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We explore the impact of drift parameter uncertainty in a basis risk model, an incomplete market in
which a claim on a nontraded asset is optimally hedged using a correlated traded stock. Using analytic
expansions for indifference prices and hedging strategies, we develop an efficient procedure to generate
terminal hedging error distributions when the hedger has erroneous estimates of the drift parameters.
These show that the effect of parameter uncertainty is occasionally benign, but often very destructive. In
light of this, we develop a filtering approach in which the hedger updates her parameter estimates from
observations of the asset prices, and we find an analytic solution to the hedger’'s combined filtering and
control problem in the case that the drift of the traded asset is known with certainty.

1. Introduction

This paper examines the problem of drift parameter uncertainty on the optimal hedging of a claim
in an incomplete market. We study a ‘basis risk’ modeayis 2006 Henderson2002 Monoyios
2004h Musiela & Zariphopoulou2004) in which a claim on a nontraded as&éts optimally hedged
using a correlated traded as&twith correlationp € [—1, 1]. Our contributions are threefold. First,
we improve the analytic approach initiatedNMonoyios (20044 for generating the terminal hedging
error distribution, associated with the utility-based hedging of the claim, over simulated asset price
paths. Second, we use this approach to examine the impact of drift parameter misestimation on the
terminal hedging error. Third, we propose a filtering approach to the parameter uncertainty problem,
incorporating Bayesian learning into the drift parameter estimation.

In a complete market, such as tBack & Scholeg1973 (BS) setting, perfect hedging of a claim
does not require estimation of the stock price deifin the stochastic differential equation (SDH) (
for the stockS. As is well-known, estimation of the volatility is possible with reasonable confidence
given sufficient data, but as discussedRygers(2001) and as we discuss in Secti@nit is virtually
impossible to have confidence in an estimatg oT his has serious implications for optimal investment
rules such as the classidderton (1969 1971) policy, where knowledge af is needed to compute the
optimal proportion of wealth to assign to the risky asset. By the same token, drift parameter uncertainty
will also have a bearing on hedging strategies for derivatives in ‘incomplete’ markets when ‘*hedging’
becomes synonymous with ‘investment’ since there is, in general, no preference-free way to perfectly
replicate a claim.

In a lognormal basis risk model, it was shownMionoyios(2004h that an optimal strategy, based
on exponential utility maximization, gave superior hedging performance than a ‘naive’ strategy (a BS-
style hedge) that assumes the traded aSgeha good proxy for the nontraded as¥eftacitly assuming
that for high correlation, the approximatign~ 1 is a good one). This was done by generating the
distribution of hedging error associated with hedging the claim over many simulated asset price paths.
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With optimal hedging, the hedging error distribution was found to have, among other features, a higher
median relative to that obtained with the BS-style strategy. This reflects the greater frequency of profits
over losses generated by optimal hedging.

Unfortunately, however, the optimal strategy requires knowledge of the drift parameters of the dif-
fusionsSandY, as well as the volatilities and correlation. The drift parameters are notoriously difficult
to estimate with precision, as already remarked. In contrast, the naive strategy only requires knowledge
of the volatilities ofSandY. Although estimation of volatility and correlation is itself not perfect, it can
be improved with more observations much more rapidly than the drift estimation. For this reason, we
focus on the severe problem of drift parameter uncertainty.

We investigate the effect of this parameter uncertainty on the hedging error distribution by supposing
that the hedger misestimates the drift parameters and we look at the effect on the median hedging
error distribution. This reveals that the effect of parameter uncertainty can indeed be severe. It can lead
to large reductions in median hedging error distribution, depending on the size and direction of the
misestimation. The direction of the misestimation can be such as to make the agent too aggressive,
leading to selling the claim at too low a price and leading to frequent hedging losses. Conversely, if the
sign of the estimation error is such as to make the agent more conservative, the relative frequency of
hedging losses is reduced, but at the cost of selling the claim at too high a price, making the agent into
an uncompetitive market maker.

