SYMMETRIC GROUPS AND THE STEINBERG VARIETY.

KEVIN MCGERTY

1. Geometry of flag varieties

Much of what we say will make sense for any reductive algebraic group G and its Weyl group W, however I have proofs only for GL_{n}, and everything there can be made quite explicit. All our varieties are over \mathbb{C}. Our goal is to produce representations of the Weyl group W from geometry attached to G.

The protagonists of the story are the following.
Definition 1.1. Let \mathcal{F} be the flag variety of GL_{n}, that is

$$
\mathcal{F}=\left\{\left(0 \subset V_{1} \subset V_{2} \subset \ldots \subset V_{n}=\mathbb{C}^{n}\right): \operatorname{dim}\left(V_{i}\right)=i\right\} .
$$

Clearly \mathcal{F} is a smooth projective variety. The group GL_{n} acts diagonally on $\mathcal{F} \times \mathcal{F}$ with finitely many orbits, each naturally indexed by an element of the symmetric group $W=S_{n}$. For $w \in S_{n}$, let \mathcal{O}_{w} denote the corresponding orbit.

The nilpotent cone of GL_{n} is the variety:

$$
\mathcal{N}=\left\{x \in \mathfrak{g l}_{n}: x^{n}=0\right\}
$$

a conic subvariety of $\mathfrak{g l} l_{n}$. One can naturally identify the cotangent bundle of \mathcal{F} with the variety

$$
\tilde{\mathcal{N}}=\left\{(e, F) \in \mathfrak{g l}_{n} \times \mathcal{N}: e\left(F_{i}\right) \subset F_{i-1}\right\}
$$

Moreover, the obvious map $\mu: \tilde{\mathcal{N}} \rightarrow \mathcal{N}$ is a resolution of singularities (even with normal crossings exceptional divisor). The Steinberg variety \mathcal{Z} is the fiber product:

$$
\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}}=\left\{\left(e, F^{1}, F^{2}\right) \in \mathcal{N} \times \mathcal{F} \times \mathcal{F}: e\left(F_{j}^{i}\right) \subset F_{j-1}^{i}, \text { for } 1 \leq j \leq n, i=1,2\right\}
$$

Proposition 1.2. The variety \mathcal{Z} is pure dimensional with each component of dimension $n(n-1)$. Moreover the irreducible components of \mathcal{Z} are the closures of

$$
\mathcal{Z}_{w}=\left\{\left(e, F_{1}, F_{2}\right) \in \mathcal{Z}:\left(F_{1}, F_{2}\right) \in \mathcal{O}_{w}\right\}
$$

Proof. Identify \mathcal{Z} with the conormal bundles of the orbits \mathcal{O} in $\mathcal{F} \times \mathcal{F}$.
Lusztig showed that one can construct the group algebra $\mathbb{Z}\left[S_{n}\right]$ as a convolution algebra of constructible functions on \mathcal{Z}.

Definition 1.3. Let X be a complex algebraic variety. For any closed subvariety Z, let 1_{Z} be the characteristic function of Z, that is

$$
1_{Z}(x)=\left\{\begin{array}{cc}
1 & \text { if } x \in Z \\
0 & \text { otherwise }
\end{array}\right.
$$

The abelian group generated by the functions 1_{Z} as Z runs over the closed subvarieties of X is denoted $\operatorname{Con}(X)$, and if $f \in \operatorname{Con}(X)$ we say that f is constructible.

Now $\operatorname{Con}(\mathcal{Z})$ is clearly a ring under multiplication of functions, but this is not the algebra structure we wish to use, instead we want to use the fact that \mathcal{Z} is a groupoid. To do this we need "functorial" operations on $\operatorname{Con}(X)$. Let $f: X \rightarrow Y$ be a morphism of varieties. Then if $\alpha \in \operatorname{Con}(Y)$, the function $f^{*}(\alpha)$ given by

$$
f^{*}(\alpha)(x)=\alpha(f(x)), \quad x \in X
$$

lies in Con (X), thus we have a "pull-back" operation.
Slightly less obviously we can also "push-forward" constructible functions. This essentially requires a notion of integration (really measures push forward and functions pull back). The integration we use is given by the Euler characteristic: we define for $f \in \operatorname{Con}(X)$

$$
\int_{X} f=\sum_{n \in \mathbb{Z}} n \cdot \chi\left(\alpha^{-1}(n)\right),
$$

where χ denotes the Euler characteristic. This gives an additive functional on $\operatorname{Con}(X)$. We then define, for $f: X \rightarrow Y$ the pushforward $f_{!}: \operatorname{Con}(X) \rightarrow \operatorname{Con}(Y)$ by setting

$$
f_{!}(\alpha)(y)=\int_{f^{-1}(y)} \alpha
$$

It follows from basic stratification theory that the function $f_{!}(\alpha)$ is indeed constructible.

