SYMMETRIC GROUPS AND THE STEINBERG VARIETY.

KEVIN MCGERTY

1. GEOMETRY OF FLAG VARIETIES

Much of what we say will make sense for any reductive algebraic group G and its Weyl group W, however I have proofs only for GL_n , and everything there can be made quite explicit. All our varieties are over \mathbb{C} . Our goal is to produce representations of the Weyl group W from geometry attached to G.

The protagonists of the story are the following.

Definition 1.1. Let \mathcal{F} be the *flag variety* of GL_n , that is

$$\mathcal{F} = \{ (0 \subset V_1 \subset V_2 \subset \ldots \subset V_n = \mathbb{C}^n) : \dim(V_i) = i \}.$$

Clearly \mathcal{F} is a smooth projective variety. The group GL_n acts diagonally on $\mathcal{F} \times \mathcal{F}$ with finitely many orbits, each naturally indexed by an element of the symmetric group $W = S_n$. For $w \in S_n$, let \mathcal{O}_w denote the corresponding orbit.

The *nilpotent cone* of GL_n is the variety:

$$\mathcal{N} = \{ x \in \mathfrak{gl}_n : x^n = 0 \},\$$

a conic subvariety of \mathfrak{gl}_n . One can naturally identify the cotangent bundle of \mathcal{F} with the variety

$$\mathcal{N} = \{ (e, F) \in \mathfrak{gl}_n \times \mathcal{N} : e(F_i) \subset F_{i-1} \}.$$

Moreover, the obvious map $\mu: \tilde{\mathcal{N}} \to \mathcal{N}$ is a resolution of singularities (even with normal crossings exceptional divisor). The *Steinberg variety* \mathcal{Z} is the fiber product:

$$\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} = \{(e, F^1, F^2) \in \mathcal{N} \times \mathcal{F} \times \mathcal{F} : e(F^i_i) \subset F^i_{i-1}, \text{ for } 1 \le j \le n, i = 1, 2\}.$$

Proposition 1.2. The variety Z is pure dimensional with each component of dimension n(n-1). Moreover the irreducible components of Z are the closures of

$$\mathcal{Z}_w = \{ (e, F_1, F_2) \in \mathcal{Z} : (F_1, F_2) \in \mathcal{O}_w \}.$$

Proof. Identify \mathcal{Z} with the conormal bundles of the orbits \mathcal{O} in $\mathcal{F} \times \mathcal{F}$.

Lusztig showed that one can construct the group algebra $\mathbb{Z}[S_n]$ as a convolution algebra of constructible functions on \mathbb{Z} .

Definition 1.3. Let *X* be a complex algebraic variety. For any closed subvariety *Z*, let 1_Z be the characteristic function of *Z*, that is

$$1_Z(x) = \begin{cases} 1 & \text{if } x \in Z \\ 0 & \text{otherwise.} \end{cases}$$

The abelian group generated by the functions 1_Z as Z runs over the closed subvarieties of X is denoted Con(X), and if $f \in Con(X)$ we say that f is constructible.

Date: November, 2007.

Now $Con(\mathcal{Z})$ is clearly a ring under multiplication of functions, but this is not the algebra structure we wish to use, instead we want to use the fact that \mathcal{Z} is a groupoid. To do this we need "functorial" operations on Con(X). Let $f: X \to Y$ be a morphism of varieties. Then if $\alpha \in Con(Y)$, the function $f^*(\alpha)$ given by

$$f^*(\alpha)(x) = \alpha(f(x)), \quad x \in X,$$

lies in Con(X), thus we have a "pull-back" operation.

Slightly less obviously we can also "push-forward" constructible functions. This essentially requires a notion of integration (really measures push forward and functions pull back). The integration we use is given by the Euler characteristic: we define for $f \in Con(X)$

$$\int_X f = \sum_{n \in \mathbb{Z}} n \cdot \chi(\alpha^{-1}(n)),$$

where χ denotes the Euler characteristic. This gives an additive functional on Con(X). We then define, for $f: X \to Y$ the pushforward $f_!: Con(X) \to Con(Y)$ by setting

$$f_!(\alpha)(y) = \int_{f^{-1}(y)} \alpha$$

It follows from basic stratification theory that the function $f_!(\alpha)$ is indeed constructible.

Using these operations it is easy to define a convolution product on $Con(\mathcal{Z})$: for $f, g \in Con(Z)$ we set

$$(f \star g)(e, F_1, F_2) = \int_{F \in \mathcal{F}_e} f(e, F_1, F)g(e, F, F_2),$$

where $\mathcal{F}_e = \{F \in \mathcal{F} : e(F_i) \subset F_{i-1}\}$. (One can also define this via a pull-back/push-forward diagram involving the variety

$$\mathcal{Z}_3 = \{ (e, F^1, F^2, F^3) \in \mathcal{N} \times \mathcal{F}^3 : e \text{ preserves each flag } F^i \},\$$

using the three maps $q_{ij} \colon \mathbb{Z}_3 \to \mathbb{Z}$, where i, j are distinct elements of $\{1, 2, 3\}$.