We then initiate a filtering approach to this problem, allowing the agent to use observations of the
asset prices to update her estimates of the drift parameters. This approach shows promise, though ana-
Iytic results for indifference prices and hedging strategies are not generally available, as the dimension of
the problem is increased by incorporating parameter uncertainty. However, we are able to develop an ana-
lytic approach in the special case when the agent is uncertain about the drift of the nontraded asset only.
The effect of such Bayesian learning on the hedging error distribution will be a topic of future papers.

Partial information problems, in which agents do not have precise knowledge of drift parameters,
have received some attention in the context of optimal investment problems such as the dlassical
(1969 1977 problems, but this is the first attempt to examine such uncertainty in the context of opti-
mal hedging of derivativefogerg2001) investigated the disutility arising from parameter uncertainty
versus that from discrete portfolio rebalancing for a Merton investor seeking to maximize expected util-
ity of wealth or consumption (the theoretically optimal strategy requires continuous portfolio revision).
Rogers finds that parameter uncertainty outweighs the effect of rebalancing the portfolio infrequently.
Lakner(1995 1998 uses a dual approach to examine the impact of drift parameter uncertainty on the
Merton problem, whildBrennan(1998 derives the asset price dynamics under the observation filtration
and characterizes the optimal investment rule in terms of the solution of a Hamilton—-Jacobi—Bellman
(HJB) equation. Our approach is also based on stochastic control and a HIB equation, though it differs
from Brennan’s in some significant ways. Even though we incorporate uncertainty in the drifts of two
assetsSandY (Brennan deals with the Merton problem involving a single stock), we are able to treat
the problem such that the resulting HIB equation has only one extra dimension compared to the full in-
formation case. Remarkably, in the case where the investor is uncertain only about the\trifteoéire
able to retain the same dimensionality as the full information problem. Future work will exploit these
features to investigate in detail the effect on the hedging error distribution.

The rest of the paper is organized as follows: In Sec2iome outline the basis risk model. We recall
previous resultsNlonoyios 20041 for the claim’s indifference price and optimal hedging strategy, and
derive improved analytic formulae (comparedvionoyios 2004H for these objects, as well as a SDE
for the ‘residual risk’ (or hedging error) process, allowing for an extremely efficient generation of the
terminal hedging error distribution via simulation. We demonstrate the superiority of optimal over naive
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hedging, given perfect knowledge of parameter values. In Se8tiove explore the impact of drift
parameter uncertainty. We show that one needs hundreds of years of price data to have any confidence
in drift parameter estimates, and we generate terminal hedging error distributions when the hedger
misestimates the drifts 6 and Y. Section4 proposes a filtering algorithm to incorporate Bayesian
learning into the drift parameter estimation, and Sechiaoncludes.

2. Basis risk model

We consider a basis risk model, involving a traded aSsand a nontraded ass¥t following corre-
lated log-Brownian motions, as Davis (2006, Monoyios(2004h, Hendersor{2002 andMusiela &
Zariphopoulou2004. On a complete filtered probability spac@, F, F := (Ft)ogt<T, P). the stock
price process := (S)ogt<T IS

dS = uSdt +0SdB; (1)
and the nontraded asset price procéss: (Yi)ogt<T IS
dY; =vY;dt + AL, dW;, (2)

whereu, o, v andf are constants and the Brownian motiadhendW have correlatiop € [—1, 1]:

dBidW; = pdt, W =pB+,/1-p22Z,

whereB andZ are independent Brownian motions.
An agent may trade the stock in a self-financing fashion, leading to the portfolio wealth process
X™ = X 1= (Xp)ogtgT Satisfying

dXt =rXtdt +om(Adt +dBt), A:=(u—r)/o,

wherer > 0is a constant rate of interest amd= (zt)ogt<T IS the wealth in the stock, representing the

agent's trading strategy. An admissible trading strategy is one satisfgimg2 dt < oo almost surely.
Denote the set of such strategiesAy

A European claim orY paysh(Yt) at time T. The claim cannot be perfectly replicated using a
portfolio in S unless|p| = 1, so the market is incomplete. Suppose the agent takes a position in
claims at some time < T. The utility-indifference approach to valuing such a position in the claim has
been analysed bpavis (2006, Hendersor{2002 andMusiela & Zariphopoulo{2004 among others.

