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Abstract
We establish a rigorous duality theory, under No
Unbounded Profit with Bounded Risk, for an infinite
horizon problem of optimal consumption in the pres-
ence of an income stream that can terminate randomly
at an exponentially distributed time, independent of the
asset prices. We thus close a duality gap encountered in
theDavis-Vellekoop example in a version of this problem
in a Black-Scholes market. Many of the classical tenets
of duality theory hold, with the notable exception that
marginal utility at zero initial wealth is finite. We use as
dual variables a class of supermartingale deflators such
that deflated wealth plus cumulative deflated consump-
tion in excess of income is a supermartingale. We show
that the space of discounted local martingale deflators
is dense in our dual domain, so that the dual problem
can also be expressed as an infimum over the discounted
local martingale deflators. We characterize the optimal
wealth process, showing that optimal deflated wealth is
a potential decaying to zero, while deflated wealth plus
cumulative deflated consumption over income is a uni-
formly integrable martingale at the optimum. We apply
the analysis to the Davis-Vellekoop example and give a
numerical solution.
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1 INTRODUCTION

In this paper we establish a duality theory for an infinite horizon optimal consumption problem
in which the agent also receives an income stream which terminates at a random exponentially
distributed time, independent of the filtration governing the evolution of the asset prices. Such
a problem was considered by Vellekoop and Davis (2009) in a Black-Scholes market. Here, we
consider a general semimartingale incomplete market, under the minimal no-arbitrage assump-
tion of no unbounded profit with bounded risk (NUPBR). We thus assume only the existence of a
suitable class of deflators, and use no arguments involving equivalent local martingale measures
(ELMMs). This is natural under NUPBR, and also desirable in a perpetual model, since ELMMs
do not typically exist over infinite horizons.
In Vellekoop and Davis (2009), despite the apparent simplicity of the modification of the clas-

sical Merton problem with deterministic (or indeed no) income, the problem proved a remark-
ably intractable one to solve and understand. Vellekoop and Davis (2009) implemented a differ-
ential equation-based dual approach, made an ansatz that the dual control was deterministic, and
used differential equation heuristics to argue that the derivative of the value function at zero ini-
tial wealth was infinite. Ultimately, though, they encountered a duality gap, in that their derived
value function could not solve the Hamilton-Jacobi-Bellman (HJB) equation, indicating that the
dual optimizer must indeed be stochastic and state-dependent in some way. What is more, their
numerical solutions indicated that the value function derivative at zero initial wealth was finite.
The intuition behind this last feature is clear: even though the income can terminate very soon
after time zero, it cannot terminate immediately, except in the limiting case that the intensity of
the exponential time approaches infinity. Thus, the agent is bound to receive some income, so is
not infinitely penalized for having zero initial capital, and marginal utility of wealth is finite at
this point.
The above issues make optimal consumption with randomly terminating income an open and

interesting problem. We provide a dual characterization of the problem in a general set-up, and
close the duality gap. We find that most of the usual tenets of duality theory hold, with the excep-
tion that themarginal utility at zero initial wealth is indeed finite.We also characterize the optimal
wealth process, and show that the optimal deflated wealth process is a potential, decaying almost
surely to zero, while deflated wealth plus cumulative deflated consumption over income is a uni-
formly integrable martingale at the optimum. Our results apply also to the finite horizon version
of the problem, both with and without a terminal wealth objective, and we describe the minor
adjustments needed to do this in Section 5.4.
Our analysis is based on characterizing the dual domain by a fundamental supermartingale

property, using a class of deflators (consumption deflators) such that deflated wealth plus cumula-
tive deflated consumption in excess of income is a supermartingale. The supermartingale property
yields a budget constraint as a necessary condition (Lemma2.1) for admissible consumption plans.
Motivated by the budget constraint, we assume a financing condition (Assumption 2.3) that char-
acterizes admissibility, so that the budget constraint is also a sufficient condition for admissibility.
This ensures that the primal domain is closed in an appropriate topology. We show that our dual
domain is closed and coincides with the closure (in an appropriate topology) of the discounted
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local martingale deflators (LMDs). But we are able to avoid having to explicitly invoke such a clo-
sure in defining our dual domain, which yields a stronger duality statement. This is discussed in
Remark 2.4.
The mathematical contribution of the paper is to show how the seminal approach to convex

duality for utility maximization, as inspired by Kramkov and Schachermayer (1999, 2003) and
recently adapted to the no-income infinite horizon consumption problem by Monoyios (2020),
can be adapted to a problemwith randomendowment. The significant adaptations required by the
presence of the income are that, first, the bipolar theorem of Brannath and Schachermayer (1999)
is unavailable, because the primal variable appearing in the budget constraint is the difference
between the consumption and income rates, so is not guaranteed to be non-negative, precluding
an application of the bipolar theorem. Second, we do not enlarge the original dual domain of
deflators to encompass all processes dominated by the deflators. This enlargement is typically
carried out to reach the bipolar of the original dual domain. Not only is this not of use here,
since the bipolar theorem is inapplicable, but the the presence of the random endowment renders
the dual objective non-monotone in the dual variables, so the enlargement could result in the
dual minimizer not coinciding with the minimizer in the enlarged domain. This is discussed in
Remark 4.1.
The upshot of these features is that the important bipolarity result (Kramkov& Schachermayer,

1999, Proposition 3.1) that underpins classical duality has to be replaced by a suitable analogue.
This is provided by Proposition 4.2, giving the key properties of the primal and dual domains in
the abstract version of the problem. In particular, Proposition 4.2 states that the dual domain is
closed, and bounded in 𝐿1(𝜇) (with 𝜇 the measure in the abstract formulation of the problem).
In the terminal wealth problem of Kramkov and Schachermayer (1999, 2003), the dual domain
being bounded in 𝐿1(ℙ) follows simply from the fact that the unit wealth process is admissible.
Here, the argument is more subtle, and requires a strictly positive interest rate, which is natural
in a perpetual consumption problem with income.
With Proposition 4.2 in place, some of the classical steps to a duality theorem can be brought

to bear on the problem. We prove an abstract duality theorem (Theorem 4.3), from which the
concrete duality (Theorem3.1) follows, including a characterization of the optimalwealth process,
as well as the property of finite marginal utility at zero wealth. Note that other papers on utility
from consumption with random endowment are not able to cover our model or to produce the
corresponding results. In some papers, such as Karatzas and Žitković (2003) (or Cvitanić et al.
(2001), with a terminal wealth objective), the models are finite horizon, under the No Free Lunch
with Vanishing Risk (NFLVR) no-arbitrage assumption, so heavily reliant on ELMMs and the
dual space is required to incorporate a singular part, in the form of finitely additive measures,
so a unique dual optimizer of the form we obtain is elusive. In other papers, such as Hugonnier
and Kramkov (2004), Mostovyi (2017), Mostovyi and Sîrbu (2020), finitely additive measures are
avoided by expanding the dimension of the value function to incorporate an additional variable
describing the number of units of the random endowment. These works are again over a finite
horizon under NFLVR, so also reliant on ELMMs, and the expansion of dimension of the value
function renders them unable to yield the sharp differentiability results we obtain for the value
functions, only super-and sub-differential results. Some early papers on optimal investment and
consumption with random endowment, usually in a Brownian filtration, adopt a HJB equation
perspective, such as Duffie and Zariphopoulou (1993) and He and Pagès (1993), and do not cover
our general model.
Finally, we analyze the Vellekoop and Davis (2009) example, exploring the ramifications

of duality, and numerically solving the problem. By integrating over the distribution of the
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random income termination time,we transform the pre-income termination problem to a stochas-
tic control problemwith perpetual income inwhich utility is derived from consumption and inter-
temporal wealth, and numerically solve the HJB equation for the resulting problem.
The remainder of the paper is structured as follows. In Section 2 we formulate the primal prob-

lem, budget constraint and the dual problem and outline the Vellekoop andDavis (2009) example.
In Section 3we state themain duality theorem (Theorem3.1) and also Theorem3.2, that the infima
over consumption deflators and discounted local martingale deflators coincide. In Section 4 we
state key properties of the abstract primal and dual domains (Proposition 4.2), the abstract duality
theorem (Theorem 4.3) and the result (Proposition 4.4) which underlies Theorem 3.2. The proofs
of these results are given in Section 5. In Section 6 we examine the Vellekoop and Davis (2009)
example. Section 7 concludes.

2 PROBLEM FORMULATION

2.1 The financial market

We consider an infinite horizon investment-consumption problem in a semimartingale incom-
plete market, and in the presence of an income stream which terminates at an exponentially dis-
tributed time that is independent of the filtration governing the asset prices. We have a complete
stochastic basis (Ω, , 𝔽 ∶= (𝑡)𝑡≥0, ℙ), with the filtration 𝔽 satisfying the usual hypotheses of
right-continuity and augmentation with ℙ-null sets of  . The filtration 𝔽 is given by

𝔽 ∶= 𝔾 ∨ 𝔽𝑁,

where𝔾 is the (ℙ-augmentation) of the filtration governing the evolution of a 𝑑-dimensional non-
negative semimartingale stock price vector 𝑆 = (𝑆1, … , 𝑆𝑑) and 𝔽𝑁 is a filtration independent of
𝔾, and is the augmentation of the filtration generated by the càdlàg process 𝑁, given by

𝑁𝑡 ∶= 𝟙{𝑡<𝜏}, 𝑡 ≥ 0, (1)

where 𝜏 ∼ Exp(𝜂) is an exponentially distributed time with parameter 𝜂 ≥ 0, independent of 𝔾.
The interest rate is a strictly positive 𝔾-adapted process 𝑟 = (𝑟𝑡)𝑡≥0 satisfying ∫ 𝑡

0
𝑟𝑠 d𝑠 < ∞, 𝑡 ≥ 0.

We assume that the interest rate is bounded below by a positive constant,

𝑟𝑡 ≥ 𝑟 > 0, ∀ 𝑡 ≥ 0. (2)

An agent with initial capital 𝑥 ∈ ℝ+ trades the stocks plus cash, consumes wealth at a non-
negative adapted rate 𝑐 = (𝑐𝑡)𝑡≥0, and receives income at some non-negative bounded adapted
rate 𝑓 = (𝑓𝑡)𝑡≥0. The consumption rate is assumed to almost surely satisfy the minimal integra-
bility condition ∫ 𝑡

0
𝑐𝑠 d𝑠 < ∞, 𝑡 ≥ 0.

The income stream is specified as follows. With 𝑎 = (𝑎𝑡)𝑡≥0 a non-negative 𝔾-adapted process,
bounded above by some constant 𝑎 > 0, we have a randomly terminating income stream, with 𝑓
given by

𝑓𝑡 ∶= 𝑎𝑡𝑁𝑡 = 𝑎𝑡𝟙{𝑡<𝜏}, 0 ≤ 𝑎𝑡 ≤ 𝑎 < ∞, 𝑡 ≥ 0. (3)
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Thus, the stochastic income stream pays at the bounded 𝔾-adapted rate 𝑎 up to the random time
𝜏, at which point it abruptly terminates. The random termination of the income generates an
additional source of market incompleteness above and beyond any inherent incompleteness in
the original market in the absence of the income stream.
The agent’s trading strategy𝐻 = (𝐻1,… ,𝐻𝑑) is a predictable 𝑆-integrable process for the num-

ber of shares of each stock held. The agent’s wealth process, 𝑋, follows

d𝑋𝑡 = 𝐻𝑡 d𝑆𝑡 + 𝑟𝑡(𝑋𝑡 − 𝐻𝑡𝑆𝑡) d𝑡 − 𝑐𝑡 d𝑡 + 𝑓𝑡 d𝑡, 𝑋0 = 𝑥 > 0, (4)

where for brevity we write𝐻𝑡 d𝑆𝑡 ≡ ∑𝑑

𝑖=1
𝐻𝑖
𝑡 d𝑆

𝑖
𝑡 and𝐻𝑡𝑆𝑡 ≡ ∑𝑑

𝑖=1
𝐻𝑖
𝑡𝑆

𝑖
𝑡.

For any process 𝑃, let 𝑃 ∶= exp(− ∫ ⋅

0
𝑟𝑠 d𝑠)𝑃 denote its discounted incarnation. In terms of dis-

counted quantities, the wealth process has decomposition

𝑋 = 𝑋0 + 𝐹 − 𝐶, (5)

where

𝑋0 ∶= 𝑥 + (𝐻 ⋅ 𝑆) (6)

is the discounted wealth process of a self-financing portfolio corresponding to strategy 𝐻, with
(𝐻 ⋅ 𝑆) ≡ ∫ ⋅

0
𝐻𝑠 d𝑆𝑠 denoting the stochastic integral and𝐶 ∶= ∫ ⋅

0
𝑐𝑠 d𝑠, 𝐹 ∶= ∫ ⋅

0
𝑓𝑠 d𝑠 denoting the

non-decreasing cumulative discounted consumption and income processes.
As is known fromVellekoop andDavis (2009), because the income stream terminates randomly,

the agent is not able to follow the classical program of borrowing against the present value of
future income (so allowing wealth to become negative) and using the optimal no-income strategy
with an initial wealth enlarged by the present value of future income. We shall therefore assume
solvency at all times, so 𝑋 ≥ 0 almost surely in (4). In this case, for a given 𝑥 > 0, we call the
pair (𝐻, 𝑐) (or (𝑋, 𝑐)) an 𝑥-admissible investment-consumption strategy. Denote the 𝑥-admissible
investment-consumption strategies by(𝑥):

(𝑥) ∶=

{
(𝐻, 𝑐) ∶ 𝑋 ∶= 𝑥 + (𝐻 ⋅ 𝑆) + ∫

⋅

0

(𝑓𝑠 − 𝑐𝑠) d𝑠 ≥ 0, a.s
}
, 𝑥 > 0. (7)

With an abuse of terminology we shall sometimes refer to the wealth-consumption pair (𝑋, 𝑐) as
an admissible investment-consumption pair, and we shall sometimes write (𝑋, 𝑐) ∈ (𝑥) in place
of (𝐻, 𝑐) ∈ (𝑥). For 𝑥 = 1, we write ≡ (1).
If, for a consumption process 𝑐 we can find a predictable 𝑆-integrable process 𝐻 such that

(𝐻, 𝑐) ∈ (𝑥) is an 𝑥-admissible investment-consumption strategy, then we say that 𝑐 is an 𝑥-
admissible consumption process or, briefly, an admissible consumption plan. Denote the set of 𝑥-
admissible consumption plans by(𝑥):

(𝑥) ∶=
{
𝑐 ≥ 0 ∶ ∃𝐻 such that𝑋 ∶= 𝑥 + (𝐻 ⋅ 𝑆) + ∫

⋅

0

(𝑓𝑠 − 𝑐𝑠) d𝑠 ≥ 0, a.s
}
, 𝑥 > 0. (8)

For 𝑥 = 1 we write ≡ (1). It is easy to verify that(𝑥) is a convex set.
For 𝑐 ≡ 𝑓 ≡ 0, the wealth process is that of a self-financing portfolio, with discounted wealth

process 𝑋0 as in (6). Define (𝑥) as the set of almost surely non-negative self-financing wealth
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processes with initial value 𝑥 > 0:

(𝑥) ∶= {𝑋0 ∶ 𝑋0 = 𝑥 + (𝐻 ⋅ 𝑆) ≥ 0, a.s.}, 𝑥 > 0.

We write  ≡ (1), with (𝑥) = 𝑥 for 𝑥 > 0, and we note that  is a convex set.
Given the wealth decomposition in (5), an equivalent characterization of the admissible con-

sumption plans is that there exists a self-financing wealth process such that its discounted version
plus cumulative discounted income dominates cumulative discounted consumption.

