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Abstract
The performance of optimal strategies for hedging a claim on a non-traded
asset is analysed. The claim is valued and hedged in a utility maximization
framework, using exponential utility. A traded asset, correlated with that
underlying the claim, is used for hedging, with the correlation ρ typically
close to 1. Using a distortion method (Zariphopoulou 2001 Finance
Stochastics 5 61–82) we derive a nonlinear expectation representation for the
claim’s ask price and a formula for the optimal hedging strategy. We generate
a perturbation expansion for the price and hedging strategy in powers of
ε2 = 1 − ρ2. The terms in the price expansion are proportional to the central
moments of the claim payoff under the minimal martingale measure. The
resulting fast computation capability is used to carry out a simulation-based
test of the optimal hedging program, computing the terminal hedging error
over many asset price paths. These errors are compared with those from a
naive strategy which uses the traded asset as a proxy for the non-traded one.
The distribution of the hedging error acts as a suitable metric to analyse
hedging performance. We find that the optimal policy improves hedging
performance, in that the hedging error distribution is more sharply peaked
around a non-negative profit. The frequency of profits over losses is
increased, and this is measured by the median of the distribution, which is
always increased by the optimal strategies. An empirical example illustrates
the application of the method to the hedging of a stock basket using index
futures.

1. Introduction
This paper investigates the extent to which the use of an optimal
hedging method, based on utility maximization, can improve
the management of basis risk. By this term we mean the
risk associated with the trading of a derivative security on an
underlying asset that is not traded. Examples include weather
derivatives, or options on baskets of stocks, where the basket
is illiquid. In such a scenario, a correlated traded asset might
be used for hedging purposes. (In the stock basket example,
the claim on the basket might be hedged using liquid futures

on a stock index, where the composition of the basket and the
index are similar but not identical.)

In such a situation perfect hedging will not generally be
possible, and to approach the problem systematically some
optimal hedging method is sought. This can be done by
embedding the problem in a utility maximization framework,
in a manner that is now well established in derivative pricing.
Indeed, the optimal valuation and hedging of claims on non-
traded assets has been studied by other authors [3,4,8,11,18].
These papers have been concerned with solving the associated
utility maximization problems, involving a portfolio of the
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traded asset and a random endowment of the claim payoff,
from a variety of perspectives.

This paper takes the solution of the utility maximization
problem as given, though we do present it briefly
for completeness. Our main contribution is, first, to
derive a perturbation series which gives accurate analytic
approximations for the price and hedging strategy of the
claim. Second, we use the ensuing fast computation of
prices and hedging strategies to conduct a simulation-based
test of the efficacy of the optimal hedge relative to a naive
strategy which simply uses the traded asset as a proxy for
the non-traded one. We take the view that it is important to
establish whether optimal risk management procedures offer a
significant improvement over more ad hoc procedures.

We use an exponential utility function to express the
investor’s risk preferences, though future work will explore
strategies across different preferences and risk measures, such
as ‘expected shortfall’ [5]. This risk measure has recently been
analysed in the context of hedging in a stochastic volatility
model [12], though a full-blooded test over many asset path
histories was not carried out. This is also a fertile topic for
future research.

Our testing procedure is to simulate many paths for the
traded and non-traded asset prices, and to implement a self-
financing hedging strategy implied by both optimal and naive
methods. We compute the terminal tracking error for each
path, plot the histogram for the tracking error distribution and
compute some relevant statistics of the distribution. Recall that
in the Black–Scholes (BS) [2] world the hedging error is zero
with probability one, implying a Dirac δ-function distribution
for the terminal hedging error.

We do indeed find that the optimal method improves
hedging performance over the naive method, and the
improvement is greater for lower absolute values of the
correlation, and for higher values of risk aversion. The hedging
error distribution has a lower standard deviation under the
optimal strategy, and a higher median, indicating a higher
relative occurrence of positive hedging errors.

The structure of the paper is as follows. In section 2 we set
up the model, give utility-based pricing and hedging formulae
and define the minimal martingale measure that arises in the
remainder of the paper. In section 3 we derive representations
for the asking price and optimal hedging strategy for the
claim, and perturbation expansions are derived in section 4,
with explicit results for a put option on the non-traded asset.
Section 5 analyses hedging performance via simulation, and
section 6 gives an empirical example of hedging a stock basket
using index futures, to illustrate the methodology working on
real data. Section 7 concludes.

2. The basis risk model
Two asset prices (S, Y ) := (St , Yt )0�t�T follow log-normal
diffusions:

dSt = µSt dt + σSt dwt, (1)

dYt = µ0Yt dt + σ0Yt dw0
t , (2)

for 0 � t � T , where the Brownian motions (w, w0) =
(wt , w

0
t )0�t�T have correlation ρ, so that dw0

t dwt = ρ dt ,
with −1 � ρ � 1. The parameters µ, σ, µ0, σ0, ρ are
constants, and equations (1) and (2) are written in the physical
measure P. The riskless interest rate r is constant. The asset
with price S is a traded asset but the asset with price Y is non-
traded. A European option on asset Y has non-negative payoff
h(YT ) at maturity time T , where h is a function.

