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1. INTRODUCTION

These notes are the result of teaching Math 241 “Topics in Geometry” in the
Spring of 2006 at the University of Chicago. They are study of matrix groups and
some of the geometry attached to them. Of course “geometry” is not a technical
term, and in order to keep the prerequisites to a minimum the word is used in
an essentially combinatorial sense here – the “geometry” of projective space for
example is the poset of subspaces, not anything more advanced, such as the struc-
ture of a manifold or algebraic variety (though we describe things in enough detail
that a more knowledgeable student should easily be able to find such a structure
if they know the appropriate defintions).

We begin by studying isometries of Rn, focusing on the low dimensional cases
of n = 2, 3. We then discuss the quaternions and explain the connection with
SO(R3). Motivated by this, we classify composition algebras over R, and define
the compact classical groups as matrix groups of R, C and H preserving the ap-
propriate Hermitian form. We then formulate a description of these groups as
subgroups of GL(Cn), allowing us to obtain the noncompact analogs in terms of
bilinear forms, which make sense over any field. We then briefly study projective
spaces, which have a rich enough structure that in the next section we can use the
action of PGLn on them to show that the projective special linear group is almost
always simple. We end with a brief discussion of bilinear forms and the symplectic
group.

The prerequisites are few: some basic linear algebra (the determinant is the
most sophisticated notion used), and elementary group theory. In the latter sec-
tions, knowledge of finite fields is used, but only the most basic facts. When work-
ing with groups over R, some basic notions of analysis are also mentioned (for
example the connectedness SO(Rn) is discussed). That said, at various points we
attempt to make connections to more advanced topics, but these are for “cultural
enrichment” only.

Contents:
• Isometries of Rn.
• The Quaternions.
• Composition Algebra.
• The Classical Groups.
• Projective Geometry.
• The General Linear Group.
• Bilinear Forms.
• The Symplectic Group.
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2. ISOMETRIES OF Rn

In this course we will study interactions between geometry and group theory.
Our goal in this section is to examine a simple example – a group of symmetries
of three dimensional Euclidean space. The symmetries we consider are the rigid
motions of space which fix a point (the origin 0). By a rigid motion, we mean a
transformation of space which preserves distance and orientation (we will return
shortly to what we mean by the term orientation).

To start with we will work in Rn for any n. Recall that the notions of distance
and angle in Rn can be given by the dot product:

(v,w) 7→ v.w =
n∑
i=1

viwi

where the distance ‖v − w‖ between v and w is just ‖v − w‖2 = (v − w).(v −
w). An isometry of Rn is a bijection T : Rn → Rn which preserves distances. A
basis {w1, w2, . . . wn} of Rn of unit vectors which are mutually perpendicular is
called an orthonormal basis, thus in terms of the inner product {w1, w2, . . . , wn} is
an orthonormal basis if

wi.wj = δij =
{

1 if i = j;
0 otherwise.

(indeed it follows automatically from this condition that the vectors form a basis of
Rn, since the must be linearly independent). For the proof of the next proposition
we use the fact that, given any v ∈ Rn and orthonormal basis {w1,w2, . . . ,wn}
we have

v =
n∑
i=1

(v.wi)wi.

Proposition 2.1. Let T : Rn → Rn be an isometry such that T (0) = 0. Then T is a
linear map.

Proof. By assumption we have ‖v−w‖ = ‖T (v)−T (w)‖ for all v,w ∈ Rn. Expand-
ing this out in terms of the inner product, and using the fact that ‖T (u)‖ = ‖u‖,
and ‖T (v)‖ = ‖v‖, since T (0) = 0), we find that T (u).T (v) = u.v, that is, T
preserves the inner product.

Consider the standard basis of Rn, {e1, e2, . . . , en}. Then we know that the
vectors {T (e1), T (e2), . . . , T (en)} must also form an orthonormal basis of Rn. Set
wi = T (ei), (1 ≤ i ≤ n).

Let v = λ1e1 + λ2e2 + . . . + λnen be a vector in Rn. Then λi = v.ei. Hence we
have T (v).wi = T (v).T (ei) = λi, and so since the {wi}1≤i≤n are an orthnormal
basis, we have

T (v) =
n∑
i=1

(T (v).wi)wi =
n∑
i=1

λiwi =
n∑
i=1

λiT (ei).

It follows that T is the linear map α : Rn → Rn given by α(ei) = wi and we are
done. �

The isometries of Rn form a group under composition: the composition of two
isometries is clearly an isometry, but it is slightly harder to see that any isometry
has an inverse. Given any v ∈ Rn we can define an isometry Tv called a transla-
tion, which sends w 7→ w+v, (w ∈ Rn). The inverse of Tv is evidently T−v. Given
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any isometry γ, we may compose it with the translation T−γ(0) to obtain an isom-
etry σ = T−γ(0) ◦ γ fixing 0. But then σ is an isometry which is also a linear map.
Since any isometry must clearly be injective, and an injective linear map from Rn
to itself is automatically a bijection by the rank-nullity theorem, we see that σ is
a bijection, and so clearly γ = Tγ(0) ◦ σ is also. Once we know that any isometry
is a bijection, it is easy to see that the inverse of an isometry is automatically an
isometry, and so the set of all isometries of Rn forms a group, Isom(Rn).

Since we have shown that any isometry of Rn fixing 0 is linear, it is worth ex-
plicitly singling out which linear maps are isometries:

Definition 2.2. Let O(Rn) be the group of isometries of Rn fixing 0, so that O(Rn) ⊂
GL(Rn). Since

(1) v.w =
1
2
(‖v + w‖2 − ‖v‖2 − ‖w‖2),

a linear map α is in O(Rn) if and only if, for all v,w ∈ Rn we have α(v).α(w) =
v.w. That is,

O(Rn) = {α ∈ GL(Rn) : α(v).α(w) = v.w,∀v,w ∈ Rn}.

Now the standard basis is orthonormal (i.e. ei.ej = δij , 1 ≤ i, j ≤ n), so that if A
is the matrix of α with respect to the standard basis this condition is equivalent to
the equation AAt = I , (where At denotes the transpose of A). O(Rn) is called the
orthogonal group, and a matrix A satisfying AAt = I is called an orthogonal matrix.

Remark 2.3. To attempt to have some way of distinguishing them from linear maps,
I will denote the group of n × n invertible matrices as GLn(R) and the group of
orthogonal matrices as On(R) etc. though the distinction is usually not terribly
important.

Remark 2.4. The set Γ(Rn) of all translations forms a subgroup of Isom(Rn). It is
isomorphic to Rn as an abelian group: it is straightforward to check that the map
v 7→ Tv defined above is an isomorphism. Moreover, it is not hard to see that Γ
is a normal subgroup of Isom(Rn) and that Isom(Rn) is the semidirect product of
Γ(Rn) and O(Rn).

We now wish to introduce the notion of an orientation for a basis of Rn. We start
with the cases of R2 and R3, where we may use the vector product:

Definition 2.5. Define a product × : R3 × R3 → R3 by

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − w2v1)

We list some basic properties of the vector product that are easy to check directly
from the definition.

Lemma 2.6. Let v,wu ∈ R3 and λ ∈ R. Then the vector product satisfies:
(1) v ×w = −w × v;
(2) (v1 + v2)×w = v1 ×w + v2 ×w;
(3) (λv)×w = v × (λw) = λ(v ×w);
(4) ‖v×w‖2 + |v.w|2 = ‖v‖2‖w‖2, and so ‖v×w‖ = ‖v‖‖w‖ sin(θ), where θ is

the (acute) angle between the vectors v and w.
(5) v.(v ×w) = 0.
(6) If α ∈ O(R3), and det(α) = 1, then α(v ×w) = α(v)× α(w).
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(7) If e1, e2, e3 denote the standard basis vectors the we have ei×ei+1 = ei+2 where
we read the indices modulo 3.

Proof. Parts (1), (2), (3), (5) and (7) are routine calculations, while (4) is a straight-
forward, though somewhat more elaborate one. For part (6), note first that if
v1,v2,v3 ∈ R3 and A is the 3× 3 matrix with columns v1,v2,v3, then

det(A) = (v1 × v2).v3.

Now given v,w ∈ R3, the vectors α(v)×α(w) and α(v×w) are equal if and only
if (α(v)× α(w)).e = α(v ×w).e for all e ∈ R3 (as is easy to see by, say, picking an
orthonormal basis). The multiplicative property of the determinant shows that if
α has det(α) = 1, then (α(v1)× α(v2)).α(v3) = (v1 × v2).v3. Thus we have

(α(v)× α(w)).e = (v ×w).α−1(e)

= α(v ×w).e,

where the second equality follows because α ∈ O(R3). Thus (6) follows. �

Remark 2.7. Notice that (4) implies the quantity

|(v1 × v2).v3|
is the volume of the parallelepiped spanned by the vectors v1,v2,v3, that is the
volume of the solid {x ∈ R3 : x =

∑3
i=1 λivi, 0 ≤ λi ≤ 1}.

We may view R2 as the plane inside R3 spanned by {e1, e2}. Given a basis
v1,v2 of R2, was say it is positively oriented if v1 × v2 is a positive mulitple of
e3, and negatively oriented if it is a negative multiple of e3 (that it is a multiple of
e3 follows from part 6 of Lemma 2.6. It is easy to check (using part 7 of Lemma
2.6 for example) that this definition is equivalent to requiring that the angle going
from v1 to v2 is acute.

Notice that condition for v1,v2 to be positively oriented can be rewritten as
(v1 × v2).e3 > 0. Given an ordered basis (v1,v2,v2) of R3, we say it is pos-
itively oriented if the scalar (v1 × v2).v3 is positive and negatively oriented if
(v1 × v2).v3 < 0. (Note that the property 5 of Lemma 2.6 shows that the product
(v1 × v2).v3 cannot be equal to zero if the vectors v1,v2,v3 are linearly indepen-
dent). It is easy to check (again using property 6 of Lemma 2.6) that this definition
agrees with the “right-hand rule” that you learn in physics.

The equality
det(A) = (v1 × v2).v3

gives us a general definition for Rn: given an ordered basis (v1,v2, . . . ,vn) we say
it is positively or negatively oriented according to the sign of det(A) where A is
the matrix with columns v1,v2, . . . ,vn.

Definition 2.8. A linear map α ∈ GL(Rn) is said to be orientation preserving if α
send any triple of positively (negatively) oriented vectors to a triple of positively
(negatively) oriented vectors. By the multiplicativity of the determinant, this is
equivalent to requiring that det(α) > 0.

Remark 2.9. It is a special feature of R3 that one can define the vector product ×
– notice that our general definition of an orientation for an ordered basis did not
use such a product on Rn. Note also that × makes R3 into a noncommutative,
nonunital, nonassociative algebra!
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The group of orientation preserving isometries of Rn is denoted SO(Rn). Equiv-
alently, we may define SO(Rn) to be

SO(Rn) = {α ∈ O(Rn) : det(α) = 1}.
Notice that if α ∈ O(Rn), then if A is the matrix of α with respect to the standard
basis, we have AAt = I , and hence det(A) det(At) = 1. Since det(A) = det(At), it
follows that det(A) = det(α) = ±1.

We now want to understand this group for small n. Consider first the case
n = 2. Let α ∈ SO(R2). Then if A is the matrix of α with respect to the standard
basis {e1, e2} the columns ofA have length 1 and are perpendicular. It is then easy
to see that this forces A to have the form

A =
(

cos(θ) ∓ sin(θ)
sin(θ) ± cos(θ)

)
where θ ∈ R. Checking the condition that A preserves the orientations we see that
A has the form

A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

which is the matrix of a rotation by θ about the origin. (What are the linear isometries
which do not preserve orientations?). Thus in R2, the orientation preserving isome-
tries fixing 0 are just rotations about 0.

Now consider the case n = 3. A rotation in R3 is a map which fixes a line through
the origin, and rotates R3 about that line by some angle θ. Clearly a rotation is an
example of an orientation preserving isometry, and in fact in R3 this is the only
example, as we will shortly see. We first make the following simple observation
about the eigenvalues of a linear isometry.

Lemma 2.10. If α ∈ O(Rn) then every real eigenvalue λ ∈ R of α has is equal to 1 or
−1. Moreover distinct eigenspaces must be orthogonal.

Proof. Let A be the matrix of α with respect to the standard basis. Then (thinking
of v as a column vector) we have

λ(v.v) = (λv).v = (Av).v

= (Av)tv = vtAtv

= vtA−1v = vt(λ−1v)

= λ−1(v.v).

Since v.v > 0 when v 6= 0 it follows that λ = λ−1 as required. The moreover part
of the lemma may be proved in the same fashion. �

Remark 2.11. This lemma can be generalized to show that the eigenvalues of an
orthogonal matrix all have modulus 1.

Lemma 2.12. The group SO(R3) consists precisely of the set of rotations.

Proof. Let α ∈ SO(R3) be an orientation preserving isometry. We must find a line
in R3 which is fixed by α. The characteristic polynomial of α is P (t) = det(α− tI).
Since P (0) = det(α) = 1 and P (t) → −∞ as t → ∞, the intermediate value
theorem shows that P has a root in (0,∞), which by the previous lemma must
be 1. Therefore α has a fixed line, spanned by a length 1 eigenvector e say, (thus
α(e) = e).
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We now claim that α is a rotation about that line. Let H be the plane perpendic-
ular to e,

H = {x : x.e = 0}.

Since α is an isometry, and so preserves the dot product, α restricts to a map
from H to itself, which is again an isometry. By the discussion preceeding this
lemma, it follows that if we take a basis w1,w2 of H which consists of perpendic-
ular unit vectors, then with respect to the basis {e,w1,w2} the matrix of α is given
by  1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


and α is a rotation as claimed.

�

Remark 2.13. It follows from the previous Lemma that the composition of two ro-
tations is again a rotation – think about how to see this directly. One can also
describe explicitly the elements of SO(Rn) in a similar fashion, using the orthog-
onality of the eigenspaces. (This is however easiest to do using the unitary group
which we will define later.)

In this course we will be interested in groups analogous to SO(R3) and study
their structure, primarily as algebraic objects. However, first we investigate the
shape or topology of SO(R3). This makes sense to talk about, because SO(Rn) is a
subset of Hom(Rn,Rn) the vector space of linear maps from Rn to itself, which is
a normed vector space under the operator norm. Thus SO(Rn) is a metric space,
and indeed the group operation, coming from composition of linear maps is con-
tinuous (even smooth).

Lemma 2.14. The group SO(Rn) (as a subspace of Hom(Rn,Rn)) is compact.

Proof. Because α ∈ SO(Rn) is an isometry, we have ‖α(v)‖ = ‖v‖ for all v ∈ Rn.
But then it follows from the definition of the operator norm that ‖α‖ = 1. Thus
SO(Rn) ⊂ {α ∈ GL(Rn) : ‖α‖ = 1}. Moreover, the conditions defining SO(Rn)
are clearly closed, so that since L(Rn,Rn) is a finite dimensional vector space, it
follows SO(Rn) is compact. �

We now give a heuristic argument for what SO(R3) “looks like”. We may repre-
sent any rotation by a vector in the set {v ∈ R3 : ‖v‖ ≤ π}, by letting the direction
of the vector give us the line to rotate about, and the length of the vector the an-
gle by which we rotate (rotating about the vector v using the righthand rule say).
Now the points in the open ball {v ∈ R3 : ‖v‖ < π} all corresponds to distinct
rotations, but antipodal points on the boundary sphere {v ∈ R3 : ‖v‖ = π} give
the same rotation (the elements of order 2 in SO(R3)), so that we can visualize the
group SO(R3) as the solid ball of radius π where we identify antipodal points on
the boundary. The problem with making this rigorous is that you have to show
that the map from SO(R3) to this quotient of the ball is continuous, which is some-
what tedious. We shall return to the question of the shape of SO(R3) after we have
discussed division algebras.
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Remark 2.15. There is a beautiful theory of groups which are also smooth com-
pact spaces (where the group operations of multiplication and taking inverses are
required to be smooth). The group SO(R3) is the simplest nonabelian example.

We next want to show a result which is closer to the central spirit of this course,
namely that the group SO(R3) is simple (i.e. the only normal subgroups are the
trivial group and SO(R3) itself). To do this we need some preparatory lemma. Let
S2 denote the sphere of radius 1 around the origin 0 ∈ R3. Given two pairs of
vectors (v1,v2) and (w1,w2) in R3 we say they are equidistant pairs if ‖v1−v2‖ =
‖w1 −w2‖.

Lemma 2.16. The action of SO(R3) on S2 is transitive, and moreover is transitive on
equidistant pairs (whose points lie in S2).

Proof. To see that SO(R3) acts transitively on S2, consider points v,w ∈ S2. We
may assume that v and w are distinct, in which case the define a plane in R3. Let u
be a vector in S2 perpendicular to this plane. Then it is clear that there is a rotation
about the line through u which sends v to w as required.

For the second part, let (v1,v2) and (w1,w2) in R3 be an equidistant pair. First
pick σ ∈ SO(R3) such that σ(v1) = w1. Then we have

‖w1 − σ(v2)‖ = ‖σ(v1)− σ(v2)‖ = ‖w1 −w2‖

, so that (w1, σ(v2)) and (w1,w2) are an equidistant pair. Thus we need to find
τ ∈ StabSO(R3)(w1) such that τ(σ(v2)) = w2. The stabilizer is exactly the subgroup
of rotations about the axis given by w1. Then the equidistant criterion is exactly
what is required. �

Theorem 2.17. The group SO(R3) is simple.

Proof. We show this using the previous lemma. The strategy is to show that a
normal subgroup must contain certain kinds of elements, and then show that these
elements in fact generate SO(R3). Suppose that 1 6= K � SO(R3) is a normal
subgroup of SO(R3). Then pick σ 6= 1 in K, so that there is a vector u ∈ S2 such
that σ is the rotation about u by the angle θ, (0 ≤ θ ≤ π). Then if we pick w ∈ S2 is
the plane perpendicular to u, we have ‖w − σ(w)‖ = 2 sin(θ). Now suppose that
k ∈ N is such that 0 < π/k < θ. Then setting b = sin(π/k)/ sin(θ) it follows that
z = bw +

√
1− b2u has

‖z− σ(z)‖ = b‖w − σ(w)‖ = 2 sin(π/k).

Now let w1 ∈ S2 be the vector perpendicular to u between w and σ(w) such that
‖w1 −w‖ = 2 sin(π/k). Then using the moreover part of the previous lemma, we
can find a τ ∈ SO(R3) such that τ(z) = w and τ(σ(z)) = w1. Now since K is
normal, we have σ1 = τστ−1 ∈ K, and σ1(w) = w1.

Repeating this argument with w1 instead of w, we find σ2 ∈ K and w2 =
σ2(w1) such that w2 ∈ S2 is perpendicular to u with ‖w1 − w2‖ = 2 sin(π/k),
and continuing in this way, we get σ, σ1, . . . , σk ∈ K and w1,w2, . . . ,wk ∈ R3 all
perpendicular to u with σi(wi−1) = wi and ‖wi − wi−1‖ = 2 sin(π/k). But then
ρ = σkσk−1 . . . σ1σ has ρ(w) = −w. But then ρ ∈ K is a rotation by π, that is,
a rotation of order 2 (why?), and so since K is normal, it contains all rotations of
order 2. But these generate SO(R3), so that K = SO(R3) as required. �
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Exercise 2.18. Complete the proof by showing that any rotation in SO(R3) can be
written as the product of two elements of order 2.
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3. THE QUATERNIONS

3.1. Division algebras. We now wish to discuss division algebras – that is, fields
where we drop the condition that the multiplication is commutative – and in par-
ticular the quaternions, the first division algebra to be discovered. We start with
some general definitions.

Definition 3.1. Let k be a field. A k-algebra is a k-vector space A equipped with a
bilinear map m : A × A → A known as the multiplication, and a nonzero element
1 ∈ A such that m(1, x) = m(x, 1) = x for all x ∈ A. (Of course, we will normally
write m(x, y) as xy).