2.2 The primal problem

Let 𝑈 ∶ ℝ+ → ℝ be a utility function, strictly concave, strictly increasing, continuously differen-
tiable on ℝ+ and satisfying the Inada conditions

lim
𝑥↓0

𝑈′(𝑥) = +∞, lim
𝑥→∞

𝑈′(𝑥) = 0. (9)

Let 𝛿 > 0 be an impatience factor for consumption. The optimization problemwe study is to max-
imize expected utility from consumption over the infinite horizon in the presence of the termi-
nating income stream. The primal value function 𝑢 ∶ ℝ+ → ℝ is defined by

𝑢(𝑥) = sup
𝑐∈(𝑥)

𝔼

[
∫

∞

0

𝑈(𝑐𝑡) d𝜅𝑡

]
, 𝑥 > 0, (10)

where 𝜅 ∶ ℝ+ → ℝ+ is discounted Lebesgue measure, given by

𝜅0 = 0, d𝜅𝑡 = e−𝛿𝑡 d𝑡. (11)

For later use, define the positive process 𝜁 = (𝜁𝑡)𝑡≥0 as the reciprocal of ( d𝜅𝑡∕ d𝑡)𝑡≥0:

𝜁𝑡 ∶=

(
d𝜅𝑡
d𝑡

)−1

= exp (𝛿𝑡), 𝑡 ≥ 0. (12)

Our goal is to develop a rigorous dual characterization of the problem in (10).

2.3 Deflators and the budget constraint

With the one-jump process 𝑁 in (1) we associate the non-negative càdlàg (ℙ, 𝔽)-martingale 𝑀,
defined by

𝑀𝑡 ∶= 𝑁𝑡 + 𝜂 ∫
𝑡

0

𝑁𝑠 d𝑠, 𝑡 ≥ 0. (13)

Let 𝑍𝔾 be a local martingale deflator for the asset market in the absence of the income stream.
Denote the set of such deflators by 𝔾. Each 𝑍𝔾 ∈ 𝔾 is a positive local martingale with unit
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initial value such that deflated discounted self-financing wealth 𝑍𝔾𝑋0 is a local martingale, for
each 𝑋0 ∈  .
Now incorporate the income stream, and let  denote the set of local martingale deflators for

the enlarged market, such that deflated discounted self-financing wealth is a local martingale.
The set  is then composed of positive local martingales 𝑍 given by

𝑍 ∶= 𝑍𝔾(−𝛾 ⋅ 𝑀), (14)

where (⋅) denotes the stochastic exponential, for càglàd adapted processes 𝛾 satisfying 𝛾 >

−1, 𝛾 < +∞ almost surely. We note that as long as 𝛾 < +∞, Γ ∶= (−𝛾 ⋅ 𝑀) is a martingale.
Themultiplicity of processes 𝑍 ∈  is themanifestation of themarket incompleteness induced

both by the inherent incompleteness of the asset market in the absence of the income, and also
by the presence of the randomly terminating income. The latter source of incompleteness means
that there is a multiplicity of integrands 𝛾 in (14), as well as many processes 𝑍𝔾 ∈ 𝔾.
For each 𝑍 ∈  and 𝑋0 ∈  , the process 𝑋0𝑍 is a local martingale (and also a super-

martingale), so the (convex) set  is defined by

 ∶=
{
𝑍 > 0, càdlàg, 𝑍0 = 1 ∶ 𝑋0𝑍 is a local martingale, for all 𝑋0 ∈ }

. (15)

For each 𝑍 ∈ , we may define an associated supermartingale deflator as the discounted mar-
tingale deflator 𝑍 ∶= exp(− ∫ ⋅

0
𝑟𝑠 d𝑠)𝑍, 𝑍 ∈ , and we denote the set of such supermartingales

with initial value 𝑦 > 0 by ̃(𝑦):

̃(𝑦) ∶=
{
𝑌 ∶ 𝑌 = 𝑦𝑍 = 𝑦 exp

(
−∫

⋅

0

𝑟𝑠 d𝑠

)
𝑍, for 𝑍 ∈ 

}
, 𝑦 > 0. (16)

We write ̃ ≡ ̃(1), with ̃(𝑦) = 𝑦̃ for 𝑦 > 0, and ̃ is convex, inheriting this property from .
Define a further set 0(𝑦) of supermartingale deflators with initial value 𝑦 > 0 by

0(𝑦) ∶=
{
𝑌 > 0, càdlàg, 𝑌0 = 𝑦 ∶ 𝑋0𝑌 is a supermartingale, for all 𝑋0 ∈ }

, 𝑦 > 0. (17)

As before, we write 0 ≡ 0(1), with 0(𝑦) = 𝑦0 for 𝑦 > 0. Clearly, the set 0 is convex, and it
includes all the processes in the set ̃ of discounted local martingale deflators, but may include
other processes. Since 𝑋0 ≡ 1 lies in  (one may choose to hold initial wealth without investing
in stocks or the cash account), each 𝑌 ∈ 0 is a supermartingale. We shall refer to 0 as the set
of supermartingale deflators, or as the set of wealth deflators. The processes 𝑌 ∈ 0 correspond
to the classical deflators defined by Kramkov and Schachermayer (1999, 2003) in their seminal
treatment of the terminal wealth utility maximization problem. We thus have the inclusion

0 ⊇ ̃ . (18)

The no-arbitrage assumption implicit in our model,

0(𝑦) ≠ ∅, (19)

is tantamount to the NUPBR condition (see Karatzas and Kardaras (2007)). We shall work only
with deflators, and will not require any arguments involving ELMMs. There are good reasons to
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do this. One is that ELMMs will typically not exist over the infinite horizon, even if local martin-
gale deflators are martingales, because these martingales will not be uniformly integrable when
considered over an infinite horizon (this is true even in the Black-Scholes model, see (Karatzas &
Shreve, 1998, Section 1.7)). It is nowwell accepted, since the work of Karatzas and Kardaras (2007)
(and was implicit in the seminal work of Karatzas et al. (1991), where ELMMs were not used)
that the key ingredient for well-posed utility maximization problems is the existence of a suitable
class of deflators which act on primal variables to create supermartingales, and our approach is
in this spirit.

2.3.1 Consumption deflators

We define the space which will form the dual domain for the consumption problem (10).
For 𝑥 > 0, let (𝑋, 𝑐) ∈ (𝑥) be an admissible wealth-consumption pair, as defined in (7). Then

𝑐 ∈ (𝑥) is an admissible consumption process, as defined in (8). The dual domain for the con-
sumption problem (10) is defined by

(𝑦) ∶=
{
𝑌 > 0, càdlàg, 𝑌0 = 𝑦 ∶ 𝑋𝑌 + ∫

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠 is a supermartingale, ∀ 𝑐 ∈ (𝑥)
}
.

(20)
As usual, we write  ≡ (1) and we have (𝑦) = 𝑦 for 𝑦 > 0. The set  is easily seen to be
convex. We shall refer to the processes in the dual domain (𝑦) as consumption deflators (or,
simply, as deflators, when no confusion arises) to distinguish them from the correspondingwealth
deflators 𝑌 ∈ 0(𝑦) as defined in (17), when the consumption and income processes are absent
(or are equal, so cancel out).
In (20), note that the wealth process 𝑋 is the one on the left-hand-side of (4), so incorporat-

ing consumption and income. Since (𝑋, 𝑐) ≡ (1, 𝑓) is an admissible consumption-investment pair,
each𝑌 ∈ (𝑦) is a supermartingale. In particular, since 𝑐 ≡ 𝑓 is an admissible consumption plan,
and noting the decomposition in (5), the resultingwealth process𝑋 = 𝑋0 is then self-financing. In
this case we have that 𝑋𝑌 = 𝑋0𝑌 is a supermartingale, so that 𝑌 ∈ (𝑦) is also a wealth deflator
as defined in (17). In other words, we have the inclusion

 ⊆ 0. (21)

The dual domain (𝑦), 𝑦 > 0 for our utility maximization problem (10) from inter-temporal con-
sumption in the presence of the income stream is thus a specialization of the one used byKramkov
and Schachermayer (1999, 2003) for the terminal wealth problem.1

2.3.2 The budget constraint

The key to identifying the dual problem to (10) is a suitable budget constraint involving admissi-
ble consumption plans and some class of deflators. We show that such a budget constraint with
consumption deflators, due to the defining supermnartingale property in (20). We later show
that the same supermartingale property also holds with discounted local martingale deflators
𝑌 ∈ ̃ , so that the set of consumption deflators includes the set of discounted local martingale
deflators.
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In what follows we assume that 𝔼[∫ ∞

0
𝑓𝑡𝑌𝑡 d𝑡] < ∞, ∀𝑌 ∈  , that is, cumulative deflated

income is integrable, and we note that this condition is indeed true, as we establish it later in
Lemma 5.2.

Lemma 2.1 (Budget constraint). For 𝑥, 𝑦 > 0, let 𝑐 ∈ (𝑥) and𝑌 ∈ (𝑦). We then have the budget
constraint

𝔼

[
∫

∞

0

(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡

]
≤ 𝑥𝑦, 𝑥, 𝑦 > 0. (22)

Proof. The supermartingale property in (20) and the non-negativity of 𝑋𝑌 imply that

𝔼

[
∫

𝑡

0

𝑐𝑠𝑌𝑠 d𝑠

]
≤ 𝑥𝑦 + 𝔼

[
∫

𝑡

0

𝑓𝑠𝑌𝑠 d𝑠

]
, 𝑡 ≥ 0.

Letting 𝑡 ↑ ∞, using monotone convergence and re-arranging, we obtain (22). □

The set of consumption deflators includes the set of local martingale deflators, since the super-
martingale property in (20) in fact holds with discounted local martingale deflators, as we now
show, provided we assume that 𝔼[∫ ∞

0
𝑓𝑡𝑌𝑡 d𝑡] < ∞, ∀𝑌 ∈ ̃ .

Lemma 2.2 (Budget constraint with discounted local martingale deflators). Let 𝑥, 𝑦 > 0. For any
𝑐 ∈ (𝑥) and 𝑌 ∈ ̃(𝑦) we have the budget constraint

𝔼

[
∫

∞

0

(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡

]
≤ 𝑥𝑦, 𝑥, 𝑦 > 0. (23)

Proof. For some fixed 𝑦 > 0, let 𝑌 = 𝑦𝑍 ∈ ̃(𝑦) be a discounted local martingale deflator, as
defined in (16). Recalling the wealth dynamics (4) and the discounted wealth decomposition (5),
the Itô product rule applied to 𝑋𝑌 = 𝑦𝑋𝑍 yields

𝑋𝑌 + ∫
⋅

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠 = 𝑥𝑦 + 𝑋0𝑌 + 𝑦 ∫
⋅

0

(𝐹𝑠− − 𝐶𝑠−) d𝑍𝑠, (24)

where𝑋0 is the self-financing wealth process in the decomposition (5). We observe that the right-
hand-side of (24) is a local martingale, since both 𝑋0𝑌 = 𝑦𝑋0𝑍 and the integral with respect to 𝑍
are local martingales.
For any 𝑡 ≥ 0 the random variable ∫ 𝑡

0
𝑓𝑠𝑌𝑠 d𝑠 is ℙ-integrable, since we have

𝔼

[
∫

𝑡

0

𝑓𝑠𝑌𝑠 d𝑠

]
≤ 𝑎 ∫

𝑡

0

𝔼[𝑌𝑠] d𝑠 < ∞, 𝑡 ≥ 0.

Hence, the integrand on the left-hand-side of (24) is bounded below by an integrable random
variable. Since𝑋𝑌 is non-negative, the right-hand side of (24) is a localmartingale bounded below
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by an integrable random variable, so the Fatou lemma gives that

𝑋𝑌 + ∫
⋅

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠 is a supermartingale, ∀ 𝑐 ∈ (𝑥) and 𝑌 ∈ ̃(𝑦). (25)

This supermartingale property then implies the budget constraint in (23) by the same argument
as in the proof of Lemma 2.1. □

Since the supermartingale property in the definition (20) also holds for discounted local mar-
tingale deflators (as in (25)), the set of consumption deflators contains the set of discounted local
martingale deflators. We thus have the inclusion

 ⊇ ̃ . (26)

We observe that, combining (26) and (21), we have 0 ⊇  ⊇ ̃ .
The budget constraint in (22) thus constitutes a necessary condition for admissible consump-

tion plans. We assume that it in fact characterizes admissible consumption plans, so is also a
sufficient condition, by virtue of the following financing condition.

Assumption 2.3 (Financing condition). For 𝑥, 𝑦 > 0, let (𝑋, 𝑐) ∈ (𝑥) be any 𝑥-admissible
wealth-consumption pair, so 𝑐 ∈ (𝑥) is an admissible consumption plan, and let 𝑌 ∈ (𝑦) be
any consumption deflator. We assume that current wealth plus future income can finance future
consumption, in the sense that

𝑋𝑡𝑌𝑡 + 𝔼

[
∫

∞

𝑡

𝑓𝑠𝑌𝑠 d𝑠
|||||𝑡

]
≥ 𝔼

[
∫

∞

𝑡

𝑐𝑠𝑌𝑠 d𝑠
|||||𝑡

]
, 𝑡 ≥ 0,

and that if (3) holds, then 𝑐 ∈ (𝑥) and (𝑋, 𝑐) ∈ (𝑥).

2.4 The dual problem

Let 𝑉 ∶ ℝ+ → ℝ denote the convex conjugate of the utility function 𝑈(⋅), defined by

𝑉(𝑦) ∶= sup
𝑥>0

[𝑈(𝑥) − 𝑥𝑦], 𝑦 > 0.

The map 𝑦 ↦ 𝑉(𝑦), 𝑦 > 0, is strictly convex, strictly decreasing, continuously differentiable on
ℝ+, −𝑉(⋅) satisfies the Inada conditions, we have the bi-dual relation 𝑈(𝑥) ∶= inf𝑦>0[𝑉(𝑦) +

𝑥𝑦], 𝑥 > 0, and 𝑉′(⋅) = −𝐼(⋅) = −(𝑈′)−1(⋅), where 𝐼(⋅) denotes the inverse of marginal utility. In
particular, we have the inequality

𝑉(𝑦) ≥ 𝑈(𝑥) − 𝑥𝑦, ∀ 𝑥, 𝑦 > 0, with equality iff 𝑈′(𝑥) = 𝑦. (27)

The dual to the primal problem (10) is motivated in the usual manner with the aid of the budget
constraint (22). For any 𝑐 ∈ (𝑥), 𝑌 ∈ (𝑦) we have, on recalling the process 𝜁 of (12) and (27),
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that

𝔼

[
∫

∞

0

𝑈(𝑐𝑡) d𝜅𝑡

]
≤ 𝔼

[
∫

∞

0

(𝑉(𝜁𝑡𝑌𝑡) + 𝑓𝑡𝜁𝑡𝑌𝑡) d𝜅𝑡

]
+ 𝑥𝑦. (28)

We therefore define the dual value function by

𝑣(𝑦) ∶= inf
𝑌∈(𝑦) 𝔼

[
∫

∞

0

(𝑉(𝜁𝑡𝑌𝑡) + 𝑓𝑡𝜁𝑡𝑌𝑡) d𝜅𝑡

]
, 𝑦 > 0. (29)

We shall assume throughout that the dual problem is finitely valued:

𝑣(𝑦) < ∞, ∀ 𝑦 > 0. (30)

It is well known that the condition (30) acts an alternative mild feasibility condition to the rea-
sonable asymptotic elasticity condition of Kramkov and Schachermayer (1999) that ensures the
usual tenets of a duality theory can hold, as detailed by Kramkov and Schachermayer (2003).