This strand of research culminated witonoyios (20044, who analysed the optimal hedging of the

claim associated with the utility-indifference approach. This showed that optimal hedging produces a
hedge profit and loss distribution that had a higher median hedging error than a naive strategy based on
thep — 1 limit of the optimal hedging formulae, and which therefore tacitly assumes that the traded
asset is a good proxy for the nontraded asset. In this sense, optimal hedging was shown to be beneficial,
even when the correlation is close to 1.

The major caveat to the above arguments is that the optimal strategies require knowledge of the
drift parameters: andv of the assets, as well as the volatilities and correlation. In contrast, the naive
strategies require only knowledge of the volatilities. This casts doubt on the true efficacy of the optimal
schemes in the face of the severe parameter uncertainty associated with drift estimation.

We introduce the well-known minimal martingale meas@¥ of Follmer & Schweizer(1991)
which will feature in many of our formulae. The probability meas@¥ has density process with
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respect taP given by
dQ™t

=&(-41-B), O0<t«T.
ap | ( )t

UnderQM, (S, Y) follow

QM
dS =rSdt + ¢S dB> ,
dYe = (v — BpA)Yedt + Y dWR"
whereBQ" andW?" are correlated Brownian motions und®@M. The discounted stock pricgis a
local QM-martingale (the drift oSis ), but this is not the case for the nontraded asset unless we have

the perfect correlation cage= 1. In this caseY is effectively a traded asset (¥sis then a function of
S), so theQM-drift of Y isr. Therefore, give andg, in thep = 1 case the drifts are related by

v—r u—r
0= = = .
p o

In this case, the market becomes complete, and perfect hedging is possible. It is easy to show that with

p = 1 sothatW = B, we have
S Blo
() ¢

(o 3)o-2)

Let the claim price process h#t, Y;),0 <t < T, whereo: [0, T] x RT — R™* is smooth enough to
apply the 16 formula so that

do(t, Yo) = [oe(t, Yo) + AV o (t, YOldt + BYioy (t, Yo)dW,
whereAY is the generator of the proce¥sn (2). The replication conditions are
Xe=o(t,Yy), 0<t<T, dXi=do(t, V).

Standard arguments then show that to perfectly hedge the claim, one must;helidres ofS att e
[0, T], given by

A
o Soy
and the claim pricing function(t, y) satisfies

or(t, ) + (v = BAYoy(t, y) + 382y%vyy(t, ¥) = To(t, y) =0,

(T, y) = h(y).
Butwithp = 1,v — g1 =r, so we get the BS partial differential equation (PDE), and

t (t, V), (3)

o(t, Yy) = BS(t, V),

where BSt, y) denotes the BS option pricing formula at titeith underlying asset priceg.
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2.1 Utility-indifference valuation and hedging

Now, suppose the correlation is not perfect so that the market is incomplete. We embed the problem in a
utility-maximization framework in a manner that is by now classical. Let the agent have risk preferences
expressed via the exponential utility function

UKX) = —exp(—ax), xeR, a>0.

The agent maximizes the expected utility of terminal wealth at finveith a random endowment of
units of claim pay-off:

3(t, %, y; ) = E[U (X7 + nh(Yr)[Xe = X, Y; = y].

The value function isi™ (t, x, y) = u(t, x, y), defined by

u(t, x,y) :=supJd(, x,y; ), (4)
TeA
u(T, x,y) = U+ nh(y)). (5)

Denote the optimal trading strategy that achieves the supremuf) by z* = = *", and denote the
optimal wealth process byt* = X*".
We make the following assumption to ensure that we get a meaningful optimization problém in (

AssumMPTION1 The random endowmenh(YT) is bounded below.

This assumption ensures that the maximum utility4h i6 well-defined, and means that we can
cover the cases of short and long put positions and long call positions. The case of valuing a short call
position in this framework is a topic for future research.