Denote by (w, w′) := (wt , w
′
t )0�t�T a two-dimensional

Brownian motion on a filtered probability space (�, F,

(Ft )0�t�T , P), and let the filtration (Ft )0�t�T be the one
generated by (wt , w

′
t )0�t�T . Then w′ is independent of w

and we can write w0
t in (2) as

w0
t = ρwt + εw′

t , (3)

where ε =
√

1 − ρ2.
An agent with risk preferences expressed via an

exponential utility function

U(x) = − exp(−γ x), (4)

with constant risk aversion parameter γ ∈ (0, 1), has the
objective of maximizing expected utility of terminal wealth
at time T . The investor can trade a dynamic self-financing
portfolio containing �t shares of the traded asset St at time
t ∈ [0, T ], with the remainder invested in a cash account at
interest rate r . In addition, the investor’s account is credited at
time T with n units of the derivative payoff h(YT ).

The wealth in the investor’s cash and share portfolio,
(Xt)0�t�T , then follows the process

dXt = rXt dt + πt((µ − r) dt + σ dwt), (5)

where we have defined πt := �tSt , 0 � t � T , as the
wealth invested in the stock. We note that there is no explicit
dependence on S in (5), so that we may use (5) in place of (1)
in the equations describing the dynamics of the state variables
(X, Y ) instead of (S, Y ).

The investor’s optimization problem is as follows: starting
at time t ∈ [0, T ] with endowment Xt = x, and with initial
non-traded asset price Yt = y, the investor seeks a trading
strategy π := (πt )0�t�T in the class of admissible strategies
P to achieve the supremum

Fn(t, x, y) := sup
π∈P

Et,x,yU(XT + nh(YT )), (6)

where Et,x,y denotes P-expectation conditional on Xt =
x, Yt = y. The superscript n on the left-hand side of (6) will
denote the number of derivative payoffs credited at time T , and
the cases n = 0 and −1 will concern us in the remainder of
the paper.

As is well known [4, 8], to ensure that (6) results in a
meaningful optimization problem with exponential utility, we
must assume that the random endowment nh(YT ) is bounded
below. This covers long positions in calls and puts, short
positions in puts, but excludes short call positions. The case
of hedging short calls on the non-traded asset will be revisited
in future papers.
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A trading strategy is an adapted process (πt )0�t�T

satisfying
∫ T

0 π2
t dt < ∞ almost surely. The class P of

admissible trading strategies in (6) includes all those whose
gains processes are bounded below, in order to eliminate
doubling strategies [7]. However, this class is not big enough to
ensure locating the optimal strategy by searching only within
it [4, 19]. When the utility function U(x) is defined for all
x ∈ R, the admissible class is enlarged to include some
strategies with wealths which are not necessarily bounded from
below. See [4, 19] for further details.

We shall denote the optimal trading strategy that achieves
the supremum in (6) by πn = (πn

t )0�t�T .

2.1. The case of perfect correlation

If ρ = 1, then as shown in [3], absence of arbitrage implies
that, given σ, σ0, the drifts µ, µ0 are related by

µ0 − r

σ0
= µ − r

σ
. (7)

In this case, perfect hedging of the claim on Y is possible by
trading S, the hedging strategy at time t ∈ [0, T ] being to hold
a number of shares given by

σ0Yt

σSt

∂

∂s
BS(Yt , 0, σ0), (8)

where BS(s, q, σ ) denotes the BS formula with underlying
asset price s, dividend yield q and volatility σ .

2.2. Utility-based pricing and hedging

Consider two special cases of the optimization problem (6).
For n = 0 there is no dependence on the claim. The dynamics
of the non-traded asset Y do not influence the problem at all and
we recover a variant of the classical Merton problem [13, 14].
We set F 0(t, x, y) =: F(t, x) to signify that there is no
dependence on n or y in this case. Denote by π0 = (π0

t )0�t�T

the optimal trading strategy that achieves the supremum in (6)
when n = 0.

The case n = −1 corresponds to a debit of one unit of the
option payoff h(YT ), so when accompanied with a credit to
the initial endowment of p(t, x, y), represents the case where
the investor sells one claim for price p(t, x, y). The (by now
classical) definition of the time-t utility indifference selling
price (or simply the ask price) of the claim, pa(t, x, y), is as
the solution of

F(t, x) = F−1(t, x + pa(t, x, y), y). (9)

There is a natural definition of a hedging strategy
associated with the sale of the claim for the utility indifference
ask price, introduced in [15, 16]. Let the optimal trading
strategy for the optimization problem with value function
F−1(t, x + pa(t, x, y), y) be π−1 := (π−1

t )0�t�T . The
difference in stock holdings between the optimal strategies for
n = −1 and 0 represents the additional position taken in the
hedging instrument as a result of the sale of the claim. This is
therefore a natural analogue of the hedging strategy of a claim
in a complete market, and motivates the definition below.

Definition 1. The hedging strategy πh = (πh
t )0�t�T

associated with the sale of the claim at the ask price
pa(t, x, y) is given by

πh
t := π−1

t − π0
t , 0 � t � T . (10)

The strategy πh reduces to the BS hedging strategy in a
complete market situation. See [15, 16] for further details on
utility indifference pricing and hedging, in which the above
definitions are applied to a model with transaction costs on
stock trades.