Using these operations it is easy to define a convolution product on $\operatorname{Con}(\mathcal{Z})$: for $f, g \in \operatorname{Con}(Z)$ we set

$$
(f \star g)\left(e, F_{1}, F_{2}\right)=\int_{F \in \mathcal{F}_{e}} f\left(e, F_{1}, F\right) g\left(e, F, F_{2}\right)
$$

where $\mathcal{F}_{e}=\left\{F \in \mathcal{F}: e\left(F_{i}\right) \subset F_{i-1}\right\}$. (One can also define this via a pull-back/push-forward diagram involving the variety

$$
\mathcal{Z}_{3}=\left\{\left(e, F^{1}, F^{2}, F^{3}\right) \in \mathcal{N} \times \mathcal{F}^{3}: e \text { preserves each flag } F^{i}\right\},
$$

using the three maps $q_{i j}: \mathcal{Z}_{3} \rightarrow \mathcal{Z}$, where i, j are distinct elements of $\{1,2,3\}$.
It is easy to see that $\operatorname{Con}(\mathcal{Z})$ becomes an associative algebra under \star, with unit $1_{\mathcal{Z}_{e}}$. It is of course, very big, but nevertheless Lusztig showed that one could construct $\mathbb{Z}\left[S_{n}\right]$ as a subalgebra. For $s \in W$ a transposition of consecutive integers, that is $s_{i}=(i, i+1)$ say,

$$
\overline{\mathcal{O}}_{s_{i}}=\left\{\left(F, F^{\prime}\right): F_{j}=F_{j}^{\prime} \text { if } j \neq i\right\}
$$

so it is a \mathbb{P}^{1} bundle over \mathcal{F}, and $\overline{\mathcal{Z}_{s_{i}}}$ is a smooth component of \mathcal{Z}. Let $f_{s_{i}}$ be its characteristic function.

Theorem 1.4. (Lusztig) The functions $\left\{f_{s_{i}}: 1 \leq i \leq n-1\right\}$ generate a subalgebra \mathcal{W} of $(\operatorname{Con}(\mathcal{Z}), \star)$ isomorphic to $\mathbb{Z}\left[S_{n}\right]$, with the isomorphism given by $f_{s_{i}} \mapsto 1-s_{i}$. Moreover the algebra \mathcal{W} has a distinguished basis $\left\{f_{w}: w \in S_{n}\right\}$ which is characterized by the property that f_{w} is generically 1 on \mathcal{Z}_{w} and generically 0 on the other components \mathcal{Z}_{v}.

Now notice that if $e \in \mathcal{N}$, then $\operatorname{Con}\left(\mathcal{F}_{e}\right)$ is naturally a module for $\operatorname{Con}(\mathcal{Z})$: if $f \in \operatorname{Con}(\mathcal{Z})$ and $g \in \operatorname{Con}\left(\mathcal{F}_{e}\right)$, then

$$
(f \star g)(F)=\int_{F^{\prime} \in \mathcal{F}_{e}} f\left(e, F, F^{\prime}\right) g\left(F^{\prime}\right) .
$$

Thus for each $e \in \mathcal{N}$ we have \mathcal{W}-modules $\operatorname{Con}\left(\mathcal{F}_{e}\right)$ (these are of course these are again infinite dimensional). Since all the functions in \mathcal{W} are GL_{n}-invariant, (as each $f_{s_{i}}$ is, and \star is compatible with the GL_{n} action), we may restrict our attention to functions $\operatorname{Con}^{\mathrm{GL}_{n}}\left(\mathcal{F}_{e}\right)$, and then the modules $\operatorname{Con}\left(\mathcal{F}_{e}\right)$ and $\operatorname{Con}\left(\mathcal{F}_{e^{\prime}}\right)$ are isomorphic if e and e^{\prime} are conjugate. Now there are $p(n)$ orbits of GL_{n} on \mathcal{N}, and also exactly $p(n)$ irreducible representations of S_{n}, so it is tempting to seek to find an irreducible representation of S_{n} in $\operatorname{Con}^{G}\left(\mathcal{F}_{e}\right)$ and thus construct all irreducible representations of S_{n}.
Theorem 1.5. Let $e \in \mathcal{N}$. Then there exists a subgroup of \mathcal{M}_{e} of $\operatorname{Con}^{G}\left(\mathcal{F}_{e}\right)$ which is a module for \mathcal{W}. Moreover, as a representation of S_{n} it is irreducible, and \mathcal{M}_{e} has a basis $\left\{m_{c}: c \in \mathcal{P}_{e}\right\}$ where \mathcal{P}_{e} denotes the irreducible components of \mathcal{F}_{e} which is characterized by the condition that m_{c} is generically one on the component c and generically zero on every other component.

