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1. GEOMETRY OF FLAG VARIETIES

Much of what we say will make sense for any reductive algebraic group G and
its Weyl group W , however I have proofs only for GLn, and everything there can
be made quite explicit. All our varieties are over C. Our goal is to produce repre-
sentations of the Weyl group W from geometry attached to G.

The protagonists of the story are the following.

Definition 1.1. Let F be the flag variety of GLn, that is

F = {(0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = Cn) : dim(Vi) = i}.
Clearly F is a smooth projective variety. The group GLn acts diagonally on F ×F
with finitely many orbits, each naturally indexed by an element of the symmetric
group W = Sn. For w ∈ Sn, let Ow denote the corresponding orbit.

The nilpotent cone of GLn is the variety:

N = {x ∈ gln : xn = 0},
a conic subvariety of gln. One can naturally identify the cotangent bundle of F
with the variety

Ñ = {(e, F ) ∈ gln ×N : e(Fi) ⊂ Fi−1}.
Moreover, the obvious map µ : Ñ → N is a resolution of singularities (even with
normal crossings exceptional divisor). The Steinberg variety Z is the fiber product:

Ñ ×N Ñ = {(e, F 1, F 2) ∈ N × F × F : e(F ij ) ⊂ F ij−1, for 1 ≤ j ≤ n, i = 1, 2}.

Proposition 1.2. The variety Z is pure dimensional with each component of dimension
n(n− 1). Moreover the irreducible components of Z are the closures of

Zw = {(e, F1, F2) ∈ Z : (F1, F2) ∈ Ow}.

Proof. Identify Z with the conormal bundles of the orbits O in F × F . �

Lusztig showed that one can construct the group algebra Z[Sn] as a convolution
algebra of constructible functions on Z .

Definition 1.3. Let X be a complex algebraic variety. For any closed subvariety Z,
let 1Z be the characteristic function of Z, that is

1Z(x) =
{

1 if x ∈ Z
0 otherwise.

The abelian group generated by the functions 1Z as Z runs over the closed subva-
rieties of X is denoted Con(X), and if f ∈ Con(X) we say that f is constructible.
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Now Con(Z) is clearly a ring under multiplication of functions, but this is not
the algebra structure we wish to use, instead we want to use the fact that Z is a
groupoid. To do this we need “functorial” operations on Con(X). Let f : X → Y
be a morphism of varieties. Then if α ∈ Con(Y ), the function f∗(α) given by

f∗(α)(x) = α(f(x)), x ∈ X,

lies in Con(X), thus we have a “pull-back” operation.
Slightly less obviously we can also “push-forward” constructible functions. This

essentially requires a notion of integration (really measures push forward and
functions pull back). The integration we use is given by the Euler characteristic:
we define for f ∈ Con(X) ∫

X

f =
∑
n∈Z

n.χ(α−1(n)),

where χ denotes the Euler characteristic. This gives an additive functional on
Con(X). We then define, for f : X → Y the pushforward f! : Con(X)→ Con(Y ) by
setting

f!(α)(y) =
∫
f−1(y)

α.

It follows from basic stratification theory that the function f!(α) is indeed con-
structible.

Using these operations it is easy to define a convolution product on Con(Z): for
f, g ∈ Con(Z) we set

(f ? g)(e, F1, F2) =
∫
F∈Fe

f(e, F1, F )g(e, F, F2),

where Fe = {F ∈ F : e(Fi) ⊂ Fi−1}. (One can also define this via a pull-
back/push-forward diagram involving the variety

Z3 = {(e, F 1, F 2, F 3) ∈ N × F3 : e preserves each flag F i},

using the three maps qij : Z3 → Z , where i, j are distinct elements of {1, 2, 3}.
It is easy to see that Con(Z) becomes an associative algebra under ?, with unit

1Ze . It is of course, very big, but nevertheless Lusztig showed that one could
construct Z[Sn] as a subalgebra. For s ∈W a transposition of consecutive integers,
that is si = (i, i+ 1) say,

Osi = {(F, F ′) : Fj = F ′j if j 6= i},

so it is a P1 bundle over F , and Zsi is a smooth component of Z . Let fsi be its
characteristic function.

Theorem 1.4. (Lusztig) The functions {fsi : 1 ≤ i ≤ n− 1} generate a subalgebraW of
(Con(Z), ?) isomorphic to Z[Sn], with the isomorphism given by fsi 7→ 1− si. Moreover
the algebra W has a distinguished basis {fw : w ∈ Sn} which is characterized by the
property that fw is generically 1 on Zw and generically 0 on the other components Zv .

Now notice that if e ∈ N , then Con(Fe) is naturally a module for Con(Z): if
f ∈ Con(Z) and g ∈ Con(Fe), then

(f ? g)(F ) =
∫
F ′∈Fe

f(e, F, F ′)g(F ′).
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Thus for each e ∈ N we have W-modules Con(Fe) (these are of course these are
again infinite dimensional). Since all the functions in W are GLn-invariant, (as
each fsi is, and ? is compatible with the GLn action), we may restrict our attention
to functions ConGLn(Fe), and then the modules Con(Fe) and Con(Fe′) are isomor-
phic if e and e′ are conjugate. Now there are p(n) orbits of GLn on N , and also
exactly p(n) irreducible representations of Sn, so it is tempting to seek to find an
irreducible representation of Sn in ConG(Fe) and thus construct all irreducible rep-
resentations of Sn.