2.3. Minimal martingale measure

Denote by M the set of equivalent local martingale measures,
under which (e−rtSt )0�t�T is a local martingale. The asset
price dynamics under measures Q ∈ M are

dSt = rSt dt + σSt dw̃t , (11)

dYt = (µ0 − σ0(ρλ + εgt ))Yt dt + σ0Yt dw̃0
t , (12)

where

λ := µ − r

σ
, (13)

(gt )0�t�T is an Ft -adapted process satisfying
∫ T

0 g2
t dt < ∞,

P-almost surely, and w̃0
t is a Brownian motion defined by

w̃0
t = ρw̃t + εw̃′

t , (14)

with (w̃, w̃′) := (w̃t , w̃
′
t )0�t�T a two-dimensional Q-

Brownian motion defined by

w̃t := wt + λt, (15)

w̃′
t := w′

t +
∫ t

0
gu du. (16)

Then dw̃0
t dw̃t = ρ dt , and the set M is in one-to-one

correspondence with the set of processes gt .

Definition 2 (Minimal martingale measure). The minimal
martingale measure Q0 ∈ M corresponds to
gt = 0, 0 � t � T .

There are many characterizations of the minimal martingale
measure, and the reader is referred to the review by
Schweizer [20] for further details.

3. The asking price of a claim
In this section we briefly review the solution to the optimization
problem (6), based on the Hamilton–Jacobi–Bellman (HJB)
equation of dynamic programming. For more details see [8,
9, 18], or [4] for a dual approach to the problem. Connections
between these solution methods are discussed in [17].
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3.1. The Hamilton–Jacobi–Bellman equation

The value function Fn(t, x, y) satisfies the PDE

Fn
t (t, x, y) + rxF n

x (t, x, y) + µ0yFn
y (t, x, y)

+
1

2
σ 2

0 y2Fn
yy(t, x, y) − 1

2Fn
xx(t, x, y)

[λFn
x (t, x, y)

+ ρσ0yFn
xy(t, x, y)]2 = 0, (17)

with terminal boundary conditionFn(T , x, y) = −e−γ (x+nh(y)).
The optimal trading strategy π∗

t is given by

π∗
t = − [(µ − r)F n

x (t, x, y) + ρσσ0yFn
xy(t, x, y)]

σ 2Fn
xx(t, x, y)

. (18)

Under exponential utility, it turns out that one can find a
solution to (17) of the form

Fn(t, x, y) = −e−γβ(t,T )x(f n(t, y))δ, (19)

where β(t, T ) := er(T −t), 0 � t � T , and where the parameter
δ can be chosen so that the function f n(t, y) satisfies a linear
PDE. This technique is called distortion by Zariphopoulou [22]
and is also employed in [8, 9]. There are links to the dual
approach to solving the optimization problem, involving the
Legendre transform of the value function. These links are
discussed further in [17].

The distortion method gives the solution for the value
function in (6) as

Fn(t, x, y) = −e−γβ(t,T )x[E0
t,y(e

−α(T −t)−γ ε2nh(YT ))]1/ε2
, (20)

where

α = 1

2
λ2ε2 = 1

2

(
µ − r

σ

)2

(1 − ρ2), (21)

and E0
t,y denotes expectation under the minimal martingale

measure Q0, conditional on YT = y. Under Q0 the dynamics
of Y are

dYt = (µ0 − σ0ρλ)Yt dt + σ0Yt dw̃0
t . (22)

Using (20) along with (9) we obtain the following
representation for the ask price of the claim.

Theorem 1. The utility indifference asking price at time
t � T of a European claim with payoff h(YT ) is given by

pa(t, y) = e−r(T −t)

γ (1 − ρ2)
log[E0

t,y(e
γ (1−ρ2)h(YT ))], (23)

where E0
t,y denotes expectation conditional on Yt = y under

the minimal martingale measure Q0 ∈ M.

We observe that pa(t, y) is independent of the agent’s
initial cash endowment x, as is always the case under
exponential preferences. Henderson [8] and Musiela and
Zariphopoulou [18] give similar representations to (23) for the
ask price.

3.2. Optimal hedging strategy

The optimal trading strategy in the presence of the random
endowment nh(Yt ) at the terminal time is given by (18). For
n = 0, and using (20), this gives the optimal trading strategy
in the absence of the claim as

π0
t = e−r(T −t)

(
µ − r

σ 2γ

)
, (24)

which is the well-known solution to the Merton optimal
investment problem with exponential utility.

For the case of the writer of a claim, we take n = −1
in (18). Now, for general n, differentiating (20) yields

Fn
x (t, x, y) = −γβ(t, T )F n(t, x, y), (25)

Fn
xx(t, x, y) = γ 2β2(t, T )F n(t, x, y), (26)

Fn
xy(t, x, y) = −γβ(t, T )F n

y (t, x, y). (27)

The derivatives of the value function with respect to the initial
capital x are proportional to the value function itself. To get a
similar result for the mixed derivative Fn

xy(t, x, y) in the case
n = −1, proceed as follows. Differentiate (9) with respect
to y, and recall that the ask price is independent of the initial
capital (i.e. pa(t, x, y) = pa(t, y)), to give

F−1
y (t, x̃, y) = −F−1

x (t, x̃, y)pa
y(t, y), (28)

where we have put x̃ = x + pa(t, y). Using this in (27), along
with (25), (26) and (18), all evaluated at initial capital x̃, gives
the optimal trading strategy of the writer as

π−1
t = e−r(T −t)

(
µ − r

σ 2γ

)
+

ρσ0y

σ
pa

y(t, y). (29)

The strategy in (29) is very intuitive. The first term
represents the optimal investment strategy in the absence of a
claim. The second term is the adjustment to this strategy caused
by the introduction of the claim, that is, the hedging strategy for
the claim, in precise accordance with definition 1. Applying
this definition immediately gives the following result.