The following definitions of utility-based price and hedging strategy are now standard (see Monoyios,
2004a,b; Musiela & Zariphopoulou, 2004, for instance).

DEFINITION 1 (Indifference price) The indifference price per claim &t [0, T], givenX; =X, Y =y
andp(t, x, y) = p™(t, x, y), is defined by

u™(t, x —np™(t, x, y), y) =u@, x, y).

We allow for possible dependence arx andy of p(™ in the above definition, but with exponential
preferences it turns out that there is no dependence on

DEFINITION 2 (Optimal hedging strategy) The optimal hedging strategynfamits of the claim is
7™ = 2()o<t<T given by

7l't(H) = ﬂt*’n —_ 77.'t*’0, 0 § t < T
The solution to the optimization probler)(is well-known, using the so-called distortion technique
(Zariphopouloy2001). SeeMonoyios(2004h for more details.
The HJB equation for the value functions

_ (Aux +Pﬁyuxy)2 _

0.
2Uxx

Ut 4 rxuy +.AYu
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The optimal trading strategy* is given byz;* = I7*(t, X;, Y;), where the functiod7*: [0, T]x RxR*
is given by

(6)

A
I, x,y) == — (—UX :Lfﬂyuxy) .
XX

We have the following well-known representation for the value function and indifference price.

PropPosITION1 (Henderson2002 Monoyios 2004h Musiela & Zariphopoulopu2004 The value
functionu = u™ and indifference pricg = p(™, givenX; = x andY; = y fort € [0, T], are given by

U (2, x, y) = —e TR SETO[R Y0,

F(t,y) = EQ" [exp(—a(1 — pAnh(Yr))|Y; = V],

Pt y) =— ~logF(t, y), )

b(t, T)a(l - p?)
whereb(t, T) := (T,

The functionF (t, y) satisfies a linear PDE by virtue of the stochastic representafipand the
Feynman—Kac theorem. The indifference pricing functigh, y) = p™(t, y) then satisfies

1 1
P+ (v = BpA)ypy + 5%y Py — 1P = SA%y?nb(t, Tha (1= p?)(py)* = 0.

Given the above results, it is easy to show that the expres8jdior(the optimal control loses its
dependence or and simplifies to

acb(t, T) ( l—pZ?

Then, applying Definitior2 gives the optimal hedging strategy for a positiomiclaims (seéMonoyios
2004h for further details of this derivation).

PrRoOPOSITION2 The optimal hedging strategy for a positionnnclaims is to hoIdAt(H) shares at

t € [0, T] given by

Y: op™
At = —ny LY P
oS oy

We note that ifn = 1 andp = 1, we recover the perfect delta hed@, @nd that the claim price
then satisfies the BS PDE.

t").

2.2 The residual risk process

Suppose the agent tradeslaims at time 0 for pricg(™ (0, Yo) per claim. The agent hedges this position
over [0 T] using the strateg;(At(H))ogth. Her overall position has value procegs:= (Vi)ogt<T
given byVy = X + np™(t, Y) so that

dv; = dX™ + ndp™t, Yy), (8)
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whereX ™ = (X{") o<« is the value of the hedging portfolio & satisfying
axM = 4 s +r (- AP S)ek,
X$? = —np™ (0, Yo).

Using this in §) along with the 16 formula and the PDE satisfied iy (t, y), we obtain

1
dVe = rVedt + SA%n%b(t, Tha(L = p)YE(RY)(L, Yodt + fny/1 = p2YipP (t, Y)dZe,  (9)

with Vo = 0. We callV the residual risk (or hedging error) process. The term4p, @rthogonal to

the Brownian increments driving the stock price, is interpreted as the unhedgeable component of risk.
If p =1, we see that the proceSsbecomes riskless, reflecting the fact that the market incompleteness
disappears in this case.

2.3 Cumulant expansions

We are interested in analysing the distribution of the terminal hedging ¥¢rorhis is not possible in
closed form, so our approach is to use the SBHE@ simulateV over many asset price histories and
compute the distribution of terminal hedging erkét. This is a similar approach to that Monoyios
(2004b, but the use of the SDB) makes the procedure more efficient thamionoyios(20048.