A division algebra is a finite dimensional (as a k-vector space) algebra in which
there are no zero divisors, that is, if ab = 0 then one of a or b is equal to 0. If
A is associative, this is the same as requiring that each nonzero element x has a
multiplicative inverse, i.e. an element x−1 such that xx−1 = x−1x = 1, as the
following lemma shows.

Lemma 3.2. A finite dimensional associative algebra A has no zero divisors if and only if
every nonzero element is invertible.

Proof. First suppose that every nonzero element is invertible. Then if we have
a, b ∈ A such that ab = 0, if a 6= 0, we have

0 = a−10 = a−1(ab) = (a−1a)b = 1.b = b.

On the other hand, if A has no zero divisors, give any a ∈ A, we can define a
linear map La : A → A by La(x) = ax. Since A has no zero divisors, La has zero
kernel, and hence since A is finite dimensional, La is an isomorphism. Thus there
is a b ∈ A with La(b) = ab = 1. Similarly by considering the linear map of right
multiplication by a, we find a c ∈ A with ca = 1. But now

b = 1.b = (ca).b = c.(ab) = c.1 = c,

and so b = c is a two-sided inverse of a as required. �

3.2. The quaternions. Consider the algebra of 2 × 2 matrices, M2(C). This is an
R-algebra (since it is even a C-algebra), but of course not a division algebra. How-
ever, if we define

H = {
(

z w
−w̄ z̄

)
: z, w ∈ C},

then clearly H is closed under addition, and moreover a simple calculation shows
that it is also closed under multiplication. Since for x ∈ H we have det(x) =
|z|2 + |w|2 where z, w ∈ C are as above, it is immediate that H is a division algebra,
known as the quaternions. Clearly it has dimension 4 as an R-vector space. Note
that H is not commutative.

Although M2(R) is an algebra over C, the quaternions are only an R-subspace
of M2(R), not a C-subspace, so they are not an algebra over C (at least not in
the obvious fashion). In fact there are no finite-dimensional associative division
algebras over C other than C itself (see the problem set).

By the multiplicativity of the determinant, if we set the norm of an element
x ∈ H to be ‖x‖ =

√
det(x) =

√
|z|2 + |w|2 we see that ‖xy‖ = ‖x‖‖y‖. Moreover

if we identify H with R4 using the real and imaginary parts of z and w, this norm
is just the standard Euclidean norm. In particular, the norm comes from an inner
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product on H, which is also compatible with the multiplication, in the sense that
(ax, ay) = ‖a‖2(x, y) – one can see this by observing that in Rn we have

(x, y) =
1
2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2).

Set

i =
(

i 0
0 −i

)
; j =

(
0 1
−1 0

)
; k =

(
0 i
i 0

)
.

It is easy to check that {1, i, j, k} is an orthonormal basis for H, so that the multi-
plication in the quaternions is completely determined by calculating the products
of the basis elements. These are

i2 = j2 = k2 = −1;
ij = −ji = k;
jk = −kj = i;
ki = −ik = j.

These are the formulas originally used by Hamilton to defined H.
H has a conjugation, similar to complex conjugation: for x ∈ H of the form

a+ bi+ cj + dk we set x̄ = a− bi− cj − dk. Alternatively, on the level of matrices,
conjugation is the map (

z w
−w̄ z̄

)
7→

(
z̄ −w
w̄ z

)
.

Since by the standard formula for the inverse of a matrix, the second form can be
written as x 7→ ‖x‖2x−1, it is clear that x 7→ x̄ is an anti-involution of H, that is,
¯̄x = x and xy = ȳx̄.

We now wish to use the quaternions to study the groups SO(R3) and SO(R4).
The unit quaternions

U = {x ∈ H : ‖x‖ = 1}
form a group under multiplication, making the 3-sphere into a group. (This is the
quaternion analogue of the unit circle in the complex plane, which is also a group
under multiplication). Similarly, the non-zero quaternions H× form a group under
multiplication.

Notice that H× acts on H by conjugation:

x 7→ Ada(x) = axa−1 = ‖a‖−2axā.

Since Ada(x) = Ada(x̄) it follows that the imaginary quaternions

I = {x ∈ H : x̄ = −x}
(or, alternatively, the quaternions which are orthogonal to 1), are preserved by H×.
Since I is a copy of R3, the restriction of the action of H× to I gives us a group
homomorphism

ρ : H× → GL(R3).
But now since ‖Ada(x)‖ = ‖axa−1‖ = ‖a‖‖x‖‖a−1‖ = ‖x‖, the image of this

map lies in O(R3). We can also calculate the kernel of ρ: suppose that x ∈ H×

satisfies ρ(x) = Id. Then xh = hx for all h ∈ I, but since x clearly commutes with
1, it follows that x lies in the center of H. Writing out x in the basis {1, i, j, k} and
letting h = i, j, k in turn, it is easy to see that the center of the quaternions consists
of exactly the scalars R.
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If we restrict to U, then the map φ = ρ|U : U → O(R3) is precisely 2-to-1: the
only scalars in U are {±1}. In fact the image is exactly SO(R3), indeed the next
lemma shows this directly by calculating the rotation that you obtain from a given
unit quaternion, and so SO(R3) ∼= U/{±1}.

Lemma 3.3. Let u ∈ U. Then we may write u = cos(θ) + sin(θ)v where v is a unit
quaternion in I. The transformation ρ(u) is a rotation by 2θ about v.

Proof. First suppose that u = cos(θ)+i sin(θ), and let q = xi+yj+zk be an element
of I. Then we have

uqū = xi+ u(y + zi)jū

= xi+ u2(y + zi)j,

since ji = −ij. Hence ρ(u) preserves the i-axis, and rotates the plane perpendicu-
lar to i by 2θ. If u is now an arbitrary unit quaternion, by conjugation by elements
in the planes spanned by {1, i}, {1, j}, {1, k} we may move it to a quaternion of
the above form (for example, first rotate using i so that the coefficient of k van-
ishes, then rotate with k so that the coefficient of j vanishes), and so the general
statement follows. �

It follows from this that the image of U under ρ is the set of all rotations in
O(R3), which we have already seen is SO(R3). (Since the image is automatically a
group, this gives another proof that the set of rotations forms a group, and since
you can check that rotations generate SO(R3) directly, that SO(R3) is exactly this
group).

Remark 3.4. Here is a (sketch of a) topological proof that the image of ρ is SO(R3).
Since U is connected, the image must be contained in SO(R3), thus we just need
to check surjectivity. Now the map ρ is clearly a smooth map from U to SO(R3),
and you can check that the derivative at the identity is invertible. Since, as we
saw above, the group acts transitively on itself by conjugation, this shows that the
derivative is everywhere invertible, and so by the inverse function theorem, the
image of ρ is open, and hence since U is compact, the image of ρ is both open and
closed, and thus is the connected component of I in O(R3).

This gives us another way of viewing SO(R3) as a topological space: it is the
space obtained from the 3-sphere by identifying antipodal points – this is called
real projective 3-space, and we will return to it when we study projective geometry.

Finally, I want to briefly show how you can use the quaternions to show that
PSO(R4) = SO(R4)/{±1} is isomorphic to SO(R3) × SO(R3) (and hence is not a
simple group). Consider the action of U× U on H via

(u1, u2)(h) = u1hu
−1
2

It is easy to see that this gives a map ψ : U × U → SO(R4). To see what the kernel
of this map is, suppose that u1hu

−1
2 = h for all h ∈ H. Letting h = 1 we see that

u1 = u2, and moreover therefore u1 is central in H. Thus from our calculation
of the center of H above we see that (u1, u2) lies in the kernel of ψ if and only if
(u1, u2) = ±(1, 1). Again one needs an argument to show that this homomorphism
is surjective (see the problem set), but once this is known the result follows easily
(the preimage of {±I} ⊂ SO(R4) in U× U is {(±1,±1) ⊂ U× U).
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4. COMPOSITION ALGEBRAS

For the field of real numbers R, division algebras are rare: they must have di-
mensions 1, 2, 4 or 8 as R-vector spaces. To prove this fact is somewhat beyond the
means of this course, however we will instead be able to prove a somewhat weaker
result, first proved by Hurwitz, which shows that the only R-algebras which pos-
sess a compatible inner product are R, C, H and an 8-dimensional nonassociative
algebra known as the octonions.

Definition 4.1. Let V be a vector space over a field k. A quadratic form on V is a
function N : V → k such that

(1) N(λv) = λ2N(v);
(2) The function

(v, w) 7→ v.w = N(v + w)−N(v)−N(w),

is a (clearly symmetric) bilinear form on V .

Notice that
v.v = N(2v)−N(v)−N(v) = 2N(v),

hence if char(k) 6= 2, then the quadratic form is determined by the associated
bilinear form, and vice versa. In fact, in this case it is more standard to set

(v, w) =
1
2
(N(v + w)−N(v)−N(w),

and we will speak of (., .) as the bilinear form attached to the quadratic form N .
Rn is of course an example of a vector space with a quadratic form N(v) = ‖v‖2,
induced by the standard inner product. Note that the definition of N makes sense
for any field k, whereas for ‖.‖ we must take a square root, and so some arithmetic
of the field k is necessary.

We can now define the class of algebras that we want to study.

Definition 4.2. We say that a division algebra A over k is a composition algebra, if
there is a nonzero quadratic form on A such that

N(xy) = N(x)N(y).

Thus C with |.|2 and H with ‖.‖2 are examples of composition algebras over R.
The goal of this section is to show that in fact there are only 4 such composition
algebras. We begin with some lemmas about composition algebras.

Lemma 4.3. Let A be a composition algebra over a field k. Then we have

N(x) = (x, x) 6= 0, ∀x ∈ A,
hence the bilinear form (., .) attached to the quadratic form is nondegenerate, in the sense
that its radical

J = {x ∈ A : (x, y) = 0,∀y ∈ A}
is exactly {0}.

Proof. First note that N(1) = N(1)N(1), so that either N(1) = 0 or N(1) = 1. In
the former case, N is identically zero, so that we must have N(1) = 1. Thus if
x ∈ A− {0} then x has a right inverse, that is there is a y ∈ A such that xy = 1.

1 = N(1) = N(xy) = N(x)N(y),

and hence N(x) = (x, x) 6= 0. It follows easily that J = {0} as required. �
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We now derive some properties of the norm in the case where the composition
algebra is an R-algebra.

Lemma 4.4. Let A be a composition algebra over R. Then the norm N is positive definite,
that is, for all x ∈ A we have N(x) ≥ 0, with equality if and only if x = 0.

Proof. Let x ∈ A be nonzero. Then since N(1) = 1 and N(x) 6= 0 by the proof
of Lemma 4.3, we need only show that N(x) > 0. Suppose that N(x) < 0. Then
consider y = λ1 + x, so that

N(y) = λ2 + 2(λ, x) +N(x).

Since the right-hand side is a quadratic of λ which is positive for large λ, and
negative for λ = 0, it must vanish somewhere, say for λ = c. But thenN(c+x) = 0
and we must have x = −c, and so N(x) = N(−c) = c2 ≥ 0, a contradiction. �

A quadratic form over R which is positive definite in the sense of the previous
lemma is in fact (the square of) a Euclidean norm, as the next lemma shows.

Lemma 4.5. (Gramm-Schmidt) Let V be a real vector space with a positive definite
quadratic form N , and let {v1, v2, . . . , vn} be a basis of V . Then there exists a basis
{w1, w2, . . . , wn} of A such that

span(w1, w2, . . . , wi} = span{v1, v2, . . . , vi}, ∀i, 1 ≤ i ≤ n,

and (wi, vj) = δij . The basis {w1, w2, . . . , wn} is said to be orthonormal.

Proof. We use induction on dim(V ). If dim(V ) = 0 then there is nothing to prove.
Suppose the result is known for spaces of dimension n − 1. Then since the first
n − 1 vectors {v1, v2, . . . , vn−1} spans an (n − 1)-dimensional space, by induction
there exist vectors w1, w2, . . . wn−1 satisfying (wi, wj) = δij for all i, j, 1 ≤ i, j ≤ n
and such that span(w1, w2, . . . , wi} = span{v1, v2, . . . , vi},∀i, 1 ≤ i ≤ n − 1. Now
since by Lemma 4.3 we know that (vn, vn) 6= 0 we may let

w′n = (vn, vn)−1vn −
n−1∑
j=1

(vn, wj)
(vn, vn)

wj .

Since vn is not in the span of {v1, v2, . . . , vn−1}, and this is the same as the span
of {w1, w2, . . . wn−1} by induction, we see that w′n 6= 0. Moreover it is easy to
check that w′n satisfies (w′n, wj) = 0 for all j, 1 ≤ j ≤ n − 1. Since the span of
{w1, w2, . . . , vn} is clearly the same as the span of {w1, w2, . . . , w

′
n} we can com-

plete the inductive step by setting wn = N(w′n)
−1/2w′n (the square root is a real

number by Lemma 4.4). �

Remark 4.6. We record here a consequence of the above lemma which we will use
in the proof of Proposition 4.11. Suppose that V is real vector space with a qua-
dratic form N . For any subspace W of V , we define W⊥ to be the subspace of
vectors {v ∈ V : (v, w) = 0,∀w ∈ W}. If N is positive definite, and W is a proper
subspace, then W⊥ 6= {0}. Indeed if we pick a basis of V which contains a basis
of W , Lemma 4.5 shows that we can obtain an orthonormal basis of V which con-
tains an orthonormal basis of W . Any of the vectors in this basis which are not in
W clearly lie in W⊥ and so W⊥ 6= {0} as required. (In fact, it is clear from this
argument that dim(W⊥) = dim(V )− dim(W )).
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We will use this nondegeneracy all the time in our investigation of composition
algebras in the following manner: in order to show that two elements a, b ∈ A are
equal, it is enough to show that (a, x) = (b, x) for all x ∈ A.

Lemma 4.7. (1) (Scaling law) For x, y, z ∈ A we have

(xz, yz) = N(z)(x, y) = (zx, zy).

(2) (Exchange law) For x, y, z, w ∈ A we have

(xy,wz) = 2(x,w)(y, z)− (xz,wy)

Proof. For (1), consider the expansion of N((x+ y)z) in two ways. First we have

N((x+ y)z) = ((x+ y)z, (x+ y)z) = (xz, xz) + 2(yz, xz) + (yz, yz).

On the other hand, using the fact that the norm is multiplicative

N(x+ y)N(z) = (N(x) + 2(x, y) +N(y))N(z)

and so comparing the two expressions we find that (yz, xz) = (x, y)N(z). The
other side of the equality in the statement follows similarly.

For (2) replace z by (y + z) in the scaling law so as to obtain

(x(y + z), w(y + z)) = N(y + z)(x,w) = (N(y) + 2(y, z) +N(z))(x,w)

While expanding directly we get

(x(y + z), w(y + z)) = (xy,wy) + (xy,wz) + (xz,wy) + (xz,wz).

Hence comparing the two expressions, and using the scaling law we get the result.
�

We now introduce a “conjugation” operation on A: the idea is to mimic the
conjugation of complex numbers. Thinking of complex conjugation as reflection
in the real axis, we define for x ∈ A

x̄ = 2(1, x)− x

We can show that this operation behaves much as complex conjugation does.

Lemma 4.8. We have
(1) (xy, z) = (y, x̄z) and (xy, z) = (x, zȳ);
(2) xy = ȳx̄;
(3) ¯̄x = x.

Proof. For the first part we note that by the exchange law

(xy, z) = (xy, 1.z) = 2(x, 1)(y, z)− (xz, y)

= (y, 2(x, 1)z)− (y, xz))

= (y, x̄z).

The other case is proved similarly. Now consider for x, z ∈ A
(x, z) = (x.1, z) = (1, x̄z) = (x̄z, 1) = (z, ¯̄x) = (¯̄x, z)

Since the inner product is nondegenerate, this implies that ¯̄x = x. Finally, to see
that xy = ȳx̄ note that

(z, xy) = (xyz, 1) = (yz, x̄) = (z, ȳx̄)

Thus again by nondegeneracy, we must have xy = ȳx̄ as required.
�
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Remark 4.9. Not that x̄x = xx̄ = N(x)1, because xx̄ = ¯̄xx̄ = xx̄, so that xx̄ ∈ k1.
Moreover

N(x) = (x, x) = (xx̄, 1),
so that xx̄ = N(x)1. The same argument shows that x̄x = N(x)1.

Now we want to show that given these properties, in fact A is one of just four
possible real composition algebras. To do this we consider a “doubling” process
known as the Cayley-Dickson double.

Definition 4.10. Suppose that A is a composition algebra. Define a new algebra D
to be A⊕A, where the new multiplication is given by

[a, b][c, d] = [ac− db̄, cb+ ād].

If N is the quadratic form attached to A, we equip D with a quadratic from ND by
setting ND([a, b]) = N(a)+N(b), so that the two copies of A are othogonal to each
other. Note that the conjugation in D is given by

[a, b] = [ā,−b]

Thus starting with any composition algebra, we may double it to obtain an
algebra with a quadratic form of twice the dimension (it is not necessarily a com-
position algebra – we will see shortly precisely when it is).

Remarkably, we can use this doubling construction to show that R,C,H and O
are the only real composition algebras. The key is the following observation.

Proposition 4.11. Suppose A is a real composition algebra, and B is a proper subalgebra
of A. Then A contains the double of B.

Proof. Since B is a proper subalgebra of A, Remark 4.6 shows that the subspace of
A

B⊥ = {x ∈ A : (x, b) = 0,∀b ∈ B}
is nonzero. Choose e ∈ B⊥ with N(i) = 1 (to find such an e, we first pick some
nonzero f ∈ B⊥, sinceN(f) > 0 by Lemma 4.4 we may define e = N(f)−1/2f ). We
claim that B + iB is isomorphic to the double of B. First note that for a, b, c, d ∈ B
we have

(a+ ib, c+ id) = (a, c) + (a, id) + (ib, c) + (ib, id)

= (a, c) + (ad̄, i) + (i, cb̄) +N(i)(b, d)

= (a, c) + (b, d),

sinceB is closed under multiplication and conjugation, andN(i) = 1. ThusB+iB
is an orthogonal direct sum. Moreover

a+ ib = ā+ ib = ā− ib,

since ib = 2(1, ib)− ib = 2(b̄, i)− ib = −ib. Note that this implies in particular that
for all b ∈ B we have ib = b̄i, since ib = b̄̄i = −b̄i. Finally we have

(a+ ib)(c+ id) = (ac+ ib.c+ a.id+ ib.id)(2)

we examine the last three terms of this expression separately, using the nondegen-
eracy of the inner product: let z ∈ A be arbitrary. Then

(ib.c, z) = (ib, zc̄) = (b̄i, zc̄) = 0− (b̄c̄.zi) = (b̄c̄.i, z) = (i.cb, z).
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Similarly we find that

(a.id, z) = (id, āz) = 0− (iz, ād) = (z, iād).

Also
(ib.id, z) = (ib, z(−id)) = −2(i, z)(b, id) + (i.id, zb)

= (i.id, zb) = (id,−i.zb)
= N(i)(d,−zb) = (−db̄, z)

Combining these three equations, we find that Equation (2) becomes

(a+ ib)(c+ id) = (ac− db̄) + i(ād+ cb),

hence B + iB is indeed isomorphic to the double of B.
�

It is now quite easy for us to conclude that the only normed division algebras
over R are R,C,H and O. It is easy to check that the double of R is C, and that
the double of C is H. Let O denote the double of H. Now suppose that A is a
normed division algebra. Since it contains a copy of R, it is either equal to R by the
previous proposition it contains the double of R. Then either A is equal to C or it
contains the double of C. Since A is finite dimensional, it follows that continuing
in this way we find A is obtained from R by successive doubling.

But why does the list of division algebras stop, as opposed to there being one
for each power of 2? The answer is that the doubling procedure produces a new
algebra equipped with a quadratic form, but it is not necessarily a composition
algebra. Our next proposition shows that the double of a composition algebra A is
a division algebra if and only if the algebra A is associative.

Proposition 4.12. If A is the double of a composition algebra B, then A is a composition
algebra if and only if B is associative.

