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Abstract

Acidic pH is a common characteristic of human tumours. It has a significant im-
pact on tumour progression and response to therapies. In this paper, we develop a
simple model of three-dimensional tumour growth to examine the role of acidosis
in the interaction between normal and tumour cell populations. Both vascular and
avascular tumour dynamics are investigated, and a number of different behaviours
are observed. Whilst an avascular tumour always proceeds to a benign steady state,
a vascular tumour may display either benign or invasive dynamics, depending on
the value of a critical parameter. Analysis of the model allows us to assess novel
therapies directed towards changing the level of acidity within the tumour.
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Modelling

1 Introduction

The tumour microenvironment is significantly different from that of normal
tissue. Marked fluctuations can be seen in glucose, lactate, acidic pH and oxy-
gen tensions. These variations have their roots in poor perfusion and metabolic
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changes. The chaotic vasculature of tumours creates an unbalanced blood sup-
ply and significant perfusion heterogeneities. As a consequence, many regions
within tumours are found to be transiently or chronically hypoxic (oxygen de-
ficient). Cells respond to periods of hypoxia by converting to anaerobic respi-
ration, or glycolysis, which in turn produces lactic acid and brings about lower
tissue pH. However, the pioneering work of Warburg (1930) showed that tu-
mour acidification can occur independently of hypoxia. The increased reliance
on glycolysis to produce energy in many aggressive tumours occurs even in
the presence of sufficient oxygen (Vaupel et al., 1989; Warburg, 1930). This
constitutive adoption of increased glycolysis, known as the glycolytic pheno-
type, is likely to have evolved in response to Darwinian selection dynamics in
which phenotypes best suited to their microenvironment have a proliferative
advantage over their non-transformed counterparts. Hence tumour acidifica-
tion is an intrinsic property of both poor vasculature and altered tumour cell
metabolism.

Cancer cell populations are extremely heterogeneous, displaying a wide range
of genotypic and phenotypic differences (Fidler and Hart, 1982). For example,
studies of clinical breast cancers have shown that every tumour cell exhib-
ited a novel genotype (Kerangueven et al., 1997). As a result, no prototypic
cancer cell can be defined. It is likely that several of the lethal phenotypic
traits of cancer, such as invasion and metastasis, are not the direct result of
genetic changes, but rather arise from the unique physiological environments
of tumours. Tumour hypoxia and acidity, for example, significantly affect the
treatment and progression of cancer. These effects can either be directly me-
diated by low pH or low pO2, or they can result from selective pressure that
these parameters place upon cells in these hostile environments. Hypoxia and
acidity are not simply phenomena of cancer growth, but may be in fact es-
sential intermediates in the progression from benign to metastatic growth.
Acidity, in particular, has been shown to have three clear effects on tumour
phenotype: resistance to chemotherapy (Raghunand et al., 2001), increased
mutation rate (Morita et al., 1992) and increased invasion (Martinez-Zaguilan
et al., 1996).

Non-linear processes dominate the way in which tumour cells interact with
their microenvironment. It is clear that the intuitive, verbal reasoning ap-
proaches favoured by many oncologists are insufficient to describe the result-
ing complex system dynamics. Nor can these approaches keep pace with the
vast amounts of oncological data being published each year in response to the
rapid technological advances in molecular biology. Rather, experience from
other areas of science has taught us that quantitative methods are needed
to develop comprehensive theoretical models for interpretation, organization
and integration of this data (Gatenby and Maini, 2003). Once thought of
as too simplistic to describe complex tumour phenomena, we now see that
mathematical models, continuously revised by new information, can be used
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to guide experimental design and interpretation. Many of the recent math-
ematical models found in the literature focus on the growth of multicellular
spheroids (MCSs): clusters of cancer cells grown in vitro to mimic the early
stages of in vivo avascular tumour growth and to test the applicability of
new cancer treatment strategies. MCSs have a well-defined structure, possess-
ing a central core of necrotic cells, with proliferating cells restricted to the
outer rim of the tumour. Existing models of MCS and avascular tumour de-
velopment (Byrne, 1999; Franks et al., 2005; McElwain and Morris, 1978),
essentially extensions of the original models of Burton (1966) and Greenspan
(1972), describe the evolution of the tumour outer boundary in response to
vital nutrients (in particular oxygen) and growth factors. Using the assump-
tion of spherical or cylindrical symmetry, these models give good qualitative
agreement with experimental results, reproducing both the growth patterns
and macroscopic heterogeneities typical of MCSs and avascular tumours.