It is easy to see that $Con(\mathcal{Z})$ becomes an associative algebra under \star , with unit $1_{\mathcal{Z}_e}$. It is of course, very big, but nevertheless Lusztig showed that one could construct $\mathbb{Z}[S_n]$ as a subalgebra. For $s \in W$ a transposition of consecutive integers, that is $s_i = (i, i + 1)$ say,

$$\overline{\mathcal{O}}_{s_i} = \{ (F, F') : F_j = F'_j \text{ if } j \neq i \}$$

so it is a \mathbb{P}^1 bundle over \mathcal{F} , and $\overline{\mathcal{Z}_{s_i}}$ is a smooth component of \mathcal{Z} . Let f_{s_i} be its characteristic function.

Theorem 1.4. (Lusztig) The functions $\{f_{s_i} : 1 \le i \le n-1\}$ generate a subalgebra W of $(Con(\mathcal{Z}), \star)$ isomorphic to $\mathbb{Z}[S_n]$, with the isomorphism given by $f_{s_i} \mapsto 1 - s_i$. Moreover the algebra W has a distinguished basis $\{f_w : w \in S_n\}$ which is characterized by the property that f_w is generically 1 on \mathcal{Z}_w and generically 0 on the other components \mathcal{Z}_v .

Now notice that if $e \in \mathcal{N}$, then $Con(\mathcal{F}_e)$ is naturally a module for $Con(\mathcal{Z})$: if $f \in Con(\mathcal{Z})$ and $g \in Con(\mathcal{F}_e)$, then

$$(f \star g)(F) = \int_{F' \in \mathcal{F}_e} f(e, F, F')g(F').$$

Thus for each $e \in \mathcal{N}$ we have \mathcal{W} -modules $Con(\mathcal{F}_e)$ (these are of course these are again infinite dimensional). Since all the functions in \mathcal{W} are GL_n -invariant, (as each f_{s_i} is, and \star is compatible with the GL_n action), we may restrict our attention to functions $Con^{GL_n}(\mathcal{F}_e)$, and then the modules $Con(\mathcal{F}_e)$ and $Con(\mathcal{F}_{e'})$ are isomorphic if e and e' are conjugate. Now there are p(n) orbits of GL_n on \mathcal{N} , and also exactly p(n) irreducible representations of S_n , so it is tempting to seek to find an irreducible representation of S_n in $Con^G(\mathcal{F}_e)$ and thus construct all irreducible representations of S_n .

Theorem 1.5. Let $e \in \mathcal{N}$. Then there exists a subgroup of \mathcal{M}_e of $Con^G(\mathcal{F}_e)$ which is a module for \mathcal{W} . Moreover, as a representation of S_n it is irreducible, and \mathcal{M}_e has a basis $\{m_c : c \in \mathcal{P}_e\}$ where \mathcal{P}_e denotes the irreducible components of \mathcal{F}_e which is characterized by the condition that m_c is generically one on the component c and generically zero on every other component.

The difficulty in proving such a theorem is that it is not at all clear how one might construct such functions. To find them for GL_n we use a "dirty type A trick"¹. Consider instead of \mathcal{F} the larger variety

$$\mathcal{P} = \{ (F_1 \subseteq F_2 \subseteq \ldots \subseteq F_n = \mathbb{C}^n : F_i \text{ subspaces of } V \}$$

Thus \mathcal{P} is a disjoint union of components indexed by the compositions Λ_n of n: for each composition $\lambda \in \Lambda_n$ say $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ of n, the corresponding component \mathcal{P}_{λ} of \mathcal{P} , consists of the flags (F_i) for which $\dim(F_i) - \dim(F_{i-1}) = \lambda_i$. Thus \mathcal{F} is the component $\mathcal{P}_{(1,...,1)}$.

In exactly the same fashion as before, one can check that $T^*\mathcal{P}$, the cotangent bundle of \mathcal{P} is

$$T^*\mathcal{P} = \{(e, F) \in \mathcal{N} \times \mathcal{P} : e(F_i) \subseteq F_{i-1}\}.$$

One then forms $\mathcal{Z}_P = T^* \mathcal{P} \times_{\mathcal{N}} T^* \mathcal{P}$, *i.e.*

$$\mathcal{Z}_P = \{ (e, F, F') \in \mathcal{N} \times \mathcal{P} \times \mathcal{P} : e(F_i) \subseteq F_{i-1}, e(F'_i) \subseteq F'_{i-1} \}.$$

It is again the case that Z_P can be identified with the union of the conormal bundles of the GL_n -orbits on $\mathcal{P} \times \mathcal{P}$, and the connected components of Z_P are indexed by pairs of compositions (λ, μ) corresponding to the varieties $\mathcal{P}_{\lambda} \times \mathcal{P}_{\mu}$.