Remark 2.4 (Consumption deflators versus discounted LMDs). Since the budget constraint holds
for both consumption deflators 𝑌 ∈  and discounted local martingale deflators 𝑌 ∈ ̃ ⊆  , a
natural question to ask is whether the dual problem can be cast as aminimization over discounted
local martingale deflators. It turns out that this is possible provided one takes the closure of ̃
with (with respect the topology of convergence in measure 𝜅 × ℙ) as the dual domain. This is the
content of Theorem 3.2, relying on the property that ̃ is dense in  (see Proposition 4.4).
The reason onemust take the closure of ̃ if basing the dual problem on local martingale defla-

tors is that it seems hard to establish, in general, that ̃ is a closed set. We shall prove that the dual
domain is closed by exploiting results on so-called Fatou convergence of supermartingales. This
is a primary reason for defining the dual domain in terms of a fundamental supermartingale cri-
terion. This method of proof fails if using local martingale deflators, because the limiting super-
martingale in the Fatou convergence method is known only to be a supermartingale, and not
necessarily a local martingale deflator.
In our approach, we avoid the need to invoke a closure in defining the dual domain, yielding a

stronger ultimate duality statement, and in some sense showing that we have identified the true
space of dual supermartingales. This is more in the spirit of Kramkov and Schachermayer (1999,
2003). (As (Rogers, 2003, ImportantRemark, pp. 104–105) points out, having to invoke a closure
in defining the dual domain weakens the statement of the final result somewhat.) Finally, the fact
that we show that our dual domain actually coincides with the closure of the discounted local
martingale deflators, completes the picture on this topic in a satisfying way.

2.5 The Davis-Vellekoop example

A canonical example of the primal problem (10) (and which motivated this paper) is provided by
Vellekoop and Davis (2009). The underlying market is a Black-Scholes (BS) market with a single
stock 𝑆 with constant market price of risk 𝜆 ∈ ℝ and constant volatility 𝜎 > 0, driven by a single
Brownian motion𝑊. The interest rate is a constant 𝑟 > 0, and the stock price dynamics are given
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by

d𝑆𝑡 = (𝑟 + 𝜎𝜆)𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡.

The income stream pays at a constant rate 𝑎 ≥ 0 until the random time 𝜏 ∼ Exp(𝜂), so 𝑓𝑡 =
𝑎𝑁𝑡, 𝑡 ≥ 0, with 𝑁 defined in (1) and 𝜏 independent of𝑊. The underlying market in the absence
of the income is thus complete, so all the incompleteness is generated by the random termina-
tion of the income. The filtration 𝔾 is the ℙ-augmentation of the filtration generated by𝑊, the
unique martingale deflator in the absence of the income is 𝑍𝔾 = (−𝜆𝑊), so the local martingale
deflators in the market with the income are of the form

𝑍 = (−𝜆𝑊 − 𝛾 ⋅ 𝑀), 𝛾 > −1,

with𝑀 defined in (13).We take the filtration𝔽 to be theℙ-augmentation of the filtration generated
by (𝑊,𝑁). Over any finite horizon,𝑍 is amartingale as long as 𝛾 is finite. Over the infinite horizon
it is well known that such a martingale is not uniformly integrable. This is the case even in the
underlying BS market without the income stream, since the martingale (−𝜆𝑊) is not uniformly
integrable over the infinite horizon, so ELMMswill not exist over the infinite horizon. Thus, even
in this simple example, our approach of using deflators (as opposed to any constructions involving
ELMMs) is a very natural one.
This example is remarkable in that, despite the apparent simplicity of the setting, the problem

with randomly terminating income induces a particularly awkward form of market incomplete-
ness. The agent is precluded from borrowing against the income stream, to avoid being left insol-
vent if the income terminates at a time when the wealth is negative. This raised many difficulties
in Vellekoop and Davis (2009). First, there is no longer a closed form solution to the problem. Sec-
ond, Vellekoop and Davis (2009) encountered a duality gap, as their conjectured primal solution,
obtained by solving a deterministic control problem, could not solve the HJB equation. Finally,
there was also an open question as to whether the marginal utility at zero wealth is finite or not.
Economic intuition indicates that it should be finite as long as the income is strictly positive for a
non-zero initial time interval, but ODEheuristics in Vellekoop andDavis (2009) seemed to suggest
that the marginal utility at zero wealth was infinite, even though numerical solutions suggested
the opposite conclusion.
For all the above reasons, the problem that Vellekoop and Davis (2009) came up with is a fas-

cinating example, and we shall analyze it and give a numerical solution in Section 6, after first
establishing a rigorous duality theory for the general semimartingalemarketmodel described ear-
lier.

3 THE DUALITY THEOREM

Here is themain duality result of the paper (Theorem3.1), a dual characterization of the solution to
the terminating income problem (10). Note that our methods also cover the finite horizon version
of the problem, with or without a terminal wealth objective, and we give some remarks on the
adjustments needed to do this after proving the theorem, in Section 5.4.

Theorem3.1 (Consumptionwith randomly terminating income duality). Define the primal value
function 𝑢(⋅) by (10) and the dual value function 𝑣(⋅) by (29). Assume (9), (19) and (30). Define
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the variable 𝑦∗ > 0 as the smallest value of 𝑦 > 0 at which the derivative of the dual value function
reaches zero:

𝑦∗ ∶= inf {𝑦 > 0 ∶ 𝑣′(𝑦) = 0}. (31)

Then:

(i) 𝑢(⋅) and 𝑣(⋅) are conjugate:

𝑣(𝑦) = sup
𝑥>0

[𝑢(𝑥) − 𝑥𝑦], 𝑢(𝑥) = inf
𝑦∈(0,𝑦∗)

[𝑣(𝑦) + 𝑥𝑦], 𝑥 > 0, 0 < 𝑦 < 𝑦∗.

(ii) The primal and dual optimizers 𝑐(𝑥) ∈ (𝑥) and 𝑌(𝑦) ∈ (𝑦) exist and are unique, so that

𝑢(𝑥) = 𝔼

[
∫

∞

0

𝑈(𝑐𝑡(𝑥)) d𝜅𝑡

]
, 𝑣(𝑦) = 𝔼

[
∫

∞

0

(𝑉(𝜁𝑡𝑌𝑡(𝑦)) + 𝑓𝑡𝜁𝑡𝑌𝑡(𝑦)) d𝜅𝑡

]
, 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗).

(iii) With 𝑦 = 𝑢′(𝑥) (equivalently, 𝑥 = −𝑣′(𝑦)), the primal and dual optimizers are related by

𝑈′(𝑐𝑡(𝑥)) = 𝜁𝑡𝑌𝑡(𝑦), equivalently, 𝑐𝑡(𝑥) = −𝑉′(𝜁𝑡𝑌𝑡(𝑦)), 𝑡 ≥ 0, (32)

and satisfy

𝔼

[
∫

∞

0

(𝑐𝑡(𝑥) − 𝑓𝑡)𝑌𝑡(𝑦) d𝑡

]
= 𝑥𝑦. (33)

Moreover, the associated optimal wealth process 𝑋(𝑥) is given by

𝑋𝑡(𝑥)𝑌𝑡(𝑦) = 𝔼

[
∫

∞

𝑡

(𝑐𝑠(𝑥) − 𝑓𝑠)𝑌𝑠(𝑦) d𝑠
|||||𝑡

]
, 𝑡 ≥ 0, (34)

and the process𝑋(𝑥)𝑌(𝑦) + ∫ ⋅

0
(𝑐𝑠(𝑥) − 𝑓𝑠)𝑌𝑠(𝑦) d𝑠 is a uniformly integrable martingale, while

𝑋(𝑥)𝑌(𝑦) is a potential, a non-negative supermartingale such that lim𝑡→∞ 𝔼[𝑋𝑡(𝑥)𝑌𝑡(𝑦)] = 0.
Finally, 𝑋∞(𝑥)𝑌∞(𝑦) = 0 almost surely.

(iv) The functions 𝑢(⋅) and −𝑣(⋅) are strictly increasing, strictly concave and differentiable on their
respective domains, and the variable 𝑦∗ of (31) satisfies 𝑦∗ < +∞, so that the primal Inada
condition at zero is violated:

𝑢′(0) ∶= lim
𝑥↓0

𝑢′(𝑥) < +∞.

The primal Inada condition at infinity holds true, so that

𝑢′(∞) ∶= lim
𝑥→∞

𝑢′(𝑥) = 0, −𝑣′(0) ∶= lim
𝑦↓0

(−𝑣′(𝑦)) = +∞.
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Moreover, the derivatives of the value functions satisfy

𝑥𝑢′(𝑥) = 𝔼

[
∫

∞

0

𝑈′(𝑐𝑡(𝑥))(𝑐𝑡(𝑥) − 𝑓𝑡) d𝜅𝑡

]
, 𝑥 > 0,

𝑦𝑣′(𝑦) = 𝔼

[
∫

∞

0

(𝑉′(𝜁𝑡𝑌𝑡(𝑦)) + 𝑓𝑡)𝑌𝑡(𝑦) d𝑡

]
, 𝑦 ∈ (0, 𝑦∗).

The proof of Theorem 3.1 will be given in Section 5, and will proceed by proving an abstract
version of the theorem, which is stated in the next section.
We have used the set (𝑦) of consumption deflators in the definition (29) of the dual value

function, and we have the inclusion (26). The next theorem shows that the dual value function is
an infimum over the closure of the set ̃(𝑦).
Theorem 3.2. The dual value function (29) also has the representation

𝑣(𝑦) ∶= inf
𝑌∈cl(̃(𝑦)) 𝔼

[
∫

∞

0

(𝑉(𝜁𝑡𝑌𝑡) + 𝑓𝑡𝜁𝑡𝑌𝑡) d𝜅𝑡

]
, 𝑦 > 0,

where ̃(𝑦) is the set of discounted local martingale deflators defined in (16), and cl(⋅) denotes the
closure with respect to convergence in measure 𝜅 × ℙ.

The proof of Theorem 3.2 will be given in Section 5 and will rest on Proposition 4.4, which
connects two dual domains in the abstract formulations of our optimization problems in Section 4.

4 THE ABSTRACT DUALITY

In this section we state an abstract duality theorem (Theorem 4.3), from which Theorem 3.1 will
follow. Proofs of the results here will follow in Section 5.
Set 𝛀 ∶= [0,∞) × Ω. Let  denote the optional 𝜎-algebra on 𝛀, that is, the sub-𝜎-algebra of

([0,∞)) ⊗  generated by evanescent sets and stochastic intervals of the form [[𝑇,∞]] for arbi-
trary stopping times 𝑇. Define the measure 𝜇 ∶= 𝜅 × ℙ on (𝛀,). On the resulting finite measure
space (𝛀,, 𝜇), denote by 𝐿0+(𝜇) the space of non-negative𝜇-measurable functions, corresponding
to non-negative infinite horizon processes.
The primal and dual domains for our optimization problems (10) and (29) are now considered as

subsets of𝐿0+(𝜇). The abstract primal domain(𝑥) is identical to the set of admissible consumption
plans, now considered as a subset of 𝐿0+(𝜇):

(𝑥) ∶= {
𝑔 ∈ 𝐿0+(𝜇) ∶ 𝑔 = 𝑐, 𝜇-a.e., for some 𝑐 ∈ (𝑥)}, 𝑥 > 0. (35)

As always we write  ≡ (1), and the set  is convex. (Since  = we do not really need to intro-
duce the new notation, and do so only for some notational symmetry in the abstract formulation.)
In the abstract notation, the primal value function (10) is written as

𝑢(𝑥) ∶= sup
𝑔∈(𝑥)∫𝛀 𝑈(𝑔) d𝜇, 𝑥 > 0. (36)
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For the dual problem, the abstract dual domain (𝑦), 𝑦 > 0 is composed of elements ℎ = 𝜁𝑌

appearing in the dual value function (29). We thus define

(𝑦) ∶= {
ℎ ∈ 𝐿0+(𝜇) ∶ ℎ = 𝜁𝑌, 𝜇-a.e., for some 𝑌 ∈ (𝑦)}, 𝑦 > 0. (37)

As usual, we write  ≡ (1), we have (𝑦) = 𝑦 for 𝑦 > 0, and the set  is convex. With this
notation, the dual problem (29) takes the form

𝑣(𝑦) ∶= inf
ℎ∈(𝑦)∫𝛀 (𝑉(ℎ) + 𝑓ℎ) d𝜇, 𝑦 > 0. (38)

Remark 4.1. Observe that we have not enlarged the original primal or (in particular) the dual
domain in the classical manner akin to Kramkov and Schachermayer (1999, 2003), to encom-
pass processes dominated by elements of the original domain. (So, for example, on the dual side,
one might define  to be composed of all elements ℎ such that ℎ ≤ 𝜁𝑌, for some 𝑌 ∈  .) Such
enlargements are not operative here, for a number of reasons, all stemming from the presence of
the random endowment 𝑓, as we now describe.
First, our duality proof will not be based on an application of the bipolar theorem of Brannath

and Schachermayer (1999). One reason for this is that the primal variable 𝑐 − 𝑓 in the budget con-
straint (22), is not necessarily non-negative, which precludes the use of the bipolar theorem, as
that applies to elements in 𝐿0+(𝜇). In this context, the enlargement of the dual domain, to encom-
pass processes dominated by the original dual variables, is typically carried out in order to reach
the bipolar of the original dual domain, so as to use the bipolar theorem, which is of no use to us.
Second, in problems without random endowment, the dual enlargement, which renders the

abstract dual domain solid,2 does not prevent the dual optimizer from lying in the original dual
domain (in essence, themonotone decreasing property of𝑉(⋅) ensures that one takes the “largest”
dual element in order to find the dual optimizer, which then lies in the original dual domain).
But in a problem with random endowment, as in (38), the dual objective function is no longer
monotone decreasing in ℎ ∈ (𝑦), so the optimizer in (𝑦) might not lie in the original dual
domain if(𝑦) contains all elements ℎ ≤ 𝜁𝑌, for some 𝑌 ∈ (𝑦).
These features illustrate some of the difficulties that arise in utility maximization problems

with random endowment, which have made such problems hard to deal with, and go some way
to explaining the subtle techniques that have had to be employed to obtain results in this area.
These include the use of finitely additive measures, as in Cvitanić et al. (2001), Cvitanić et al.
(2017), Karatzas and Žitković (2003), or the expansion of the dimension of the value function with
an additional variable for the number of units of the random endowment, as in Hugonnier and
Kramkov (2004), Mostovyi (2017), Mostovyi and Sîrbu (2020). One of the contributions of this
paper is to obtain very general duality results without having to introduce such remedies.

For later use, and in particular to state a result further below (Proposition 4.4) that will ulti-
mately furnish us with the proof of Theorem 3.2, we define the abstract domain ̃(𝑦), 𝑦 > 0 in an
analogous manner to (37), as the counterpart to the set ̃(𝑦) of discounted martingale deflators:

̃(𝑦) ∶= {
ℎ ∈ 𝐿0+(𝜇) ∶ ℎ = 𝜁𝑌, 𝜇-a.e., for some 𝑌 ∈ ̃(𝑦)}, 𝑦 > 0. (39)

As usual, we write ̃ ≡ ̃(1), we have ̃(𝑦) = 𝑦̃ for 𝑦 > 0, and the set ̃ is convex.
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The abstract duality theoremwill rely on certain basic properties of the sets  and, which we
state in the key Proposition 4.2 below. In what follows we shall sometimes employ the notation⟨𝑔, ℎ⟩ ∶= ∫

𝛀
𝑔ℎ d𝜇, 𝑔, ℎ ∈ 𝐿0(𝜇), and we shall call a set 𝐴 ⊆ 𝐿0+(𝜇)closed in 𝜇-measure, or simply

closed, if it is closed with respect to the topology of convergence in measure 𝜇.