Theorem 2. The hedging strategy for the sale of the claim at
the asking price pa(t, y) at time t ∈ [0, T ] is to hold �a

u

shares of the traded asset S at time u � t , given by

�a
u = ρσ0Yu

σSu

∂pa

∂y
(u, Yu), t � u < T . (30)

It is easy to see that this reduces to the strategy in (8) when
ρ = 1.

4. Perturbation expansions
From the representation (23) for the ask price of the claim, we
proceed to derive a power series expansion for the price, and
also for its derivative with respect to y, which has application
in hedging, as given by theorem 2.

Let a random variable X have variance 
2 and write
µk = E(Xk), k ∈ N. Define the skewness skw(X) and
kurtosis kur(X) of X by

skw(X) := E[(X − µ1)
3]


3
, (31)
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kur(X) := E[(X − µ1)
4]


4
− 3. (32)

Observe that with the above definitions we have the identities


3skw(X) = µ3 − 3µ1µ2 + 2µ3
1 (33)


4kur(X) = µ4 − 3µ2
2 + 12µ2

1µ2 − 4µ1µ3 − 6µ4
1. (34)

We then have the following expansion for the asking price
pa(t, y) of the claim on the non-traded asset with payoff h(YT ).
Theorem 3. The function pa(t, y) representing the asking
price of the claim with payoff h(YT ) at time T � t has the
perturbative representation

pa(t, y) = 1

β(t, T )

[
E0

t,yh(YT ) +
1

2
γ ε2 var0

t,y h(YT )

+
1

3!
(γ ε2)2
3

0 skw0
t,y h(YT )

+
1

4!
(γ ε2)3
4

0 kur0
t,y h(YT ) + O(ε8)

]
, (35)

where O(ε8) denotes terms proportional to ε8 and to higher
powers of ε. The expansion is valid for model parameters
satisfying E0

t,y exp(γ ε2h(YT )) � 2.

In (35), var0
t,y denotes the variance operator conditional on

Yt = y, under the minimal martingale measure Q0, with a
similar convention for skw0

t,y and kur0
t,y . We have used the

notation var0
t,yh(YT ) =: 
2

0 in the third and fourth terms of the
expansion.

Remark 1. For ρ = 1 the asking price becomes the BS price
with volatility σ0, since all but the leading term in the price
expansion disappear and, by (7), the drift of Y under the
minimal measure becomes the risk-free rate r .

Proof of theorem 3. Expanding the exponential in (23) using
Taylor’s theorem gives

pa(t, y) = 1

β(t, T )γ ε2
log

(
1 + γ ε2E0

t,yh(YT )

+
1

2
γ 2ε4E0

t,yh
2(YT ) +

1

3!
γ 3ε6E0

t,yh
3(YT )

+
1

4!
γ 4ε8E0

t,yh
4(YT ) + O(ε10)

)
. (36)

The power series expansion of f (x) = log(1 + x) is valid
for −1 < x � 1. The terms inside the logarithm in (36)
are non-negative, and when summed over all powers of ε2

they give the exponential in (23). This implies that the
logarithm in (36) can be expanded as a Taylor series provided
E0

t,y exp(γ ε2h(YT )) � 2. This proves the last assertion in the
theorem.

Expanding (36), initially keeping all terms up to order ε10,
then simplifying, gives

pa(t, y) = 1

β(t, T )

[
M1 +

1

2
γ ε2(M2 − M2

1 )

+
1

3!
γ 2ε4(M3 − 3M1M2 + 2M3

1 )

+
1

4!
γ 3ε6(M4 − 3M2

2 + 12M2
1 M2

− 4M1M3 − 6M4
1 ) + O(ε8)

]
, (37)

where we have introduced the notation

Mk := E0
t,yh

k(YT ), k ∈ N. (38)

Then, in view of the identities (33) and (34), the proof is
complete. ��

4.1. Explicit results for a put option

Suppose h(y) = (K − y)+ for a positive constant K . Then
it is a straightforward, though lengthy, process to establish
explicit results for pa(t, y) and pa

y(t, y). We use the fact that
under Q0 ∈ M, and conditional on Yt = y, log YT is normally
distributed with mean m and variance s2, given by

m = log y + (r − q − σ 2
0 /2)(T − t), (39)

s2 = σ 2
0 (T − t), (40)

where we have defined the ‘dividend yield’ q by

q = r − (µ0 − σ0ρλ). (41)

We make extensive use of the (easily verifiable) integrals

E0
t,y[Y k

T IYT �K ] = ek(m+ks2/2)N(−d1 − (k − 1)s)

= ykek(r−q+(k−1)σ 2
0 /2)(T −t)N(−d1 − (k − 1)s)

(k ∈ {0, 1, 2, 3, 4}). (42)

In (42), IA denotes the indicator function of event A, N(·)
denotes the standard cumulative normal distribution function
and we have defined the variable d1 by

d1 = log(y/K) + (r − q + σ 2
0 /2)(T − t)

σ0
√

T − t
. (43)

This is the familiar argument of N(·) which appears in the BS
formula.