In this paper we derive a model, similar to that developed by Greenspan
(1972), for examining the role played by acidity in tumour growth and inva-
sion. The commonality of altered tumour metabolism, in particular the adop-
tion of the glycolytic phenotype in most cancers, led Gatenby and Gawlinski
(1996, 2003) to propose the acid-mediated tumour invasion hypothesis. The
key idea is that the transformed tumour metabolism with increased use of
glycolysis and acid secretion alters the microenvironment by substantially re-
ducing tumour extracellular pH (pHe), usually by more than 0.5 pH units. The
H+ ions produced by the tumour then diffuse along concentration gradients
into the adjacent normal tissue. This acidification leads to death of normal
cells due to activation of p53-dependent apoptosis pathways, as well as loss of
function of critical pH-sensitive genes. Tumour cells, however, are relatively
resistant to acidic pHe, due to mutant p53 genes. Whilst normal cells die in
environments with a persistent pH below about 7, tumour cells typically ex-
hibit a maximum proliferation rate in a relatively acidic medium (pH 6.8)
(Casciari et al., 1992). As a result, the tumour edge can be seen as forming
a travelling wave progressing into normal tissue, preceded by another travel-
ling wave of increased microenvironmental acidity. Modelling this hypothesis
on the macroscopic scale allows us to investigate the general tissue dynam-
ics in both vascular and avascular tumour growth. In particular, for tumour
cells displaying the glycolytic phenotype, we determine the critical parame-
ters that cause the change, within our modelling framework, from a benign to
invasive growth pattern, which in turn suggests new therapeutic regimes for
counteracting this invasive growth.
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2 Model Analysis

Following previous models, we assume that the tumour acts as an incompress-
ible fluid. As such, local changes in the cell population, caused by the birth
or death of cells, give rise to internal pressure gradients that induce cellular
motion and the expansion or contraction of the tumour colony. This expansive
force is counterbalanced by cell-cell adhesion forces at the tumour periphery
that maintain the tumour as a compact mass. Subsequent tumour growth is
determined by the interaction between these expansive and restraining forces.

We model the tumour as a sphere and assume that spherical symmetry prevails
at all times. Whilst this assumption is valid for early tumour and MCS growth,
during later development tumours often become asymmetric. Moreover, it has
been suggested that some measure of the irregularity of the tumour boundary
may provide clinicians with useful prognostic information (Cross et al., 1994).
However, under the assumption of spherical symmetry, the model remains
analytically tractable and allows us to perform analysis of the general tissue
dynamics in response to acid production. A schematic cross-sectional view of a
tumour and its surrounding normal tissue is given in Figure 1. Let R2 denote
the tumour radius and R1 the radius of the necrotic core. We assume that
R1 < R < R2 is a viable region where the proliferating tumour cells exist
in a spatially homogeneous state at their carrying capacity KT . We further
assume R < R1 is a necrotic region, containing no viable cells, and that
the necrotic debris continually disintegrates into simpler compounds that are
freely permeable through cell membranes. The cell volume lost in this way is
replaced by cells pushed inward through adhesion or surface tension.