Proposition 4.2 (Properties of the primal and dual domains). The primal domain  satisfies
𝑔 ∈  ⟺ ⟨𝑔 − 𝑓, ℎ⟩ ≤ 1, ∀ ℎ ∈ . (40)

Both  and the abstract dual domain  are closed, convex subsets of 𝐿0+(𝜇), and are bounded in
𝐿0(𝜇). Moreover, is bounded in 𝐿1(𝜇).

The proof of Proposition 4.2 will be given in Section 5, using Lemmata 5.1 and 5.2.

Theorem 4.3 (Abstract duality theorem). Define the primal value function 𝑢(⋅) by (36) and the
dual value function 𝑣(⋅) by (38). Assume the Inada conditions (9) and that

𝑢(𝑥) > −∞, ∀𝑥 > 0, 𝑣(𝑦) < ∞, ∀ 𝑦 > 0.

Set

𝑦∗ ∶= inf {𝑦 > 0 ∶ 𝑣′(𝑦) = 0}. (41)

Then, with Proposition 4.2 in place, we have:

(i) 𝑢(⋅) and 𝑣(⋅) are conjugate:

𝑣(𝑦) = sup
𝑥>0

[𝑢(𝑥) − 𝑥𝑦], 𝑢(𝑥) = inf
𝑦∈(0,𝑦∗)

[𝑣(𝑦) + 𝑥𝑦], 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗). (42)

(ii) The primal and dual optimizers 𝑔(𝑥) ∈ (𝑥) and ℎ̂(𝑦) ∈ (𝑦) exist and are unique, so that

𝑢(𝑥) = ∫
𝛀

𝑈(𝑔(𝑥)) d𝜇, 𝑣(𝑦) = ∫
𝛀

(
𝑉(ℎ̂(𝑦)) + 𝑓ℎ̂(𝑦)

)
d𝜇, 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗).

(iii) With 𝑦 = 𝑢′(𝑥) (equivalently, 𝑥 = −𝑣′(𝑦)), the primal and dual optimizers are related by

𝑈′(𝑔(𝑥)) = ℎ̂(𝑦), equivalently, 𝑔(𝑥) = −𝑉′(ℎ̂(𝑦)),

and satisfy

⟨𝑔(𝑥) − 𝑓, ℎ̂(𝑦)⟩ = 𝑥𝑦.

(iv) 𝑢(⋅) and −𝑣(⋅) are strictly increasing, strictly concave and differentiable on their respective
domains. The constant 𝑦∗ in (41) is finite: 𝑦∗ < +∞, so that the primal value function has finite
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derivative at zero:

𝑢′(0) ∶= lim
𝑥↓0

𝑢′(𝑥) < +∞,

while the derivative of the primal value function at infinity and of the dual value function at
zero satisfy

𝑢′(∞) ∶= lim
𝑥→∞

𝑢′(𝑥) = 0, −𝑣′(0) ∶= lim
𝑦↓0

(−𝑣′(𝑦)) = +∞.

Furthermore, the derivatives of the value functions satisfy

𝑥𝑢′(𝑥) = ∫
𝛀

𝑈′(𝑔(𝑥))(𝑔(𝑥) − 𝑓) d𝜇, 𝑦𝑣′(𝑦) = ∫
𝛀

(𝑉′(ℎ̂(𝑦)) + 𝑓)ℎ̂(𝑦) d𝜇, 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗).

The proof of Theorem 4.3 will follow in Section 5.
Theorem 3.2 will rest on the following proposition, which connects the sets and ̃.

Proposition 4.4. With respect to the topology of convergence in measure 𝜇, the set ̃ ≡ ̃(1) of (39)
is dense in the abstract dual domain ≡ (1) of (37). That is, we have

 = cl(̃),
where cl(⋅) denotes the closure with respect to the topology of convergence in measure 𝜇.

The proof of Proposition 4.4 will be given in Section 5, following the proofs of the abstract and
concrete duality theorems.

5 PROOFS OF THE DUALITY THEOREMS

In this section, we prove the abstract duality of Theorem 4.3, and then establish the concrete
duality of Theorem3.1.We proceed via a series of lemmas.Using the fact that the budget constraint
(22) is a sufficient as well as necessary condition for admissibility, along with two subsequent
results (Lemma 5.1 and Lemma 5.2), that the dual domain is closed, and also bounded in 𝐿1(𝜇),
we establish Proposition 4.2, which underpins the abstract duality.

5.1 Properties of the dual domain

5.1.1 Closed property of the dual domain

The first step towards establishing Proposition 4.2 is to show that is closed. As in some classical
proofs (Kramkov & Schachermayer, 1999, Lemma 4.1), we shall employ supermartingale conver-
gence results based on Fatou convergence of processes.
Here is the closed property for the abstract dual domain.
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Lemma 5.1. The dual domain ≡ (1) of (37) is closed with respect to the topology of convergence
in measure 𝜇.

Proof. Let (ℎ𝑛)𝑛∈ℕ be a sequence in , converging 𝜇-a.e. to some ℎ ∈ 𝐿0+(𝜇). We want to show
that ℎ ∈ .
Since ℎ𝑛 ∈ , for each 𝑛 ∈ ℕ we have ℎ𝑛 = 𝜁𝑌𝑛, 𝜇-a.e for some supermartingale 𝑌𝑛 ∈  .

With 𝕋 a dense countable subset of ℝ+, (Föllmer & Kramkov, 1997, Lemma 5.2) implies that
there exists a sequence (𝑌𝑛)𝑛∈ℕ of supermartingales, with each 𝑌𝑛 ∈ conv(𝑌𝑛, 𝑌𝑛+1, …), where
conv(𝑌𝑛, 𝑌𝑛+1, …) denotes a convex combination

∑𝑁(𝑛)

𝑘=𝑛
𝜆𝑘𝑌

𝑘 for 𝜆𝑘 ∈ [0, 1] with
∑𝑁(𝑛)

𝑘=𝑛
𝜆𝑘 = 1,

and a supermartingale 𝑌, such that (𝑌𝑛)𝑛∈ℕ is Fatou convergent on 𝕋 to 𝑌.
Define a supermartingale sequence (𝑉𝑛)𝑛∈ℕ by 𝑉𝑛 ∶= 𝑋𝑌𝑛 + ∫ ⋅

0
(𝑐𝑠 − 𝑓𝑠)𝑌

𝑛
𝑠 d𝑠, with 𝑐 ∈ 

an admissible consumption plan and 𝑋 the associated wealth process, so (𝑋, 𝑐) ∈  is an
admissible investment-consumption pair with initial wealth 1. Once again from (Föllmer &
Kramkov, 1997, Lemma 5.2) there exists a sequence (𝑉𝑛)𝑛∈ℕ of supermartingales with each 𝑉𝑛 ∈

conv(𝑉𝑛, 𝑉𝑛+1, …), and a supermartingale 𝑉, such that (𝑉𝑛)𝑛∈ℕ is Fatou convergent on 𝕋 to 𝑉.
We observe that, because 𝑌𝑛 ∈ conv(𝑌𝑛, 𝑌𝑛+1, …) and 𝑉𝑛 ∈ conv(𝑉𝑛, 𝑉𝑛+1, …), we have

𝑉𝑛 =

𝑁(𝑛)∑
𝑘=𝑛

𝜆𝑘𝑉
𝑘 =

𝑁(𝑛)∑
𝑘=𝑛

𝜆𝑘

(
𝑋𝑌𝑘 + ∫

⋅

0

(𝑐𝑠 − 𝑓𝑠)𝑌
𝑘
𝑠 d𝑠

)
= 𝑋𝑌𝑛 + ∫

⋅

0

𝑐𝑠𝑌
𝑛
𝑠 d𝑠.

As a consequence, and because the sequence (𝑌𝑛)𝑛∈ℕ is Fatou convergent on 𝕋 to the super-
martingale 𝑌, the sequence (𝑉𝑛)𝑛∈ℕ = (𝑋𝑌𝑛 + ∫ ⋅

0
(𝑐𝑠 − 𝑓𝑠)𝑌

𝑛
𝑠 d𝑠)𝑛∈ℕ is Fatou convergent on

𝕋 to the supermartingale 𝑉 = 𝑋𝑌 + ∫ ⋅

0
(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠. Since 𝑋𝑌 + ∫ ⋅

0
(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠 is a super-

martingale and 𝑐 ∈  is an admissible consumption plan (so (𝑋, 𝑐) is an admissible investment-
consumption strategy), we have 𝑌 ∈  .
Because ℎ𝑛 = 𝜁𝑌𝑛, 𝜇-a.e.for each 𝑛 ∈ ℕ, and since 𝑌𝑛 =

∑𝑁(𝑛)

𝑘=𝑛
𝜆𝑘𝑌

𝑘, we have

𝜁𝑌𝑛 =

𝑁(𝑛)∑
𝑘=𝑛

𝜆𝑘𝜁𝑌
𝑘 =

𝑁(𝑛)∑
𝑘=𝑛

𝜆𝑘ℎ
𝑘, 𝜇-a.e. (43)

Now, by (Žitković, 2002, Lemma 8) (proven there for finite horizon processes, but it is straightfor-
ward to verify that the proof goes throughwithout alteration for infinite horizon processes) there is
a countable set𝐾 ⊂ ℝ+ such that for 𝑡 ∈ ℝ+ ⧵ 𝐾, we have 𝑌𝑡 = lim inf𝑛→∞ 𝑌𝑛

𝑡 almost surely, and
hence also 𝑌 = lim inf𝑛→∞ 𝑌𝑛, 𝜇-almost everywhere (since these differ only on a set of measure
zero). So, taking the limit inferior in (43) and recalling that (ℎ𝑛)𝑛∈ℕ converges𝜇-a.e. toℎ, we obtain

𝜁𝑌 = lim inf
𝑛→∞

𝜁𝑌𝑛 = lim inf
𝑛→∞

𝑁(𝑛)∑
𝑘=𝑛

𝜆𝑘ℎ
𝑘 = ℎ, 𝜇-a.e.

That is, ℎ = 𝜁𝑌 𝜇-a.e, for 𝑌 ∈  , so ℎ ∈ , and thus is closed. □

5.1.2 𝐿1(𝜇)-boundedness of the dual domain

The remaining ingredient we shall need to prove 4.2 is to show that the dual domain is bounded
in 𝐿1(𝜇). This is taken care of by the lemma below, on the boundedness properties of two integrals
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involving elements ℎ ∈ . As these results will be used at various places in the duality proof, we
collect them here.

Lemma 5.2 (Bounded integrals in the dual domain). Recall the lower bound in (2) for the interest
rate and the upper bound in (3) on the income rate. We then have

∫
𝛀

ℎ d𝜇 ≤ 1

𝑟
, ∫

𝛀

𝑓ℎ d𝜇 ≤ 𝑎

𝑟
, ∀ ℎ ∈ . (44)

Proof. Choose a consumption plan such that 𝑐𝑡 − 𝑓𝑡 = 𝜖, 𝑡 ≥ 0, for some constant 𝜖 ∈ (0, 𝑟]. It
is straightforward to verify that this plan is admissible, as follows. With initial wealth 𝑥 = 1 and
trading strategy𝐻 ≡ 0, the lower bound in (2) on the interest rate yields that

𝑋𝑡 ≥ 𝜖

𝑟
+ exp(𝑟𝑡)

(
1 −

𝜖

𝑟

)
, 𝑡 ≥ 0.

Thus, provided 𝜖 ∈ (0, 𝑟], we have 𝑋𝑡 ≥ 0, ∀ 𝑡 ≥ 0 almost surely, so that the chosen consumption
plan is admissible: 𝑐 ∈ . In particular, we may set 𝜖 = 𝑟, which yields 𝑋𝑡 ≥ 1, ∀ 𝑡 ≥ 0 almost
surely. (This makes perfect sense: one can consume at a rate equal to the income rate plus the
minimal interest rate and stay solvent.)
The budget constraint (22) implies that

∫
𝛀

(𝑔 − 𝑓)ℎ d𝜇 ≤ 1, ∀ 𝑔 ∈ , ℎ ∈ . (45)

So, if we choose the consumption plan such that 𝑔 − 𝑓 = 𝑟, 𝜇-a.e., we have 𝑔 ∈  from the first
part of the proof, and the abstract budget constraint in (45) converts to

𝑟 ∫
𝛀

ℎ d𝜇 ≤ 1, ∀ ℎ ∈ ,

so we obtain the first inequality in (44). The second inequality then follows by augmenting this
with the bound in (3) on the income rate. □

With this preparation, we are now able to establish Proposition 4.2.

Proof of Proposition 4.2. We first establish the dual characterization of  as expressed in (40). The
budget constraint (22) alongwith the financing condition inAssumption 2.3, give the equivalence,
invoking the measure 𝜅 of (11),

𝑐 ∈  ⟺ 𝔼

[
∫

𝑇

0

(𝑐𝑡 − 𝑓𝑡)𝜁𝑡𝑌𝑡 d𝜅𝑡

]
≤ 1, ∀𝑌 ∈  .

So, with  ∋ 𝑔 ≡ 𝑐 and ∋ 𝜁𝑌, in terms of the measure 𝜇 we have

𝑔 ∈  ⟺ ∫
𝛀

(𝑔 − 𝑓)ℎ d𝜇 ≤ 1, ∀ ℎ ∈ , (46)
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which establishes (40).
The equivalence (46) along with Fatou’s lemma yields that the set  is closed with respect to the

topology of convergence inmeasure 𝜇. To see this, let (𝑔𝑛)𝑛∈ℕ be a sequence in  which converges
𝜇-a.e. to an element 𝑔 ∈ 𝐿0+(𝜇). For arbitrary ℎ ∈ we obtain, via Fatou’s lemma and the fact that
𝑔𝑛 ∈  for each 𝑛 ∈ ℕ (with 𝑔𝑛 − 𝑓 bounded below),

∫
𝛀

(𝑔 − 𝑓)ℎ d𝜇 ≤ lim inf
𝑛→∞ ∫

𝛀

(𝑔𝑛 − 𝑓)ℎ d𝜇 ≤ 1,

so by (46), 𝑔 ∈ , and thus  is closed. Convexity of  is clear from its definition.
For the 𝐿0(𝜇)-boundedness of , we shall find a positive element ℎ ∈  and show that  is

bounded in 𝐿1(ℎ d𝜇) and hence bounded in 𝐿0(𝜇). Given the inclusion in (26), we may choose
 ∋ 𝑍 ≡ 1, so that 𝑌 = exp(− ∫ ⋅

0
𝑟𝑠 d𝑠) ∈ ̃ ⊆  , and then ℎ ∶= 𝜁 exp(− ∫ ⋅

0
𝑟𝑠 d𝑠) ∈  defines a

strictly positive element of. Observe that, with the lower bound on the interest rate in (2)

∫
𝛀

ℎ d𝜇 = 𝔼

[
∫

∞

0

exp

(
−∫

𝑡

0

𝑟𝑠 d𝑠

)
𝜁𝑡 d𝜅𝑡

]
≤ 𝔼

[
∫

∞

0

exp(−𝑟𝑡) d𝑡

]
=
1

𝑟
.

By virtue of the budget constraint we have, for any 𝑔 ∈ , that ∫
𝛀
(𝑔 − 𝑓)ℎ d𝜇 ≤ 1.Thus, with

the bound on the income rate in (3), we have

∫
𝛀

𝑔ℎ d𝜇 ≤ 1 + ∫
𝛀

𝑓ℎ d𝜇 ≤ 1 + 𝑎 ∫
𝛀

ℎ d𝜇 = 1 +
𝑎

𝑟
< ∞. (47)

Thus,  is bounded in 𝐿1(ℎ d𝜇) and hence bounded in 𝐿0(𝜇).
Finally, we note from Lemma 5.2, and in particular the first integral in (44), that is bounded

in 𝐿1(𝜇), and hence also bounded in 𝐿0(𝜇). □

5.2 The abstract duality proof

We now take Proposition 4.2 as given in the remainder of this section, and proceed with the proof
of the abstract duality of Theorem 4.3 via a series of lemmas.
The first step is to establish weak duality.