The difficulty in proving such a theorem is that it is not at all clear how one might construct such functions. To find them for GL_{n} we use a "dirty type A trick ${ }^{\prime 1}$. Consider instead of \mathcal{F} the larger variety

$$
\mathcal{P}=\left\{\left(F_{1} \subseteq F_{2} \subseteq \ldots \subseteq F_{n}=\mathbb{C}^{n}: F_{i} \text { subspaces of } V\right\}\right.
$$

Thus \mathcal{P} is a disjoint union of components indexed by the compositions Λ_{n} of n : for each composition $\lambda \in \Lambda_{n}$ say $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of n, the corresponding component \mathcal{P}_{λ} of \mathcal{P}, consists of the flags $\left(F_{i}\right)$ for which $\operatorname{dim}\left(F_{i}\right)-\operatorname{dim}\left(F_{i-1}\right)=\lambda_{i}$. Thus \mathcal{F} is the component $\mathcal{P}_{(1, \ldots, 1)}$.

In exactly the same fashion as before, one can check that $T^{*} \mathcal{P}$, the cotangent bundle of \mathcal{P} is

$$
T^{*} \mathcal{P}=\left\{(e, F) \in \mathcal{N} \times \mathcal{P}: e\left(F_{i}\right) \subseteq F_{i-1}\right\}
$$

One then forms $\mathcal{Z}_{P}=T^{*} \mathcal{P} \times_{\mathcal{N}} T^{*} \mathcal{P}$, i.e.

$$
\mathcal{Z}_{P}=\left\{\left(e, F, F^{\prime}\right) \in \mathcal{N} \times \mathcal{P} \times \mathcal{P}: e\left(F_{i}\right) \subseteq F_{i-1}, e\left(F_{i}^{\prime}\right) \subseteq F_{i-1}^{\prime}\right\}
$$

It is again the case that \mathcal{Z}_{P} can be identified with the union of the conormal bundles of the GL_{n}-orbits on $\mathcal{P} \times \mathcal{P}$, and the connected components of \mathcal{Z}_{P} are indexed by pairs of compositions (λ, μ) corresponding to the varieties $\mathcal{P}_{\lambda} \times \mathcal{P}_{\mu}$.

We define $e_{i} \in \operatorname{Con}\left(\mathcal{Z}_{P}\right)$ by $e_{i}=\sum_{\lambda \in \Lambda_{n}} 1_{E_{i}^{\lambda}}$, where

$$
\begin{gathered}
E_{i}^{\lambda}=\left\{\left(e, F, F^{\prime}\right) \in \mathcal{Z}_{P}:\left(e, F^{\prime}\right) \in T^{*} \mathcal{P}_{\lambda}, F_{j}=F_{j}^{\prime}, j \neq i, F_{i}^{\prime} \subset F_{i},\right. \\
\\
\text { and } \left.\operatorname{dim}\left(F_{i} / F_{i}^{\prime}\right)=1\right\}
\end{gathered}
$$

Similarly define $f_{i} \in \operatorname{Con}\left(\mathcal{Z}_{P}\right)$ by $f_{i}=\sum_{\lambda \in \Lambda_{n}} 1_{F_{i}^{\lambda}}$ where

$$
\begin{aligned}
& F_{i}^{\lambda}=\left\{\left(e, F, F^{\prime}\right) \in \mathcal{Z}_{P}:\left(e, F^{\prime}\right) \in T^{*} \mathcal{P}_{\lambda}, F_{j}=F_{j}^{\prime}, j \neq i, F_{i}^{\prime} \subset F_{i}\right. \\
&\text { and } \left.\operatorname{dim}\left(F_{i}^{\prime} / F_{i}\right)=1\right\}
\end{aligned}
$$

Finally, set $h_{i}=\sum_{\lambda \in \Lambda_{n}}\left(\lambda_{i}-\lambda_{i+1}\right) 1_{H_{i}^{\lambda}}$ where

$$
H_{i}^{\lambda}=\left\{(e, F, F) \in \mathcal{Z}_{P}:(e, F) \in T^{*} \mathcal{P}_{\lambda}\right\}
$$