Theorem 1.5. Let e ∈ N . Then there exists a subgroup ofMe of ConG(Fe) which is a
module for W . Moreover, as a representation of Sn it is irreducible, andMe has a basis
{mc : c ∈ Pe} where Pe denotes the irreducible components of Fe which is characterized
by the condition that mc is generically one on the component c and generically zero on
every other component.

The difficulty in proving such a theorem is that it is not at all clear how one
might construct such functions. To find them for GLn we use a “dirty type A
trick”1. Consider instead of F the larger variety

P = {(F1 ⊆ F2 ⊆ . . . ⊆ Fn = Cn : Fi subspaces of V }

Thus P is a disjoint union of components indexed by the compositions Λn of n:
for each composition λ ∈ Λn say λ = (λ1, λ2, . . . , λn) of n, the corresponding
component Pλ of P , consists of the flags (Fi) for which dim(Fi)− dim(Fi−1) = λi.
Thus F is the component P(1,...,1).

In exactly the same fashion as before, one can check that T ∗P , the cotangent
bundle of P is

T ∗P = {(e, F ) ∈ N × P : e(Fi) ⊆ Fi−1}.
One then forms ZP = T ∗P ×N T ∗P , i.e.

ZP = {(e, F, F ′) ∈ N × P × P : e(Fi) ⊆ Fi−1, e(F ′i ) ⊆ F ′i−1}.

It is again the case that ZP can be identified with the union of the conormal bun-
dles of the GLn-orbits on P ×P , and the connected components of ZP are indexed
by pairs of compositions (λ, µ) corresponding to the varieties Pλ × Pµ.

We define ei ∈ Con(ZP ) by ei =
∑
λ∈Λn

1Eλi , where

Eλi = {(e, F, F ′) ∈ ZP :(e, F ′) ∈ T ∗Pλ, Fj = F ′j , j 6= i, F ′i ⊂ Fi,
and dim(Fi/F ′i ) = 1}

Similarly define fi ∈ Con(ZP ) by fi =
∑
λ∈Λn

1Fλi where

Fλi = {(e, F, F ′) ∈ ZP :(e, F ′) ∈ T ∗Pλ, Fj = F ′j , j 6= i, F ′i ⊂ Fi,
and dim(F ′i/Fi) = 1}

Finally, set hi =
∑
λ∈Λn

(λi − λi+1)1Hλi where

Hλ
i = {(e, F, F ) ∈ ZP : (e, F ) ∈ T ∗Pλ}

Let U be the algebra these functions generate under convolution (defined as for
the case of Z). We have the following theorem:

1a phrase stolen from A. Kleshchev.
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Theorem 1.6. (J. Chislenko) Let U be the enveloping algebra of sln, with Chevalley gen-
erators {Ei, Fi, Hi : 1 ≤ i ≤ n− 1}. Then the assignment

Ei 7→ ei, Fi 7→ fi, Hi 7→ hi,

extends to an algebra homomorphism U→ U . Moreover the kernel In is exactly the kernel
of the natural map U→ End((Cn)⊗n).

Using this one can realize the highest weight representations which occur in
(Cn)⊗n in constructible functions on the varieties P(e) = {F ∈ P : e(Fi) ⊆ Fi−1},
and moreover one gets a basis of the space of such functions which is in bijection
with the irreducible components of the varieties P(e), with the bijection being
given by assigning to each function the unique component on which its generic
value is 1.

Now the following was observed by Kostant:

Lemma 1.7. The zero weight space of a representation of sln is a representation of the
Weyl group Sn. Moreover, if λ is a partition on n, then the irreducible representation of
highest weight corresponding to λ has as zero weight space an irreducible representation
of Sn, and every irreducible representation of Sn occurs in this way.

Now the weight spaces of the U representations correspond to the connected
components of P(e), and the zero weight space is the component in F , that is, the
functions on Fe are exactly the zero weight space of U .

The main theorem now follows by checking the Weyl group action given byW
is compatible with the action of U .

Example 1.8. If n = 3, then S3 has three irreducible representations: the trivial,
the sign, and the “reflection” representation. The variety N has 3 orbits – the zero
orbit O13 , the orbit of rank one matrices O21 and the orbit of rank two matrices
O3. The corresponding varieties Fe are, respectively, the whole flag variety F for
e ∈ O13 , a single point for e ∈ O3, and two copies of P1 joined at a point for
e ∈ O21. The modulesMe in each case are just the characteristic functions of the
components of the Fe.

We now give a more intrinsic definition of bimodules forW via a filtration of F .
Let π : Z → N be the obvious map. Note that if Z is a constructible subset of N ,
then Con(π−1(Z)) is obviously a module (even bi-module) for Con(Z). Moreover,
it is known that if we take Z = Oe a nilpotent orbit of N , then π−1(Oe) is pure
dimensional of dimension n(n − 1) – that is, its closure is a union of components
of Z . This gives a partition of the elements of Sn, which label the components of
Z , into pieces known as geometric cells.

Conjecture 1.9. Let fw be an element of the distinguished basis of W . Then if
w ∈ Ce the geometric cell corresponding to Oe ⊂ N , then fw vanishes on the
subset π−1(Oe).

Assuming this conjecture, it follows that if we take the functions {fw : w ∈ Ce}
and restrict them to the set π−1(e), then we obtain a bimodule for W which is
isomorphic to End(Ve) where Ve is the irreducible representation attached to e by
the above theorem.
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