Lemma 5.3 (Weak duality). The primal and dual value functions 𝑢(⋅) and 𝑣(⋅) of (36) and (38)
satisfy the weak duality bounds

𝑣(𝑦) ≥ sup
𝑥>0

[𝑢(𝑥) − 𝑥𝑦], 𝑦 > 0, equivalently 𝑢(𝑥) ≤ inf
𝑦>0

[𝑣(𝑦) + 𝑥𝑦], 𝑥 > 0. (48)

As a result, 𝑢(𝑥) is finitely valued for all 𝑥 > 0. Moreover, we have the limiting relations

lim sup
𝑥→∞

𝑢(𝑥)

𝑥
≤ 0, lim inf

𝑦→∞

𝑣(𝑦)

𝑦
≥ 0. (49)
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Proof. For any 𝑔 ∈ (𝑥) and ℎ ∈ (𝑦), using the budget constraint ∫
𝛀
(𝑔 − 𝑓)ℎ d𝜇 ≤ 𝑥𝑦 in the

same manner as the arguments leading to (28), we may bound the achievable utility according to

∫
𝛀

𝑈(𝑔) d𝜇 ≤ ∫
𝛀

(𝑉(ℎ) + 𝑓ℎ) d𝜇 + 𝑥𝑦, 𝑥, 𝑦 > 0, (50)

Maximizing the left-hand-side of (50) over 𝑔 ∈ (𝑥) andminimizing the right-hand-side over ℎ ∈
(𝑦) gives 𝑢(𝑥) ≤ 𝑣(𝑦) + 𝑥𝑦, and (48) follows.
The assumption that 𝑣(𝑦) < ∞ for all 𝑦 > 0 immediately yields that 𝑢(𝑥) is finitely valued for

some 𝑥 > 0. Since 𝑈(⋅) is strictly increasing and strictly concave, and given the convexity of ,
these properties are inherited by 𝑢(⋅), which is therefore finitely valued for all 𝑥 > 0. Finally, the
relations in (48) easily lead to those in (49). □

The next step is to give a compactness lemma for the primal domain. The proof is on similar
lines to the proof (for the dual domain) of (Mostovyi, 2015, Lemma 3.6), and uses (Delbaen &
Schachermayer, 1994, Lemma A1.1) (adapted from a probability space to the finite measure space
(𝛀,, 𝜇)), so for brevity is omitted.
Lemma 5.4 (Compactness lemma for ). Let (𝑔𝑛)𝑛∈ℕ be a sequence in . Then there exists a
sequence (𝑔𝑛)𝑛∈ℕ with 𝑔𝑛 ∈ conv(𝑔𝑛, 𝑔𝑛+1, …), which converges 𝜇-a.e. to an element 𝑔 ∈  that is
𝜇-a.e. finite.

Here is the next step in this chain of results, a uniform integrability property associated with
elements of  and the positive part of the utility function.
Lemma 5.5 (Uniform integrability of (𝑈+(𝑔𝑛))𝑛∈ℕ, 𝑔

𝑛 ∈ (𝑥)). The family (𝑈+(𝑔))𝑔∈(𝑥) is uni-
formly integrable, for any 𝑥 > 0.

Proof. Fix 𝑥 > 0. If 𝑈(∞) ≤ 0 there is nothing to prove, so assume 𝑈(∞) > 0.
If the sequence (𝑈+(𝑔𝑛))𝑛∈ℕ is not uniformly integrable, then, passing if need be to a subse-

quence still denoted by (𝑔𝑛)𝑛∈ℕ, we can find a constant 𝛼 > 0 and a disjoint sequence (𝐴𝑛)𝑛∈ℕ of
sets of (𝛀,) (so 𝐴𝑛 ∈ , 𝑛 ∈ ℕ and 𝐴𝑖 ∩ 𝐴𝑗 = ∅ if 𝑖 ≠ 𝑗) such that

∫
𝛀

𝑈+(𝑔𝑛)𝟙𝐴𝑛 d𝜇 ≥ 𝛼, 𝑛 ∈ ℕ.

(See for example (Pham, 2009, Corollary A.1.1).) Define a sequence (𝑓𝑛)𝑛∈ℕ ∈ 𝐿0+(𝜇) by

𝑓𝑛 ∶= 𝑥0 +

𝑛∑
𝑘=1

𝑔𝑘𝟙𝐴𝑘 , 𝑥0 ∶= inf {𝑥 > 0 ∶ 𝑈(𝑥) ≥ 0}.

For any ℎ ∈  (so ∫
𝛀
ℎ d𝜇 ≤ 1∕𝑟, ∫

𝛀
(𝑔𝑘 − 𝑓)ℎ d𝜇 ≤ 𝑥, 𝑘 = 1,… , 𝑛, ∫

𝛀
𝑓ℎ d𝜇 ≤ 𝑎∕𝑟), we have

∫
𝛀

(𝑓𝑛 − 𝑓)ℎ d𝜇 = ∫
𝛀

(
𝑥0 +

𝑛∑
𝑘=1

𝑔𝑘𝟙𝐴𝑘 − 𝑓

)
ℎ d𝜇
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≤ 𝑥0
𝑟
+

𝑛∑
𝑘=1

∫
𝛀

(𝑔𝑘 − 𝑓 + 𝑓)ℎ d𝜇 − ∫
𝛀

𝑓ℎ d𝜇

=
𝑥0
𝑟
+

𝑛∑
𝑘=1

∫
𝛀

(𝑔𝑘 − 𝑓)ℎ d𝜇 + (𝑛 − 1)∫
𝛀

𝑓ℎ d𝜇

≤ 1

𝑟
(𝑥0 + (𝑛 − 1)𝑎) + 𝑛𝑥.

Thus, 𝑓𝑛 ∈ ((𝑥0 + (𝑛 − 1)𝑎)∕𝑟 + 𝑛𝑥), 𝑛 ∈ ℕ.
On the other hand, since 𝑈+(⋅) is non-negative and non-decreasing,

∫
𝛀

𝑈(𝑓𝑛) d𝜇 = ∫
𝛀

𝑈+(𝑓𝑛) d𝜇 = ∫
𝛀

𝑈+

(
𝑥0 +

𝑛∑
𝑘=1

𝑔𝑘𝟙𝐴𝑘

)
d𝜇

≥ ∫
𝛀

𝑈+

(
𝑛∑

𝑘=1

𝑔𝑘𝟙𝐴𝑘

)
d𝜇

=

𝑛∑
𝑘=1

∫
𝛀

𝑈+
(
𝑔𝑘𝟙𝐴𝑘

)
d𝜇 ≥ 𝛼𝑛.

Therefore,

lim sup
𝑧→∞

𝑢(𝑧)

𝑧
= lim sup

𝑛→∞

𝑢((𝑥0 + (𝑛 − 1)𝑎)∕𝑟 + 𝑛𝑥)

(𝑥0 + (𝑛 − 1)𝑎)∕𝑟 + 𝑛𝑥

≥ lim sup
𝑛→∞

∫
𝛀
𝑈(𝑓𝑛) d𝜇

(𝑥0 + (𝑛 − 1)𝑎)∕𝑟 + 𝑛𝑥

≥ lim sup
𝑛→∞

(
𝛼𝑛(

𝑥0 + (𝑛 − 1)𝑎
)
∕𝑟 + 𝑛𝑥

)
=

𝛼

𝑥 + 𝑎∕𝑟
> 0,

which contradicts the limiting weak duality bound in (49), and establishes the result. □

We can now prove existence of a unique optimizer in the primal problem.

Lemma 5.6 (Primal existence). The optimal solution 𝑔(𝑥) ∈ (𝑥) to the primal problem (36) exists
and is unique, so that 𝑢(⋅) is strictly concave.

Proof. Fix 𝑥 > 0. Let (𝑔𝑛)𝑛∈ℕ be a maximizing sequence in (𝑥) for 𝑢(𝑥) < ∞ (the finiteness
proven in Lemma 5.3). That is

lim
𝑛→∞∫

𝛀

𝑈(𝑔𝑛) d𝜇 = 𝑢(𝑥) < ∞. (51)

By the compactness lemma for  (and thus also for (𝑥)), Lemma 5.4, we can find a sequence
(𝑔𝑛)𝑛∈ℕ of convex combinations, so (𝑥) ∋ 𝑔𝑛 ∈ conv(𝑔𝑛, 𝑔𝑛+1, …), 𝑛 ∈ ℕ, which converges 𝜇-a.e.
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to some element 𝑔(𝑥) ∈ (𝑥). We claim that 𝑔(𝑥) is the primal optimizer. That is, that we have

∫
𝛀

𝑈(𝑔(𝑥)) d𝜇 = 𝑢(𝑥). (52)

By concavity of 𝑈(⋅) and (51) we have

lim
𝑛→∞∫

𝛀

𝑈(𝑔𝑛) d𝜇 ≥ lim
𝑛→∞∫

𝛀

𝑈(𝑔𝑛) d𝜇 = 𝑢(𝑥),

which, combined with the obvious inequality 𝑢(𝑥) ≥ lim𝑛→∞ ∫
𝛀
𝑈(𝑔𝑛) d𝜇 means that we also

have, further to (51),

lim
𝑛→∞∫

𝛀

𝑈(𝑔𝑛) d𝜇 = 𝑢(𝑥).

In other words

lim
𝑛→∞∫

𝛀

𝑈+(𝑔𝑛) d𝜇 − lim
𝑛→∞∫

𝛀

𝑈−(𝑔𝑛) d𝜇 = 𝑢(𝑥) < ∞, (53)

and note therefore that both integrals in (53) are finite.
From Fatou’s lemma, we have

lim
𝑛→∞∫

𝛀

𝑈−(𝑔𝑛) d𝜇 ≥ ∫
𝛀

𝑈−(𝑔(𝑥)) d𝜇. (54)

From Lemma 5.5 we have uniform integrability of (𝑈+(𝑔𝑛))𝑛∈ℕ, so that

lim
𝑛→∞∫

𝛀

𝑈+(𝑔𝑛) d𝜇 = ∫
𝛀

𝑈+(𝑔(𝑥)) d𝜇. (55)

Thus, using (54) and (55) in (53), we obtain

𝑢(𝑥) ≤ ∫
𝛀

𝑈(𝑔(𝑥)) d𝜇,

which, combined with the obvious inequality 𝑢(𝑥) ≥ ∫
𝛀
𝑈(𝑔(𝑥)) d𝜇, yields (52). The uniqueness

of the primal optimizer follows from the strict concavity of𝑈(⋅), as does the strict concavity of 𝑢(⋅).
For this last claim, fix𝑥1 < 𝑥2 and𝜆 ∈ (0, 1), note that𝜆𝑔(𝑥1) + (1 − 𝜆)𝑔(𝑥2) ∈ (𝜆𝑥1 + (1 − 𝜆)𝑥2)

(yetmust be sub-optimal for𝑢(𝜆𝑥1 + (1 − 𝜆)𝑥2) as it is not guaranteed to equal 𝑔(𝜆𝑥1 + (1 − 𝜆)𝑥2))
and therefore, using the strict concavity of 𝑈(⋅),

𝑢(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ ∫
𝛀

𝑈(𝜆𝑔(𝑥1) + (1 − 𝜆)𝑔(𝑥2)) d𝜇 > 𝜆𝑢(𝑥1) + (1 − 𝜆)𝑢(𝑥2).

□

We can nowmove to the dual side of the analysis, which will lead to the demonstration of con-
jugacy of the value functions as well as dual existence and uniqueness. In many duality proofs
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this is accompanied by an enlargement of the dual domain, a demonstration of closedness of the
enlarged domain, and subsequent use of the bipolar theorem of Brannath and Schachermayer
(1999) on 𝐿0+(𝜇) to confirm that, with the enlargement, we have reached the bipolar of the orig-
inal dual domain. Here, because the variable 𝑔 − 𝑓 appearing in the budget constraint is not an
element of 𝐿0+(𝜇), the use of the bipolar theorem is not available, as we noted in Remark 4.1.
Our program is to use the fact that our dual domain is closed, as established in Lemma 5.1, to

directly derive a compactness lemma for (Lemma 5.7 below) andwe proceed from there to show
dual existence and conjugacy.

Lemma 5.7 (Compactness lemma for ). Let (ℎ̃𝑛)𝑛∈ℕ be a sequence in . Then there exists a
sequence (ℎ𝑛)𝑛∈ℕ with ℎ𝑛 ∈ conv(ℎ̃𝑛, ℎ̃𝑛+1, …), which converges 𝜇-a.e. to an element ℎ ∈  that is
𝜇-a.e. finite.

Proof. (Delbaen & Schachermayer, 1994, Lemma A1.1) (adapted from a probability space
to the measure space (𝛀,, 𝜇)) implies the existence of a sequence (ℎ𝑛)𝑛∈ℕ, with ℎ𝑛 ∈

conv(ℎ̃𝑛, ℎ̃𝑛+1, …), which converges 𝜇-a.e. to an element ℎ that is 𝜇-a.e. finite because  is
bounded in 𝐿0(𝜇) (the finiteness also from (Delbaen & Schachermayer, 1994, Lemma A1.1)).
By convexity of , each ℎ𝑛, 𝑛 ∈ ℕ lies in . Finally, we note that ℎ ∈  because, according to
Lemma 5.1, is closed with respect to the topology of convergence in measure 𝜇. □

The next step in the chain of results we need is a uniform integrability result for the family
(𝑉−(ℎ))ℎ∈(𝑦). The proof uses the 𝐿1(𝜇)-boundedness of and is similar to the proof in (Kramkov
& Schachermayer, 1999, Lemma 3.2), but the bound on ∫

𝛀
ℎ d𝜇, ℎ ∈ (𝑦) here is 𝑦∕𝑟 (as opposed

to 𝑦 in the classical case of Kramkov and Schachermayer (1999)). For brevity, therefore, the proof
is omitted.

Lemma 5.8 (Uniform integrability of (𝑉−(ℎ))ℎ∈(𝑦)). The family (𝑉−(ℎ))ℎ∈(𝑦) is uniformly inte-
grable, for any 𝑦 > 0.

One can can now proceed to prove existence of a unique optimizer in the dual problem, and
conjugacy of the value functions. We proceed first with the former, followed by conjugacy.
The proof of Lemma 5.9 on dual existence is on the same lines as the proof of primal existence

(Lemma 5.6), with adjustments for minimization as opposed to maximization and convexity of
𝑉(⋅) (inherited by𝑉(𝑓)(𝑦) ∶= 𝑉(𝑦) + 𝑓𝑦, 𝑦 > 0) replacing concavity of𝑈(⋅), and uses the uniform
integrability property of (𝑉−(ℎ))ℎ∈(𝑦) in Lemma 5.8, so for brevity is omitted.

Lemma5.9 (Dual existence). The optimal solution ℎ̂(𝑦) ∈ (𝑦) to the dual problem (38) exists and
is unique, so that 𝑣(⋅) is strictly convex.

We can now establish conjugacy of the value functions. The proof works in the manner of
(Kramkov & Schachermayer, 1999, Lemma 3.4), by bounding the elements in the primal domain
to create a compact set 𝑛 (the set of elements in 𝐿0+(𝜇) lying in a ball of radius 𝑛, 𝑛 ∈ ℕ) for the
weak∗ topology 𝜎(𝐿∞, 𝐿1) on 𝐿∞(𝜇),3 so as to apply the minimax theorem (see (Strasser, 1985,
Theorem 45.8)), involving a maximization over a compact set and a minimization over a subset of
a vector space, with the function 𝑤(𝑔, ℎ) ∶= ∫

𝛀
(𝑈(𝑔) − 𝑔ℎ + 𝑓ℎ) d𝜇 = ∫

𝛀
(𝑈(𝑔) − (𝑔 − 𝑓)ℎ) d𝜇,

for 𝑔 ∈ 𝑛, ℎ ∈ (𝑦). The proof uses the dual characterization of  in (40), along with the fact
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that the dual domain (𝑦) is bounded in 𝐿1(𝜇), as well as the compactness result of Lemma 5.7
and the uniform integrability property of Lemma 5.8. As the proof is on the lines of the proof of
(Kramkov & Schachermayer, 1999, Lemma 3.4), it is omitted for brevity.
Note that, because𝑢(⋅) and−𝑣(⋅) are strictly concave, they are almost everywhere differentiable.