Proof. Let B be a subalgebra such that A = B + iBA. Then we must have

N(a+ iBb)N(c+ iBd) = N(ac− db̄) + iB(cb+ ād)).

Expanding we find that this is equivalent to requiring that

N(a)N(c)+N(a)N(d)+N(b)N(c)+N(b)N(d) = (ac−db̄, ac−db̄)+(cb+ād, cb+ād)

and using the multiplicativity of the norm again and the fact that N(ā) = N(a),
we find that the right hand side is

N(a)N(c)− 2(ac, db̄) +N(d)N(b) +N(c)N(b) + 2(cb, ād) +N(a)N(d)

Hence the norm on A is compatible with the multiplication if and only if

(ac, db̄) = (cb, ād)

for all a, b, c, d ∈ B. But this holds if and only if

((ac).b, d) = (a.(cb), d), ∀a, b, c, d ∈ B.
By nondegeneracy of the bilinear form, this last equation is equivalent to the as-
sociativity of B, as required. Finally, to see that A is a division algebra, note that
since B is a division algebra, Lemma 4.4 shows that the norm on B is positive
definite. It follows directly from the definition of the double that the norm on A is
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positive definite. We use this to show that A has no zero divisors. Indeed suppose
that xy = 0. Then since the multiplication is compatible with the norm, we have

0 = N(0) = N(xy) = N(x)N(y),

and so N(x) = 0 or N(y) = 0, which is equivalent to requiring that x or y is
zero. �

In precisely the same fashion we can show the following:

Lemma 4.13. Let D be the double of composition algebra A, and assume that D is a
composition algebra. ThenD is associative if and only ifA is commutative and associative.

Proof. Write D = A+ iAA. Clearly the composition algebra A must be associative.
Moreover, since the formula for multiplication in D shows that iA.(ab) = (iAb).a,
we see that if D is associative, then A must be commutative. To see that this con-
dition is sufficient, we must check the equation

(a+ iAb)(c+ iAd).(e+ iAf) = (a+ iAb).(c+ iAd)(e+ iAf),

holds. Expanding the left side we get:

((ac− db̄) + iA(cb+ ād))(e+ iAf) = ((ac− db̄)e− f(b̄c̄+ d̄a))

+ iA(e(cb+ ād) + (c̄ā− bd̄)f)

while expanding the right hand side we get

(a+ iAb)((ce− fd̄) + iA(ed− c̄f)) = (a(ce− fd̄)− (ed− c̄f)b̄)

+ iA((ce− fd̄)b+ ā(ed− c̄f))

Comparing the two expressions we find that we must have

ac.e− db̄.e− f.b̄c̄− f.d̄a = a.ce− a.fd− ed.b̄+ c̄f.b̄

and
e.cb+ e.ād+ c̄ā.f − bd̄.f = ce.b− fd̄.b+ ā.ed− ā.c̄f

But it follows immediately from the fact A is commutative that these equations
hold, and so we are done. �

Finally, note the following:

Lemma 4.14. If A is the double of a composition algebra B, then A is commutative and
associative if and only if B is commutative, associative, and has trivial conjugation.

Proof. Clearly, if A = B + iBB, then B must be commutative and associative.
Now since iBb = b̄iB , it follows that the conjugation on B must be trivial if A is
commutative. For the converse note that for A to be commutative we must have

(a+ iBb)(c+ iBd) = (c+ iBd)(a+ iBb),

that is,
(ac− db̄) + iB(cb+ ād) = (ca− bd̄) + iB(ad+ c̄b)

but this clearly holds if B is commutative with trivial conjugation. �
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Applying the lemmas to the case of a real composition algebra, we find that C is
commutative, associative, but has a nontrivial conjugation. Thus its double, H, is
associative but not commutative. Therefore doubling again, we get a composition
algebra, known as the octonions O which is not associative. Since the double of O
will not be a composition algebra, there can be no other composition algebras over
R.

Remark 4.15. If we take the double of O, we obtain an algebra S known as the
sedenions. It is not a composition algebra, since O is not associative, thus it may
have zero divisors. On the other hand, every element has an inverse, since you
can check that if x ∈ S then xx̄ = N(x) ∈ R so that x̄/N(x) is a two-sided inverse
of x (since x̄ = x). In fact it turns out that S does possess zero divisors.
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5. THE CLASSICAL GROUPS

5.1. Compact classical groups. .
In the first section, we defined the groups O(Rn) by considering the linear trans-

formations which preserved distance. We now want to define analogous groups
for the other real division algebras we have constructed. This is straight-forward
provided the algebras are associative, so for the moment we exclude the octonions
Let D be one of R,C or H.

The first thing to observe is that one can do linear algebra over D just as we do
for a field, provided we are careful about left and right. (Indeed if you know about
rings and modules, a left D-vector space is just a left D-module, and similarly
a right D-vector space is a right D-module. The important point is that all the
results about the existence of bases etc. continue to hold in the case where D is
noncommutative. From now on when we say vector space, we tacitly assume it to
be a left vector space.

As an example, we show that any finitely generated vector space V over D has
a basis. Recall that a basis is a generating set which is linearly independent (recall
that this means that whenever we have λ1v2 + λ2v2 + . . . + λkvk = 0 then λ1 =
λ2 = . . . = λk = 0). Suppose that {v1, v2, . . . , vk} is a generating set. Then if they
are linearly independent we are done, . Otherwise there is a linear dependence,

λ1v2 + λ2v2 + . . .+ λkvk = 0,

where not all the λi are zero. But then suppose j is such that λj 6= 0. Then we have
vj =

∑
i 6=j(λ

−1
j λi)vi, and it is clear that the vectors {v1, v2, . . . vj−1, vj+1, . . . , vk}

already span V . Continuing in this way we must find a basis as required.
A linear transformation of a D-vector space is just a map of D-modules (that is,

it is compatible with the addition of vectors, and multiplication by the scalars in
D). An isomorphism of D-vector spaces is a bijective linear transformation. Just as
for fields, it is automatic that the inverse is a linear map. Thus if V is a D-module
we obtain a group GL(V ) of invertible D-linear maps from V to itself. Let Dn be
the vector space of n-tuples of elements of D thought of as a left D-vector space.
Just as for a field, we may attach a matrix to a linear map. The subtlety here is
that, in order for the matrix to correspond to a linear map of (left) vector spaces,
we need to multiply on the right, that is, the linear map associated to a matrix
A is given by x 7→ xA (thus we are thinking of Dn as the space of row vectors).
Using this correspondence, we may identify the group GL(Dn) with the (opposite
of the) group GLn(D) of invertible n × n matrices with entries in D, where the
group operation is given by matrix multiplication. Note that it is here that there
is a problem with the octonions – matrix multiplication over the octonions is not
associative.

For the real vector spaces Rn we also had a notion of distance. Since D has a
norm, we can also obtain a distance on Dn in an obvious way: let N : Dn → R be
given by

N(x) =
n∑
i=1

N(xi) =
n∑
i=1

x̄ixi,

where x = (x1, x2, . . . , xn) ∈ Dn (and then the distance is given by N(x)1/2).
Unlike in the caseD = R, this distance is not associated to a quadratic form overD,
but rather over a form twisted by the conjugation on D: for z = (z1, z2, . . . , zn) ∈
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Dn, let z̄ = (z̄1, z̄2, . . . , z̄n), and let, for x, y ∈ Dn

(x, y) =
n∑
i=1

xiȳi

then N(x) = (x, x) ≥ 0, but now whereas (., .) is compatible with the addition in
both variables, its behavior with respect to scalar multiplication is not symmetric
in the variables: instead we have

λ(x, y) = (λx, y); (x, λ̄y) = (x, y)λ, x, y ∈ Dn.

The form (, ., ) is called a skew or Hermitian form on Dn. We can then set

I(Dn) = {φ ∈ GL(Dn) : (φ(x), φ(y)) = (x, y),∀x, y ∈ Dn}.

(in fact, one can show that this is equivalent to requiring that N(φ(x)) = N(x) for
all x ∈ Dn.) In the case D = R, we recover the orthogonal groups O(Rn). In the
case D = C we obtain the unitary groups U(Cn), while in the case D = H we obtain
the (compact) symplectic groups Sp(Hn). Collectively these groups are known as the
classical groups. In the first two cases, the determinant gives us a natural normal
subgroup, SO(Rn), and SU(Cn), the special orthogonal and special unitary groups
respectively (in the case of Sp(Hn), since H is noncommutative, we do not have a
well-defined determinant).

Just as for the orthogonal groups, we may also give a more explicit description
of these group in terms of their image in GLn(D). For this, we use an involution
on matrices. Let Mn,m(D) denote the space of n × m matrices with entries in D.
Then t : Mn,m(D) → Mm,n(D) is the linear map given by (aij) 7→ (aji). Similarly
we have a map : Mn,m(D) → Mn,m(D) given by (aij) 7→ (āij). Then and t both
square to give the identity, and commute with each other. Their composition is
therefore also of order 2, and we denote it A 7→ A∗. We have the following lemma:

Lemma 5.1. For A ∈Mn,m(H) and B ∈Mm,p(D) we have

(AB)∗ = B∗A∗ ∈Mn,p(D).

Proof. Let A = (aij) and B = (bjk). The ik-th entries of (AB) is then
∑m
j=1 aijbjk,

and hence the ik-th entry of (AB)∗ is
m∑
j=1

akjbji =
m∑
j=1

b̄jiākj =
m∑
j=1

(B∗)ij(A∗)jk.

which is just the ik-th entry of B∗A∗ as required. �

It follows immediately from this lemma that the map A 7→ A? restricts to a map
on GLn(D). Its connection with the group I(Dn) is given by the following lemma.

Lemma 5.2. Let A ∈ GLn(D). Then we have

(x, yA) = (xA∗, y)

and
(xA, y) = (x, yA∗).

Moreover the image of I(Dn) in GLn(D) is exactly the set

{A ∈ GLn(D) : A.A∗ = I}
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Proof. Since it is clear that (A∗)∗ = A, it is enough to show the first of the equalities.
It is easy to check that (xA)t = A∗x̄t. Hence we have

(x, yA) = x.(yA)t

= xA∗ȳt

= (xA∗)ȳ

= (xA, y).

To see the moreover part, note that,

(x, y) = (xA, yA) = (xA.A∗, y), ∀x, y ∈ Dn.

For 1 ≤ i ≤ n, let ei = (0, . . . , 1, 0, . . . , 0) (where the 1 is in the i-th place). Then
{ei}1≤i≤n is a D-basis of Dn and (ei, ej) = δij . Hence the entries of the matrixA.A∗

are exactly the numbers (eiA.A∗, ej) = δij so it follows that A preserves the form
if and only if A.A∗ = I .

�

Remark 5.3. If you know what a manifold is (if not, then very briefly it is a smooth
space which locally looks like Rn for some n) each of the classical groups is an
example of a compact manifold which is a group (and the group operations are
smooth). It turns out that if you abstractly define a smooth compact group (known
as a compact Lie group) then the families SOn(R), SUn(C) and Spn(H) and their
product are almost the only possibilities – there are exactly five “exceptional” sim-
ple compact Lie groups which are not of this type. These can all be related in some
way to the octonions, though we cannot give all the details here.

Since the matrices over the octonions are nonassociative, we cannot use them to
construct groups. Nevertheless there other ways of constructing groups from an
algebra. For example, we have seen that the automorphisms of the Hamiltonians
are isomorphic to the group SO(R3), and one can similarly ask about the group of
automorphisms of the octonions. This turns out to be the smallest example of an
exceptional compact Lie group (known as G2).

We now consider the octonions more explicitly: Suppose that we wish to find a
multiplication table for them similiar to Hamilton’s original rules for multiplying
{1, i, j, k}. One approach is to recall how the octonions are constructed by dou-
bling. We start by picking e1 orthogonal to 1. This yields a copy of the double of
R (that is, C) in O. We then pick e2 ∈ O which is perpendicular to each of {1, e1}.
Then {1, e1, e2} generate a copy of the quaternions, with R-basis {1, e1, e2, e1e2}.
Finally if we pick e3 perpendicular to each of {1, e1, e2, e1e2} we find that O has an
R-basis given by {1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3} and the multiplication of any
pair of elements of this basis is easy to determine from the rule for multiplication
in a Cayley-Dickson double. We call a triple of unit vectors (e1, e2, e3) of this form
a basic triple. Note also that this multiplication table is independent of the choices
made for e1, e2, e3, just as for the quaternions, the doubling construction shows
that any two unit vectors perpendicular to 1 can be used as“i” and “j”.

We now use this to study the group of automorphisms of O. Pick a particular
choice of basic triple (c1, c2, c3). It is clear from our discussion that if (e1, e2, e3) is
any other basic triple, then the map ci 7→ ei extends to a unique automorphism of
O, and conversely, any automorphism sends (c1, c2, c3) to a basic triple. It follows
that, once the choice of basic triple (c1, c2, c3) is made, the automorphisms of O
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are in bijection with the space of basic triples in O, indeed the bijection sends α ∈
Aut(O) to (α(c1), α(c2), α(c3)). Indeed the map is even a homeomorphism.

But what does the space of basic triples look like? Well, e1 can be chosen to
be any point on the unit sphere in the imaginary octonions, which is a 6-sphere.
Similarly, e2 can be any point in the unit sphere of the 6-dimensional R-vector
space perpendicular to 1 and e1, and thus e2 is any point in a 5-sphere. Finally
e3 is a unit vector in the 4-dimensional vector space perpendicular to 1, e1, e2 and
e1e2, hence e3 lies on a 3-sphere. This picture of the set of basic triples suggests
that they are a space of dimension 6 + 5 + 3 = 14, and thus we expect that Aut(O)
is 14-dimensional. (Any reasonable rigorous definition of dimension will declare
a space like the space of basic triples to be 14-dimensional, so what is missing here
is just a precise definition).

In the problem set you are asked to calculate a dimension for the classical
groups. It is straightforward to check from this that none of the classical group
have dimension 14, and so the automorphism group of O must indeed be a differ-
ent group (once you are prepared to believe that it is simple).

5.2. Classical groups over arbitrary fields. We now wish to construct similar fam-
ilies of groups over an arbitrary field k. The strategy of considering division alge-
bras over k is doomed to failure, because, as is shown in the problem sets, there
are no nontrivial division algebras over an algebraically closed field. Indeed, the
case where k is a finite field, which will concern us for some time, also does not
permit any interesting associative division algebras either, as a beautiful theorem
of Wedderburn shows. We need some preliminary definitions. Given any ring R,
and x ∈ R we write

CR(x) = {y ∈ R : xy = yx}
for the centralizer of x. It is a subring of R. The center Z(R) of R is the intersection
of all the subrings CR(x) as x runs over the elements of R, thus

Z(R) = {x ∈ R : xy = yx,∀y ∈ R}.

A skew field is a ring in which every nonzero element is invertible (that is, a field
where the multiplication is not necessarily commutative). Note that given a skew
field D, its center Z(D) is a field, and D is an associative division algebra over its
center. Thus as discussed in the last section, much of the theory of fields extends
to skew-fields: in particular, we have a notion of vector space over a skew-field,
and such spaces have a well defined dimension. If k ⊂ K then we can define
[K : k] = dimk(K), the dimension of K as a k-vector space. Thus if k1 ⊂ k2 ⊂ k3

then we may consider k2 and k3 as vector spaces over k1, and k3 as a vector space
over k2. It is easy to check that, just as for fields we have

(3) [k3 : k1] = [k2 : k1][k3 : k2].

The final ingredients we need before we can prove Wedderburn’s theorem are
the cyclotomic polynomials. The polynomial tn − 1 ∈ C[t] can be factored as

tn − 1 =
∏
ε

(t− ε)

where ε runs over the n-th roots of unity {e2πik/n}0≤k<n. We say ε is a primitive
n-th root of unity if εn = 1 and εk 6= 1 for all k < n, and define the n-th cyclotomic
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polynomial to be

Φn(t) =
∏

ε primitive

(t− ε).

Thus Φn(t) ∈ C[t] and has leading coefficient equal to 1. We show Φn(t) ∈ Z[t]
using induction. For n = 1, clearly Φ1(t) = t− 1. But now since

tn − 1 = Φn(t)f(t)

where f(t) is a product of Φd(t) over the positive integers d dividing n, we see that
by induction f(t) ∈ Z[t] and f(t) has leading coefficient 1. But the the expression
Φn(t) = (tn − 1)/f(t) immediately implies that Φn(t) ∈ Z[t] also. Finally, observe
that Φn(t) divides (tn − 1)/(td − 1) for any proper divisor d of n, by the same
argument.

Theorem 5.4. (Wedderburn): A finite skew field is a field.

Proof. Let D be a division ring with finite many elements. For each x ∈ D we
have CD(x) is a subring of D, and Z(D) is a field. Since D is finite, Z(D) is finite,
say with q elements. Since each CD(x) is a vector space over Z(D), we may write
|CD(x)| = qdx for some integer dx ∈ N. Let n = d1. Using Equation 3 we see that
dx divides n for all x ∈ D.

Now consider the group of nonzero elements of D under multiplication. It is a
finite group, and is the disjoint union of its conjugacy classes. Since the conjugacy
class of an element has size one if and only if that element lies in the center of D,
we see that

|D×| = qn − 1 = (q − 1) +
∑
d|n

(qn − 1)/(qd − 1),

where d runs over the dimensions of the centralizers of elements in distinct conju-
gacy classes of size greater than 1. We claim that such an equation can only hold if
n = 1, and hence D = Z(D) as required. To see this, we use the remark on cyclo-
tomic polynomials above. Since Φn(t) divides (tn − 1)/(td − 1) for all d a proper
divisor of n, setting t = q implies that Φn(q) divides q − 1, since it divides all the
other terms in the above equality. But now since q ∈ N is at least 2, and any ε ∈ C
a primitive n-th root of unity lies on the unit circle in the complex plane, clearly
|q − ε| > q − 1, unless n = 1. But then |Φn(q)| > q − 1 contradicting the fact that
Φn(q) divides q − 1, and so we must have n = 1 as required. �

To find analogues of our classical groups which will make sense over an arbi-
trary field, we start by expressing the classical groups as subgroups of GLn(C).
We may define two involutions on GLn(C). Let θ : GL(C) → GLn(C) be given
by setting θ(A) for A = (aij) to be (āij), the matrix whose entries are the com-
plex conjugates of the entries of A, and let κ : GLn(C) → GLn(C) be given by
A 7→ κ(A) = (At)−1 = (A−1)t. It follows immediately that the orthogonal groups
may be written as

O(Rn) = {A ∈ GLn(C) : κ(A) = A, θ(A) = A}.

We also have
U(C) = {A ∈ GLn(C) : κ(A) = θ(A)}

Finally, and most interestingly, we have the symplectic groups. If {e1, e2, . . . , en}
denotes the standard basis of Hn, and we view C as a subring of H via z 7→ Re(z)+
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Im(z)i, then Hn becomes a complex vector space with basis

{e1, e2, . . . , en, je1, je2, . . . , jen}.
Let φ : C2n → Hn be the unique C-linear map sending the standard basis of C2n

to this basis. Then φ induces an algebra map φ∗ : End(Hn) → End(C2n) from the
H-linear maps of Hn to the C-linear maps of C2ngiven by α 7→ φ−1 ◦ α ◦ φ (here
End denotes the space of linear maps from a vector space to itself). Clearly φ∗ is
an embedding. We want to compute the image of Sp(Hn) under this map. To do
this we first calculate the way our identification of C2n and Hn interacts with the
structure of these spaces. Let J ∈ GL(C2n) be the matrix given by

J =
(

0 −In
In 0

)
.

and let − : Cn → Cn be the map (z1, z2, . . . , zn) 7→ (z̄1, z̄2, . . . , z̄n).