[Insert Figure 1 here]

2.1 Acid Profile

We consider first the distribution of acid generated by the tumour. Let H
denote the extracellular concentration of excess hydrogen ions. Here excess
means above the normal level of 10−7.4 M = pH 7.4. It is assumed that there
is a sharp acid threshold concentration HT above which tumour cells cannot
survive. Similarly, normal cells die when this concentration H rises above HN .
We assume HN ¿ HT to represent the relative resistance of tumour cells to
extracellular acidity. As such, metabolically-produced acid can act both as a
promoter or inhibitor of tumour growth. Diffusing into the normal tissue, the
acid causes normal cell death which in turn allows the tumour to expand.
Conversely, if acid is not removed from within the tumour sufficiently quickly,
tumour cell death will occur. The interplay between these two mechanisms
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forms the heart of the model described below.

We assume that the evolution of H can be described by a reaction-diffusion
equation:

∂H

∂t
= FH + DH∇2H (1)

where DH is the (assumed constant) acid diffusion coefficient and FH repre-
sents the combined rate of acid production and removal from the system.

Acid is produced by tumour cells as a result of their increased reliance on gly-
colysis and we assume that this occurs at a constant rate rT per unit volume.
The primary mode for removal of acid from the system is through blood vessels
and we assume that this occurs at a rate rV proportional to the local acid con-
centration. Note that the acid diffusion timescale (∼ minutes) is much shorter
than the tumour growth timescale (∼ days). Hence, as the tumour grows, the
acid quickly redistributes and reaches equilibrium. Following previous work,
we assume that H is in diffusive equilibrium at all times and set ∂H/∂t = 0
in the acid reaction diffusion equation. Under these assumptions, and noting
spherical symmetry, equation (1) becomes:

0 = rT T − rV V H +
DH

R2

d

dR
(R2dH

dR
) (2)

where T denotes the viable tumour cell density and V the vascular density.

We consider separately the acid profiles generated by vascular and avascular
tumours. In the avascular case, we define V = 0 for R < R2 and V = KV

elsewhere i.e. there is no vasculature within the tumour and the vasculature
exists homogeneously at its normal level outside the tumour. Taking tumour
cell density T to be constant (KT ) within the viable region R1 < R < R2,

and further taking q =
√

rV KV /DH and H0 = rT KT /rV KV , we may non-

dimensionalise equation (2) with r = qR and h = H/H0 to obtain:

r2h′′ + 2rh′ =





0 0 < r < r1

−r2 r1 < r < r2

r2h r2 < r

(3)

where the primes denote the derivative with respect to r.

Previous models of tumour growth have made the assumption that the nutri-
ents and other factors determining tumour growth are constant outside the
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tumour tissue i.e. for any growth factor g, g(r) = g∞ for r > r2. In the case
of acid, however, this would be inconsistent with the data of Martin and Jain
(1994). Reporting in vivo extracellular pH profiles for VX2 rabbit carcinoma,
they demonstrate a smooth pH gradient extending from the tumour edge into
the peritumoural normal tissue. Instead, we assume here that limr→∞ h(r) = 0
i.e. that there is no excess acidity a long distance from the tumour. Assum-
ing further that h and its derivative are continuous at r1 and r2, and that
limr→0 h(r) is finite, equation (3) has solution

ha(r) =





k1 0 < r < r1

k2 − k3
1
r
− 1

6
r2 r1 < r < r2

k4
1
r
e−r r2 < r

(4)

where the constants ki are given by

k1 =
2r3

1 + 3r2
2 + r3

2

6(r2 + 1)
− r2

1

2

k2 =
2r3

1 + 3r2
2 + r3

2

6(r2 + 1)

k3 =
r3
1

3

k4 =
er2(r3

2 − r3
1)

3(r2 + 1)
. (5)