We shall show in Lemma 5.13 that they are in fact differentiable everywhere, so freely use their
derivatives in the statements of some forthcoming lemmas.

Lemma 5.10 (Conjugacy). The dual value function in (38) satisfies the conjugacy relation

𝑣(𝑦) = sup
𝑥>0

[𝑢(𝑥) − 𝑥𝑦], for each 𝑦 ∈ (0, 𝑦∗), (56)

where 𝑢(⋅) is the primal value function in (36) and 𝑦∗ is the minimal value of 𝑦 > 0 at which the dual
derivative 𝑣′(⋅) reaches zero, as in (41).

Remark 5.11 (Range of validity of (56)). The range of 𝑦 > 0 for which (56) is valid is governed by
the implicit relation 𝑢′(�̂�) = 𝑦 which defines the optimal value of 𝑥 in (56). We know that 𝑢(⋅)
is increasing and concave and satisfies 𝑢′(∞) = 0 (from Lemma 5.12 below). If 𝑢′(0) = +∞, then
𝑦∗ = +∞ and (56) is valid for all 𝑦 > 0. We shall see in Lemma 5.13 that 𝑦∗ < ∞, and this has been
anticipated in (56).

We now proceed to further characterize the derivatives of the value functions, as well as the
primal and dual optimizers and the optimal wealth process.

Lemma 5.12. The derivatives of the primal value function in (36) at infinity and of the dual value
function in (38) at zero are given by

𝑢′(∞) ∶= lim
𝑥→∞

𝑢′(𝑥) = 0, −𝑣′(0) ∶= lim
𝑦↓0

(−𝑣′(𝑦)) = +∞. (57)

Proof. By the conjugacy result in Lemma 5.10 between the value functions, the assertions in (57)
are equivalent. We shall prove the first assertion.
The primal value function 𝑢(⋅) is strictly concave and strictly increasing, so there is a finite non-

negative limit 𝑢′(∞) ∶= lim𝑥→∞ 𝑢′(𝑥). Because𝑈(⋅) is increasingwith lim𝑥→∞ 𝑈′(𝑥) = 0, for any
𝜖 > 0 there exists a number𝐶𝜖 such that𝑈(𝑥) ≤ 𝐶𝜖 + 𝜖𝑥, ∀ 𝑥 > 0. Using this and the fact that there
exists a positive element ℎ ∈  (as in (47) in the proof of Proposition 4.2) such that ∫

𝛀
𝑔ℎ d𝜇 ≤

𝑥(1 + 𝑎∕𝑟), ∀ 𝑔 ∈ (𝑥), and l’Hôpital’s rule, we have, with ∫
𝛀
d𝜇 = 𝔼[∫ ∞

0
d𝜅𝑡] = 1∕𝛿 > 0,

0 ≤ lim
𝑥→∞

𝑢′(𝑥) = lim
𝑥→∞

𝑢(𝑥)

𝑥
= lim

𝑥→∞
sup
𝑔∈(𝑥)∫𝛀

𝑈(𝑔)

𝑥
d𝜇

≤ lim
𝑥→∞

sup
𝑔∈(𝑥)∫𝛀

𝐶𝜖 + 𝜖𝑔

𝑥
d𝜇

= lim
𝑥→∞

(
𝐶𝜖
𝛿𝑥

+
1

ℎ
sup
𝑔∈(𝑥)∫𝛀

𝜖𝑔ℎ

𝑥
d𝜇

)
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≤ lim
𝑥→∞

(
𝐶𝜖
𝛿𝑥

+
𝜖

ℎ

(
1 +

𝑎

𝑟

))
=

𝜖

ℎ

(
1 +

𝑎

𝑟

)
, 𝜇-a.e.,

and taking the limit as 𝜖 ↓ 0 gives the result. □

The next lemma shows that the dual value function is differentiable with a derivative that
reaches zero at a finite value of its argument, so that the primal value function has finite derivative
at zero.

Lemma 5.13. The dual value function 𝑣(⋅) in (38) is differentiable on (0,∞). Moreover, as long as
the income is strictly positive, 𝑓 > 0, the primal value function in (36) has finite derivative at zero:

𝑢′(0) ∶= lim
𝑥↓0

𝑢′(𝑥) < +∞. (58)

Equivalently, the value 𝑦∗ ∶= inf {𝑦 > 0 ∶ 𝑣′(𝑦) = 0} of 𝑦 > 0 at which the derivative of dual value
function reaches zero, is finite.

Proof. Since ∫
𝛀
ℎ d𝜇 ≤ 𝑦∕𝑟 for any ℎ ∈ (𝑦), we have ∫

𝛀
(ℎ̂(𝑦)∕𝑦) d𝜇 ≤ 1∕𝑟, 𝑦 > 0, which defines

a unique integrable element 𝐿0+(𝜇) ⊇  ∋ ℎ̂𝑦 ∶= ℎ̂(𝑦)∕𝑦, for any 𝑦 > 0.
Fix 𝑦 > 0. Then, for any 𝛿 > 0, using the fact that (𝑦 + 𝛿)ℎ̂𝑦 will be suboptimal for 𝑣(𝑦 + 𝛿)

along with convexity of 𝑉(⋅), we have

1

𝛿
(𝑣(𝑦 + 𝛿) − 𝑣(𝑦)) ≤ 1

𝛿 ∫
𝛀

(𝑉((𝑦 + 𝛿)ℎ̂𝑦) + 𝑓(𝑦 + 𝛿)ℎ̂𝑦 − 𝑉(𝑦ℎ̂𝑦) − 𝑓𝑦ℎ̂𝑦) d𝜇

≤ ∫
𝛀

(𝑉′((𝑦 + 𝛿)ℎ̂𝑦) + 𝑓ℎ̂𝑦) d𝜇.

The element (𝑦 + 𝛿)ℎ̂𝑦 ∈ 𝐿0+(𝜇) is strictly positive, and thus |𝑉′((𝑦 + 𝛿)ℎ̂𝑦)| is bounded 𝜇-a.e. (on
recalling the Inada conditions satisfied by−𝑉(⋅)), while the non-negative element 𝑓ℎ̂𝑦 is bounded
above by the integrable function 𝑎ℎ̂𝑦 , so we may apply dominated convergence in sending 𝛿 ↓ 0,
to obtain that

𝑣′(𝑦) ≤ ∫
𝛀

(𝑉′(𝑦ℎ̂𝑦) + 𝑓)ℎ̂𝑦 d𝜇. (59)

An identical argument, this time applied to (𝑣(𝑦) − 𝑣(𝑦 − 𝛿))∕𝛿, yields the reverse inequality

𝑣′(𝑦) ≥ ∫
𝛀

(𝑉′(𝑦ℎ̂𝑦) + 𝑓)ℎ̂𝑦 d𝜇. (60)

Then, (59) and (60) yield that 𝑣(⋅) is differentiable on (0,∞) with

𝑣′(𝑦) = ∫
𝛀

(𝑉′(𝑦ℎ̂𝑦) + 𝑓)ℎ̂𝑦 d𝜇. (61)
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It remains to establish (58), and the equivalent assertion that 𝑦∗ < ∞. Now, from the definition
of the dual value function we have

𝑣(𝑦) = ∫
𝛀

(𝑉(𝑦ℎ̂𝑦) + 𝑦𝑓ℎ̂𝑦) d𝜇. (62)

From (61) and (62) we see that the former is only consistent with the latter if ℎ̂𝑦 has no explicit
dependence on 𝑦, and this in turn implies (given the monotonicity of 𝑉′(⋅)) that the integrand in
(61) is monotone in 𝑦. We can thus apply monotone convergence to obtain

0 = 𝑣′(𝑦∗) = lim
𝑦↑𝑦∗ ∫𝛀(𝑉

′(𝑦ℎ̂𝑦) + 𝑓)ℎ̂𝑦 d𝜇 = ∫
𝛀

(𝑉′(𝑦∗ℎ̂𝑦
∗
) + 𝑓)ℎ̂𝑦

∗
d𝜇,

which in turn yields, since ℎ̂𝑦∗ and 𝑓 are strictly positive−𝑉(⋅) satisfies the Inada conditions, that
𝑦∗ < ∞, and the proof is complete. □

Remark 5.14. We shall see the formula (61) for the dual derivative reproduced in the course of
proving Lemma 5.15 (see (66)).
The conjugacy between the primal and dual value functions, combinedwith Lemma 5.13, yields

that the primal value function 𝑢(⋅) is also differentiable on (0,∞).

The final step in the series of lemmas that will furnish us with the proof of Theorem 4.3 is to
obtain a duality characterization of the primal and dual optimizers.

Lemma 5.15.

(1) For any fixed 𝑥 > 0, with 𝑦 = 𝑢′(𝑥) ∈ (0, 𝑦∗) (equivalently 𝑥 = −𝑣′(𝑦)), the primal and dual
optimizers 𝑔(𝑥), ℎ̂(𝑦) are related by

𝑈′(𝑔(𝑥)) = ℎ̂(𝑦) = ℎ̂(𝑢′(𝑥)), 𝜇-a.e., (63)

and satisfy

∫
𝛀

(𝑔(𝑥) − 𝑓)ℎ̂(𝑦) d𝜇 = 𝑥𝑦 = 𝑥𝑢′(𝑥). (64)

(2) The derivatives of the value functions satisfy the relations

𝑥𝑢′(𝑥) = ∫
𝛀

𝑈′(𝑔(𝑥))(𝑔(𝑥) − 𝑓) d𝜇, 𝑥 > 0, (65)

𝑦𝑣′(𝑦) = ∫
𝛀

(𝑉′(ℎ̂(𝑦)) + 𝑓)ℎ̂(𝑦) d𝜇, 𝑦 ∈ (0, 𝑦∗). (66)
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Proof. Recall the inequality (27), which also applies to the value functions because they are also
conjugate by Lemma 5.10. We thus have, in addition to (27),

𝑣(𝑦) ≥ 𝑢(𝑥) − 𝑥𝑦, ∀ 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗), with equality iff 𝑦 = 𝑢′(𝑥). (67)

With 𝑔(𝑥) ∈ (𝑥), 𝑥 > 0 and ℎ̂(𝑦) ∈ (𝑦), 𝑦 ∈ (0, 𝑦∗) denoting the primal and dual optimizers,
we have, because ∫

𝛀
(𝑔 − 𝑓)ℎ d𝜇 ≤ 𝑥𝑦 for all 𝑔 ∈ (𝑥), ℎ ∈ (𝑦),

∫
𝛀

(𝑔(𝑥) − 𝑓)ℎ̂(𝑦) d𝜇 ≤ 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗).

Using this as well as (27) and (67) we have

0 ≤ ∫
𝛀

(𝑉(ℎ̂(𝑦)) − 𝑈(𝑔(𝑥)) + 𝑔(𝑥)ℎ̂(𝑦)) d𝜇 (68)

= ∫
𝛀

(𝑉(ℎ̂(𝑦)) + 𝑓ℎ̂(𝑦) − 𝑈(𝑔(𝑥)) + (𝑔(𝑥) − 𝑓)ℎ̂(𝑦)) d𝜇

≤ 𝑣(𝑦) − 𝑢(𝑥) + 𝑥𝑦, 𝑥 > 0, 𝑦 ∈ (0, 𝑦∗).

The right-hand-side of (68) is zero if and only if 𝑦 = 𝑢′(𝑥), due to (67), and the non-negative inte-
grand must then be 𝜇-a.e. zero, which by (27) can only happen if (63) holds, which establishes
that primal-dual relation.
Thus, for any fixed 𝑥 > 0 and with 𝑦 = 𝑢′(𝑥), and hence equality in (68), we have

0 = ∫
𝛀

(𝑉(ℎ̂(𝑦)) + 𝑓ℎ̂(𝑦) − 𝑈(𝑔(𝑥)) + (𝑔(𝑥) − 𝑓)ℎ̂(𝑦)) d𝜇

= 𝑣(𝑦) − 𝑢(𝑥) + ∫
𝛀

(𝑔(𝑥) − 𝑓)ℎ̂(𝑦) d𝜇

= 𝑣(𝑦) − 𝑢(𝑥) + 𝑥𝑦, 𝑦 = 𝑢′(𝑥),

which implies that (64) must hold. Inserting the explicit form of ℎ̂(𝑦) = 𝑈′(𝑔(𝑥)) into (64) yields
(65). Similarly, setting 𝑔(𝑥) = 𝐼(ℎ̂(𝑦)) = −𝑉′(ℎ̂(𝑦)) into (64), with 𝑥 = −𝑣′(𝑦) (equivalent to 𝑦 =
𝑢′(𝑥)), yields (66). □

Wenowhave all the results needed for the abstract duality in Theorem4.3, so let us confirm this.

Proof of Theorem 4.3. Lemma 5.10 implies the relations (42) of item (i). The statements in item
(ii) are implied by Lemma 5.6 and Lemma 5.9. Items (iii) and (iv) follow from Lemma 5.12,
Lemma 5.13, Remark 5.14 and Lemma 5.15. □

5.3 Proof of the concrete duality

We are almost ready to prove the concrete duality in Theorem 3.1, because Theorem 4.3
readily implies nearly all of the assertions of Theorem 3.1. The outstanding assertion is the
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characterization of the optimal wealth process in (34) and the associated uniformly integrable
martingale property of the deflated wealth plus cumulative deflated consumption over income
process 𝑋(𝑥)𝑌(𝑦) + ∫ ⋅

0
(𝑐𝑠(𝑥) − 𝑓𝑠)𝑌𝑠(𝑦) d𝑠. So we proceed to establish these assertions in the

proposition below, which turns out to be interesting in its own right. We take as given the other
assertions of Theorem3.1, and in particular the optimal budget constraint in (33).We shall confirm
the proof of Theorem 3.1 in its entirety after the proof of the next result.

Proposition 5.16 (Optimal wealth process). Given the saturated budget constraint equality in (33),
the optimal wealth process is characterized by (34). The process

Λ̂𝑡 ∶= 𝑋𝑡(𝑥)𝑌𝑡(𝑦) + ∫
𝑡

0

(𝑐𝑠(𝑥) − 𝑓𝑠)𝑌𝑠(𝑦) d𝑠, 0 ≤ 𝑡 < ∞,

is a uniformly integrable martingale, converging to an integrable random variable Λ̂∞, so the mar-
tingale extends to [0,∞]. The process𝑋(𝑥)𝑌(𝑦) is a potential, that is, a non-negative supermartingale
satisfying lim𝑡→∞ 𝔼[𝑋𝑡(𝑥)𝑌𝑡(𝑦)] = 0. Moreover, 𝑋∞(𝑥)𝑌∞(𝑦) = 0, almost surely.