Lemma 5.5. Under the identification φ : Cn → Hn given by

(z1, z2, . . . , zn, w1, w2, . . . , wn) 7→ (z1 + w1j, z2 + w2j, . . . , zn + wnj)

multiplication by j becomes the map

(z1, z2, . . . , zn, w1, w2, . . . , wn) 7→ (−w̄1,−w̄2, . . . ,−w̄n, z̄1, z̄2, . . . , z̄n).
or more compactly, we may write this as v 7→ Jv. Moreover, if 〈., .〉C denotes the complex
Hermitian form on C2n and 〈., .〉H denotes the quaternionic Hermitian form on Hn, we
have

〈v, w〉C = C(〈φ(v), φ(w)〉H),
where C : H → C is the R-linear map given x+ yi+ zj + wk 7→ x+ yi.

Proof. The first part follows from the fact that if w ∈ C ⊂ H then jw = w̄j. For
the second part, let v = (v1, v2) and w = (w1, w2) where v1, v2, w1, w2 ∈ Cn. Then
observe that

〈v1 + v2j, w1 + w2j〉H = 〈v1, w1〉H + j〈v2, w1〉H + 〈v1, w2〉Hj + 〈v2, w2〉H,
and hence

C(〈v1 + v2j, w1 + w2j〉) = 〈v1, w1〉H + 〈v2, w2〉H
= 〈v1, w1〉C + 〈v2, w2〉C
= 〈v, w〉C

as required. �

Now the image of GL(Hn) in GL2n(C) under the map induced by φ consists
of the invertible complex matrices A which are compatible with multiplication
by elements of H. But since H = C ⊕ Cj, this is equivalent to requiring that A
commutes with multiplication by j ∈ H. The previous lemma shows that this is
just the condition that JAv = A(Jv) for all v ∈ C2n, that is, AJ = Jθ(A).

Next we wish to calculate the image of Sp(Hn) in GL2n(C). For this we use
the second part of the above lemma. Indeed if α preserves 〈., .〉H, then clearly
it preserves 〈., .〉C, so that φ∗(Sp(Hn)) ⊂ U(C2n). However, even more is true:
the fact that α is H-linear implies that α preserves 〈., .〉H if and only if φ∗(α) pre-
serves 〈., .〉C. To see this, we just have to note that α preserves 〈., .〉 if and only if
it preserves the norm N (see the problem set), but N(x) = C(N(x)), so if φ∗(α)
preserves 〈., .〉C = C(〈., .〉C then α preserves N .
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Thus we have shown that the image of Sp(Hn) under φ∗ (identifying GL(C2n)
with GL2n(C)), is

{A ∈ GL2n(C) : κ(A) = θ(A), AJ = Jθ(A)}
Now we may rewrite this as

Sp(Hn) = {A ∈ GL2n(C) : AJAt = J, κ(A) = θ(A)}
In order to obtain groups which are defined any field (not using any properties

of the field C like complex conjugation) we simply loosen our conditions, drop-
ping the conditions involving θ. Thus we obtain three families of groups:

• The general linear group: GLn(C) = {A ∈Mn(C) : A is invertible}.
• The orthogonal groups: On(C) = {A ∈ GLn(C) : A.At = In}.
• The symplectic groups: Sp2n(C) = {A ∈ GL2n(C) : AJAt = J}.

These groups make sense over any field k, and we calll the groups that arise the
classical groups over k, denoted GLn(k),On(k) and Sp2n(k). Note that in the case of
the first two families the map given by the determinant A 7→ det(A) has as kernel
a subgroup denoted SLn(k) and SOn(k) respectively (the special linear and special
orthogonal groups respectively).

Remark 5.6. Notice that the compact groups are all simply the intersection of the
above groups with the unitary group. One can use this observation to show that
over C we do not really lose anything by removing the condition involving θ: each
compact classical groups we started with is a maximal compact subgroup of the
classical groups over C. In the case of GLn(C), for example, any compact subgroup
of GLn(C) is conjugate to a subgroup of Un(C). The proof of this statement is
essentially a glorification of the proof of Lemma 4.5.

Let us consider the three families of groups we have constructed more closely.
The general linear groups are clearly just the full group of automorphisms of a
vector space of dimension n over the field. The orthogonal groups are, similarly
to the case of Rn, the group of linear transformations which preserve the bilinear
form on kn given by

(x, y) =
n∑
j=1

xiyi,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The last family however is
somewhat new: it corresponds to the linear automorphisms of a 2n-dimensional
vector space k2n which are compatible with a bilinear form given by

(x, y) = xtJy

where J is the (2n)×(2n) matrix given above. Since J t = −J we see that this form
is skew-symmetric in the sense that

(x, y) = −(y, x).

Thus these families of groups lead us to consider vector spaces over a field k which
come equipped with the additional structure of a bilinear form that is either sym-
metric or skew-symmetric.
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6. PROJECTIVE GEOMETRY

We now switch gears somewhat and study the geometry of lines in a vector
space. This will give us an object that the first of our classical groups, the gen-
eral linear group GLn(k), acts upon, thus it will allow us to better understand the
structure of this group.

Definition 6.1. Let V be a vector space of dimension n+ 1. Then P(V ) the projec-
tive space of V is the set of lines in V (i.e. one-dimensional subspaces of V ). We
say that such a projective space has dimension n.

Example 6.2. Over the real numbers, the n-dimensional projective space is de-
noted RPn. Since any line in Rn+1 intersects the unit sphere Sn = {x ∈ Rn+1 :
‖x‖ = 1} in exactly two points (which are antipodal to each other), we may pic-
ture RPn as the space obtained from Sn by identifying opposite points. In the
case n = 1, it is clear identifying opposite points on a circle yields another cir-
cle, while in the case n = 3, our discussion of SO(R3) showed that, as a space,
SO(R3) = RP 3. To picture RP 2, one can also imagine the upper hemisphere with
antipodal points on the equator identified. This perspective reveals that a large
piece of RP 2 looks like R2 (since an open ball is homeomorphic to Rn). We will
see below that this is a general phenomenon.

A one dimensional projective space is called a projective line, while a two-
dimensional projective space is called a projective plane. Given a vector in V \{0},
it spans a line in V , and hence there is a natural map from V \{0} → P(V ), which
we denote v 7→ [v]. Clearly [v] = [w] if and only if v = λw for some λ ∈ k\{0}.
It is easy to check that v ∼ w if v = λw, for some λ ∈ k\{0} gives an equivalence
relation on V \{0}, and thus P(V ) = V \{0}/ ∼. Given a point p in P(V ) (i.e. a line
in V ) we say that v is a representative vector for p if [v] = p.

We use this idea to introduce coordinates in projective space. Let {v0, v1, . . . , vn)}
be a basis of V . Suppose that p ∈ P(V ) is a point in projective space and take a
representative vector v. Then v can be written uniquely as

v =
n∑
j=0

xjvj .

By convention, if the basis {v0, v1, . . . , vn} is understood, we write p = [x0 : x1 :
. . . : xn]. Since v 6= 0 there is some xj which is nonzero (and moreover, the set
{k : xk 6= 0} is independent of the choice of representative). Let Al = {[x0 : x1 :
. . . : xn] ∈ P(V ) : xl 6= 0}, a subset of P(V ), the l-th affine chart for P(V ). Then we
may identify Al with kn via

[x0 : x1 : . . . : xn] 7→ (x0/xk, . . . , xk−1/xk, xk+1/xk, . . . , xn/xk).

Notice that P(V ) =
⋃n
l=0 Al. Moreover, if p /∈ A0, then p is a line in the n-

dimensional vector space W spanned by {v1, v2, . . . , vn}, and hence we see that

P(V ) = A0 ∪ P(W ),

that is, P(V ) is the union of kn and a projective space of one smaller dimension.

Exercise 6.3. Many points lie in more than one Ak, and hence have different coor-
dinates depending on which affine chart we look at them in. What is the relation
between the different coordinates?
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Example 6.4. We use the quaternions to identify CP 1 with the two-sphere S2. We
may think of H as a copy of C2 = C ⊕ Cj. Then the nonzero vectors are just the
nonzero elements of H, which we denote by H×, moreover, the equivalence classes
of the relation ∼ above are now exactly the left cosets of C× ⊂ H×, and so CP 1 is
just C×\H×.

But why does this help us see that CP 1 is a 2-sphere? Let I be the purely imagi-
nary quaternions, so that since I ∼= R3 as a real vector space, the purely imaginary
quaternions of unit length are a 2-sphere, S2. Now H× acts on S2 by conjuga-
tion, moreover, the action of H× is transitive, (since we know that the image of
H× in GL(R3) is all of SO(R3)) hence S2 ∼= H×/StabH×(i), the quotient of H× by
the stabilizer of i ∈ S2. But now this stablizer is exactly C×, the nonzero complex
numbers (viewing C ⊂ H in the standard way). Thus we have identified S2 with
the quotient H×/C×, and hence CP 1

Definition 6.5. A line in projective space P(V ) is the set of lines in V contained in a
2-plane. A k-dimensional subspace of a projective space is a subset consisting of the
lines in V which are contained in a k + 1-dimensional vector subspace of V . The
set of k-dimensional subspaces of V , the Grassmannians of k-subspaces, is denoted
Grk(V ) or Grk−1(P(V )) (thinking of them as (k − 1)-dimensional subspaces of
P(V )). A projective geometry is a projective space equipped with collection of all
subspaces. We call a vector subspace of V a hyperplane if it has dimension dim(V )−
1. Notice that subspaces are partially ordered by inclusion. We say that a flag of
length k in P(V ) is a sequence F0 ( F1 ( . . . ( Fk of subspaces. Notice that
dim(P(V )) is the maximal length of a flag in P(V ).

Lemma 6.6. If P(V ) is a projective space, then any two distinct points determine a unique
line. Moreover, in a projective plane, any two lines intersect in a point.

Proof. Let p, q be distinct points in V , and let v and w be representative vectors
in V . Then since p and q are distinct, v, w are linearly independent. The 2-plane
they span gives the unique line through p and q. If P(V ) is two dimensional, then
a line in P(V ) corresponds to a 2-dimensional subspace in V . For any two lines
`1, `2 ⊂ P(V ), let W1 and W2 be the planes in V they correspond to. Then

dim(W1 ∩W2) = dim(W1) + dim(W2)− dim(W1 +W2)) = 4− dim(W1 +W2) = 1

unless W1 = W2, in which case the lines `1 and `2 are equal. �

We now wish to define maps between projective spaces. In fact it turns out that
it is easier to only define the notion of an isomorphism between projective spaces:
Suppose that V andW are vector spaces, and T is any invertible linear map from V
toW . Then clearly T induces a map between the subspaces of V and the subspaces
of W given by U 7→ T (U). Since T has zero kernel, dim(T (U)) = dim(U), and so
in particular, T gives a map from P(V ) to P(W ).

Definition 6.7. Given vector spaces V,W , a projective transformation from P(V ) to
P(W ) is the map τ induced by a linear isomorphism T : V →W . We write τ = [T ].

Remark 6.8. One could also make a more abstract definition by letting a projec-
tive transformation be a bijection φ : P(V ) → P(W ) which takes collinear points
in P(V ) to collinear points in P(W ). This gives a slightly larger class of transfor-
mations, which can nevertheless be completely described, by what is known as
the Fundamental Theorem of Projective Geometry. We will not use this larger class of
transformations.
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Notice that if S = λT for some λ ∈ k, then T and S induce the same projective
transformation. In fact this is the only time that two linear isomorphism induce
the same projective transformation.

Lemma 6.9. (Vandermonde determinant): Suppose that λ1, λ2, . . . , λm ∈ k, and that A
is the matrix 

1 1 . . . 1
λ1 λ2 . . . λm
...

...
. . .

...
λm−1

1 λm−1
2 . . . λm−1

m


Then det(A) =

∏
i>j(λi − λj). In particular, A is invertible if all the λi are distinct.

Proof. Let P (λ1, λ2, . . . , λm) be this determinant thought of as a function of the
λis. Then from the standard formula for the determinant we see that P is a sum of
homogeneous terms of degree 1+2+ . . .+(m−1) = m(m−1)/2 (each term in the
expression for the determinant contains one entry from each row, and the entries
in row i have degree i), i.e. P is a homogeneous polynomial of degree m(m−1)/2.
Now since the determinant vanishes whenever two columns of a matrix are equal,
it follows that P is divisible by (λi − λj) for every pair i, j with 1 ≤ j < i ≤ m.
But now since a polynomial ring in m variables is a unique factorization domain,
it follows that the product

∏
i>j(λi − λj) divides P . Since this product clearly has

degree
(
m
2

)
it follows that the two expressions are equal up to a constant. Finally

comparing the coefficient of λ2λ
2
3 . . . λ

m−1
m we see that they are in fact equal. �

Lemma 6.10. Let V be a vector space over k, and let α : V → V be a linear map. Let Vλ
be

{v ∈ V : α(v) = λv},
then the sum

∑
λ∈k Vλ is direct.

Proof. Suppose that v1, v2, . . . , vk are k vectors in eigenspaces Vλ1 , Vλ2 , . . . , Vλk
re-

spectively, where all the scalars λ1, λ2, . . . , λk are distinct. But then if we have
v1 + v2 + . . . vk = 0, it follows that

λs1v1 + λs2v2 + . . .+ λskvk = 0,

for all s > 0. But since the λis are all distinct, the previous lemma shows that the
matrix (λj−1

i )1≤i,j≤k is invertible, and so the above equations hold only if vi = 0
for all i. Thus the sum is direct as claimed. �

Lemma 6.11. If S and T are isomorphism from V to W , then S and T induce the same
projective transformation if and only if S = λT for some λ 6= 0.

Proof. By considering A = T−1S we are reduced to showing that if A : V → V is
a linear map such that [V ] is the identity map, then A is a scalar multiple of the
identity. Since [A(v)] = [v] for each vector v ∈ V , it follows that every vector is
an eigenvector. Thus V is the union of its eigenspaces, V =

⋃
k∈k Vλ. But then the

previous lemma implies that V =
⊕

λ∈k Vλ, and these both happen only if V = Vλ
for some λ ∈ k, that is, if A is a scalar multiple of the identity as claimed. �

Example 6.12. A geometric example of a projective transformation is given as fol-
lows. Take two lines P(U1),P(U2) in a projective plane P(V ), and let p be a point
not on either lines. Then the map which takes a point q ∈ P(U1) to the intersection
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of P(U2) with the line through p and q is a projective transformation from P(U1) to
P(U2).

Definition 6.13. Let P(V ) be an n-dimensional projective space. We say that n+ 2
points in P(V ) are in general position if each subset of n+1 points has representative
vectors which are linearly independent.

Lemma 6.14. If a0, a2, . . . , an+1 are in general position in P(V ) and b0, b2, . . . , bn+1

are in general position in P(W ), then there is a unique projective transformation from
τ : P(V ) → P(W ) such that τ(ai) = bi.

Proof. Choose arbitrary representative vectors v0, v2, . . . vn+1 ∈ V for the points
a0, a2, . . . , an+1. By the general position assumption, the first n+1 of these vectors
form a basis of V . Thus we may write

vn+1 =
n∑
i=0

λivi.

Now if some λi = 0, then the vectors {v0, . . . , vi−1, vi+1, . . . , vn+1} are not linearly
independent, contradicting the general position assumption, hence we must have
λi 6= 0 for all i. (0 ≤ i ≤ n). Replacing vi by λivi, it follows that we may choose
our representative vectors v0, v1, . . . , vn so that

vn+1 =
n∑
i=0

vi.

Notice moreover, that the choice of such representatives is unique up to simulta-
neous scaling. We may similarly find representative vectors w0, w1, . . . , wn for the
points b0, b1, . . . , bn in P(W ) such that w0, w1, . . . , wn+1 satisfy wn+1 =

∑n
i=0 wi.

Hence the linear map T : V →W defined by T (vi) = wi for i = 0, 1, . . . , n satisfies
[T ](ai) = bi for all i (0 ≤ i ≤ n+ 1), and [T ] is unique as required. �

Remark 6.15. We call the group of projective transformations PGL(V ), the projec-
tive general linear group. The previous lemma shows that we may identify it with
GL(V)/Z(GL(V )) where Z(GL(V )) is the center of GL(V ) – the group of scalar
matrices (check this). Suppose now that P is a projective line, then n+ 2 = 3 and so
there is a projective transformation τ taking any three distinct points to any other
three points. Fixing any triple of points we see that we can realize any permuta-
tion of these three points as a projective linear transformation. In the case where
k = F2, then a projective line has exactly three points, and so this is the entire
group of projective linear transformations.

Theorem 6.16. (Desargues) Let A,B,C,A′, B′, C ′ be points in a projective space P(V )
such that the lines AA′, BB′ and CC ′ are distinct and concurrent. Then the three points
of intersection AB ∩A′B′, BC ∩B′C ′ and AC ∩A′C ′ are all collinear.

Proof. Let P be the point on all the lines AA′, BB′ and CC ′. Since P,A,A′ are
distinct points on a projective line, they are in general position, and so using the
proof of the previous lemma, we may find representative vectors a, a′, p such that
p = a + a′. Similarly we can find representative vectors b, b′, c, c′ for B,B′, C, C ′

such that
p = b+ b′; p = c+ c′.
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It follows that a+ a′ = b+ b′ and so a− b = b′ − a′ = c′′, and similarly

b− c = c′ − b′ = a′′; c− a = a′ − c′ = b′′.

Thus it follows that a′′ + b′′ + c′′ = b − c + c − a + a − b = 0, and so the three
vectors a′′, b′′, c′′ are linearly dependent, and thus lie in a two-dimensional sub-
space of V . It follows that the three pointsA′′, B′′, C ′′ represented by these vectors
lie on the corresponding line in P(V ). (It is easy to check that these points are the
intersections described in the statement of the theorem. �

Remark 6.17. It is possible to define a projective space abstractly, using axioms sim-
ilar to Euclid’s: A projective space is a set (consisting of “points”) with a collection
of subsets (called “lines”) such that:

• Any two distinct points lie on unique line.
• There is at least one line, and not all points lie on that line.
• A line contains at least three points.
• If A,B,C,D and E are five points such that B,C and D are collinear, A,C

and E are collinear, but A,B and C are not collinear, then there is a point
F collinear with D and E and with A and B.

(The last of these axioms is attempting to say when points lie on the same plane
without having to use the word “plane”). We say that a subset of a projective space
is a subspace if whenever it contains distinct points A and B, it contains the line
through them (thus it is another projective space). A chain of nested subspaces
(F0 ⊂ F1 ⊂ . . . Fk) in a projective space is called a flag of length k. The dimension
of a projective space is then the maximal length of a flag. It can be shown that
if the projective space has dimension at least 3, then it is P(V ) for some finite
dimensional vector space over a skew-field.

Finally we discuss duality in the context of projective geometry. Given a finite
dimensional vector space V over a field k recall that its dual space is the vector space
V ∗ = Hom(V, k). Given any basis v1, v2, . . . , vn of V , we may define a dual basis
v∗1 , v

∗
2 , . . . , v

∗
n of V ∗ by setting v∗i (vj) = δij . It is clear from this that V and V ∗ are

vector spaces of the same dimension, however there is no natural isomorphism
between them. We can however give a natural identification of subspaces.

Definition 6.18. Let U ⊂ V be a subspace of V . Then set U◦ ⊂ V ∗, the annihilator
of U to be the set

{φ ∈ V ∗ : φ(u) = 0,∀u ∈ U}.

It is easy to check that U◦ is a subspace of V ∗. Notice that taking annihilators
reverses containment on subspaces: if U1 ⊂ U2 then U◦

1 ⊃ U◦
2 . Moreover we have

the following easy result.

Lemma 6.19. Let V be a finite dimensional vector space over k and let U ⊂ V be a
subspace of V . Then

dim(U) + dim(U◦) = dim(V ).

Proof. Pick a basis {u1, u2, . . . , uk} of U , and extend it to a basis {u1, u2, . . . , un} of
V . Let {u∗1, u∗2, . . . , u∗n} be the dual basis. It is easy to check that φ ∈ V ∗ lies in U◦

if and only if φ ∈ span{u∗k+1, u
∗
k+2, . . . , u

∗
n}. The result follows. �
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Given a linear map α : V → W between vector spaces, there is a natural map
α∗ : W ∗ → V ∗ given by

α∗(φ)(v) = φ(α(v)), ∀v ∈ V.
If α is an isomorphism, it is easy to check that if U is a subspace of V and α(U) =
S ⊂W , then α∗(S◦) = U◦.

Although there is not a natural isomorphism between V and V ∗, if we dualize
again and consider V ∗∗ = (V ∗)∗, then in fact there is a natural map S : V → V ∗∗

given by
S(v)(φ) = φ(v).

It is immediate that S is linear, and moreover it is injective. Hence if V is finite
dimensional, S is an isomorphism.

Given a point in P(V ), that is, a line in V , the annihilator of this line is a subspace
of dimension dim(V ) − 1 in V ∗, i.e. a hyperplane in V ∗. Similarly, given a point
p ∈ P(V ∗), its annihilator in V ∗∗ ∼= V is a hyperplane in V , thus we see that the set
of hyperplanes in V can naturally be identified with a projective space.

The most concrete consequence of duality in projective geometry is seen in the
case of a projective plane P(V ). Then V has dimension 3, and so duality gives a
correspondence between points of P(V ) and lines in P(V ∗), and similarly a cor-
respondence between lines in P(V ) and points in P(V ∗). Thus we see that the
statement that any two points lie on a unique line by duality implies that any two
lines intersect in a point, and so the two statements of Lemma 6.6 are the duals
of each other – we need only have proved one of them for the case of a projective
plane.

As a more elaborate example, consider Desargues’ theorem. The dual theorem
says that if we have six lines l1, l2, l3, l′1, l′2, l′3 such that the intersections p1 = l1 ∩
l′1, p2 = l2 ∩ l′2 and p3 = l3 ∩ l′3 are distinct collinear points, then if pij = li ∩ lj and
p′ij = l′i ∩ l′j , the lines lij given by pij , p′ij for 1 ≤ i < j ≤ 3 are concurrent. This can
be thought of as the converse to Desargues’ theorem.

Finally we use duality to understand a very natural space: the space of all lines
(not necessarily through the origin) in a real plane. We know from our discussions
above that this space corresponds to the lines in RP 2, with the “line at infinity” re-
moved. By duality, this is the same space as RP 2 with a point removed. What does
this space look like? If we use the model of the 2-sphere S2 with antipodal point
identified, we see that the space is just the sphere minus the poles with antipodal
points identified. To make this more explicit, we can use spherical coordinates:

(θ, φ) 7→ (cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)), θ ∈ [0, 2π]× (0, π).

When we remove the poles, the range of values for θ and φ are 0 ≤ θ < 2π,
0 < φ < π, and the antipodal map corresponds to the map

(θ, φ) 7→ (θ + π, π − φ).

(where the first component must be read modulo 2π). But then we may identify
the space of lines in R2 with pairs (θ, φ) ∈ [0, π] × (0, π) where we identify (0, φ)
with (π, π−φ). Drawing a picture of a square with the appropriate identifications,
we immediately see that this space is a Mobius band.



THE CLASSICAL GROUPS 33

7. THE GENERAL LINEAR GROUP

Recall that given a vector space V over a field k the group GL(V ) is the set of
invertible linear transformations of V . By picking a basis of V , we may identify
GL(V ) with the group of invertible n× n matrices, where n = dim(V ).

The determinant function gives a homomorphism det : GL(V ) → k×. The ker-
nel of det is the special linear group (over R these are the volume preserving linear
transformations). The centers of these groups are easy to compute:

Z(GL(V )) = {λI : λ ∈ k×}; Z(SL(V )) = {λI : λn = 1}
(where n = dim(V ) as above). Thus the quotient PGL(V ) of GL(V ) by its center
is the group of projective transformations, which contains the group PSL(V ) of
projective special linear transformations. We want to study these groups over a
finite field, k = Fq, where q = |Fq|.

Lemma 7.1. (1) |GL(Fnq )| = qn(n−1)/2
∏n
k=1(q

k − 1).
(2) |SL(Fnq )| = qn(n−1)/2

∏n
k=2(q

k − 1).
(3) |PSL(Fnq )| = |SL(Fnq )|/g.c.d(n, q − 1).

Proof. The last two parts are immediate from the first. To obtain the first part, we
count the number of invertible n × n matrices over Fq. Note that such a matrix is
inveritble if and only if its columns are linearly independent. The first column can
thus be any nonzero vector, that is one of qn − 1 vectors. The second column can
be any vector not on the line spanned by the first column, and therefore is one of
qn−q vectors. Continuing in this way, we see that the k-th vector can be any vector
not lying in the span of the first k − 1 vectors, which are linearly independent and
so span a (k − 1) dimensional subspace. Hence there are qn − qk−1 choices. Thus
we see that in total there are

n∏
i=1

(qn − qi−1) = qn(n−1)/2
n∏
i=1

(qi − 1)

invertible n× n matrices as required. �

Notice that GL(V ) has two natural subgroups – Z(GL(V )) and SL(V ). In order
to obtain a group which does not obviously possess a nontrivial normal subgroup,
we must pass to the quotient of the group SL(V ) by its center, PSL(V ). We will
now show that this group is in fact simple in almost all cases. To do this we need
to gather a collection of elements of GL(V ) which we can understand explicitly.

Definition 7.2. Let ρ ∈ GL(V ). Let χ(t) be the minimal polynomial of ρ, that is the
polynomial of smallest degree in k[t] such that χ(ρ) = 0. We say that ρ is semisimple
if the polynomials χ(t) and χ′(t) (the derivative of χ) are relatively prime. If k is
algebraically closed then this is equivalent to requiring that there is a basis of V
consisting of eigenvalues of ρ. ρ is said to be unipotent if there is some m > 0 such
that (ρ− 1)m = 0.

Definition 7.3. Consider a transformation τ ∈ GL(V ) which fixes every element
of a hyperplane H ⊂ V . If we pick v ∈ V \H and define φ : V → k by

φ(λv + h) = λ, ∀λ ∈ k, h ∈ H.
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Thus H = ker(φ) and for all w ∈ V we have w − φ(w)v ∈ H . Thus we have
τ(w − φ(w)v) = w − φ(w)v, and hence

τ(w) = w + φ(w)u.

where u = τ(v)− v. Thus we may specify any inveritble linear map which fixes a
hyperplane by giving φ ∈ V ∗ and u ∈ V , such that φ(u) 6= −1. Write τu,φ for the
map obtained by using u ∈ V, φ ∈ V ∗ in the above formula. If φ(u) = 0 then we
say that φ is a transvection. If φ(u) /∈ {0,−1} then we say that τu,φ is a dilatation.
Thus a transvection is a linear map τ fixing a hyperplane H such that τ(v)−v ∈ H
for all v ∈ V . Note that (τ − 1)2 = 0, and so in particular, τ is unipotent. It follows
that a linear map fixing a hyperplane is either semisimple, in which case it is a
dilatation, or unipotent, in which case it is a transvection.

We record the following obvious properties of transvections.

Lemma 7.4. Let τu,φ be a transvection. Then we have the following.
(1) τau,φ = τu,aφ;
(2) τu,φ1+φ2 = τu,φ1 ◦ τu,φ2 ;
(3) τu1+u2,φ = τu1,φ ◦ τu2,φ;
(4) gτu,φg−1 = τg(u),g∗(φ), for all g ∈ GL(V ).

Proof. The first property holds for any τu,φ. For the second, observe that

τφ1,u ◦ τφ2,u(w) = τφ1,u(w + φ1(w)u)

= w + φ2(w + φ1(w)u)u

= w + (φ1 + φ2)(w)u,

since φ2(u) = 0. The third property follows in a similar way. Finally we have

gτu,φg
−1(w) = gτu,φ(g−1(w))

= g(g−1(w) + φ(g−1(w))u)

= w + g∗(φ)(w)g(u)

= τg∗(φ),g(u)(w).

�

Notice that if τ = τφ,u is a transvection, then we have a homomorphism of
groups eτ : k → SL(V ) given by a 7→ τu,aφ. We call the images of these homomor-
phisms unipotent one-parameter subgroups. It should be pointed out that if u and
φ are put into bases of V and V ∗ which are dual to each other, then the matrix
of tu,φ is very simple: it has 1s on the main diagonal and all but one of the off-
diagonal entries equal to zero. It is easy to see from this that any transvection has
determinant 1, and so τu,φ ∈ SL(V ) for all u ∈ V, φ ∈ V ∗ such that φ(u) /∈ {0,−1}.

Lemma 7.5. If dim(V ) = n ≥ 2 then all transvections are conjugate in GL(V ). If
dim(V ) ≥ 3, they are all conjugate in SL(V ). When n = 2, the conjugacy classes of
transvections in SL(V ) are in bijection with k×/(k×)2.

Proof. Let τ1 and τ2 be two transvections in SL(V ), and letW1 andW2 be the hyper-
planes fixed by τ1 and τ2 respectively. Choose vi ∈ V \Wi and let wi = τi(vi)− vi ∈
Wi, for i = 1, 2. Then define g ∈ SL(V ) by picking a basis {w1, u1, u2, . . . , un−2} of
W1 and a basis {w2, r1, r2, . . . , rn−2} of W2 and letting g(w1) = w2, g(v1) = v2, and
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g(ui) = ri for 1 ≤ i ≤ n− 3, and g(un−2) = arn−2 where a is chosen so det(g) = 1.
It then readily follows that gτ1g−1 = τ2.

If n = 2 then we may still use this procedure to obtain a g ∈ GL(V ) conjugating
τ1 to τ2, but we cannot guarantee that g ∈ SL(V ). Thus we need to think about
the case of SL(V ) where dim(V ) = 2 separately. Fix a basis {e1, e2} of V with dual
basis {e∗1, e∗2}, and let τa = τe1,ae∗2 for a ∈ k×. Suppose that τu,φ is any transvection.
Pick g ∈ SL(V ) with g(u) = e1. Then gτu,φg

−1 = τe1,g∗(φ) (by Lemma 7.4), and
so, since g∗(φ)(e1) = φ(u) = 0, we see that g∗(φ) = λe∗2 for some λ ∈ k×, that is
gτu,φg

−1 = τλ. Hence we are reduced to finding which of the τa are conjugate. But
if g ∈ SL(V ) is such that gτag−1 = τb, it follows that the matrix of g with respect to
the basis {e1, e2} has the form (

λ µ
0 λ−1

)
and hence b = λ2a. It follows that τa and τb are conjugate if and only if a and
b differ by a square in k×. Thus the conjugacy classes of transvections in SL(V )
are in bijection with the set k×/(k×)2. In the case where k is finite, it is easy to
see that k×/(k×)2 has two elements, so that there are two conjugacy classes of
transvections. �

Proposition 7.6. (1) Given any two linearly independent vectors v, w ∈ V there is
a transvection τ taking v to w.

(2) Given two distinct hyperplanes W1,W2 and a vector v such that v /∈ W1 ∪W2,
there is a transvection τ fixing v taking W1 to W2.

(3) The set of transvections generates SL(V ).

Proof. For (1), since {v, w} are linearly independent, so are {u, v}where u = v−w,
and thus we can extend this set to a basis {u, v, w1, w2, . . . , wk} of V . Then define
τ : V → V by setting τ(u) = u, τ(wi) = wi for all i, (1 ≤ i ≤ k), and τ(v) = w. Then
clearly τ fixes a hyperplane H = span{u,w1, w2, . . . , wk} and τ(v)− v = u ∈ H so
that τ is a transvection.

For the second part, since W1 + W2 must be all of V (unless dim(V ) = 1, in
which case the statement is trivial), we may find w1 ∈ W1 and w2 ∈ W2 such that
v = w2 − w1. Since v /∈ W1,W2 we cannot have w1 or w2 ∈ W1 ∩W2. It follows
that we may define τ : V → V by setting τ|W1∩W2 to be the identity, τ(v) = v,
and τ(w1) = w2. Since τ fixes the hyperplane spanned by W1 ∩ W2 and v, and
τ(w1)− w1 = v, it follows that τ is a transvection as required.

Finally, to show that the set of transvections generates SL(V ) we use induction
on dim(V ). Let ρ ∈ SL(V ), let {e1, e2, . . . en} be a basis of V , and let vi = ρ(ei) (1 ≤
i ≤ n). If ρ(e1) = e1, let ρ1 = ρ. Otherwise, if ρ(e1) and e1 are linearly dependent,
apply a transvection τ1 so that ρ(e1) and τ1(ρ(e1) are linearly independent, and
set ρ′ = τ ◦ ρ. Then since ρ′(e1) and e1 are linearly independent, we may find a
transvection τ2 such that τ2ρ′(e1) = e1, using part (1). In this case, set ρ1 = τ2ρ

′, so
that ρ1(e1) = e1.

Let W1 = span{e2, e3, . . . en}, and let W2 = span{ρ1(e2), ρ1(v3), . . . , ρ1(en)}. If
W1 6= W2, then by part (2) we may find a transvection τ3 such that τ3(W1) = W2,
and τ3(e1) = e1. Replacing ρ1 by ρ2 = τ3ρ1 we see that ρ2 preserves the hyperplane
W1, and ρ2(e1) = e1. It follows that (ρ2)|W1 ∈ SL(W1), and thus by induction
(ρ1)|W1 is a product of transvections, (ρ1)|W1 = σ1σ2 . . . σk. Defining σi(e1) = e1,
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we can extend the σi to transvections on V , so that ρ2 = σ−1
k σ−1

k−1 . . . t
−1
1 ρ2 is the

identity on V since it fixes e1 and W1, which together span V . Hence ρ2, and
therefore ρ is a product of transvections, and we see that SL(V ) is generated by
transvections as required. �

Remark 7.7. Since multiplication by a transvection corresponds to an elementary
row operation on matrices (choosing an appropriate basis), the previous proposi-
tion is essentially a “geometric” way of proving that every invertible matrix can
be reduced to the identity matrix by row operations.

Corollary 7.8. Suppose that dim(V ) > 2 or dim(V ) = 2 and |k| > 3, then the group
SL(V ) is equal to its own derived subgroup.

Proof. Let G = SL(V ), and let G′ be its derived group. Let τu,φ be a transvection.
Since all transvections are conjugate, we can find a g ∈ SL(V ) so that gτu,φg−1 =
τu,ψ, where ψ(u) = 0 but ψ 6= φ (such a ψ exists and is nonzero provided dim(V ) ≥
3 or |k| > 2). But then using Lemma 7.4 we see that

gτu,φg
−1τ−1

u,φ = τu,ψ−φ ∈ G′

Since G′ is normal, and τu,ψ−φ ∈ G′, the conjugacy class of all transvections lies in
G′. But since these generate G, it follows that G′ = G as required.

Again the case when dim(V ) = 2 needs separate attention. We claim that SL2(k)
is equal to its own derived subgroup whenever |k| > 3. We use the notation of the
proof of Lemma 7.5 above. Notice that if

g =
(
λ 0
0 λ−1

)
,

then gτag−1 = τb where b = λ2a, and so for a ∈ k, we have gτag−1τ−1
a = τλ2a−a.

Now the equation a(λ2 − 1) = b can be solved for any b ∈ k× with a, λ ∈ k×

provided |k| > 3. Therefore if k has more than 3 elements, the derived subgroup
of SL(V ) contains every τb, and , and hence since it is a normal subgroup, all
transvections. Thus SL(k2) is also its own derived group provided |k| > 3. �

Finally, we prove that SL(V ) is a simple group. We use a preparatory lemma on
the action of PSL(V ) on P(V ).

Lemma 7.9. The group PSL(V ) acts 2-transitively on P(V ). Hence the stabilzer of a
point in P(V ) is a maximal subgroup of PSL(V ).

Proof. We showed before that the group of projective transformations acts transi-
tively on (n+1)-tuples of points of P(V ) in general position. Any two points p1, p2

can be completed to a set of points in general position {p1, p2, . . . , pn+1}, and so
given two pairs of points (p1, p2) and (q1, q2) we may complete them to sets of
points {p1, p2, . . . , pn+1} and {q1, q2, . . . , qn+1} in general position. Thus there is a
unique projective transformation τ taking pi to qi. Let T be a linear transformation
such that [T ] = τ , and suppose that det(T ) = a ∈ k. Pick a representative vector
for p1 say v1, we may define S ∈ GL(V ) to be the identity on the lines p2, p3, . . . , pn,
and let S(v1) = a−1vn. Then det(S) = a−1, and hence ST has det(TS) = 1, while
[TS](pi) = qi for each i, (1 ≤ i ≤ n). This shows that the action is 2-transitive as
required.

To see that this implies the stablizers are maximal subgroups, suppose that P =
StabPSL(V )(`) for some ` ∈ P(V ), and let P < K ≤ PSL(V ). Since P ( K, we may
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take k /∈ P , so that k(`) 6= `. Then if g ∈ PSL(V )\P , by 2-transitivity there is a
g′ ∈ PSL(V ) such that g′(`) = ` and g′(g(`)) = k(`). But then g′ ∈ P , and since
k−1g′g ∈ P we have g ∈ K, and so since g was arbitrary, K = G as claimed. �

Theorem 7.10. (L.E.Dickson). Suppose that n = dim(V ) ≥ 2, and |k| > 3 if n = 2.
Then the group PSL(V ) is simple.

Proof. Let v ∈ V − {0}, and set P = Stab([v]), the stabilizer of the line through v.
Suppose that K � PSL(V ) is a normal subgroup. We consider two cases: either
K ⊆ P or K * P .

In the first case, we have K[v] = [v], and so since K is normal, K([v]) = [v] for
all [v] ∈ P(V ), (since PSL(V ) acts 2-transitively and so certainly transitively, on
P(V ). As the action of PSL(V ) on P(V ) is faithful, it follows that K = {1}. In the
second case, since the previous lemma shows that P is maximal, we must have
PK = PSL(V ). But then if π denotes the quotient map π : PSL(V ) → PSL(V )/K,
we must have π(P ) = PSL(V )/K. Now let

N = {τ ∈ PSL(V ) : τ = [τe1,φ], φ ∈ V ∗, φ(e1) = 0}.

Then by Lemma 7.4, N is an abelian normal subgroup of P , and moreover every
projective transvection (i.e. image of a transvection in PSL(V )) is conjugate to one
in N . Thus the conjugates of N generate PSL(V ) by Proposition 7.6, and hence the
conjugates of π(N) generate π(PSL(V )). But since π(PSL(V )) = π(P ) and N � P ,
π(N) � π(P ), and so in fact π(N) = π(P ). Hence PSL(V ) = KN . But then the
derived group of PSL(V ) is contained in KN ′, and since N is abelian, it follows
thatN ′ is trivial, and so the derived group is contained inK (indeed you can check
that in general if K�KN then (KN)′ ⊆ KN ′). But by Corollary 7.8 we know that
PSL(V ) is its own derived group, hence K = PSL(V ), and PSL(V ) is simple as
claimed. �

In fact the groups PSL(F2
2) and PSL(F2

3) are genuine exceptions – they are not
simple groups. We have already seen that PSL(F2

2) ∼= S3 a solvable group, so it
only remains to show that PSL(F2

3) is not simple. But P(F2
3) has 4 elements, so the

action of PSL(F2
3) on P(F2

3) gives an injective homomorphism from PSL(F2
3) to S4,

the symmetric group on 4 letters. By our formulas for the orders of linear groups,
we know |PSL(F2

3)| = (3.8/2) = 12, and so we must have PSL(F2
3) ∼= A4, which

is solvable. Notice that PSL(F3
2) = PGL(F3

2) is the group of projective transforma-
tions of the projective plane over F2. This is the smallest possible projective plane,
having 7 = 23−1 points (this is true even in the sense of abstract projective planes).
This group has 168 elements, and it is isomorphic to PSL(F2

7)

Definition 7.11. Let B be the set of all complete flags in kn, that is

B = {(0 = F0 ( F1 ( . . . ( Fn = V ) : Fi subspaces of V }

(it follows automatically that dim(Fi) = i).