We define $e_i \in \text{Con}(\mathcal{Z}_P)$ by $e_i = \sum_{\lambda \in \Lambda_n} 1_{E_i^{\lambda}}$, where

$$E_i^{\lambda} = \{ (e, F, F') \in \mathcal{Z}_P : (e, F') \in T^* \mathcal{P}_{\lambda}, F_j = F'_j, j \neq i, F'_i \subset F_i,$$

and dim $(F_i/F'_i) = 1 \}$

Similarly define $f_i \in \text{Con}(\mathcal{Z}_P)$ by $f_i = \sum_{\lambda \in \Lambda_n} \mathbb{1}_{F_i^{\lambda}}$ where

$$F_i^{\lambda} = \{ (e, F, F') \in \mathcal{Z}_P : (e, F') \in T^* \mathcal{P}_{\lambda}, F_j = F'_j, j \neq i, F'_i \subset F_i, \\ \text{and } \dim(F'_i/F_i) = 1 \}$$

Finally, set $h_i = \sum_{\lambda \in \Lambda_n} (\lambda_i - \lambda_{i+1}) \mathbb{1}_{H_i^{\lambda}}$ where

$$H_i^{\lambda} = \{ (e, F, F) \in \mathcal{Z}_P : (e, F) \in T^* \mathcal{P}_{\lambda} \}$$

Let \mathcal{U} be the algebra these functions generate under convolution (defined as for the case of \mathcal{Z}). We have the following theorem:

¹a phrase stolen from A. Kleshchev.

Theorem 1.6. (*J. Chislenko*) Let \mathbb{U} be the enveloping algebra of \mathfrak{sl}_n , with Chevalley generators $\{E_i, F_i, H_i : 1 \le i \le n-1\}$. Then the assignment

$$E_i \mapsto e_i, \quad F_i \mapsto f_i, \quad H_i \mapsto h_i,$$

extends to an algebra homomorphism $\mathbb{U} \to \mathcal{U}$. Moreover the kernel I_n is exactly the kernel of the natural map $\mathbb{U} \to End((\mathbb{C}^n)^{\otimes n})$.

Using this one can realize the highest weight representations which occur in $(\mathbb{C}^n)^{\otimes n}$ in constructible functions on the varieties $\mathcal{P}(e) = \{F \in \mathcal{P} : e(F_i) \subseteq F_{i-1}\}$, and moreover one gets a basis of the space of such functions which is in bijection with the irreducible components of the varieties $\mathcal{P}(e)$, with the bijection being given by assigning to each function the unique component on which its generic value is 1.

Now the following was observed by Kostant:

Lemma 1.7. The zero weight space of a representation of \mathfrak{sl}_n is a representation of the Weyl group S_n . Moreover, if λ is a partition on n, then the irreducible representation of highest weight corresponding to λ has as zero weight space an irreducible representation of S_n , and every irreducible representation of S_n occurs in this way.

Now the weight spaces of the \mathbb{U} representations correspond to the connected components of $\mathcal{P}(e)$, and the zero weight space is the component in \mathcal{F} , that is, the functions on \mathcal{F}_e are exactly the zero weight space of \mathcal{U} .

The main theorem now follows by checking the Weyl group action given by W is compatible with the action of U.

Example 1.8. If n = 3, then S_3 has three irreducible representations: the trivial, the sign, and the "reflection" representation. The variety \mathcal{N} has 3 orbits – the zero orbit \mathcal{O}_{1^3} , the orbit of rank one matrices \mathcal{O}_{21} and the orbit of rank two matrices \mathcal{O}_3 . The corresponding varieties \mathcal{F}_e are, respectively, the whole flag variety \mathcal{F} for $e \in \mathcal{O}_{1^3}$, a single point for $e \in \mathcal{O}_3$, and two copies of \mathbb{P}^1 joined at a point for $e \in \mathcal{O}_{21}$. The modules \mathcal{M}_e in each case are just the characteristic functions of the components of the \mathcal{F}_e .

We now give a more intrinsic definition of bimodules for \mathcal{W} via a filtration of \mathcal{F} . Let $\pi: \mathcal{Z} \to \mathcal{N}$ be the obvious map. Note that if Z is a constructible subset of \mathcal{N} , then $Con(\pi^{-1}(Z))$ is obviously a module (even bi-module) for $Con(\mathcal{Z})$. Moreover, it is known that if we take $Z = \mathcal{O}_e$ a nilpotent orbit of \mathcal{N} , then $\pi^{-1}(\mathcal{O}_e)$ is pure dimensional of dimension n(n-1) – that is, its closure is a union of components of \mathcal{Z} . This gives a partition of the elements of S_n , which label the components of \mathcal{Z} , into pieces known as *geometric cells*.

Conjecture 1.9. Let f_w be an element of the distinguished basis of \mathcal{W} . Then if $w \in C_e$ the geometric cell corresponding to $\mathcal{O}_e \subset \mathcal{N}$, then f_w vanishes on the subset $\pi^{-1}(\overline{\mathcal{O}}_e)$.

Assuming this conjecture, it follows that if we take the functions $\{f_w : w \in C_e\}$ and restrict them to the set $\pi^{-1}(e)$, then we obtain a bimodule for \mathcal{W} which is isomorphic to $\operatorname{End}(V_e)$ where V_e is the irreducible representation attached to e by the above theorem.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON.