. He first presented a database of patterns occurring in the butterfly
family Nymphalidae, that is, a catalogue of patterns that a realistic model
must be able to reproduce. Experimental evidence suggests that color
pattern formation is a two-step process: firstly, a spatial distribution of
sources and sinks of pattern organizers is set up (during the larval stage).
Secondly, these organizers induce colour patterning in their surroundings
(completed during the early pupal stages). Nijhout solved the inverse
problem, that is, he first investigated the distribution of sources and sinks
that are sufficient to produce the required color patterns. Then, he used
the lateral inhibition model of Meinhardt!33] to generate this distribution.
The model has the form

ca?
a = . i akg + Dq (axx + ayy) , (4.12)
hy = ca® — hky + Dy, (hxx + hyy) , (4.13)

where a and h are the concentrations of activator and inhibitor,
respectively, Dy, Dp, ¢, k; and kj are positive parameters. These
equations model diffusion and linear degradation, with autocatalytic
production of both a and h by the activator @, and inhibition of a
production by the inhibitor h.

By imposing sources of activator on the boundaries, Nijhout showed
that this model, for different values of boundary source strengths,
D,. Dy, k, and ky, can produce activator profiles which can determine
the necessary distribution of sources for the second step of the color
patterning process. As pointed out by Nijhout, the lateral inhibition model
suffers from a sensitivity to parameter and scale changes that cannot be
easily reconciled with experimental observation. Such sensitive behavior
of reaction-diffusion models is well-known (see, for example, Ref. 34)
and has been the subject of much theoretical study. It has been shown that
appropriate modification of the diffusion coefficients can greatly increase
the robustness of patterns to changes in scale,13%] while careful control of
the boundary conditions can also enhance pattern robustness to changes
in scale and parameter values.[3°]
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5 SUMMARY AND DISCUSSION

Several models have been proposed for spatial pattern formation in
biology (for a review, see Murray 30, 1993). The vast majority of these
models consist of coupled systems of partial differential equations, and
they have been extensively studied and shown to exhibit a vast range
of spatial patterns. In the first part of this paper, we considered spatial
arrangement of scale cells in lepidopteran wings based on a number of key
biological observations, and we developed a totally new model for pattern
formation consisting of only one equation, of integro-partial differential
type. We have shown that a simple version of this model can exhibit stripes
or spots, but that a more complicated version can exhibit only stripes
of a specific orientation that is consistent with biological observations.
Single equation pattern formation models have also been developed in
the mechanical theory of pattern formation (see Ref. 30 for a review of
this theory) by Murray!3”! and Zhu and Murray.[*®!

One of the key questions in biological pattern formation is how does a
particular pattern develop in a robust and reliable manner? For example,
reaction-diffusion systems,!*”] can exhibit spots or stripes on two-
dimensional domains. It has been shown that the form of the nonlinearity
is crucial in determining which of these patterns stabilizes.[**~*3] More
recently, Varea et al.1**] have shown that spatially varying parameters can
be imposed to select the formation of stripes and control their orientation.
In this paper, we have provided a novel mechanism (origin-dependent
adhesivity) for selecting the formation of stripes over spots and orienting
the stripes in the correct direction.

We have assumed that the arrangement of scale precursor cells in
lepidopteran wings proceeds stepwise in time and that it consists of two
different pattern forming processes, that is, uniform pattern formation of
SPCs as the first step, noted in Section 2 (see also Figure 1(a)) and as
the second step, the formation of parallel rows.[*] In relation to parallel
row formation of scale cells, two other problems still remain, which we
would like to note next. The first concerns the mechanisms that generate
the uniform pattern of SPCs prior to parallel row formation. It has been
suggested that the isotropic spacing pattern of SPCs can be generated
through lateral inhibition—a type of cell—cell interaction whereby a
cell that adopts a particular fate inhibits its immediate neighbors from
doing likewise. The transmembrane proteins Notch and Delta (or their
homologues) have been identified as mediators of the interaction—Notch
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as receptor, Delta as its ligand on adjacent cells. Recently, a simple and
general mathematical model of such contact-mediated lateral inhibition
has been presented, based on the Delta—Notch mechanism of lateral
inhibition.[*®] In our numerical simulations in Section 3, we have not used
a uniform pattern of SPCs as initial condition, but instead have imposed
arandomly distributed cell density of SPCs. However, it should be noted
that these random perturbations can be made extremely small without
affecting the results of the simulations, and they reflect the fluctuations
that one would expect in a biological system of this type. The second
problem concerns cell proliferation during the rearrangement of cells. As
noted in the Introduction, SPCs continue to differentiate from generalized
epithelial cells during cell rearrangement. The increase in population of
SPCs is around 20% of the total cell population. The exact value depends
on the insect.!>**”] We have not included this in the model. It would result
in a production term which would not affect the movement dynamics
and would therefore have only a quantitative influence on the patterning
behavior of the model; the main results of this paper would still hold.

Regarding color patterns of wings, it would be hard to construct a
general model that could account simultaneously for all features of
the patterns, because they involve several diverse pattern elements as
noted briefly in Section 4.1. Some models have been presented based on
diffusion and reaction-diffusion schemes. They are, however, all directed
at modeling specific features in specific species that represent realistic
replicas of such pattern elements as central symmetry system, eyespot
morphogenesis, and intervenous stripes.[2**¥] What we should develop
next is a comprehensive model that can explain the causal basis of the
patterning in any species of Lepidoptera.

In summary, the formation of color markings and the arrangement
of scale cells in lepidopteran wings involve many general aspects
of pattern formation including cell interactions operating on different
temporal and spatial scales. The proposed models reflect this and lead
to different types of systems of equations. In this paper we have tried
to illustrate how these approaches are beginning to address some of the
fascinating and fundamental problems concerning pattern formation in
lepidopteran wings.
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