Given a complete flag F• letB = B(F•) be the stablizer of F• inGL(V ). For any
basis {v1, v2, . . . , vn}we may associate a flagF• by settingFi = span{v1, v2, . . . , vi}.
It is easy to check that the stabilzer of the flag associated to the standard basis in
this way (sometimes called the standard flag) is exactly the set of of linear maps α
whose matrices are upper triangular, that is, if A = (aij) is the matrix associated
to α, then aij = 0 for all j > i. The groups which arise in this way are called
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Borel subgroups of GL(kn). Since GL(kn) acts transitively on bases of kn, the Borel
subgroups are all conjugate.

Given a basis {v1, v2, . . . , vn}we may also associate a smaller subgroup of GL(kn).
Let T = {g ∈ GL(kn) : g(vi) = λvi, some λ ∈ R}, that is, T is the subgroup of
matrices which preserve the lines spanned by the basis vectors. Clearly, T is an
Abelian subgroup of GL(kn). The group T is called a torus in GL(kn), and the
torus attached to the standard basis is known as the standard torus. As for Borel
subgroups, the tori in GL(kn) are all conjugate.

Lemma 7.12. Let N be the normalizer of T the standard torus in GLn(k), and assume
that |k| > 2. Then N is subgroup of monomial matrices, that is, if A ∈ N , then each row
and each column of A contain exactly one nonzero entry. Moreover, N/T is isomorphic to
Sn, the symmetric group on n letters.

Proof. Let n ∈ N . Fix i, 1 ≤ i ≤ n, and choose t ∈ T such that t(ei) = λei where
λ 6= 1, and t(ej) = ej for all j 6= i. Then t′ = ntn−1 fixes a hyperplane and has
n(ei) as an eigenvector with eigenvalue λ. Since t′ ∈ T , each ej is an eigenvector
of t′, hence we must have n(ei) = µiej for some µi ∈ k, and some j, 1 ≤ j ≤ n.
Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the map given by n(ei) = µieσ(i). Then since
n ∈ GLn(k) σ must be an injection, it follows that σ is a bijection, that is, σ ∈ Sn.
HenceN consists of monomial matrices as claimed. For ρ ∈ Sn, letwρ ∈ GL(kn) be
the linear map given by wρ(ei) = eρ(i) Thus if we let s ∈ T be the diagonal matrix
with diagonal entries µi, we have shown n = wσs.

Let W̃ be the image of the homomorphism ρ 7→ wρ. We have shown that N =
W̃T , and clearly T is normal in N so that N/T ∼= W̃ ∼= Sn as required. �

The group N/T is called the Weyl group of GL(kn), and is denoted W . We now
use W to analyze the double cosets of B the standard Borel in GL(kn). Let U be
the subgroup of B consisting of the unipotent elements, in other words it is the
subgroup of element of B with 1s on the main diagonal. Let U− be the subgroup
of GL(kn) consisting on lower triangular matrices with 1s on the main diagonal.
Finally. let Uw = U ∩ wU−w−1.

Proposition 7.13. (Bruhat Decomposition): Any g ∈ GL(kn) can be written as a product
nwb where u ∈ U , w ∈ W and b ∈ B. Moreover w is uniquely determined, and if we
insist that u ∈ Uw then b and u are also.

Proof. Given a matrix g ∈ GL(kn), right multiplication by elements of B corre-
spond to column operations on the matrix of g, where we can add to a column
multiples of any column to its right. We may therefore use these column opera-
tions to transform a matrix into the form

∗ ∗ ∗ 1
∗ 1 0 0
1 0 0 0
0 0 1 0

 ,

that is, the matrix has column vectors ci (1 ≤ i ≤ n) such that:
(1) Each ci ends in a 1, say in row π(i), followed by zeros.
(2) The entries to the right of the 1 in a column are all zero, i.e. cjπ(i) = 0 for

j > i.
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It is clear that we can obtain a unique matrix of this form (known as reduced echelon
form) starting with any matrix, recursively working from left to right through the
columns. Since the column operations used define an element of B, we may write
our reduced echelon form matrix as gb. Moreover the function π : {1, 2, . . . , n} →
{1, 2, . . . , n} π(i) is clearly a bijection. If we multiply gb on the right by w−1

π , we
obtain a matrix u of the form 

1 ∗ ∗ ∗
0 1 ∗ 0
0 0 1 0
0 0 0 1

 ,

Thus we obtain the product g = uwπb
−1, where u ∈ Uw = U ∩ wπ(U−)w−1

π . This
last condition simply translates the conditions of reduced echelon form, which can
be expressed in the from (gb)w−1

π ∈ U and w−1
π (gb) ∈ U−. �

Remark 7.14. This last result gives us two ways of computing the number of el-
ements in B: There are clearly |GLn(Fq)|/|B(Fq)| complete flags, since GLn(Fq)
acts transitively on B. Since B(Fq) has (q − 1)nqn(n−1)/2 elements, we find that B
has

∏n
i=1(q

n − 1)/(q − 1) elements. On the other hand, by the previous proposi-
tion, each coset gB has a unique representative of the form uw where w ∈ W and
u ∈ U ∩ wU−w−1, thus another way to count the number of complete flags is to
count how many of these representatives there are. But U ∩ wU−w−1 clearly has
ql(w) elements, where

l(wπ) = l(π) = |{(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)}|,
is the number of descents of π. It follows that

n∏
i=1

qi − 1
q − 1

=
∑
π∈Sn

ql(π),

as both expression count the number of elements of B(Fq). Since this equality
holds for any prime-power, it is an identity of polynomials in an indeterminate q.

Finally, the decomposition B =
⊔
w∈W UwwB expresses B as a disjoint union of

pieces isomorphic to kl(w) for any field k, not just a finite field. If k is R or C this
can be used to compute topological invariants of B, such as its cohomology.

Corollary 7.15. Let B be the standard Borel subgroup, W is the Weyl group, and T is
the standard torus.

(1) We have GL(V ) = BWB. The double cosets are indexed by W , and hence there
are n! of them.

(2) B = TU , where U , the subgroup of unipotent elements of B, is the derived group
of B, a normal subgroup of B.

(3) N = TW̃ , where T is a normal subgroup of N .

Proof. The first part is immediate from the previous proposition. The second part
follows by an easy computation, while the third has already been observed. �

We now define the notion of a BN -pair, first introduced by Jacques Tits.

Definition 7.16. Let G be a group, and B, N subgroups such that
(1) B,N generate G.
(2) T = B ∩N is a normal subgroup of N .
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(3) W = N/T is a finite group generated by a finite set S of involutions {si :
i ∈ I}.

(4) For each w ∈W we may pick representatives ẇ ∈ N . Then we must have
(a) ṡBẇ ⊆ BẇB ∪BṡẇB for any s ∈ S and w ∈W .
(b) ṡBṡ 6= B for any s ∈ S.

Proposition 7.17. Let G = GL(V ), B the standard Borel subgroup, and N the normal-
izer of T the standard torus. The (B,N) is a BN -pair for GL(V ).

Proof. The first condition follows from the fact the identity GL(V ) = BWB, since
W is a quotient of N . Clearly the intersection of B and N is T , the standard torus,
which is by definition normal in N , so it remains to check the third and fourth
condition. For the third, we have seen that W is isomorphic to the symmetric
group on n letters. If we set si = (i, i + 1), the transposition which interchanges i
and i+1 fixing everything else, then it is easy to check that S = {si : 1 ≤ i ≤ n−1}
generates W (identified with Sn) and clearly each si is an involution. Let I denote
the set {1, 2, . . . , n− 1}, so that I indexes the generators in the set S.

Thus it remains to check the last axiom for a BN -pair. For this we define root
subgroups Xij where 1 ≤ i 6= j ≤ n. These are the unipotent one-parameter
subgroups given by pairs of elements of the standard basis:

Xij = {τei,ae∗j
: a ∈ k}

Thus each Xij is a subgroup of GL(V ) which is isomorphic to k, and moreover
Xij ⊂ U if i < j and Xij ⊂ U− if i > j. Set Xi = Xi,i+1 and X−i = Xi+1,i,
and write Xij(a) (or Xi(a) if j = i + 1, etc.) for τei,ae∗j

. For each i ∈ I let Ui =
{u ∈ U : e∗i (u(ei+1)) = 0}. We claim first that U = UiXi. To see this, note that if
u ∈ U , then if v ∈ Fi (the i-th term in the standard flag) we have u(v) − v ∈ Fi−1,
thus in particular u(ei+1) = ei+1 +

∑
j≤i λjej for some λj ∈ k. Then consider

u′ = uXi(−λi). Then we have

u′(ei+1) = u(ei+1 − λiei)

= ei+1 +
∑
j≤i

λjej − λiu(ei)

= ei+1 +
∑
j<i

λjej + λi(u(ei)− ei),

which clearly lies in ei+1 + Fi−1, we have e∗i (u
′(ei+1)) = 0, and so u′ ∈ Ui. Since

u = u′Xi(λi) we have established U = UiXi.
We are now ready to verify the last of the BN -pair axioms. Clearly (a) and (b)

are independent of the choice of representatives ẇ, we are free to chose them as
we please. For w ∈ W ∼= Sn, let ẇ be the corresponding element of W̃ ⊂ N , so
that ẇT = w. Then we have Ui = U ∩ ṡiUṡi. Since ṡiuṡi = ṡiuṡ

−1
i is automatically

unipotent, it is enough to find when it lies in B. To see this, note that if j 6= i, i+ 1,
then ṡiuṡi(ej) = ṡi(u(ej)) ∈ Fj . Similarly dsiuṡi(ui+1) = ṡiu(ei) ∈ Fi+1. Finally,

ṡiuṡi(ei) = ṡi(u(ei+1)) ∈ e∗i (u(ei+1))ei+1 + Fi,

and so ṡiuṡi ∈ U if and only if u ∈ Ui as claimed. Note that since ṡi is an involution
this also implies that Ui = ṡiUiṡi.

Next note that ẇXijẇ
−1 = Xw(i)w(j) by the formula for the conjugate of a

transvection in Lemma 7.4, and so in particular ṡiXiṡi = X−i. It now follows
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that ṡiU = ṡiUiXi = (ṡiUiṡi)ṡiXi = UiṡiXi. Hence since T is normalized by N ,
and B = TU we have

(4) ṡiB = ṡiTU = T ṡiU = TUiṡiXi ⊂ BṡiXi.

It follows that if ẇ ∈ W̃ , then we have

ṡiBẇ ⊂ BṡiXiẇ = BṡiẇXw−1(i),w−1(i+1).

Therefore, if w ∈ W has w−1(i) < w−1(i + 1) we have Xw−1(i),w−1(i+1) ⊂ B, and
so ṡiBẇ ⊂ BṡiẇB. In other words, if l(w−1si) > l(w−1) (or, taking inverses,
l(siw) > l(w), since l(w) = l(w−1)), then

(5) ṡiBẇ ⊂ BṡiẇB

On the other hand, it is easy to calculate directly that X−i ⊂ B ∪BṡiB – indeed
in GL2(k) this reduces to the fact that, if λ 6= 0, then(

1 0
λ 1

)
=

(
−λ−1 1

0 λ

) (
0 1
1 0

) (
1 λ−1

0 1

)
.

Hence by (4) we have

(6) ṡiBṡi ⊂ BṡiXiṡi = BX−i ⊂ B ∪BṡiB,
and clearly X−i ⊂ ṡiBṡi, so that ṡiBṡi is not contained in B.

Finally, ifw−1(i) > w−1(i+1), thenw′ = ṡiw hasw′−1 = w−1si and sow′−1(i) <
w′−1(i+ 1). Thus using (5) and (6) we see thaty

ṡiBẇ = ṡiBṡiẇ
′ ⊂ Bẇ′ ∪BṡiBẇ′ ⊂ Bẇ′ ∪Bṡiẇ′B ⊂ BṡiẇB ∪BẇB

Thus the final BN -pair axiom is established. �
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8. BILINEAR FORMS

We now study bilinear forms on a finite dimensional vector space – our descrip-
tion of classical groups over an arbitrary field showed that they were all the iso-
morphisms of a vector space which respect a certain bilinear pairing on the space,
thus a better understanding of such pairings will be useful in understanding these
groups.

Definition 8.1. Let V be a vector space over a field k. A bilinear form on V is a
function B : V × V → k such that for all v, v1, v2, w, w1, w2 ∈ V , λ1, λ2 ∈ k we have

(1) B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w);
(2) B(v, λ1w1 + λ2w2) = λ1B(v, w1) + λ2B(v, w2).

Thus B is a linear function of each of its variables. We say that B is symmetric if
B(v, w) = B(w, v), and skew-symmetric ifB(v, w) = −B(w, v), (∀ v, w ∈ V ). Denote
the space of bilinear forms by Bil(V ).

Example 8.2. Euclidean space, Rn equipped with the dot product, is the basic ex-
ample of a vector space equipped with a bilinear form. However, we will see that
this example is quite special due to the fact that the real numbers are an ordered
field. Nevertheless, it can be useful to think of B as giving some notion of “dis-
tance” in V , and thus allowing us to speak of isometries of V .

Example 8.3. In multivariable calculus, the derivative of a function f : Rn → R is
a function Df : Rn → HomR(Rn,R), from Rn to the space of linear maps from Rn
to R (i.e. at each point in Rn, the derivative gives a linear map Rn → R). It follows
that the second derivative, if it exists, should be a map from

D2(f) : Rn → HomR(Rn,Hom(Rn,R)).

In other words, for each x ∈ Rn we get a linear mapD2(f)(x) from Rn to HomR(Rn,R).
Thus for each x ∈ Rn, D2(f)(x) gives us a function Bx : Rn × Rn → R, from pairs
of vectors v1, v2 ∈ Rn to R, given by setting

Bx(v1, v2) = D2(f)(x)(v1)(v2).

You can then check that B is a bilinear form on Rn. Moreover, symmetry of mixed
partial derivatives can be neatly expressed in this form as the fact thatBx(v1, v2) =
Bx(v2, v1).

Just as with linear maps, a bilinear form is determined by its action on a basis
of V .

Lemma 8.4. Let {v1, v2, . . . , vn} be a basis of V , and suppose that v, w ∈ V . If we write
v =

∑n
j=1 λivi and w =

∑n
j=1 µjvj , then

B(v, w) =
∑

1≤j1,j2≤n

λj1µj2B(vj1 , vj2).

In matrix notation, if we let D = (B(vi, vj))ni,j=1, and v, w have coordinates λ, µ ∈ kn,
then B(v, w) = λtDµ.
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Proof. The proof is immediate: We have

B(v, w) = B(
n∑

j1=1

λj1vj1 , w) =
n∑

j1=1

λj1B(vj1 , w)

=
n∑

j1=1

λj1B(vj1 ,
n∑

j2=1

µj2vj2) =
n∑

j1=1

λj1

n∑
j2=2

µj2B(vj1 , vj2)

=
n∑

j1,j2=1

λj1µj2B(vj1 , vj2).

as required. �

We call D the matrix of B with respect to the basis {v1, v2, . . . , vn}. If A is the
change of basis matrix from the basis {v1, v2, . . . , vn} to another basis {w1, w2, . . . , wn},
and D is the matrix of the bilinear form B with respect to {v1, v2, . . . , vn}, it is easy
to see that the matrix of B with respect to the basis {w1, w2, . . . , wn} is given by
AtDA. We say that two matrices D1 and D2 which are related by D2 = AtD1A for
some invertible matrix A are congruent (it is easy to check directly that this gives
an equivalence relation).

Lemma 8.5. Suppose that char(k) 6= 2. Then any bilinear form can be written as the sum
of a symmetric and a skew-symmetric form.

Proof. Let Bs(v, w) = 1
2 (B(v, w) + B(w, v)) and Ba = 1

2 (B(v, w) − B(w, v)), then
clearly B = Bs +Ba, and Bs is symmetric, while Ba is skew-symmetric. �

Remark 8.6. We say that a bilinear form B is alternating if for all v ∈ V we have
B(v, v) = 0. Considering B(v + w, v + w) we see that an alternating form is skew-
symmetric, and conversely if char(k) 6= 2, then a skew-symmetric form is alternat-
ing (since B(v, v) = −B(v, v)). In characteristic 2 the alternating bilinear forms are
the ones we will need.

Formalizing the idea in the above example on the second derivative, we make
the following definition. Given B ∈ Bil(V ) we may define linear maps LB : V →
V ∗ and RB : V → V ∗, by setting

LB(v)(w) = B(v, w), RB(v)(w) = B(w, v).

The kernel of LB is called the left radical of B, while the kernel of RB is called the
right radical of B. A bilinear form is said to be nondegenerate if its left and right
radicals are zero. (In the case of a symmetric or skew-symmetric form notice that
the left and right radical are equal, hence we may refer just to the radical of such a
form). We may use duality to see that in fact the left radical is zero if and only if
the right radical is zero.

Lemma 8.7. Let B ∈ Bil(V ). Then ker(RB) = {0} if and only if ker(LB) = {0}.

Proof. Recall that S : V → V ∗∗ is the natural isomorphism between V and V ∗.
Then LB : V → V ∗ has dual map L∗B : V ∗∗ → V ∗. We claim that RB = L∗B ◦ S. To
see this, let v ∈ V , then

L∗B(S(v))(w) = S(v)(LB(w)) = B(w, v) = RB(v)(w)
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Since S is an isomorphism, it follows that ker(RB) = {0} if and only if ker(L∗B) =
{0}. To finish the proof, we need only observe that if α : V → W is a linear map,
and α∗ is its dual, then ker(α∗) = im(α)◦. �

Clearly B is nondegenerate if and only if det(D) 6= 0, where D is the matrix of
B with respect to some (and hence any) basis. Since det(AtDA) = det(A)2 det(D),
we see that while we cannot assign a determinant to B, we can assign a discrimi-
nant to B. This is simply det(D) ∈ k×/(k×)2 if B is nondegenerate, and 0 other-
wise.

Given two vector spaces V1, V2 equipped with bilinear forms B1, B2, there is a
natural notion of isomorphism φ : V1 → V2: we require that φ is a linear isomor-
phism such that B2(φ(v), φ(w)) = B1(v, w). We say that such a φ is an isometry.
Given a vector space with a bilinear form, we may then consider the group of
isometries from the vector space to itself. The classical groups we have defined
can all be expressed as groups of this from, (rather degenerately in the case of
GL(V ), where one can take the bilinear form to be zero).

It is natural therefore to try and classify bilinear forms on a vector space up
to isometry. Since any such form can be written as the sum of a symmetric and
an alternating form (except in characteristic 2), we may first try and classify these
forms. It turns out that the classification of symmetric forms depends on the nature
of the field k in a way that the classification of alternating forms does not.

From now on we will restrict ourselves to the case of symmetric and alternating
bilinear forms. In this case we see that the maps LB and RB are either equal, or
LB = −RB . Recall that a subspace W of V has a subspace of V ∗, it annhilator
W ◦, naturally attached to it. When we equip V with a bilinear form, we may use
the map LB or RB to associate a subspace W⊥ in V to W ◦, simply by taking the
preimage of W ◦ in V under the map LB : Concretely we have:

W⊥ = {v ∈ V : B(v, w) = 0,∀w ∈W}.
In the case of W ⊂ R3 with the bilinear form given by the dot product, this is
the set of vectors perpendicular to W . It follows immediately from our dimension
formula for annihilators that, if B is nondegenerate we have

dim(W ) + dim(W⊥) = dim(V ).

In general (W⊥)⊥ ⊃W , and hence in the case of a nondegenerate form (using the
above dimension formula for W⊥ instead of W ) we find that (W⊥)⊥ = W . Given
subspaces U1, U2 of V we say they are orthogonal if B(u1, u2) = 0 for all u1 ∈ U1

and u2 ∈ U2 (equivalently, U1, U2 are orthogonal if U1 ⊂ U⊥
2 ). We say that a sum

of subspaces
∑
i∈I Vi is orthogonal if the Vi are pairwise orthogonal.