To simulateV via (9) efficiently, we use analytic approximations fp(t, y) and py(t, y), in the
form of power series expansions in powersaal= —a (1 — p?)n. These arise from a Taylor expansion
of the indifference pricing function

p™(t, y) = log EQ" [exp(ah(Yr))| Y; = y]. (10)

b(t, T)a

For a random variablX, recall that its cumulant generating function (CGEyimmett & Stirzakey
2001 Spanos1999 is ¥x(a) := log E exp(a X). Using linearity of the expectation operator, it is not
hard to see that the CGF has a Taylor expansion of the form

0 1 )
@ =2 ki,

j=1""
wherek; (X) = K; is the ‘jth cumulant’ ofX related to thg th central moment oK as described below.
Writing
m;(X) = EX)),  pj(X) =E[(X-=mp)l], jeN,

for the jth raw and central moments, it is not hard to show that

k1(X) = my(X),

ka(X) = u2(X),

ka(X) = u3(X),

ka(X) = a(X) — 3u3(X),

ks(X) = p5(X) — 10u2(X) a(X).
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which can also be expressed in terms of the raw moments only: €of2, 3, 4, 5},
ko = mp —m2,
ks =mgz — 3mym; + 2m3,
kg = My — 4mymg — 3m3 4 12m2m, — 6m7,
ks = ms — 5mymy — 10mpmg + 20m2mg 4 30mgm3 — 60m3m; + 24m3, (11)

where the dependence ohis suppressed for brevity.
Since the pricing functionlQ) is proportional to the CGF of the pay-off under the minimal measure,
we have the following analytic approximation for the indifference pricing function.

PROPOSITION3 The indifference pricing functiop((t, y) has the power series expansion

p™(t,y) =

5
1 .
b T) >, ki (h(Yr)al =t + 0@, (12)
> j:l .

wherea = —a(1 — p?)n and kj is the jth cumulant of the pay-off unde®™M, conditional onY; = y.
The expansion is valid for model parameters satisfying
EQ" fexpah(Yr)IY; = y] < 2 (13)

Proof. Expand the exponential inside the expectationli®) @s a Taylor series and use linearity of the
expectation operator to give

p"M(t,y) =

1 > al
abt. T) log (l + ; ij (h(YT))> )

wherem; (h(Yt)) = EQM[hj (YT)IY: = y]. Then, (2) follows from applying the Taylor expansion of
log(1 + x). This is valid for|x| < 1. In our case, this means we require

X 4j
> Spmi(hov) < 1

j=1""

which is implied by (3), and the proof is complete. O
Using these equations, we are able to produce an accurate perturbation sefi&%(foy), as a
series of BS-type formulae, which can be differentiated term by term to give an analytic approximation
for py(t, y). The leading-order term in the price expansion is Davis’ (1997) marginal price. The terms
in the expansion depend ultimately on the momenis.= EQM[hj YDIYr =], j € N, and (in the
case ofpy(t, y)) on their partial derivative8m; := émj/dy, j € N. The formulae up to ordea® are
given below in the case of a put option on the nontraded asset. The formulae are extensions of those in
Monoyios(20048): first, the power series expansions fsP) (t, y) and p§”) (t, y) are extended to higher
order ina than inMonoyios(2004h; second, we develop a single succinct formula for jttflemoment
mj = EQM[hj (Y)Yt =yl, j € N, and also for its derivativem; := am;j/dy, j € N. These follow
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from the fact that unde®M, conditional upor¥; =y, log Y is normally distributed. WithV' (M, X?2)
denoting the normal probability law with me&n and variancez 2, we have

1
logYt ~ N (IOQY+ b— 02 1)2) ,

2
b=(r —a)(T —1),
a=r— (v —ppl),
02 =pB%(T —t). (14)

For the optimal hedging strategy, the explicit results are obtained by differentiaéipgith respect
to y, giving the following corollary. Denote b§x; the partial derivative ok with respect toy:

OKj
okj = W’

wherex; denotes any aij, x; andk;j.