As an illustration, the zeroth-order term in the expansion
for pa(t, y) is pa,0(t, y) given by

pa,0(t, y) = e−r(T −t)E0
t,yh(YT )

= e−r(T −t)E0
t,y[(K − YT )IYT �K ]. (44)

Using (42) this becomes

pa,0(t, y)

= Ke−r(T −t)N(−d1 + σ0

√
T − t) − ye−q(T −t)N(−d1)

= BSp(y, K, q, σ0, T − t), (45)

where BSp(y, K, q, σ0, T − t) denotes the Black–Scholes
put option formula with underlying asset price y, strike K ,
dividend yield q, volatility σ0 and time to expiration T − t .

In a similar manner we establish all other necessary results.
The essential formulae are summarized below:

E0
t,yh(YT ) = M1 = KN(−d1 + s)

− ye(r−q)(T −t)N(−d1), (46)

E0
t,yh

2(YT ) = M2 = K2N(−d1 + s)

− 2Kye(r−q)(T −t)N(−d1)

+ y2e(2(r−q)+σ 2
0 )(T −t)N(−d1 − s), (47)
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Table 1. Put ask prices pa(0, Y0) and ‘deltas’ pa
y(0, Y0) from the perturbative expansion and from simulation. The parameters are those in

table 2. The exception to this is the case ρ = 1, in which case no-arbitrage considerations fix µ0 = µ − σ0λ = 0.11, and the option value is
the BS value with volatility σ0 and dividend yield 0. Figures in parentheses are standard deviations of the observations that were averaged
for the simulation results.

Put option asking prices, γ = 0.001, 2 × 106 simulations

ρ o(ε0) o(ε2) o(ε4) o(ε6) Simulation

−0.95 5.3914 5.4016 5.4016 5.4016 5.4001 (0.0111)
−0.75 5.6320 5.6566 5.6567 5.6567 5.6564 (0.0023)
−0.50 6.0493 6.0944 6.0946 6.0946 6.0970 (0.0246)
−0.25 6.4870 6.5471 6.5474 6.5474 6.5465 (0.0131)

0 6.9451 7.0133 7.0138 7.0138 7.0113 (0.0034)
0.25 7.4238 7.4917 7.4922 7.4922 7.4913 (0.0020)
0.50 7.9231 7.9806 7.9809 7.9809 7.9791 (0.0128)
0.75 8.4428 8.4783 8.4784 8.4784 8.4806 (0.0241)
0.95 8.8733 8.8815 8.8815 8.8815 8.8790 (0.0136)
1 9.3542 9.3542 9.3542 9.3542 9.3514 (0.0180)

Put option deltas

−0.95 −0.2634 −0.2639 −0.2639 −0.2639 −0.2632
−0.75 −0.2715 −0.2726 −0.2726 −0.2726 −0.2723
−0.50 −0.2850 −0.2870 −0.2870 −0.2870 −0.2866
−0.25 −0.2986 −0.3011 −0.3012 −0.3012 −0.3006

0 −0.3123 −0.3151 −0.3151 −0.3151 −0.3145
0.25 −0.3260 −0.3287 −0.3287 −0.3287 −0.3280
0.50 −0.3397 −0.3418 −0.3419 −0.3419 −0.3411
0.75 −0.3533 −0.3546 −0.3546 −0.3546 −0.3540
0.95 −0.3641 −0.3644 −0.3644 −0.3644 −0.3644
1 −0.3757 −0.3757 −0.3757 −0.3757 −0.3752

E0
t,yh

3(YT ) = M3 = K3N(−d1 + s)

− 3K2ye(r−q)(T −t)N(−d1)

+ 3Ky2e(2(r−q)+σ 2
0 )(T −t)N(−d1 − s)

− y3e3(r−q+σ 2
0 )(T −t)N(−d1 − 2s), (48)

E0
t,yh

4(YT ) = M4 = K4N(−d1 + s)

− 4K3ye(r−q)(T −t)N(−d1)

+ 6K2y2e(2(r−q)+σ 2
0 )(T −t)N(−d1 − s)

− 4Ky3e3(r−q+σ 2
0 )(T −t)N(−d1 − 2s)

+ y4e2(2(r−q)+3σ 2
0 )(T −t)N(−d1 − 3s). (49)

These results can then be substituted into (35) or (37) for
numerical computation of the asking price.