In the setting of a general (symmetric or skew-symmetric) bilinear form, it is
not necessarily the case that W ∩W⊥ = {0}. Indeed, if B is skew-symmetric, and
v ∈ V , then we have

B(v, v) = −B(v, v),
and so if char(k) 6= 2 then B(v, v) = 0 for all v ∈ V . Hence if L ⊂ V is a one-
dimensional vector subspace, then L is always contained in L⊥.

We now classify all skew-symmetric bilinear forms on a vector space. Consider
first the case of a two dimensional vector space H with an alternating form B.
Either we haveB = 0, or there are vectors v1, v2 such thatB(v1, v2) 6= 0. Replacing
v2 by v2/B(v1, v2) we may assume thatB(v1, v2) = 1. SinceB(v1, v1) = B(v2, v2) =
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0 it follows that {v1, v2} is a basis of H , and B is completely determined by its
values on {v1, v2}. Thus we see that there is exactly one nonzero skew-symmetric
bilinear form on a 2-dimensional vector space, up to isomorphism. The general
case is very similar, as the next proposition shows.

Proposition 8.8. Let V be a vector space over k, with an alternating bilinear form B.
Then there are 2-planes H1,H2, . . . ,Hk ⊂ V such that B|Hi

is nondegenerate for each i,
(1 ≤ i ≤ k) and

V = H1 ⊕H2 ⊕ . . .⊕Hk ⊕R(B),
an orthogonal direct sum, where R(B) is the radical of B.

Proof. We use induction on dim(V ). When V = {0} there is nothing to prove, so
suppose V 6= 0. If B = 0 then V = R and we are done. Otherwise we may find
v1 ∈ V such that there is a v2 ∈ V with B(v1, v2) = 1 (since B is nondegenerate,
there is a w ∈ V such that B(v1, w) 6= 0, thus we may set v2 = w/B(v1, w)). Since
B(v1, v1) = 0, we see that {v1, v2} are linearly independent. LetH1 = span{v1, v2}.
Then we have V = V ′ ⊕ H1, a direct sum of orthogonal subspaces, where V ′ =
H⊥

1 = {v ∈ V : B(v, v1) = B(v, v2) = 0}. To se this take v ∈ V , and set

v′ = v +B(v, v1)v2 −B(v, v2)v1

then v′ clearly lies in V ′, and so V = H1 +V ′. SinceB|H1 is nondegenerate, we also
have V ′ ∩H1 = {0}, and so the sum is direct as claimed. Now V ′ has dimension
dim(V )− 2, and so by induction we have

V ′ = H1 ⊕H2 ⊕ . . .⊕Hk ⊕R(B|V ′)

whereB|Hi
is nondegenerate, andR(B|V ′) is the radical ofB|V ′ . Since V = V ′⊕H

is an orthogonal direct sum, and B is nondegenerate on H , it follows that R(B|V ′)
is in fact also the radical of B on all of V , and so we have

V = H ⊕H1 ⊕H2 ⊕ . . .⊕Hk ⊕R(B).

as required. �

Since we have already observed that nonzero alternating forms on a two di-
mensional vector space are unique up to isomorphism, it follows there is, up to
isomorphism, a unique nondegenerate alternating form on an even dimensional
vector space (and none on an odd dimensional space). We call a nondegenerate
alternating bilinear form a symplectic form, and a vector space with such a form
a symplectic vector space. A symplectic basis of a symplectic vector space V is
given by choosing a decomposition of V into 2-planes Hi (1 ≤ i ≤ n) as in the
previous proposition, and then picking a basis {ei, fi} for each 2-plane such that
B(ei, fi) = 1. Thus a symplectic basis is characterized by the properties:

B(ei, fj) = δij ; B(ei, ej) = 0; B(fi, fj) = 0.

A 2-plane H ⊂ V such that V = H ⊕H⊥ as in the proposition is called a hyperbolic
2-plane, and a basis of such a plane {e, f} which satisfies B(e, f) = 1 is called a
hyperbolic pair.

Remark 8.9. We end this section with a few remarks about symmetric forms. Here
the nature of the field k must enter into the classification of forms up to isometry. If
k is algebraically closed, then there is a unique nondegenerate symmetric bilinear
form in each dimension – this is proved by finding an ”orthonormal basis” for
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the form. However if the field is arbitrary the answer is more complicated – for
example over the real numbers, the nondegenerate forms on an n-dimensional
vector space are classified, up to isometry, by the integer

k = max{dim(W ) : W a subspace of V,B|W = 0}.
For example, all positive definite symmetric bilinear forms are isometric, and these
are the ones for which k = 0.

Our classical groups over arbitrary fields were the isometries of a vector space
equipped with a bilinear form – symmetric in the case of the orthogonal groups,
and alternating in the case of the symplectic groups. We have now seen that in the
alternating case, this was the only nondegenerate alternating form (up to isome-
try), but in the symmetric case, depending on the field we may have other ”or-
thogonal” groups to consider. We will not be able to examine this in the present
course.
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9. THE SYMPLECTIC GROUP

In this section we analyze the symplectic group in the spirit of our analysis of
the general linear group. Let V be a vector space over k equipped with a nonde-
generate alternating bilinear form, B : V × V → k. Thus the dimension of V is
2n for some integer n. The symplectic group is the group of linear isomorphisms
preserving the form B:

Sp(V ) = {α ∈ GL(V ) : B(α(v), α(w)) = B(v, w), for all v, w ∈ V }.
Picking a symplectic basis {ei, fi : 1 ≤ i ≤ n}, we may identify B with the

matrix

J =
(

0 In
−In 0

)
,

and then Sp(V ) becomes identified with the matrix group

Sp2n(k) = {A ∈ GL2n(k) : AtJA = J}
The existence of symplectic bases also allows us to compute the order of Sp(V )
over a finite field. Indeed the set of symplectic bases of V is a set on which Sp(V )
clearly acts transitively, and the stablizer of an element is trivial (such an action is
called a free action). Hence the set of symplectic bases and the elements of Sp(V )
are in bijection. When k = Fq a finite field, we may count the number of symplectic
bases as follows: To construct a symplectic basis one first chooses a hyperbolic pair
in V . There are clearly

(q2n − 1)(q2n − q2n−1)/(q − 1) = q2n−1(q2n − 1)

such pairs. To extend this pair to a symplectic basis, we must choose another
hyperbolic pair in the subspace orthogonal to the hyperbolic pair, and continue
until we have exhausted V . Thus we see that

|Sp(V )| = q(2n−1)+(2n−3)+...+1
n∏
i=1

(q2i − 1) = qn
2
n∏
i=1

(q2i − 1).

Notice that in the case of GL(V ) (and also in the case of the orthogonal group)
one can obtain a natural normal subgroup using the determinant. It turns out
however, that in the case of the symplectic group, Sp(V ) is a subgroup of SL(V ).
The simplest case of this is the following.

Lemma 9.1. Let dim(V ) = 2. Then Sp(V ) = SL(V ).

Proof. This can easily be checked if you pick a basis of V and use matrices. How-
ever we give also a coordinate free proof. Recall that for any vector space V there
is a unique (up to scaling) alternating multilinear function

D : V × V × . . .× V → k

(where there are n = dim(V ) copies of V ), and the determinant of a matrix is the
value of D on the columns of this matrix. More naturally, given any linear map α
we can form a new alternating multilinear map α∗(D) from D and α by setting

α∗(D)(v1, v2, . . . , vn) = D(α(v1), α(v2), . . . , α(vn)).

Since D is unique up to scalar, we must have α∗(D) = λD for some λ ∈ k. Then
det(α) is exactly this scalar. The lemma follows by observing that in the case
dim(V ) = 2, the form B must be a nonzero multiple of D. �
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Our first strategy is to find a set of elements of Sp(V ) which will play the role
of transvections. Conveniently we may simply use the transvections which lie in
Sp(V )!

Lemma 9.2. A transvection in GL(V ) lies in Sp(V ) if and only if it has the form τu,φ
where φ(v) = aB(v, u) for some a ∈ k.

Proof. We need to calculate when τu,φ preserves B. But

B(τu,φ(v), τu,φ(w)) = B(v + φ(v)u,w + φ(w)u)

= B(v, w) + φ(w)B(v, u) + φ(v)B(u,w).

Therefore τu,φ ∈ Sp(V ) if and only if

φ(w)B(v, u) = φ(v)B(w, u), ∀v, w ∈ V.
Now pick w ∈ V such that B(u,w) = 1. Then we find that φ(v) = φ(w)B(v, u),
and so setting a = φ(w) we are done. �

We use the notation τu,a for the transvection v 7→ v + aB(v, u)u. Let T denote
the subgroup of Sp(V ) generated by transvections. Our goal, of course, is to show
that in fact this group is all of Sp(V ).

Lemma 9.3. The group T acts transitively on V −{0}. Indeed T acts transitively on the
set of hyperbolic pairs.

Proof. Suppose that v, w ∈ V . If B(v, w) 6= 0, then set u = w− v and a = B(v, w)−1

so that

τu,a(v) = v + aB(v, u)u = v +B(v, w)−1B(v, w)(w − v) = w.

If B(v, w) = 0, then we may find φ ∈ V ∗ such that φ(v) and φ(w) 6= 0. Then setting
u = R−1

B (φ) we have B(v, u) 6= 0 and B(v, w) 6= 0. Then by what has already
been established, there are symplectic transvections τ1, τ2 taking v to u and w to u
respectively. Then τ−1

2 ◦ τ1 takes v to w as required.
For the second part, suppose that {e1, f1} and {e2, f2} are hyperbolic pairs. Us-

ing the first part, we may assume that e1 = e2 = e say, and so we need only find an
element of T fixing e taking f1 to f2. Now B(f1, f2) 6= 0 we may take u = f2 − f1
and a = B(f1, f2)−1 so that

τu,a(f1) = f1 + aB(f1, u)u = f2

and τu,a(e) = e since B(e, f1) = B(e, f2) = 0. If B(f1, f2) = 0, then consider the
pair (e, e + f1). It is also a hyperbolic pair, and B(f1, e + f1) = −1, so that by
the above there is a symplectic transvection τ3 taking the pair (e, f1) to the pair
(e, e + f1). Similarly (f2, e + f1) = −1 so that there is a transvection τ4 taking
(e, e+ f1) to (e, f2). Then τ4 ◦ τ3 takes (e, f1) to (e, f2). �

This is enough for us to be able to show that in fact the symplectic transvections
generate Sp(V ).

Lemma 9.4. The group T coincides with Sp(V ).

Proof. We show this by induction on dim(V ). If dim(V ) = 2, then SL(V ) = Sp(V ),
and since we know transvections generate SL(V ), we are done. Now suppose that
dim(V ) > 2. Let g ∈ Sp(V ), and pick a symplectic basis {ei, fi : 1 ≤ i ≤ n} for
V . Thus {g(e1), g(f1)} are a hyperbolic pair. By the previous lemma we know
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that there is an element h of T such that h(e1) = g(e1) and h(f1) = g(f1). Thus
g′ = h−1g fixes the hyperbolic pair {e1, f1}. Thus g′ fixes the subspace orthogo-
nal to H1 = span{e1, f1}, that is the span of the vectors {ei, fi : i ≥ 2}, and is
the identity on H1. But then B|H⊥

1
is a nondegenerate alternating form, and g′|H⊥

1

preserves B, so by induction, g′|H⊥
1

is a product of symplectic transvections. Ex-
tending these by letting them act trivially on H1, we see that g′ is a product of
symplectic transvections, and hence g is also. Thus Sp(V ) = T as required. �

Corollary 9.5. The group Sp(V ) is a subgroup of SL(V ).

Proof. This follows immediately from the fact that any symplectic transvection lies
in SL(V ). �

Remark 9.6. Morally, this is the “wrong” proof. A better proof is given in the ex-
ercises. The corollary is not, however, completely obvious – if you translate the
statement into one about matrices, it say that a matrix A satisfying AtJA = J
must have det(A) = 1. It is easy to see that det(A) = ±1 from the multiplicativity
of the determinant and the fact that det(At) = det(A), but it is not clear from this
why A must have determinant 1.

Lemma 9.7. The center of Sp(V ) is precisely the group {±1}.

Proof. Notice that if g ∈ Sp(V ), then gτu,ag
−1(v) = τg(u),a. It follows that if g ∈

Z(Sp(V )) we must have g(u) = λu, where B(v, λu)u = B(v, u)u for all v ∈ V ,
which holds only if λ2 = 1, that is, if and only if λ = ±1. �

We set PSp(V ) = Sp(V )/{±1}. Our goal is to show that this group is simple in
almost all cases, just as PSL(V ) was simple in almost all cases.

Lemma 9.8. Suppose that |k| > 3, then the group Sp(V ) is its own derived subgroup.

Proof. The n = 2 case follows from the case of SL(V ), so we may assume that
dim(V ) ≥ 4. As for SL(V ), we need only express a symplectic transvection as a
commutator, since the derived group will then contain all the conjugates of that
transvection, that is, all symplectic transvections. Now fix u ∈ V −{0} and a ∈ k×.
Since Sp(V ) is transitive on V − {0}, we may pick g ∈ Sp(V ) such that g(u) = λu,
for any λ ∈ k×. Then gτu,ag−1 = τλu,a = τu,λ2a. Thus

[g, τu,a] = τu,(λ2−1)a.

Then the equation b = (λ2 − 1)a can be solved for any b ∈ k× whenever |k| > 3,
and hence the derived group of Sp(V ) contains all symplectic transvections are
required. �

It remains to understand the cases when |k| = 2 or 3. For dim(V ) = 2, we
already know Sp(V ) is its not its own derived group in these cases. For dim(V ) ≥ 4
however, one can show that Sp(V ) is its own derived group if |k| = 3, and if
dim(V ) ≥ 6 then Sp(V ) is its own derived group for all k. To see these claims
requires specific computations to produce a transvection as a commutator. The
conclusion is that Sp(V ) is its own derived group unless dim(V ) = 2 and k = F2

or F3, or dim(V ) = 4 and k = F2. This last case is in fact an exception, as we will
see later.

In order to establish the simplicity of the group PSp(V ) we follow the strategy
we used for PSL(V ). We already know that Sp(V ) acts transitively on V − {0}, so
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that clearly PSp(V ) acts faithfully and transitively on P(V ). If P is the stabilizer
in PSp(V ) of a point p ∈ P(V ), then we would like to know that for any normal
subgroup K � PSp(V ) we have either K ⊂ P or KP = PSp(V ). For the projective
special linear group, we used the fact that PSL(V ) acts 2-transitively on P(V ) to
conclude that the corresponding stablizer is a maximal subgroup of PSL(V ). The
action of PSp(V ) is unfortunately not 2-transitive (why?) so we need some more
subtle argument.

There are a number of possibilities – the stabilizer P is in fact a maximal sub-
group, as can be seen by developing the machinery of BN -pairs for Sp(V ). We
choose a shorter root however, for which we need some definitions. The idea is
to find a weaker notion than 2-transitivity which will suffice to show that KP =
Sp(V ) in the case where K � PSp(V ) is not contained in P = StabPSp(V )(p).

Definition 9.9. Let X be a transitive G-set. A block in X is a proper subset B ⊂ X
such that |B| ≥ 2 and for each g ∈ G either g.B = B or g.B ∩ B = ∅. If X has no
blocks we say the G-action is primitive.

Remark 9.10. It is not hard to check that if the action of G on X is 2-transitive, then
it is primitive.

Lemma 9.11. Suppose thatG acts primitively onX , and thatK�G is a normal subgroup
not contained in the kernel of the action of G on X . Then K acts transitively on X .
Moreover, if a ∈ X , then G = K.StabG(a).

Proof. We show the contrapositive. Suppose that K does not act transitively. Then
let B be an K-orbit in X of size greater than 1 (such an orbit exists by the as-
sumption that K is not in the kernel of the action). We claim that B is a block.
Indeed suppose that g ∈ G. Then if x ∈ B, we have B = K.x, and so g.B =
g.(K.x) = (gKg−1)g.x. Since K is normal this shows that g.B = K.(gx), and
hence g.B is an K-orbit in X . Since distinct orbits are disjoint, it follows that B
is a block, and hence the action of G is not primitive. For the moreover part, fix
a ∈ X , and let g ∈ G. Then there is an k ∈ K such that k.a = g.a. It follows that
g = k(k−1g) ∈ K.StabG(a) as required.

�

We are now able to prove the simplicity of PSp(V ) in the cases where it is equal
to its own derived group. What we need to do is to show that PSp(V ) acts primi-
tively on P(V ).

Lemma 9.12. PSp(V ) acts primitively on P(V ).

Proof. Let B be a block for the action of PSp(V ), and suppose that [v], [w] are two
distinct elements of B. Suppose that B(v, w) = 0. Then pick u ∈ V such that
B(u, v) 6= 0 and B(u,w) 6= 0 (see the proof of Lemma 9.3). Then τv,1(u) = u +
B(u, v)v and τv,1(w) = w, hence sinceB is a block, [u+B(u, v)v] ∈ B. Thus setting
u1 = u+B(u, v)v, we have [v], [u1] ∈ B such that B(v, u1) = B(v, u) 6= 0. We may
rescale so that {v, u1} are a hyperbolic pair, and since Sp(V ) acts transitively on
such pairs, it follows that B contains all [p] ∈ P(V ) such that B(v, p) 6= 0. Now
if u ∈ V has B(v, u) = 0, as before we may find a u′ such that B(u, u′) 6= 0 and
B(v, u) 6= 0. Then we have u′ ∈ B and hence (using what we have done for u′

instead of v) it follows u ∈ B. Thus B = P(V ) as required. �
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Theorem 9.13. Let V be a symplectic vector space over k such that either dim(V ) ≥ 6,
or dim(V ) = 4 and |k| > 2, or k > 3 and dim(V ) = 2. Then PSp(V ) is a simple group.

Proof. Let K � PSp(V ) be a normal subgroup of PSp(V ). Then pick [v] ∈ P(V ),
and let P = StabPSp(V )([v]). Then if K ⊂ P , it follows that K fixes [v]. Since K is
normal and the action of PSp(V ) is transitive on P(V ) it follows that K fixes P(V )
pointwise. Since the action of PSp(V ) is faithful, this implies that K = {1}.

On the other hand, if K * P then since K is normal and the action of PSp(V )
on P(V ) is primitive, we have PSp(V ) = KP . But then if π : PSp(V ) → PSp(V )/K
is the quotient map, we have π(P ) = π(PSp(V )). But if we let N = {τv,a : a ∈ k},
then N � P , and by the proof of Lemma 9.7 the union of the conjugates of N ,
being (the image in PSp(V ) of ) the set of transvections in Sp(V ) generate PSp(V ).
It follows that π(P ) = π(N), and so KN = PSp(V ). But N is abelian, so taking
the derived subgroups of both sides (and using the assumptions of the theorem so
that PSp(V ) is its own derived subgroup) we find K = PSp(V ) as claimed. �

The cases excluded by the hypotheses of the theorem are in fact not simple:
When dim(V ) = 2 these are PSL2(F2) and PSL2(F3), which have already estab-
lished are S3 and A4 respectively. The only group that remains to examine is
Sp4(F2). It turns out that this group is just S6, the symmetric group on 6 letters.

To see this we show a more general result.

Lemma 9.14. Let X be a set and let P(X) be the power set of X , i.e. the set of subsets of
X . For P,Q ∈ P(X) we define

P +Q = (P ∪Q)− (P ∩Q), P.Q = P ∩Q.
Under these operation, P(X) is a ring, and indeed an F2-algebra. Moreover if we set

B(P,Q) = |P.Q| mod 2,

then B is a nondegenerate symmetric form on P(X).

Proof. We must check the axioms for a ring. To see that P(X) is an abelian group,
note that ∅ is an identity for +, and P + P = ∅, so every element has an inverse.
Clearly, + is commutative, and for associativity of + one should draw a Venn
diagram. It follows that P(X) is an abelian group and so a Z-module. Since 2P =
0 for each P ∈ P(X), it is in fact a Z/2Z-module, i.e. an F2-vector space. The
multiplication is clearly commutative and associative, and it is easy to check that
it distributes over addition. This also readily establishes that B is bilinear. That B
is nondegenerate is also immediate. �

Remark 9.15. Another way to think of this lemma is to order the elements ofX and
assign a binary string to each subset – with a 1 if the element of X is in the subset
and a 0 if it isn’t. This gives a bijection between P(X) and Fn2 , and the vector space
structures match up. The bilinear form is just the ”dot product” in this setting.