Let \mathcal{U} be the algebra these functions generate under convolution (defined as for the case of \mathcal{Z}). We have the following theorem:

[^0]Theorem 1.6. (J. Chislenko) Let \mathbb{U} be the enveloping algebra of $\mathfrak{s l}_{n}$, with Chevalley generators $\left\{E_{i}, F_{i}, H_{i}: 1 \leq i \leq n-1\right\}$. Then the assignment

$$
E_{i} \mapsto e_{i}, \quad F_{i} \mapsto f_{i}, \quad H_{i} \mapsto h_{i},
$$

extends to an algebra homomorphism $\mathbb{U} \rightarrow \mathcal{U}$. Moreover the kernel I_{n} is exactly the kernel of the natural map $\mathbb{U} \rightarrow \operatorname{End}\left(\left(\mathbb{C}^{n}\right)^{\otimes n}\right)$.

Using this one can realize the highest weight representations which occur in $\left(\mathbb{C}^{n}\right)^{\otimes n}$ in constructible functions on the varieties $\mathcal{P}(e)=\left\{F \in \mathcal{P}: e\left(F_{i}\right) \subseteq F_{i-1}\right\}$, and moreover one gets a basis of the space of such functions which is in bijection with the irreducible components of the varieties $\mathcal{P}(e)$, with the bijection being given by assigning to each function the unique component on which its generic value is 1 .

Now the following was observed by Kostant:
Lemma 1.7. The zero weight space of a representation of $\mathfrak{s l}_{n}$ is a representation of the Weyl group S_{n}. Moreover, if λ is a partition on n, then the irreducible representation of highest weight corresponding to λ has as zero weight space an irreducible representation of S_{n}, and every irreducible representation of S_{n} occurs in this way.

Now the weight spaces of the \mathbb{U} representations correspond to the connected components of $\mathcal{P}(e)$, and the zero weight space is the component in \mathcal{F}, that is, the functions on \mathcal{F}_{e} are exactly the zero weight space of \mathcal{U}.

The main theorem now follows by checking the Weyl group action given by \mathcal{W} is compatible with the action of \mathcal{U}.

Example 1.8. If $n=3$, then S_{3} has three irreducible representations: the trivial, the sign, and the "reflection" representation. The variety \mathcal{N} has 3 orbits - the zero orbit $\mathcal{O}_{1^{3}}$, the orbit of rank one matrices \mathcal{O}_{21} and the orbit of rank two matrices \mathcal{O}_{3}. The corresponding varieties \mathcal{F}_{e} are, respectively, the whole flag variety \mathcal{F} for $e \in \mathcal{O}_{1^{3}}$, a single point for $e \in \mathcal{O}_{3}$, and two copies of \mathbb{P}^{1} joined at a point for $e \in \mathcal{O}_{21}$. The modules \mathcal{M}_{e} in each case are just the characteristic functions of the components of the \mathcal{F}_{e}.

We now give a more intrinsic definition of bimodules for \mathcal{W} via a filtration of \mathcal{F}. Let $\pi: \mathcal{Z} \rightarrow \mathcal{N}$ be the obvious map. Note that if Z is a constructible subset of \mathcal{N}, then $\operatorname{Con}\left(\pi^{-1}(Z)\right)$ is obviously a module (even bi-module) for $\operatorname{Con}(\mathcal{Z})$. Moreover, it is known that if we take $Z=\mathcal{O}_{e}$ a nilpotent orbit of \mathcal{N}, then $\pi^{-1}\left(\mathcal{O}_{e}\right)$ is pure dimensional of dimension $n(n-1)$ - that is, its closure is a union of components of \mathcal{Z}. This gives a partition of the elements of S_{n}, which label the components of \mathcal{Z}, into pieces known as geometric cells.

Conjecture 1.9. Let f_{w} be an element of the distinguished basis of \mathcal{W}. Then if $w \in \mathcal{C}_{e}$ the geometric cell corresponding to $\mathcal{O}_{e} \subset \mathcal{N}$, then f_{w} vanishes on the subset $\pi^{-1}\left(\overline{\mathcal{O}}_{e}\right)$.

Assuming this conjecture, it follows that if we take the functions $\left\{f_{w}: w \in \mathcal{C}_{e}\right\}$ and restrict them to the set $\pi^{-1}(e)$, then we obtain a bimodule for \mathcal{W} which is isomorphic to $\operatorname{End}\left(V_{e}\right)$ where V_{e} is the irreducible representation attached to e by the above theorem.

Department of Mathematics, Imperial College London.

[^0]: ${ }^{1}$ a phrase stolen from A. Kleshchev.