4.1.1. Put option delta. Differentiating (35) with respect to
y gives the following expansion for pa

y(t, y):
Corollary 1. The derivative of the asking price pa(t, y) with
respect to y has the perturbative expansion
∂pa

∂y
(t, y) = 1

β(t, T )

[
∂M1 +

1

2
γ ε2(∂M2 − 2M1∂M1)

+
1

3!
γ 2ε4(∂M3 − 3M2∂M1 − 3M1∂M2 + 6M2

1 ∂M1)

+
1

4!
γ 3ε6(∂M4 − 6M2∂M2 + 12M2

1 ∂M2 + 24M1M2∂M1

− 4M1∂M3 − 4M3∂M1 − 24M3
1 ∂M1) + O(ε8)

]
, (50)

where we have used the notation

∂Mk ≡ ∂Mk

∂y
= ∂E0

t,yh
k(YT )

∂y
. (51)

The partial derivatives needed to apply the above corollary
are obtained by differentiating (46)–(49). This yields the
following formulae:

∂M1 = −e(r−q)(T −t)N(−d1), (52)

∂M2 = −2e(r−q)(T −t)[KN(−d1)

− ye(r−q+σ 2
0 )(T −t)N(−d1 − s)], (53)

∂M3 = −3e(r−q)(T −t)[K2N(−d1)

− 2Kye(r−q+σ 2
0 )(T −t)N(−d1 − s)

+ y2e(2(r−q)+3σ 2
0 )(T −t)N(−d1 − 2s)], (54)

∂M4 = −4e(r−q)(T −t)[K3N(−d1)

− 3K2ye(r−q+σ 2
0 )(T −t)N(−d1 − s)

+ 3Ky2e(2(r−q)+3σ 2
0 )(T −t)N(−d1 − 2s)

− y3e3(r−q+2σ 2
0 )(T −t)N(−d1 − 3s)]. (55)

The above recipe is sufficient to give fast computation of
the asking price of the put option on the non-traded asset and
the associated hedging strategy.

4.2. Numerical results

Using the expectation representation (23) it is a simple matter
to produce numerical values for the ask price of the claim,
and for its derivative with respect to y, by simulation. This
was done for two million samples, and the numerical values
compared with those from the perturbation expansions in
the last section. The goal is to establish the accuracy (or
otherwise) of the expansions across a range of values of the
correlation ρ. The simulations were also used to check that the
model parameters we used did indeed satisfy the restrictions of
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Figure 1. Asset prices (upper graph), hedge ratios (middle graph)
and hedge portfolio wealths (lower graph) along a simulated path.
The solid curve in the lower two graphs corresponds to the optimal
hedge, while the broken curve corresponds to the naive hedge. The
parameters are as in table 2, and ρ = 0.8, γ = 0.01.

theorem 2, needed for the perturbation expansions to be valid.
All results reported below were for valid model parameters.
It was found that risk aversion values γ below about 0.05
guaranteed validity, regardless of other parameter choices.
Typical risk aversion parameters for market participants are
around 10−6 [10], so this is a very mild restriction.

The accuracy of the perturbation expansions is confirmed
by the results shown in table 1 for pa(t, y) and pa

y(t, y) at
time zero, for γ = 0.001 and various values of ρ. The results
produced by the perturbation expansion at order ε2 and beyond
are remarkably in line with those from simulation. Further
tests, not reported here for the sake of brevity, show that
accurate results are obtained across all values of correlation
when the risk aversion parameter is below about 0.05, with the
accuracy increasing with increasing |ρ| and decreasing γ .

The significance of these results is that we now have
a very fast route to computing option prices and hedging
strategies. This allows for practical implementation, and for
an efficient testing program of the hedging performance of
optimal strategies versus the ‘naive’ strategies which simply
use the traded asset as a proxy for the non-traded one. Such a
testing procedure is carried out below.

5. Hedging performance of optimal
strategies
To analyse hedging performance, we suppose that a put option
on asset Y is sold at time zero for price pa(0, Y0), defining
the initial endowment in our hedging portfolio, and hedged
using strategy (�a

t )0�t�T given in theorem 2. Denote the
wealth in the hedging portfolio by (Xa

t )0�t�T , given by (5)
with πt = �a

t St . The evolution of this wealth in discrete time
will be used in the numerical simulations below.
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Figure 2. Asset prices (upper graph), hedge ratios (middle graph)
and hedge portfolio wealths (lower graph) along a simulated path.
The solid curve in the lower two graphs corresponds to the optimal
hedge, while the broken curve corresponds to the naive hedge. The
parameters are as in table 2, and ρ = 0.6, γ = 0.001.

Table 2. Model parameters.

r µ σ µ0 σ0 T
S0 Y0 K (%) (%) (%) (%) (%) (year)

100 100 100 5 10 25 12 30 1

We simulate a path for both asset prices (S, Y ) :=
(St , Yt )0�t�T with given correlation ρ, and choose a number
of times that the hedge is rebalanced in the option lifetime.
The formulae established in the previous section are used to
compute the hedge portfolio ‘delta’ at each rehedging time.
Then for each asset price path simulated we compute the
terminal tracking error

ET := Xa
T − (K − YT )+. (56)

The above calculation is repeated over a large number M (say,
10 000) of asset price paths.

Finally, we repeat the entire calculation over the same
simulated paths, but use a ‘naive’ approach which assumes we
sell the option for BSp(Y0, K, 0, σ0, T ) and hedge using the
strategy given in (8).

5.1. Results

The results reported below used the parameters shown in table 2
as a base case, and the options were rehedged 200 times during
their life.