Returning to equation (2), we also calculate the predicted acid profile for
a vascularised tumour. In this case we define V = 0 for r < r1 and V =
KV elsewhere i.e the vasculature exists in a spatially homogeneous state at
its normal level throughout the tumour cell population. For simplicity, we
neglect the poor efficiency (‘leakiness’) and heterogeneities generally found
in tumour vasculature, considering only the extreme case where the tumour
is fully vascularised. Moreover, we assume there is no vasculature within the
necrotic core. Non-dimensionalising as before, we find:

r2h′′ + 2rh′ =





0 0 < r < r1

r2(h− 1) r1 < r < r2

r2h r2 < r

(6)

6



with solution

hv(r) =





k1 0 < r < r1

1− k2
1
r
e−r − k3

1
r
er r1 < r < r2

k4
1
r
e−r r2 < r

(7)

where

k1 = 1− er1−r2(r2 + 1)

r1 + 1

k2 =
e2r1−r2(r1 − 1)(r2 + 1)

2(r1 + 1)

k3 =
e−r2(r2 + 1)

2

k4 =
er2(r2 + 1)

2
− e2r1−r2(r1 − 1)(r2 + 1)

2(r1 + 1)
. (8)

An example of this predicted acid profile can be seen in Figure 2, with r1 = 1
and r2 = 1.5, and a comparison with the predicted avascular profile. Given
experimentally determined parameter estimates of q = 0.47 mm−1 and H0 =
1.0 × 10−5 M ≡ pH 5.0 (Gatenby and Gawlinski, 1996; Martin and Jain,
1994), this corresponds to a tumour of radius R2 ≈ 3 mm, with necrotic core
radius R1 ≈ 2 mm. Notice that the model predicts acidity for an avascular
tumour to be higher than that for a vascular tumour, when both tumours
produce acid at the same rate. This is to be expected given that there is no
acid removal within the tumour in the avascular case. Note, however, that due
to an increased reliance on glycolysis, vascular tumours are often found to be
more acidic than their avascular counterparts. In the model, this is represented
by a higher value of H0.

[Insert Figure 2 here]

2.2 Necrotic Core Development

Previous models of tumour growth have assumed tumour necrosis occurs as
a result of insufficient nutrient supply. In this paper we focus on the effect of
acid-mediated tumour necrosis on the system. Assuming that high acidity is
the sole cause of necrosis in the tumour allows us to calculate the radius of
the necrotic core r1 in terms of the tumour outer radius r2.
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In the avascular case and in the absence of a necrotic core (i.e. when r1 = 0),
from equation (4) we have:

ha(0) =
r2
2(r2 + 3)

6(r2 + 1)
−→∞ as r2 →∞ (9)

Thus at some critical value of r2, ha(0) > hT and the cells at the centre of the
tumour will become necrotic. The critical radius r̂2 at which the necrotic core
develops can be found by solving ha(0) = hT , with r1 = 0:

ca(r̂2) = r̂3
2 + 3r̂2

2 − 6hT r̂2 − 6hT = 0 . (10)

By Descartes’ rule of signs, this cubic has exactly one positive real root, and
this is given by:

r̂2 = 2
√

2hT + 1 cos
[1

3
arccos (− (2hT + 1)−

3
2 )

]
− 1 (11)

where we choose arccos : [−1, 1] → [0, π]. Taking the threshold for tumour
death due to acidity to be hT = 0.1, corresponding to HT ≡ pH 6 (Dairkee
et al., 1995), we find that necrosis due to acidity first occurs at r̂2 = 0.51
(R̂2 ≈ 1 mm).

If r2 > r̂2, then a necrotic core exists, and its radius r1 can be found by
noting that the acid concentration at the boundary of the necrotic core will
be ha(r1) = hT :

2r3
1 − 3(r2 + 1)r2

1 + ca(r2) = 0 . (12)

In this case we have exactly two positive real roots. Choosing the root of this
cubic satisfying 0 < r1 < r2, we find:

r1 =
r2 + 1

2

[
1 + 2 cos [

1

3
(π + arccos(

2ca(r2)

(r2 + 1)3
− 1))]

]
(13)

where again arccos : [−1, 1] → [0, π].