Now suppose that X is a set with 2m elements. Let L be the span of the set
X itself, so that L ⊂ L⊥, which is just the set E of subsets of X with an even
number of elements. Then the space L⊥/L inherits a nondegenerate form, which
is alternating, since B(P, P ) = 0 for any set with an even number of elements.
Since it is clearly nondegenerate, this gives a realization of the symplectic vector
space of dimension 2m − 2 over F2. The symmetric group S2m acts on X , and
this induces an action of S2m on P(X) as an F2-algebra, hence in particular the
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action preserves the form B. It follows that S2m acts by symplectic isometries on
E/L, and so we obtain an embedding S2m → Sp(E). In the case when m = 6, it
is easy to compute the orders of these groups and hence obtain the isomorphism
Sp4(F2) ∼= S6 as required.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.



MATH 241: TOPICS IN GEOMETRY. PROBLEM SET 1.

KEVIN MCGERTY

(1) Describe the group of isometries of R2 as explicitly as you can.
(2) A reflection in O(R2) is an element of order two. Show that every element

of O(R2) can be written as a product of at most two reflections.
(3) Show that any element of SO(R3) can be written as a product of elements

of order 2.
(4) The object of this exercise is to classify up to conjugacy, all finite subgroups

of SO(R3):
(a) Let Γ < SO(R3) be a finite subgroup. Let S = {v ∈ R3 : ‖v‖ =

1, σ(v) = v for some σ ∈ Γ − {1}}, so that S is a finite set of vectors.
Show that Γ acts on S.

(b) Consider the orbits of the action of Γ on S, labelled sayO1,O2, . . . ,Ok.
Let ni = |Stab(x)| for some x ∈ Oi. Using the fact that each σ ∈ Γ−{1}
fixes exactly two elements of S, show that

2− 2
|Γ|

=
k∑

i=1

(1− 1
ni

).

(c) Find all possible positive integer solutions |Γ|, (ni)1≤i≤k with |Γ|, ni ≥
2 to the equation in the previous part.

(d) By considering platonic solids (the cube, tetrahedron, dodecahedron,
etc.) show that all of the solutions you obtained actually come from a
subgroup Γ.

(e) (You can be more informal here.) Classify the finite subgroups of SO(R3).
(5) Find the orders of the conjugacy classes in the group of rotational sym-

metries of the icosahedron (your arguments here do not need to be very
formal). Hence show that this group is simple.

due Wedneday, January 20.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.

Date: March, 2006.
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KEVIN MCGERTY

(1) (a) Let v ∈ Rn. The reflection defined by v is the linear map σv : Rn → Rn

given by

σv(w) = w − 2w.v

v.v
v.

Show that σv ∈ O(Rn).
(b) Show by induction on n that any element of O(Rn) can be written as

a product of at most n reflections.
(c) Show directly that the product of two reflections in O(R3) is a rotation.

Conclude that SO(R3) consists of rotations. More generally, show that
SO(Rn) is generated by “rotations” (that is, elements which fix a (n−
2)-plane, and act as a rotation on the 2-plane orthogonal to that plane).

(2) Let P,Q,R be three planes in R3 passing through the origin, no two of
which are equal. Intersecting with S2 = {v ∈ R3 : ‖v‖ = 1} they yield
a spherical triangle. If the angles of the triangle are α, β, γ, show that the
composition of rotations about the lines given by the vertices p, q, r by an-
gles 2α, 2β, 2γ is the identity map. (The angle between two planes is the angle
between their normal vectors. Notice that this gives an explicit description of
which rotation you get by composing two rotations).

(3) Let K = Q(
√

5) be quadratic extension of Q containing
√

5. Show that
O = Z[ 12 (1 +

√
5)], the subring of K generated by τ , is spanned (as a Z-

module) by 1 and τ = 1
2 (1+

√
5) (if you know about such things, show that

O is the ring of integers of K). Clearly the O-span of the elements 1, i, j, k
in H form a subring in H. Denote this ring by HO. Find the elements of the
set

J = {x ∈ HO : ‖x‖ = 2}.
Let J̃ = {x ∈ H : 2x ∈ J}. This is a finite subset of U the unit quaternions,
and the product of any two has norm 1, but might not lie in HO (the issue is
that if x, y ∈ J then xy does not necessarily lie in 2J). Show however that
there is a subset of J̃ containing 120 vectors which forms a group under
multiplication, and thus is finite subgroup of H. What has this got to do
with the icosahedron?

(4) Let A be a finite dimensional associative division algebra over C. By con-
sidering the linear maps La : A → A given by La(x) = ax, show that
A = C.

due Wedneday, April 12.
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(1) Let φ be the map
φ : U× U → SO(R4)

given by identifying R4 with H and letting φ(u1, u2) be the map sending
q ∈ H to u1qu

−1
2 (a connectedness argument shows that the image of φ is

contained in SO(R4). Show that φ is surjective.
Hint: Here is one possible method. Use the fact that the conjugation action of

U on the imaginary quaternions I is the action of SO(R3) on I ∼= R3 to show that
you can move any positively oriented orthonormal basis of H to {1, i, j, k} by the
action of U× U.

(2) Let A be a composition algebra over k. Show that the norm of the algebra
is determined by the algebra structure as follows: for a ∈ A, the operation
of left multiplication by a, that is the linear map x 7→ ax, has a minimal
polynomial. Show that this polynomial is:

t2 − 2(1, a)t + N(a) ∈ k[t]

whenever a ∈ A is not a scalar. Deduce that if e ∈ A has norm 1 and is
orthogonal to 1, then e2 = −1.

(3) The automorphism group of an algebra A over a field k is defined to be

Aut(A) = {φ ∈ GLk(A) : φ(ab) = φ(a)φ(b)}
(with the group operation given by composition), that is, Aut(A) is the
set of linear maps of the vector space A which are compatible with the
multiplication. Show that the automorphism group of the quaternions,
Aut(H) is isomorphic to SO(R3).

(4) Show that the group SOn(R) is connected (and path connected). (It is a
compact subset of the vector space of n × n matrices over R, so it is a
metric space, and hence it makes sense to ask if it is connected, you may
wish to use results from the previous problem set).

due Wedneday, April 19.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.
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(1) Show that for D = C or H the norm determines the Hermitian form.
(Hint: consider the expression 2(x, y) = N(x + y) − N(x) − N(y) that

we used in studying composition algebras. It shows that the norm and
bilinear form determine each other in this case. Try and find corresponding
expressions for the Hermitian form).
The next few questions uses basic notions of analysis in Rn. A curve in a real
vector space V equipped with a Euclidean norm is a continuous map γ :
(a, b) → V . For a point c ∈ (a, b) we say that γ is differentiable at c if the
limit

lim
t→c

γ(t)− γ(c)
t− c

exists. We denote the limit by γ′(c).
(2) For a subset A ⊂ V , we say that γ : (a, b) → V lies in A if γ(t) ∈ A for

all t ∈ (a, b). If V has a continuous multiplication V × V → V (say if
it is the space Mn(R) of all n × n matrices, with the norm given by the
sum of the squares of the entries – see (3a) below), and A is closed under
multiplication, we can define the product of two curves γ1, γ2 lying in A to
be the curve in A given by setting

(γ1γ2)(t) = γ1(t)γ2(t)

(a) If γ1 and γ2 are both differentiable at c ∈ (a, b) show that their product
γ1γ2 is also differentiable at c, and that

(γ1γ2)′(c) = γ1(c)γ′2(c) + γ′1(c)γ2(c).

(b) Let γ : (−a, a) → On(R) = {A ∈ Mn(R) : A.At = I} be a differentiable
curve (i.e. it is differentiable at all c ∈ (−a, a)) such that γ(0) = I the
identity matrix. Show that the derivative of γ at 0 is skew-symmetric,
that is show that γ′(0) = −γ′(0)t.

(3) Let A be a matrix in Mn(R), and suppose that ‖A‖ < 1 (here the norm ‖A‖
is just the square root of the sum of the squares of the entries of the matrix).
(a) Show using the Cauchy-Schwarz inequality that ‖AB‖ ≤ ‖A‖‖B‖.
(b) Show that the series

exp(A) =
∞∑

n=0

1
n!

An

converges absolutely (where A0 is understood to be the identity ma-
trix I) – (quote whatever results about uniform convergence that you
need). Show moreover that, given A ∈ Mn(R) that the function ϕA : R →
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Mn(R) given by t 7→ exp(tA) is differentiable, with derivative D(ϕA)(t) =
A exp(tA).

(4) Show that for A ∈ Mn(R) the map ϕA : R → Mn(R) intertwines addi-
tion in R and multiplication in Mn(R), in the sense that ϕA(t1 + t2) =
ϕA(t1)ϕA(t2). (Hint: Compute the derivative of the function

t 7→ exp(tA) exp((c− t)A)

where c ∈ R.)
Deduce that exp is in fact a map exp: Mn(R) → GLn(R), i.e. exp(A) is

invertible for all A ∈ Mn(R).
(5) Suppose that G ⊂ GLn(R) is a subgroup of GLn(R). The Lie algebra Lie(G)

attached to G is the set

{B ∈ Mn(R) : B = γ′(0) for some curve γ : (−a, a) → Mn(R) in G with γ(0) = I}
Show that in the case G = On(R),

Lie(G) = {B ∈ Mn(R) : B = −Bt}
(in question (2) you have already established one inclusion here, so the content of
this question is to show that every skew-symmetric matrix arises as γ′(0) for some
curve in On(R)).

(6) In the same way, we can attach to Un(C) and Sp(H) a Lie algebra. Indeed

Lie(Un(C)) = {A ∈ Mn(C) : A + A∗ = 0}
Lie(Spn(H)) = {A ∈ Mn(H) : A + A∗ = 0}.

In each of the cases, the Lie algebra is a vector space over R (although not
a vector space over C or H). Compute the dimension of the Lie algebras as
real vector spaces. Check moreover that if L is one of the Lie algebras, and
A,B ∈ L, then [A,B] = AB−BA ∈ L also. (This gives L a product, which
however is not associative or commutative).

due Wedneday, April 26.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.
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(1) Show that the projection from a point map is a projective transformation
(see the notes for the definition of the projection from a point map).

(2) Consider the two sphere S2 ⊂ R3 and the complex plane embedded as the
set {(x, y, z) ∈ R3 : z = 0}. We may define a bijection tN : S2 − {N} → C
as follows: Take the point P ∈ S2 − {N} and consider the line from N to
P . Let tN (P ) be the point of intersection of this line with the (x, y)-plane.
In the same way define a map tS : S2 − {S} → C. Show that, under the
identification of S2 with CP 1, these give the affine coordinates A0, A1 of
CP 1.

(3) An algebra A is said to be alternative if the subalgebra generate by any pair
x, y ∈ A is associative. Show that A is alternative if and only if for every
pair x, y ∈ A we have

x.(xy) = (x.x)y, x(y.y) = (xy).y.

Show that the octonions are an alternative algebra.
(4) Let V the the vector space of dimension n over the finite field Fq. How

many complete flags are there in P(V )? (A complete flag is a sequence of
projective subspaces F0 ( F1 ⊆ . . . ( Fn−1 = P(V ) of P(V ) such that
dim(Fi) = i).

(5) Suppose that V is a vector space over C. We say that a map α : P(V ) →
P(V ) is an automorphism if α is a bijection and for all subspaces P(U) of
P(V ) the image of P(U) is a subspace of the same dimension. Let Aut(P(V ))
denote the group of automorphisms of P(V ). Is Aut(P(V ) = PSL(V )? Is
PSL(V ) of finite index in Aut(P(V ))?

due Wedneday, May 10.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.
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(1) Let V be an (n + 1)-dimensional vector space over k. Show that in the case
of k = R and V has the standard Euclidean norm, the condition that an
(n+1)-tuple (v0, v2, . . . , vn+1) is in general position (i.e. any (n+1)-element
subset is a basis of V ) defines a dense open subset of V n+2 = V ×V ×. . .×V

(2) Let V be a vector space over k, and let G = PGL(V ). The set Grk(V )
of k-dimensional subspaces of V is acted on transitively by G. Let X =
Grk(V )×Grk(V ). Then X is acted on by G diagonally, that is for (U1, U2) ∈
X

g(U1, U2) = (g(U1), g(U2)).
What are the orbits of G on X?

(3) Let k = Fq be a finite field with q elements. How many conjugacy classes
of transvections are there in SL2(Fq)?

(4) Let P1 be the projective line for k, that is, the set of lines in k2. Then PSL2(k)
acts on X = P1 × P1 × P1 × P1 diagonally:

g(l1.l2, l3, l4) = (g(l1), g(l2), g(l3), g(l4)).

This action is not transitive: Viewing P1 as k ∪ {∞} we may define a point
c(p1, p2, p3, p4) in P1 attached to a 4-tuple of distinct points (p1, p2, p3, p4) ∈
X with homogeneous coordinates pi = [zi, wi] by setting c(p1, p2, p3, p4) to
be

[(z1w2 − w1z2)(z3w4 − z4w3) : (z1w4 − w1z4)(z3w2 − z2w3)] ∈ P1

Show that c is constant on orbits of PSL2(k). Use c to describe the orbits of
PSL2(k) on X .

(5) Let P be the projective plane for F5. Thus |P| has 6 elements. The group
PGL2(F5) acts on P, giving a homomorphism

φ : PGL2(F5) → S6,

from PGL2(F5) to the symmetric group on 6 symbols. Show that PGL2(F5) ∼=
S5, and hence we may view φ as a homomorphism S5 → S6. Let K be the
image of φ. Show that φ has exactly 6 conjugates, and hence this gives an
action of S6 on the 6 conjugates, and hence a homomorphism α : S6 → S6.

Show that α is an automorphism which is not given by conjugation by
an element of S6 (such an automorphism is called an outer automorphism).

due Wedneday, May 17.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.
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The first three questions establish carefully the last axiom for a BN -pair for
GLn(k). Let {e1, e2, . . . , en} be the standard basis of kn, with dual basis {e∗1, e∗2, . . . , e∗n}.
Let B be the standard Borel, U the group of unipotent upper triangular matrices,
and N the group of monomial matrices.

(1) Let Ui = {f ∈ U : e∗i (f(ei+1)) = 0} and for i 6= j set Xi,j to be the unipotent
one-parameter subgroup of transvections τei,λe∗j

(λ ∈ k). Set Xi = Xi,i+1,
and X−i = Xi+1,i. Show that U = UiXi, that Ui = niUn−1

i ∩ U and
niXin

−1
i = X−i, where ni is the element of N which takes ei to −ei+1, ei+1

to ei and fixes every other basis element.
(2) Suppose that n ∈ N has its nonzero entries in the positions (π(j), j) where

π ∈ Sn. Show that nXi,jn
−1 = Xπ(i),π(j) and niB ⊂ BniXi. For Xi write

Xπ(i) for Xπ(i),π(i+1). If π(i) < π(i + 1), show that Xπ(i) ⊂ B and deduce
that niBn ⊂ BninB.

(3) Show that X−i ⊂ B ∪BniB and by applying the previous question to nin
in place of n deduce that when π(i) > π(i + 1) we have

niBn ⊂ (BninB) ∪ (BnB).

(4) Show that if F = Fpn where p is a prime, then U is a Sylow p-subgroup of
SL(V ).

(5) Let Fi = span{e1, e2, . . . , ei} be the span of the first i standard basis vec-
tors. Use the properties of the BN -pair for GL(V ) to show that if P is a
subgroup of GL(V ) containing the standard Borel B, then there is a se-
quence (1 ≤ i1 < i2 < . . . < ik ≤ n) such that P is the stabilizer of the
flag

(Fi1 ( Fi2 ( . . . ( Fik
).

(Hint: You should try to attach a subgroup of W to P ).
due Wedneday, May 24.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.
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Let V be a vector space over k, and let Λk(V ) be the space of alternating k-
multilinear functions on V , so that the elements of Λk(V ) are functions A : V ×
V × . . . × V → k (with k copies of V ) which are linear in each variable, and are
alternating, so A(v1, v2, . . . , vk) = 0 if at least two of the vi are equal. Thus Λ2(V )
is the vector space of alternating bilinear forms, and Λ1(V ) = V ∗. If dim(V ) = n,
then it is known that Λn(V ) is one dimensional. If we pick a basis e1, e2, . . . , en of
V , write

vi =
n∑

k=1

akiek,

and set
D(v1, v2, . . . , vn) =

∑
σ∈Sn

ε(σ)a1σ1a2σ(2) . . . anσ(n).

(that is, D is the determinant of the matrix with columns given by the coordinates
of the vi), then the function D is an alternating n-multilinear function on V , and
given any A ∈ Λn(Rn) we have A = A(e1, e2, . . . , en)D. (You should assume this
fact for the purposes of this question).

Given a linear map α : V → V , we can define α∗ : Λ2n(V ) → Λ2n(V ) by setting

α∗(A)(v1, v2, . . . , v2n) = A(α(v1), α(v2), . . . , α(v2n)).

The α∗ is a linear map on Λn(V ), and so since this space is one-dimensional, α∗ is
simply multiplication by a scalar. This scalar is det(α).

(1) Now suppose that V has dimension 2m, and assume that char(k) = 0 (this
last assumption can removed) and suppose that B is a nondegenerate al-
ternating bilinear function on V . Consider the function

B∧m(v1, v2, . . . , v2m) =
∑

σ∈T2m

ε(σ)B(vσ(1), vσ(2))B(vσ(3), vσ(4)) . . . B(vσ(2n−1), vσ(2m)).

where

T2m = {σ ∈ S2m : σ(2i− 1) < σ(2i), i ∈ {1, 2, . . . ,m}},
and ε(σ) ∈ {±1} is the sign of the permutation σ. Show that B∧m is a
nonzero alternating 2n-multilinear function. Deduce that if α preserves B,
then α has determinant 1.

(2) Suppose that V is four dimensional. The space Λ2(V ) is is then 6 dimen-
sional (since it is isomorphic to the space of skew-symmetric matrices,
which clearly is 6 dimensional). We want to define a correspondence be-
tween the space Gr2(V ) of lines P(V ) (or two-planes in V ) and a subset of
P(Λ2(V )∗) (that is, the projective space of the dual of Λ2(V )).

Date: May, 2006.
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To do this, note if P is a 2-plane in V , then if we pick a basis {v1, v2} of
P we can define φv1,v2 a linear map Λ2(V ) → k by sending B ∈ Λ2(V ) to
B(v1, v2). Then φv1,v2 is of course not determined by P , but it is up to a
scalar multiple (why?) thus we get a map

K : Gr2(V ) → P(Λ2(V )∗).

(a) Show that K is injective.
(b) We want to calculate the image of K in P(Λ2(V )∗). To do this, let us

make everything explicit: Let {e1, e2, e3, e4} be a basis of V , so that we
can identify Λ2(V ) with 4 × 4 skew-symmetric matrices over k. Then
for 1 ≤ i < j ≤ 4, the matrices Mij with zeros everywhere except a 1
in the (i, j)-th entry and a−1 in the (j, i)-the entry clearly form a basis
for Λ2(V ). Let Nij be the dual basis of this basis, (it is easy to see that
Nij(B) = B(ei, ej) for B ∈ Λ2(V )), so that we have homogeneous co-
ordinates P(Λ2(V )∗) homogeneous coordinates . Given P ∈ Gr2(V ),
show that if K(P ) = [z12 : z13 : z14 : z23 : z24 : z34], then

z12z34 − z13z24 + z14z23 = 0.

(with some more work you can show that points satisfying this equation are
exactly the image of Gr2(V ))

(3) Is the action of SO(R3) on S2 = {x ∈ R3 : ‖x‖ = 1} primitive?
due Wedneday, May 24.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO.