Figures 1 and 2 illustrate the nature of the simulations.
The upper graphs show the traded (solid curve) and non-traded
(broken curve) asset prices along a path, while the middle and
lower graphs show the hedge ratios and hedge portfolio values
along the paths for the optimal (solid curve) and naive (broken
curve) strategies. The terminal option payoff is also marked
with a cross (×).
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Figure 3. Histograms of terminal hedging error over 10 000 sample
paths for the optimal hedging strategy (upper graph) and the naive
strategy (lower graph). The parameters are as in table 2, and
ρ = 0.65, γ = 0.001.

Table 3. Hedging error statistics for the histograms in figure 3.

Max Min Mean SD Median

Optimal hedge 25.65 −48.09 0.1145 9.6342 2.6534
Naive hedge 37.22 −49.68 0.4303 10.3618 1.4892

Figure 3 shows histograms illustrating the distribution of
the terminal hedging error produced by the optimal (upper
graph) and naive (lower graph) hedging strategies. The
results, over 10 000 simulations, are for ρ = 0.65 and
γ = 0.001. Both graphs are plotted on the same scales
for ease of comparison. It is immediately apparent that the
optimal hedging procedure produces a more sharply peaked
distribution, with a higher proportion of errors around and just
above zero, compared with the naive hedging strategy. The
shapes of the histograms show how the optimal method will
tolerate small negative errors, but not large losses.

To put some concrete numbers on these visual
observations, we give summary statistics for the distributions
in table 3. The standard deviation of the naive hedging error
distribution is about 7% higher than that of the optimal hedging
policy. The really significant statistic, however, is the median
of the distributions. The median hedging error from the
optimal policy is 78% higher than that from the naive hedging
policy. In other words, the optimal policy results in positive
hedging errors far more frequently than the naive policy. This
is precisely what one would require of a good hedging policy.
The mean of the distribution is fairly meaningless in this
context, as the figures in the table show. Note also how the
range of the hedging error is larger with the naive hedging
policy. In other words, sometimes one will be lucky and make
a large profit, while at other times one will incur a large loss.
Systematic improvements are therefore made by the optimal
procedure.

Figure 4 shows similar histograms for a higher value of
the correlation, namely ρ = 0.85. The pattern is similar, as
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Figure 4. Histograms of terminal hedging error over 10 000 sample
paths for the optimal hedging strategy (upper graph) and the naive
strategy (lower graph). The parameters are as in table 2, and
ρ = 0.85, γ = 0.001.

Table 4. Hedging error statistics for the histograms in figure 4.

Max Min Mean SD Median

Optimal hedge 22.24 −32.78 0.1816 6.9951 1.1908
Naive hedge 26.49 −32.27 0.5098 7.0880 0.8173

the summary statistics in table 4 show. This time, the median
hedging error for the optimal strategy is about 45% higher than
that for the naive strategy, and the standard deviation is about
1% higher for the naive strategy. In other words, the optimal
strategy is still an improvement over the naive policy, even for
a higher correlation.

Figures 5 and 6 show hedging error distributions for ρ =
0.65 and 0.85, but now with a larger risk aversion parameter,
γ = 0.01. Summary statistics for these distributions are given
in tables 5 and 6 respectively. The results are similar to those
reported earlier. For ρ = 0.65, the median hedging error for
the optimal strategy is about twice (100% higher) that for the
naive strategy, and the standard deviation is about 7% higher
for the naive strategy. For ρ = 0.85, the median hedging error
for the optimal strategy is about 75% higher that for the naive
strategy, and the standard deviation is about 1% higher for the
naive strategy. In other words, the improvements are similar,
and in terms of the median, perhaps even greater for the case
of a higher risk aversion. This is intuitively correct, of course,
as ‘optimality’ should be of greater benefit when one is more
sensitive to risk. Similar results, not reported here, hold for
other model parameters.

6. An empirical application
In this section we illustrate how the hedging approach we have
tested can be applied in a real world situation. We tackle the
case of hedging a basket of nine UK stocks using futures
contracts on the FTSE100 index. We do not claim to be
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Figure 5. Histograms of terminal hedging error over 10 000 sample
paths for the optimal hedging strategy (upper graph) and the naive
strategy (lower graph). The parameters are as in table 2, and
ρ = 0.65, γ = 0.01.

Table 5. Hedging error statistics for the histograms in figure 5.

Max Min Mean SD Median

Optimal hedge 28.28 −47.46 0.5155 9.6606 2.9861
Naive hedge 40.13 −57.04 0.4808 10.3793 1.4568

carrying out an exhaustive empirical testing procedure, but our
preliminary results indicate that the method shows promise.
An in-depth empirical evaluation of optimal strategies is
planned for future papers, and for different applications, such
as weather derivatives. This may well require a modification
of the theoretical framework, involving a departure from the
log-normal diffusion assumption for the asset processes.

We obtained daily (closing price) data from 1 January 1990
to 30 August 2003, on the closest to maturity futures contract on
the FTSE100 index, and on nine stocks (listed in table 7) used
to construct an equally weighted basket. Overnight interbank
rates were obtained for the same period. All data were obtained
from Datastream.