From equation (12):

lim
r2→∞

(r2 − r1) =
√

2hT + 1− 1 (14)

and hence:

r1

r2

−→ 1, Vol(r1, r2) =
4π

3
(r3

2 − r3
1) −→∞ as r2 →∞ (15)
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This means that a large tumour will be mostly comprised of the necrotic core,
with the layer of viable cells limited to a thin region at the tumour edge.
Nonetheless, the total number of viable cells will continue to increase as the
tumour grows.

Turning now to the vascular case, in the absence of a necrotic core we have,
from equation (7):

hv(0) = 1− e−r2(r2 + 1) −→ 1 as r2 →∞ (16)

and hence we see two distinct patterns of growth, depending on the sign of
hT − 1. If hT ≥ 1, hv(0) < hT for any value of r2; the tumour vasculature
removes the excess acid sufficiently quickly to avoid tumour cell death and no
necrotic core will develop. If, however, hT < 1, at some value of r2, hv(0) ≥ hT

and a necrotic core will develop.This critical radius r̂2 can be found by solving
hv(0) = hT , with r1 = 0, leading to the equation

cv(r̂2) = e−r̂2(r̂2 + 1) + (hT − 1) = 0 , (17)

with solutions

r̂2 = −1−W (
hT − 1

e
). (18)

Here W denotes the multivalued Lambert W (or product log) function – the
inverse function of f(W ) = WeW . Note that for −1/e ≤ x < 0, there are two
possible real values of W (x), W0(x) ≥ −1 and W−1(x) ≤ −1 (Corless et al.,
1996). As r̂2 ≥ 0, for hT < 1 we can define

r̂2 = −1−W−1(
hT − 1

e
) . (19)

Further, for hT < 1 and r2 greater than this critical radius, we find r1 by
solving hv(r1) = hT :

er1−r2(r2 + 1) + (hT − 1)(r1 + 1) = 0 (20)

with solution

r1 = −1−W−1(
e−(r2+1)(r2 + 1)

hT − 1
) . (21)

From equation (20), we find

lim
r2→∞

(r2 − r1) = − log(1− hT ) (22)
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and hence as in the avascular case, equation (15) holds.

2.3 Tumour Growth

We consider now the growth dynamics of the tumour in the absence of normal
cells. As such, we analyse the inhibitory effects of acidity on tumour growth,
whilst neglecting the invasive dynamics arising through the destruction of
normal tissue. The rate at which a tumour grows may be dependent on a
large number of factors, such as nutrient supply, cellular density or internal
pressure gradients. Here we make the simplifying assumption that the rate of
change of tumour volume is entirely dependent on the tumour radius and the
radius of the necrotic core:

d

dt
(Vol) = F (R1, R2) (23)

for some mitosis function F .

Greenspan (1972) makes the assumption that the necrotic cellular debris con-
tinually disintegrates into simpler chemical compounds at a rate proportional
to the core volume. These compounds flow into the surrounding tissue and the
cell volume lost in this way is replaced by cells pushed inward through sur-
face tension forces. Moreover, the assumption is made that the rate of cellular
proliferation is constant per unit volume in the viable region. Under these
assumptions, equation (23) becomes:

dR3
2

dt
= S(R3

2 −R3
1)− LR3

1 . (24)

Taking τ = St/3 and r = qR, we may non-dimensionalise the system to
obtain:

r2
2

dr2

dτ
= r3

2 − γ3r3
1 (25)

where γ = 3

√
L/S + 1.