Proof. Recall the saturated budget constraint equality in (33). It simplifies notation if we take 𝑥 =
𝑦 = 1, and is without loss of generality: although 𝑦 = 𝑢′(𝑥) in (33), one can always multiply the
utility function by an arbitrary constant so as to ensure that 𝑢′(1) = 1. We thus have the optimal
budget constraint

𝔼

[
∫

∞

0

(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡

]
= 1, (69)

for 𝑐 ≡ 𝑐(1) ∈  and𝑌 ≡ 𝑌(1) ∈  . Since 𝑐 ∈ , we know there exists an optimal wealth process
𝑋 ≡ 𝑋(1) and an associated optimal trading strategy �̂�, such that𝑋 ≥ 0 and such that Λ̂ ∶= 𝑋𝑌 +

∫ ⋅

0
(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠 is a supermartingale over [0,∞). The supermartingale condition, by the same

arguments that led to the derivation of the budget constraint in Lemma 2.1, leads to the inequality
𝔼[∫ ∞

0
(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡] ≤ 1 instead of the equality (69). Similarly, if the supermartingale is strict, we

get a strict inequality in place of (69). We thus deduce that Λ̂ must be a martingale over [0,∞).
We shall show that this extends to [0,∞], along with the other claims in the proposition.
Since  ⊆ 0, 𝑌 is also a wealth deflator, so the (non-negative càdlàg) deflated wealth process

𝑋𝑌 is a is a non-negative càdlàg supermartingale, and thus by (Cohen & Elliott, 2015, Corollary
5.2.2) converges to an integrable limiting random variable𝑋∞𝑌∞ ∶= lim𝑡→∞ 𝑋𝑡𝑌𝑡 (andmoreover
𝑋𝑡𝑌𝑡 ≥ 𝔼[𝑋∞𝑌∞], 𝑡 ≥ 0). The integral in Λ̂ clearly also converges to an integrable random vari-
able, by virtue of the budget constraint. Thus, Λ̂ also converges to an integrable random variable
Λ̂∞ ∶= 𝑋∞𝑌∞ + ∫ ∞

0
(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡. By (Protter, 2005, Theorem I.13), the extendedmartingale over

[0,∞], (Λ̂𝑡)𝑡∈[0,∞] is then uniformly integrable, as claimed.
The martingale condition gives

𝔼

[
𝑋𝑡𝑌𝑡 + ∫

𝑡

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠

]
= 1. 0 ≤ 𝑡 < ∞.

Since 𝑋𝑌 is non-negative, while the integral on the left-hand-side is bounded below by an inte-
grable random variable (due to the bound in (3) on the income stream and the integrability of 𝑌),
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taking the limit as 𝑡 → ∞, using the Fatou lemma and utilizing (69) yields lim𝑡→∞ 𝔼[𝑋𝑡𝑌𝑡] ≤ 0.
But, since 𝑋𝑌 is non-negative, we must in fact have

lim
𝑡→∞

𝔼[𝑋𝑡𝑌𝑡] = 0,

so that 𝑋𝑌 is a potential, as claimed.
Using the uniform integrability of Λ̂ and taking the limit as 𝑡 → ∞ in 𝔼[Λ̂𝑡] = 1, 𝑡 ≥ 0, we have

1 = lim
𝑡→∞

𝔼[Λ̂𝑡] = 𝔼
[
lim
𝑡→∞

Λ̂𝑡

]
= 𝔼[𝑋∞𝑌∞] + 1,

on using (69). Hence, we get 𝔼[𝑋∞𝑌∞] = 0 and, since 𝑋∞𝑌∞ is non-negative, we deduce that
𝑋∞𝑌∞ = 0, almost surely as claimed.
We can now assemble these ingredients to arrive at the optimal wealth process formula (34).

Applying the martingale condition again, this time over [𝑡, 𝑢] for some 𝑡 ≥ 0, we have

𝔼

[
𝑋𝑢𝑌𝑢 + ∫

𝑢

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠
|||||𝑡

]
= 𝑋𝑡𝑌𝑡 + ∫

𝑡

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠, 0 ≤ 𝑡 ≤ 𝑢 < ∞.

Taking the limit as 𝑢 → ∞ and using the uniform integrability of Λ̂ we obtain

𝔼

[
lim
𝑢→∞

(
𝑋𝑢𝑌𝑢 + ∫

𝑢

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠

)|||||𝑡
]
= 𝑋𝑡𝑌𝑡 + ∫

𝑡

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠, 𝑡 ≥ 0,

which, on using 𝑋∞𝑌∞ = 0, re-arranges to (34), and the proof is complete. □

We can now complete the proof of the concrete duality theorem.

Proof of Theorem 3.1. Given the definitions of the sets (𝑥) and(𝑦) in (35) and (37), respectively,
and the identification of the abstract value functions in (36) and (38) with their concrete counter-
parts in (10) and (29), Theorem 4.3 implies all the assertions of Theorem 3.1, with the exception
of the optimal wealth process formula (34) and the uniformly integrable martingale property of
𝑋(𝑥)𝑌(𝑦) + ∫ ⋅

0
(𝑐𝑠(𝑥) − 𝑓𝑠)𝑌𝑠(𝑦) d𝑠, which are established by Proposition 5.16. □

It remains to prove Proposition 4.4, from which Theorem 3.2 will follow.

Proof of Proposition 4.4. With 𝑥 = 𝑦 = 1, from Lemma 2.1 we know that the budget constraint (22)
holds for all 𝑌 ∈ ̃ and all 𝑐 ∈ , so we have the implication

𝑌 ∈ ̃ ⇒ 𝔼

[
∫

𝑇

0

(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡

]
≤ 1, ∀ 𝑐 ∈ . (70)

Invoking the financing condition of Assumption 2.3 with𝑌 ∈ ̃ , we have the reverse implication.
Translating the resulting equivalence into the abstract notation on the measure space (𝛀,, 𝜇),
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we have the analogue of (40), with ̃ in place of:
𝑔 ∈  ⟺ ⟨𝑔 − 𝑓, ℎ⟩ ≤ 1, ∀ ℎ ∈ ̃.

An examination of the abstract duality proof shows that it was crucial to establish that the
abstract dual domain  was closed, as in Lemma 5.1, and that this was done via supermartin-
gale convergence results, where we found a supermartingale 𝑌 such that deflated wealth plus
cumulative deflated consumption over income, 𝑋𝑌 + ∫ ⋅

0
(𝑐𝑠 − 𝑓𝑠) d𝑠, was also a supermartingale,

so we could conclude that 𝑌 ∈  (because of the definition of ) and hence that ℎ = 𝜁𝑌 ∈ .
This argument would fail with ̃ in place of, because the limiting supermartingale in the Fatou
convergence argument is known only to be a supermartingale, and cannot be shown to be a dis-
counted local martingale deflator 𝑌 ∈ ̃ .
However, if we enlarge ̃ to its closure, this is automatically closed, and if we define an abstract

dual value function by

𝑣(𝑦) ∶= inf
ℎ∈cl(̃(𝑦))∫𝛀(𝑉(ℎ) + 𝑓ℎ) d𝜇, 𝑦 > 0,

then the rest of the abstract duality proof goes through unaltered, and by conjugacy of the abstract
primal and dual value functions, the dual function 𝑣(⋅) coincides with 𝑣(⋅). The dual minimizer
lies in cl(̃(𝑦)), and this establishes the proposition. □

Proof of Theorem 3.2. Furnished with Proposition 4.4, we have established the result, due to the
one-to-one correspondence between ̃ and ̃ . □

5.4 The finite horizon case

Our duality results work equally well for finite horizon versions of the problem (10), with or with-
out a terminal wealth objective, by making suitable adjustments to the measure 𝜅, as indicated in
the examples which follow.

Example 5.17 (The finite horizon pure consumption problem). With 𝑇 ∈ (0,∞) a fixed termi-
nal date, one has the finite horizon version of (10), without a terminal wealth objective: 𝑢(𝑥) ∶=
sup𝑐∈(𝑥) 𝔼[∫ 𝑇

0
𝑈(𝑐𝑡) d𝜅𝑡], where 𝜅 is again discounted Lebesgue measure, this time over [0, 𝑇].

The budget constraint and dual problem are then the same as in (22) and (29), with a finite upper
integration limit set to 𝑇, and once again 𝜇 ∶= 𝜅 × ℙ is the product measure on the abstract for-
mulation of the problems.
An examination of the duality proof in the infinite horizon problem shows that the bound-

edness in 𝐿1(𝜇) of the dual domain, and hence the finiteness of the integrals in Lemma 5.2,
was used on numerous occasions. In the finite horizon case, it is easier to obtain correspond-
ing results, regardless of whether the interest rate is strictly positive. With ℎ = 𝜁𝑌 ∈ , we obtain
∫
𝛀
ℎ d𝜇 ≤ 𝑇 < ∞, as the reader can verify. The finite horizon pure consumption problem thus

affords an easier duality proof. The results of Theorem 3.1 hold with the upper limit of time inte-
gration set to 𝑇 < ∞, and the optimal deflated wealth plus cumulative deflated consumption over
income is simply a uniformly integrable martingale over [0, 𝑇].
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We observe that we can in fact write the problem as an infinite horizon problem provided we
define the measure 𝜅 appropriately. So, if we set

𝜅𝑡 =
1

𝛿
((1 − exp(−𝛿𝑡))𝟙[0,𝑇)(𝑡) + (1 − exp(−𝛿𝑇))𝟙[𝑇,∞)(𝑡)), 𝜁𝑡 = exp(𝛿𝑡), 𝑡 ≥ 0,

then the primal and dual value functions, aswell as the budget constraint, take the same formas in
the infinite horizon problem (so the infinite horizon duality proof actually goes through without
alteration). This observation will be useful in the example which follows.

Example 5.18 (The finite horizon consumption and terminal wealth problem). In a sim-
ilar manner to Example 5.17 we can consider the problem with a terminal wealth objec-
tive: 𝑢(𝑥) ∶= sup𝑐∈(𝑥) 𝔼[∫ 𝑇

0
𝑈(𝑐𝑡) d𝜅𝑡 + 𝑈(𝑋𝑇)], for which the budget constraint is 𝔼[𝑋𝑇𝑌𝑇 +

∫ 𝑇

0
(𝑐𝑡 − 𝑓𝑡)𝑌𝑡 d𝑡] and the dual problem is 𝑣(𝑦) ∶= inf𝑌∈(𝑦) 𝔼[∫ 𝑇

0
(𝑉(𝜁𝑡𝑌𝑡) + 𝑓𝑡𝜁𝑡𝑌𝑡) d𝜅𝑡 +

𝑉(𝑌𝑇)].
As in the last part of Example 5.17, if we define 𝜅, 𝜁, and also 𝑓, appropriately, we can express

the problems and budget constraint as infinite horizon problems, for which the duality results
will hold. Thus, if we write

𝜅𝑡 =
1

𝛿
(1 − exp(−𝛿𝑡))𝟙[0,𝑇)(𝑡) +

(
1

𝛿
(1 − exp(−𝛿𝑇)) + 1

)
𝟙[𝑇,∞)(𝑡), 𝑡 ≥ 0,

along with

𝜁𝑡 =

{
exp(𝛿𝑡), 𝑡 ∈ [0, 𝑇),

1, 𝑡 ∈ [𝑇,∞),
𝑓𝑡 = 𝑎𝑡𝑁𝑡𝟙{𝑡<𝑇}, 𝑡 ≥ 0,

then then the primal and dual value functions, as well as the budget constraint, take the same
form as in the infinite horizon problem.

6 ANALYSIS OF THE DAVIS-VELLEKOOP EXAMPLE

In this section we consider and numerically solve the example of Vellekoop and Davis (2009),
as described in Section 2.5. We first explore ramifications of the duality results, before a numer-
ical solution of the pre-income termination HJB equation, when adopting a stochastic con-
trol approach.
The wealth dynamics are

d𝑋𝑡 = (𝑟𝑋𝑡 − 𝑐𝑡 + 𝑎𝑁𝑡) d𝑡 + 𝜎𝜋𝑡(𝜆 d𝑡 + d𝑊𝑡), 𝑋0 = 𝑥, (71)

where 𝜋 ∶= 𝐻𝑆 is the wealth invested in the stock, and we have recorded in (71) that the income
rate 𝑓 is given by 𝑓𝑡 = 𝑎𝑁𝑡, 𝑡 ≥ 0, with 𝑎 ≥ 0 constant.
By Theorem 3.2, the space of consumption deflators coincides with the closure of the space of

discounted local martingale deflators, so without loss of generality we use deflators given by

𝑌𝑡 = 𝑦e−𝑟𝑡(−𝜆𝑊 − 𝛾 ⋅ 𝑀)𝑡 = 𝑦e−𝑟𝑡𝑍𝑡 = 𝑦e−𝑟𝑡𝑍
(0)
𝑡 (−𝛾 ⋅ 𝑀)𝑡, 𝑦 > 0, 𝑡 ≥ 0, (72)
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for càglàd adapted processes 𝛾 satisfying 𝛾 > −1, 𝛾 < +∞ almost surely, where𝑀 the martingale
in (13), 𝑍 ∈  is a local martingale deflator and 𝑍(0) ∶= (−𝜆𝑊)𝑡 is the martingale deflator in the
absence of the income, that is, in the underlying Black-Scholes market.
The supermartingale of (25) is given as

Λ𝑡 ∶= 𝑋𝑡𝑌𝑡 + ∫
𝑡

0

(𝑐𝑠 − 𝑓𝑠)𝑌𝑠 d𝑠 = 𝑥𝑦 + ∫
𝑡

0

𝑌𝑠(𝜎𝜋𝑠 − 𝜆𝑋𝑠) d𝑊𝑠 − ∫
𝑡

0

𝑋𝑠−𝑌𝑠−𝛾𝑠 d𝑀𝑠, 𝑡 ≥ 0.

(73)
We take 𝑈(⋅) to be a power utility: 𝑈(𝑥) = 𝑥𝑝

𝑝
, 𝑥 ≥ 0, 𝑝 ∈ (0, 1). The primal value function is

defined as in (10). The convex conjugate of𝑈(⋅) is𝑉(𝑦) ∶= −𝑦𝑞∕𝑞, 𝑦 > 0, 𝑞 ∶= −𝑝∕(1 − 𝑝). Given
the structure of the deflators in (72), the dual value function is given by

𝑣(𝑦) ∶= inf
𝑍∈𝔼

[
∫

∞

0

e−𝛿𝑡
(
𝑉(𝑦𝑍𝑡e

(𝛿−𝑟)𝑡) + 𝑦𝑓𝑡𝑍𝑡e
(𝛿−𝑟)𝑡

)
d𝑡

]
, 𝑦 > 0.

Assume the dual minimizer is given by 𝑍 ∶= (−𝜆𝑊 − 𝛾 ⋅ 𝑀), for some optimal integrand 𝛾 in
(72). For use below, define the non-negative martingales 𝐽, 𝐹 by

𝐽𝑡 ∶= 𝔼

[
∫

∞

0

e−𝑞𝑟𝑠−𝛿(1−𝑞)𝑠𝑍
𝑞
𝑠 d𝑠

|||||𝑡
]
, 𝐹𝑡 ∶= 𝔼

[
∫

∞

0

e−𝑟𝑠𝑓𝑠𝑍
𝑞
𝑠 d𝑠

|||||𝑡
]

𝑡 ≥ 0.

Using Theorem 3.1, and in particular (32), the optimal consumption process is given by

(𝑐𝑡(𝑥))
−(1−𝑝) = 𝑢′(𝑥)e(𝛿−𝑟)𝑡𝑍𝑡, 𝑡 ≥ 0. (74)

By (33) the optimizers satisfy the saturated budget constraint

𝔼

[
∫

∞

0

(𝑐𝑡(𝑥) − 𝑓𝑡)e
−𝑟𝑡𝑍𝑡 d𝑡

]
= 𝑥. (75)

The relations (74) and (75) yield

𝑐𝑡(𝑥) =

(
𝑥 + 𝐹0
𝐽0

)
e−(𝛿−𝑟)(1−𝑞)𝑡𝑍

−(1−𝑞)
𝑡 , 𝑡 ≥ 0. (76)

Using (34), the optimal wealth process is given by

e−𝑟𝑡𝑋𝑡(𝑥)𝑍𝑡 =

(
𝑥 + 𝐹0
𝐽0

)
𝔼

[
∫

∞

𝑡

e−𝑞𝑟𝑠−𝛿(1−𝑞)𝑠𝑍
𝑞
𝑠 d𝑠

|||||𝑡
]
, 𝑡 ≥ 0.