Let (Ft )0�t�T denote the futures price process, and
assume this follows

dFt = µFFt dt + σFt dwt, (57)

with µF, σ constants. To adapt the hedging technology
developed earlier to the case where the traded asset is a futures
contract, we note that if we hold �t futures contracts plus cash
at time t ∈ [0, T ], then since it costs nothing to enter a futures
contract the wealth process Xt follows

dXt = �t dFt + rXt dt

= rXt dt + πt(µF dt + σ dwt)

= rXt dt + πt((µ − r) dt + σ dwt), (58)

where µ = µF + r and πt = �tFt . We observe that (58) is
of the same form as (5). This means we can use the formulae
developed earlier provided we simply add the interest rate to
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Figure 6. Histograms of terminal hedging error over 10 000 sample
paths for the optimal hedging strategy (upper graph) and the naive
strategy (lower graph). The parameters are as in table 2, and
ρ = 0.85, γ = 0.01.

Table 6. Hedging error statistics for the histograms in figure 6.

Max Min Mean SD Median

Optimal hedge 24.70 −34.17 0.3879 6.9340 1.2318
Naive hedge 28.53 −35.94 0.5183 7.0033 0.7019

Table 7. Stocks comprising the non-traded basket.

Abbey National British Airports Authority BAE Systems
British Gas Boots PLC British Telecom
Shell Tesco Vodafone

our estimate of the futures price growth rate and use this as
an estimate of the parameter µ in all our formulae. (The
conscientious reader can confirm this by going through the
derivation from first principles. Derive the position needed
in the index itself, taking account of the dividend yield on
the index, then adjust the required position in the index to a
position in futures contracts.)

Consider a put option on the basket, written on 3
September 2002 (time 0) and maturing on 29 March 2003
(time T ). We estimate the parameters µF, σ, µ0, σ0, ρ from
the logarithmic returns of a selected time period ending at time
0 (e.g. the previous six months). Extending the time period
used to estimate the parameters is, in principle, desirable.
However, one must then take into consideration the possibility
of structural breaks and other potential deviations from the
geometric Brownian motion hypothesis, so we leave this
analysis to future papers. Our main concern here is to show
how the hedging programs would be applied over a real data
set and to compare the optimal and naive hedges.

The parameters used to price and hedge the option are
given in table 8 along with the selected values of the strike
K and risk aversion γ . We also show (for comparison)
the estimates of the price process parameters obtained from
the actual price paths that were subsequently realized over
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Table 8. Empirical parameters used to value and hedge a put option on a basket of stocks from September 2002 to March 2003. The
parameter µ = µF + r , where µF is the futures price growth rate. Figures in parentheses indicate the values of parameters estimated from the
actual price paths that subsequently ensued over the option’s life.

F0 Y0 K r µF σ µ0 σ0 ρ γ

4197 369.3 300 0.396 −0.415 0.325 −0.446 0.309 0.927 0.01
(−0.235) (0.361) (−0.549) (0.347) (0.922)
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Figure 7. Asset price paths and hedge portfolio from September
2002 to March 2003, using both optimal and naive hedges. The
parameters are as in table 8.

the option life. These turn out to be broadly in line with
our parameter estimates from the six months prior to the
option being written. The interest rate given is the average
overnight rate during the option life [0, T ]. We value and hedge
the option using these parameters, assuming daily portfolio
rebalancing, and compute the hedge portfolio over the real
asset price paths that subsequently ensued over [0, T ]. The
terminal hedging error for both the optimal and naive hedging
programs is then computed.

Figure 7 shows the futures price (scaled down by a factor of
10) and the basket price paths over the option life, along with
the hedge ratios and hedge portfolios over these paths. The
terminal hedging errors are −0.87 for the optimal hedge and
−8.74 for the naive hedging method, so that over the particular
data path used the optimal method did indeed perform better
than the naive method. Of course, a natural topic for future
research is to repeat these calculations over many real segments
of price data, and to compute some suitably normalized
hedging error, whose distribution can then be computed, in
a manner analogous to that used for the simulated paths in
the previous section. This topic will be the subject of future
investigations.

7. Conclusions
Using a nonlinear expectation representation for the asking
price of a claim on a non-traded asset we have derived analytic
perturbation expansions for the price and hedging strategy of
the claim. These formulae were used to show how optimal
risk management, arising from the embedding of the pricing
problem in a utility maximization framework, gives marked
improvement in hedging performance over naive policies
which use a traded asset as a proxy for the non-traded one. This
improvement was measured by computing the distribution of
terminal hedging error, and noting the increased frequency of
profits over losses, as measured by the median hedging error.

The tests initiated here could be carried out using different
risk measures and utility functions, as it would be interesting
to see what sort of hedging strategies offer the greatest
improvement. The issue of formalizing appropriate metrics
to measure risk management performance enters the fray here,
and there are presumably links with the coherent measures of
risk in [1].

In general, the computation of hedging error distributions
is a task that has not received much attention, despite being a
natural way to assess the merits of a risk management program.
Most studies have simply taken a ‘snapshot’ of the hedging
error over a limited number of scenarios [12]. The application
of the methods advocated here to other incomplete markets
scenarios, such as stochastic volatility models, is certainly
feasible and desirable.

It would also be interesting to add features such as
transaction costs to the model analysed in this paper. If one
could develop suitable analytic formulae for prices and hedging
strategies, along the lines of [21], then it would become
feasible to determine which market imperfection (basis risk
or transaction costs) is the most severe, in terms of the hedging
errors that must be tolerated.
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