Note that while there is no necrotic core (when r1 = 0), the tumour radius
will grow exponentially with

r2(τ) = r2(0)eτ . (26)
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This corresponds to well-known experimental evidence that the early stages of
solid tumour development follow a simple exponential growth pattern (Laird,
1964). In particular, in the case of a vascular tumour with hT ≥ 1, the model
predicts that a necrotic core will never develop and thus the tumour will
continue to grow exponentially into the surrounding tissue. For an avascular
tumour or a vascular tumour with hT < 1, however, a different growth pat-
tern is observed. From equation (15), we know that r1/r2 → 1 as r2 → ∞.
Assuming that, at time 0, the tumour is small enough that there is no necrotic
core (i.e. r2(0) ≤ r̂2), at some value of r2 we will find r1 = r2/γ < r2. Then
from equation (25), dr2/dτ = 0, and a benign steady state is reached. In other
words, we find that an avascular tumour will always have a benign growth pat-
tern. A vascular tumour will either have a benign or invasive growth pattern
dependent on the value of the critical parameter hT .

The system is completely defined by equation (25) and equation (13) or (21),
and relies only on the parameters γ, hT and the initial condition r2(0). Exam-
ples of the growth patterns observed are given in Figure 3. In the avascular
case (a), a two-phase growth pattern is observed. Initially, the tumour grows
exponentially, without a necrotic core. At the critical time τ̂ , a necrotic core
begins to develop and the second phase of tumour growth begins. During this
phase, we see very little change in tumour size. However, the necrotic core
grows rapidly towards its equilibrium value. Note that γ represents the equi-
librium r2 : r1 ratio. The corresponding vascular growth is very similar when
hT < 1 (b) and may be contrasted to the invasive growth seen when hT ≥ 1 (c).
In this final case, as r2 becomes large, other limiting factors such as nutrient
supply and immune response will have more impact on the tumour growth.

The time τ̂ at which we see the onset of necrosis can be found from equa-
tion (26), taking r2 = r̂2:

τ̂ = log r̂2 − log r2(0) . (27)

Using parameters hT = 0.1 and r2(0) = 0.1 (R2(0) ≈ 0.2 mm), we find necrosis
occurs at τ̂ = 1.63 and τ̂ = 1.67 in the avascular and vascular cases respec-
tively. The equilibrium size r̄2 may be found by noting that r̄2 = γr̄1. In the
avascular case, using equation (12) we find:

r̄2 =
γ

(γ − 1)(γ + 2)

[
− (γ + 1) + 2c1 cos [

1

3
arccos(−c2

c3
1

)]
]

(28)

where

c1 =
√

(γ + 1)2 + 2hT γ(γ + 2) ,

c2 = (γ + 1)3 + 6hT (γ + 2) . (29)
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For the parameter set used in Figure 3, we find r̄2 = 0.75, corresponding to a
final radius of R̄2 ≈ 1.6 mm. For the vascular case, we use equation (20), again
setting r̄2 = γr̄1. Solving this numerically, we find r̄2 = 0.80 corresponding
to R̄2 ≈ 1.7 cm. These numbers demonstrate further the similarity between
avascular and vascular growth when hT is small.

[Insert Figure 3 here]

2.4 Normal Tissue Invasion

We now move on to consider the effects of normal tissue on the system. Let r3

denote the non-dimensionalised distance from the tumour centre to the normal
tissue. Assume that initially the system has r1 = 0 and r3 = r2 i.e. the tumour
is small enough that there is no necrotic core. Normal cells die if h increases
above a critical value hN = HN/H0, where hN ¿ hT .

In the vascular case, from equation (7):

hv(r2) = (r2 cosh r2 − sinh r2)
e−r2

r2

(as r1 = 0) . (30)

The normal tissue will recede and the tumour advance if and only if h(r2) >
hN . Note that h is an increasing function of r2, and hence if h(r2(0)) > hN ,
then the tumour will grow unimpeded as was seen when normal tissue was
neglected in the system.