More pertinently, the optimal martingale Λ̂, corresponding to the process in (73) at the optimum,
is computed as

Λ̂𝑡 ∶= e−𝑟𝑡𝑋𝑡(𝑥)𝑍𝑡 + ∫
𝑡

0

(𝑐𝑠(𝑥) − 𝑓𝑠)e
−𝑟𝑠𝑍𝑠 d𝑠 =

(
𝑥 + 𝐹0
𝐽0

)
𝐽𝑡 − 𝐹𝑡, 𝑡 ≥ 0,

so is indeed a martingale.
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By martingale representation, Λ̂ will have a stochastic integral representation which, without
loss of generality, can be written in the form

Λ̂𝑡 = 𝑥 + ∫
𝑡

0

𝑒−𝑟𝑠𝑍𝑠𝑋𝑠(𝑥)(𝜑𝑠 − 𝑞𝜆) d𝑊𝑠 + ∫
𝑡

0

e−𝑟𝑠𝑍𝑠−𝑋𝑠−(𝑥)𝛽𝑠 d𝑀𝑠, 𝑡 ≥ 0,

for some integrands 𝜑, 𝛽. Comparing with the representation in (73) at the optimum yields the
optimal trading strategy in terms of the optimal portfolio proportion 𝜃 ∶= 𝜋∕𝑋(𝑥) and the optimal
integrand 𝛾 in the form

𝜃𝑡 ∶=
𝜋𝑡

𝑋𝑡(𝑥)
=

𝜆

𝜎(1 − 𝑝)
+
𝜑𝑡
𝜎
, 𝛾𝑡 = −𝛽𝑡, 𝑡 ≥ 0. (77)

In particular, the process 𝜑 records the correction to the Merton-type strategy 𝜆∕(𝜎(1 − 𝑝)).
This is as far as one can go without computing explicitly the dual minimizer 𝑍, which is impos-

sible in closed form. We thus turn to a numerical solution of the primal pre-income termination
problem via the associated HJB equation. For this, we first state the results for the no-income and
perpetual income problems.

6.1 No-income and perpetual income cases

There are well-known closed form solutions for the special cases where there is no income (𝑓 ≡ 0)
or the income is perpetual (𝑓𝑡 = 𝑎, 𝑡 ≥ 0).
In the casewith perpetual income, define the risk-adjusted value of the perpetual income stream

given by 𝔼[∫ ∞

0
e−𝑟𝑡𝑓𝑡𝑍

(0)
𝑡 d𝑡] = 𝑎∕𝑟. It is well known that (see Vellekoop and Davis (2009) for

example) the value function for the non-terminating income problem is 𝑢∞ ∶ (−𝑎∕𝑟,∞) → ℝ,
given by

𝑢∞(𝑥) = 𝑢0

(
𝑥 +

𝑎

𝑟

)
, 𝑥 +

𝑎

𝑟
> 0.

where 𝑢0 ∶ ℝ+ → ℝ is the Merton no-income value function, given by

𝑢0(𝑥) = 𝐾−(1−𝑝) 𝑥
𝑝

𝑝
, 𝐾 ∶=

1

1 − 𝑝

(
𝛿 − 𝑟𝑝 +

1

2
𝑞𝜆2

)
. (78)

A necessary and sufficient condition for a well-posed problem is 𝐾 > 0.
The optimal consumption and investment processes in the perpetual income problem are given

by

𝑐
(∞)
𝑡 = 𝐾

(
𝑋
(∞)
𝑡 +

𝑎

𝑟

)
, 𝜋

(∞)
𝑡 =

𝜆

𝜎(1 − 𝑝)

(
𝑋
(∞)
𝑡 +

𝑎

𝑟

)
, 𝑡 ≥ 0, (79)

where 𝑋(∞) is the optimal wealth process, given by

𝑋
(∞)
𝑡 +

𝑎

𝑟
=
(
𝑥 +

𝑎

𝑟

)
e(𝑟−𝛿)(1−𝑞)𝑡

(
𝑍
(0)
𝑡

)−(1−𝑞)
, 𝑡 ≥ 0. (80)
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The optimal strategies 𝑐(0), 𝜋(0) and wealth process 𝑋(0) in the no-income problem are recovered
by letting 𝑎 ↓ 0 in the solutions for the perpetual income case.
Naturally, the value function for the non-terminating income problem is defined for negative

values of initialwealth. This is the concretemanifestation of the fact that the agent borrows against
the known present value of future income, and implements the no-income optimal strategy with
the increased initial capital 𝑥 + 𝑎∕𝑟. It is precisely this strategy that is not available to the agent
when the income terminates randomly.

6.2 The terminating income case

In the case with randomly terminating income, we can immediately bound the achievable utility
between that for the problemswith no income and perpetual income, so the primal value function
𝑢(⋅) in (10) satisfies the bounds

𝑢0(𝑥) ≤ 𝑢(𝑥) ≤ 𝑢0

(
𝑥 +

𝑎

𝑟

)
, 𝑥 > 0. (81)

In particular, 𝑢(0) is finite.
Furthermore, the bounds in (81) imply that, as 𝑥 → ∞, the value functions 𝑢0(⋅), 𝑢(⋅) and 𝑢∞(⋅)

all coalesce at large values of wealth, as do their derivatives, and the Inada conditions for 𝑢0(⋅) at
infinity yield that the derivative of the primal value function at infinity is given by

𝑢′(∞) ∶= lim
𝑥→∞

𝑢′(𝑥) = 0, (82)

in accordance with our earlier duality results.
More pertinently, we thus have an approximation for the primal value function at large values

of initial wealth:

𝑢0(𝑥) ≈ 𝑢(𝑥) ≈ 𝑢∞(𝑥), as 𝑥 → ∞. (83)

This approximation is useful in a numerical solution of the primal HJB equation for the pre-
income termination component of the value function, as we describe shortly.

6.2.1 HJB equation for the pre-income termination problem

It is manifestly the case that the agent will adopt the Merton no-income optimal strategy as soon
as the income terminates, as was observed by Vellekoop and Davis (2009). Thus, the maximal
expected utility process must satisfy

𝑢(𝑋𝑡) = 𝑁𝑡𝑢1(𝑋𝑡) + (1 − 𝑁𝑡)𝑢0(𝑋𝑡), 𝑡 ≥ 0, (84)

where 𝑋 is the optimal wealth process, and where 𝑢1 ∶ ℝ+ → ℝ is the value function of the ran-
dom horizon control problem

𝑢1(𝑥) = sup
(𝜋,𝑐)∈(𝑥)

𝔼

[
∫

𝜏

0

𝑈(𝑐𝑡) d𝜅𝑡 + exp(−𝛿𝜏)𝑢0(𝑋𝜏)

]
, 𝑥 > 0, (85)
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subject to dynamics over [0, 𝜏) given by (71), so that in particular, the income rate is the constant
𝑎 ≥ 0 up to the termination time.
The optimal consumption process must decompose according to

𝑐𝑡 = 𝑁𝑡𝑐
(1)
𝑡 + (1 − 𝑁𝑡)𝑐

(0)(𝑋𝑡), 𝑡 ≥ 0,

where 𝑐(0)(𝑋) = 𝐾𝑋 is the optimal Merton no-income feedback control function, and 𝑐(1) denotes
the optimal consumption process up to the random time at which the income terminates, and we
expect to have an associated feedback control function 𝑐(1)(⋅), associatedwith theHJB equation for
the random horizon control problem in (85), such that 𝑐(1)𝑡 = 𝑐(1)(𝑋𝑡), 𝑡 ∈ [0, 𝜏). Similar remarks
apply to the optimal investment strategy.
One can write down the HJB equation associated with the value functions 𝑢1(⋅), by examining

the expected utility process in (84), requiring it to be a supermartingale for any admissible control
and a martingale for the optimal control. This would yield the HJB equation associated with 𝑢1(⋅)
(as given in Vellekoop and Davis (2009))

sup
(𝜋,𝑐)

(
𝑈(𝑐) + (𝑟𝑥 − 𝑐 + 𝑎 + 𝜎𝜆𝜋)𝑢′

1
(𝑥) +

1

2
𝜎2𝜋2𝑢′′

1
(𝑥) − 𝛿𝑢1(𝑥) + 𝜂(𝑢0(𝑥) − 𝑢1(𝑥))

)
= 0. (86)

6.2.2 Transformation of the pre-termination control problem

An equivalent way to arrive at (86) is to begin from the random horizon formulation in (85) and
integrate over the distribution of 𝜏, using its density function and the independence of 𝜏 from the
Brownian motion𝑊. After performing an integration by parts in the term involving the integral
of consumption, we arrive at an infinite horizon control problem to maximize utility from con-
sumption and inter-temporal wealth, and with a perpetual (so, non-terminating) income stream
paying at the constant rate 𝑎 ≥ 0. In other words, the value function 𝑢1(⋅) is expressed in the form

𝑢1(𝑥) = sup
(𝜋,𝑐)∈(𝑥)

𝔼

[
∫

∞

0

exp(−𝛼𝑡)(𝑈(𝑐𝑡) + 𝑈0(𝑋𝑡)) d𝑡

]
, 𝑥 > 0, (87)

with a modified discount factor 𝛼 and a utility function 𝑈0 ∶ ℝ+ → ℝ (measuring felicity from
inter-temporal wealth) given respectively by

𝛼 ∶= 𝜂 + 𝛿, 𝑈0(⋅) ∶= 𝜂𝑢0(⋅),

with𝑢0(⋅) theMerton no-income value function, and (87) is subject towealth dynamics over [0,∞)

given by

d𝑋𝑡 = (𝑟𝑋𝑡 − 𝑐𝑡 + 𝑎) d𝑡 + 𝜎𝜋𝑡(𝜆 d𝑡 + d𝑊𝑡), 𝑋0 = 𝑥,

so of the form in (71), but with no termination of the income (since we have integrated over all
possible values of the termination time). The HJB equation for the problem in (87) is indeed that
in (86).
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Performing themaximization in theHJB equation (86) yields the optimal feedback control func-
tions 𝑐(1)(⋅), 𝜋(1)(⋅), given by

𝑐(1)(𝑥) = 𝐼(𝑢′
1
(𝑥)), 𝜋(1)(𝑥) = −

𝜆

𝜎

𝑢′
1
(𝑥)

𝑢′′
1
(𝑥)

, (88)

where 𝐼(⋅) ∶= (𝑈′(⋅))−1.
Substituting the feedback control functions the into the Bellman equation converts it to the

non-linear ODE

𝑉(𝑢′
1
(𝑥)) + 𝑈0(𝑥) + (𝑟𝑥 + 𝑎)𝑢′

1
(𝑥) −

1

2
𝜆2
(𝑢′

1
(𝑥))2

𝑢′′
1
(𝑥)

− 𝛼𝑢1(𝑥) = 0, 𝑥 ∈ ℝ+, (89)

where 𝑉(⋅) is the convex conjugate of 𝑈(⋅). The ODE (89) has no closed form solution.
HJB equations for problems of utility from consumption and inter-temporal wealth have been

considered by Federico et al. (2015), who proved regularity of solutions to HJB equations for prob-
lems of the sort in (87) with a finite horizon, so the HJB equations were PDEs as opposed to ODEs,
but Federico et al. (2015) remark that the extension to the infinite horizon is not problematic, and
this is reasonable. The other additional ingredient in (89) and the problem (87) compared with
Federico et al. (2015) is the presence of the constant income stream, resulting in the additional
linear term 𝑎𝑢′

1
(⋅) in the ODE. This renders impossible the closed form solution of (89), but we

conjecture that the regularity of the solution would not be affected, so in this section wemake the
assumption that:

Assumption 6.1. There is a smooth (that is 𝐶2(ℝ+)) solution to the HJB equation (89) for power
utility with power 𝑝 ∈ (0, 1).

Indeed, we know from the duality theory developed in earlier sections that the value function of
the terminating income problem is differentiable in the wealth argument, so at worst the second
derivative would exist as a distribution. For these reasons, and in order to present a numerical
solution to the pre-income termination function 𝑢1(⋅), we invoke Assumption 6.1 in this section.

6.2.3 Numerical illustration

We implemented an explicit Runge-Kutta method to solve the primal HJB ODE (89). This method
is an extension of the standard Euler method, using a specific weighted sum of increments of
the value function 𝑢1(⋅) in a spatial discretization to increase the order of convergence of the
algorithm. The method was initiated at a large value of wealth 𝑥 such that the approximation
in (83) was operative, so for the pre-income termination value function we used 𝑢1(𝑥) ≈ 𝑢0(𝑥 +

𝑎∕(𝑟 + 𝜂)). This allowed for a computation of the first two derivatives of 𝑢1(⋅) at large values of
wealth, and then the Runge-Kutta algorithm proceeds to compute the value function at all values
of 𝑥 down to zero in the wealth grid.
Figure 1 shows the value function 𝑢1(⋅) as well as its bounding functions 𝑢0(⋅) and 𝑢∞(⋅), also

the dependence of the value function on the income rate 𝑎 and termination intensity 𝜂 at zero
wealth. The data used are 𝜆 = 1, 𝜎 = 0.1, 𝛿 = 0.6, 𝜂 = 0.1, 𝑎 = 0.2, 𝑝 = 0.5.
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F IGURE 1 Pre-income termination value function and the no-income and perpetual income value
functions, and sensitivity of the value function to the income rate 𝑎 and termination intensity 𝜂 at zero wealth
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Optimal feedback control functions associated with the pre-income termination value function
𝑢1(⋅), and the no-income and perpetual income value functions 𝑢0(⋅) and 𝑢∞(⋅) [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 2 shows the feedback control functions (for a smaller range near 𝑥 = 0 than in Figure 1).
We can see the finite marginal utility at zero wealth of the pre-income termination value function
and its explicit dependence on the income stream. We also note that both the optimal feedback
controls are linear in wealth, as expected from (76) and (77).

7 CONCLUSIONS

In this paper we have proven a rigorous duality for an infinite horizon consumption problemwith
randomly terminating income, thereby closing the duality gap that arose in Vellekoop and Davis
(2009), in a Black-Scholes market. The key property of the finiteness of marginal utility at zero
initial wealth emerged, while all the other main tenets of duality theory were shown to hold. Our
results readily extend to finite horizon versions of the problem as well.
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There are still many aspects of such problems that are not well understood. One is to rigorously
analyze the primal and dualHJB equations for the pre-income termination problem, forwhich the
primal problem involves maximizing utility from both consumption and inter-temporal wealth.
The other is to fully understand the relations between the rather different forms of dual charac-
terization of utility maximization problems with random endowment in the literature. We leave
these questions for future research.
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ENDNOTES
1 As pointed out by an anonymous referee, it may even be the case that = 0. We have not been able to establish
or refute this claim, which seems to be an interesting topic for a future research note.

2 Recall that a set 𝐴 ⊆ 𝐿0+(𝜇) is called solid if ℎ ∈ 𝐴 and 0 ≤ ℎ ≤ ℎ, 𝜇-a.e. implies that ℎ ∈ 𝐴.
3 Recall that a sequence (𝑔𝑛)𝑛∈ℕ in 𝐿∞(𝜇) converges to 𝑔 ∈ 𝐿∞(𝜇) with respect to the weak∗ topology 𝜎(𝐿∞, 𝐿1) if
and only if (⟨𝑔𝑛, ℎ⟩)𝑛∈ℕ converges to ⟨𝑔, ℎ⟩ for each ℎ ∈ 𝐿1(𝜇).
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