In the avascular case, from equation (4):

ha(r2) =
r2
2

3(1 + r2)
(as r1 = 0) . (31)

Again the normal tissue will recede if and only if h(r2) > hN . Taking hN =
0.01, corresponding to HN ≡ pH 6.8 (Dairkee et al., 1995), we find that in
both the vascular and avascular cases, invasion will occur only if r2 ≥ 0.19,
equivalent to R2 ≈ 0.4 mm.

If h(r2) > hN , then we can calculate r3 through solution of the equation
h(r3) = hN , i.e. k4e

−r3/r3 = hN :

r3 = W0(
k4

hN

) (32)

where here we choose the principal value of the Lambert W-function as k4 > 0
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and h > 0.

Figure 4 shows normal tissue receding as the tumour grows. Notice the devel-
opment of an acellular gap between the advancing tumour front and receding
normal tissue, consistent with experimental observations (Gatenby and Gawl-
inski, 1996).

[Insert Figure 4 here]

3 Discussion

In this paper we have presented a mathematical study of both vascular and
avascular tumour growth, where the invasion mechanism is the acidification
of the microenvironment surrounding the tumour due to increased reliance
on glycolysis. Utilising the vast difference between the timescales of tumour
growth and acid movement allows us to treat the tumour radius as a parameter
in terms of which other variables are expressed. In particular, we determine the
equilibrium acid profile and necrotic core radius as a function of the tumour
radius.

The analysis predicts three regimes of tumour growth. If the rate of acid
removal from the tumour is insufficient, we see exponential growth followed
by auto-toxicity, resulting in a benign tumour. This is found always to occur
in an avascular tumour, and it may also occur in a vascular tumour if the
critical parameter hT < 1. Conversely, if hT ≥ 1, a vascular tumour displays
sustained growth, and invades the whole of the normal tissue space. In both
of these cases, the advancing tumour front is separated from the receding
normal tissue by an acellular gap. Finally, if the tumour is sufficiently small,
we see no growth as the microenvironmental acid perturbations are insufficient
to induce normal cell death. Note, however, that for tumours of this size,
inhomogeneities have more effect on the system and thus stochastic or cellular
automaton (Patel et al., 2001) approaches may be more applicable than the
mean-field type approach used here.

Within the model, three dominant factors determine tumour growth: acid
production, acid removal due to tumoural and peritumoural vascularity, and
cellular sensitivity to acid. In general, tumour growth is enhanced through
increasing acid production to induce maximal toxicity in the adjacent normal
tissue. However, in order to display sustained growth, the tumour must limit
excess acid accumulation to avoid auto-toxicity. This balance may resolve it-
self in several ways. Tumour growth could be limited by cellular sensitivity:
that is, the dominant populations within the tumour may retain significant
sensitivity to acid-induced apoptosis. As such, tumour expansion is halted

13



when the intratumoural pHe is only modestly reduced. Tumour growth could
also be limited if the vascularity is limited: the intratumoural hydrogen ions
will accumulate sufficiently to create an acidic pHe that halts proliferation.
In these settings, tumour growth could be rapidly increased through adoption
of the angiogenic phenotype or emergence of new populations with additional
mutations that render them more resistant to acid-induced apoptosis. Finally,
tumour growth could be limited by acid production: the tumour does not pro-
duce enough acid to create a peritumoural hydrogen ion gradient sufficient
to kill the normal cells. In this case, emergence of phenotypes with higher
glycolytic metabolism will result in invasive growth, consistent with findings
that rate of glucose uptake correlates with more malignant behaviour (Kunkel
et al., 2003).

The converse of each of the above scenarios suggests possible cancer treatment
strategies. In general, the results favour tumour antiangiogenesis strategies, be-
cause decreased vascular density will reduce acid removal as well as nutrient
supply. If the resulting decrease in pHe exceeds the tolerance of tumour cells to
local acidosis, the resulting apoptosis would halt tumour growth. Mathemati-
cally this is achieved through reducing hT = HT rV KV /rT KT below the critical
value of 1. This parameter may also be reduced through the novel strategy of
manipulating systemic pH. A recent study demonstrated that patients with
metastatic renal cancer benefit from cytoreductive nephrectomy (Gatenby et
al., 2002). The authors propose that removal of functioning nephrons produces
mild renal failure that is associated with systemic acidosis. This decrease in
the serum pH will reduce acid removal, since diffusion of hydrogen ions from
the tumour interstitium into blood vessels will be dependent on the concentra-
tion gradient across the vessel wall. The resulting decrease in intratumoural
pHe may again induce tumour auto-toxicity. However, both approaches above
come with a cautionary note. Reduced acid removal will result in an increased
peritumoural pH gradient, thus increasing degradation of normal tissue and
thus potentially promoting tumour growth. As such, perhaps the most effec-
tive treatment suggested by the model is to poison the membrane pumps that
transport hydrogen ions from the tumour intracellular to extracellular space
(through drugs such as amiloride, for example). This would increase the tu-
mour cell sensitivity to pHe, and furthermore decrease the peritumoural acid
gradient.

The model’s predictions may be compared to experimental results and clini-
cal observations. The prediction of the presence and range of a pH gradient
extending into the peritumoural normal tissue is consistent with the data of
Martin and Jain (1994). We also demonstrate that whilst acidity correlates
with increased tumour invasion (Martinez-Zaguilan et al., 1996), brief systemic
acidosis may induce widespread tumour apoptosis and regression (Kelley et
al., 2002). The most verifiable prediction is the development of an apprecia-
ble acellular gap separating the advancing tumour and receding normal tissue
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edges. Our analysis shows that the existence of such a gap is dependent only
on tumour size and acid production rates and thus should be apparent in a
wide range of cancer types. In a study performed on human head and neck
carcinoma, this acellular gap was observed in 67% of cases (Gatenby and
Gawlinski, 1996). It should be noted, however, that tumours use a variety of
mechanisms to invade normal tissue. As such, they may create insufficient acid
perturbations to induce an acellular gap, but nonetheless continue to grow. In
these cases, additional mechanisms to tissue acidification must be considered.

It is clear that tumour growth is dependent on the complex interactive dy-
namics of many different factors, including the supply of nutrients and growth
factors and the specific mutations displayed by the tumour population. This
growth is further complicated by any inhomogeneities found within the tu-
mour. Using simplifying assumptions, we have shown here that increased tu-
mour acid production alone, almost universally observed in clinical cancers,
is sufficient to explain both benign and invasive growth. As such, acidity may
play a dominant role in tumour progression. Critical parameters in the transi-
tion from premalignant to malignant morphology include acquisition of angio-
genesis, increased glucose utilisation and loss of critical pH-sensitive genes, all
observed in human tumours. Various therapeutic strategies are suggested to
inhibit tumour growth. In particular, the model suggests the counter-intuitive
approach of increasing further tumour acidity, in order to induce auto-toxicity.
Experimental results further verifying this observation would be of consider-
able interest.
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Fig. 1. Schematic cross-section of a tumour and its surrounding tissue, showing the
central necrotic core, R < R1, the layer of proliferating tumour cells R1 < R < R2,
the acellular gap separating normal and tumour cell fronts R2 < R < R3, and the
normal cells R3 < R.
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Fig. 2. (From equations (4) and (7).) Predicted acid profile in the vascular case with
r1 = 1 and r2 = 1.5, and a comparison with the corresponding avascular profile.
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Fig. 3. (From equations (13), (21) and (25).) Predicted (a) avascular and (b) vascular
tumour growth with parameters γ = 3/2, hT = 0.1 and r2(0) = 0.1. (c) Vascular
growth with hT = 1.5 and r2(0) = 0.1.
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Fig. 4. (From equation (32).) Recession of normal tissue accompanying vascular
tumour growth. Parameter values used are hN = 0.01, γ = 3/2, hT = 0.1 and
r2(0) = 0.2.
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