COROLLARY 1 The partial derivative of the indifference prip&" (t, y) with respect toy has the power
series expansion
5

ap(n) 1 1 i1
= — (6k;)a! 5).
oy t.y) b, T) jz_lj,(a pal™t +0@)

The partial derivatives of the cumulants are related f@andou j by

oki =omg,
okp =0uz,
Ok =0us,

0Kg = 0p4 — 6u20u2,
Oks = 0us — 10(u20u3 + 130 u2).
Forj € {2, 3, 4,5}, these relations may recast in termsmfandom;:
oko = omyp — 2m1omy,
ok = dmg — 3(Momy + Medmy — 2mfomy),
okq = omy — 4(mpoms + mzomy) — 6mpomy
+ 12my(M1omy + 2mpomy — 2m2amy),
oks = oms — 5(m10my + myomy) — 10(Meoms + M3omy)
4 20m1(mzomgz + 2mzoms) + 30ma(2miomy + mpoms)

— 60m2(M1omy + 3meomy — 2m2omy).
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The significance of the expansions is that they give easily computed closed-form approximations
for the indifference price and optimal hedge. In the specific case of a put option, we have the following
formulae for the raw moments of the pay-off under the minimal mea@te

PROPOSITION4 For a put optionh(y) = (K — y)*, whereK > 0 is the strike price, th¢th moment
m; == EQ"[hi(Y)|Y; = y], ] € N, is given by

i,
N Y SR YWD Lo 102) I Nieds — (¢ —
m; _;(5)( y) K exp[f(b+2(€ o )]N( di — (€ — ),
whereN () denotes the standard cumulative normal distribution function, and where

dlzé[log(y)+b+}vz},

K 2
b= —q)(T -1),
q=r — v —ppa),
02 =BT —1t).

Proof. For the put pay-off, we have, fgre N,
(h(Yr))) = (K = yr)h)

= (K —Yp)! v <K}

I [] .
=2 (5) D KON v <k,

wherely; <k} denotes the indicator function of the evglfy < K}. Given the lognormal distribution
(14) of Y7, itis easy to show that

1
EQ" [¥f e[ Yo =y] =¥/ exp(f (b+ (- 1)v2)) N(=ci — (¢ = Do),

from which the result follows. O

PROPOSITIONS Let j € N. For a put option pay-offi(y) = (K — y)™, om; is given by

i,
omj=->" (é) (—y)DK (-0 exp(f (b + %(5 - 1)02)) EN(=d1 — (£ = D)v).
=1

Proof. This is a straightforward (but lengthy) exercise in differentiation. O

We now have a fast (instantaneous) and accurateéseeyios 2004 computation of the optimal
price and hedging strategy. Note that the leading-order term in the expansion for the price is the marginal
price, p(t, y) = EQ"[h(YT)|Y; = y], of the claim.
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2.4 Optimal versus naive hedging

We wish to compare the hedging of the claim with the optimal strategy with the naive strajegyich
takesS as a good proxy fo¥. To this end, repeat the calculation leading to the residual risk SIRE (
but with the claim traded at the BS price B5Yp) per claim and hedged using the— 1 limit of
hedging formula (even though the true valuepos not equal to 1). This results in the naive hedging
error proces¥ N following

dViN = rvN dt + naY: (0 — Doy (t, Y)dt + naYioy(t, YOl(p — DBy + /1 — p2dZy].

Once again, we note that this is not riskless, but becomes so if the true valug iofleed 1. The naive
trader hopes this proves a good approximation.
Suppose the agent sells a put optionrgse —1) on the nontraded asset. Figurghows the optimal
and naive hedging error distributions generated from 10,000 asset price histoyies fai75.a = 0.01
with the other parameters as in TallleSummary statistics for the hedge error distributions, in Taple
show that the optimal hedge error distribution has a higher mean, lower standard deviation and a higher
median than the naive hedge error distribution. The increased median, in particular, shows how the
relative frequency of profits over losses is increased when hedging optimally.

Hedging Error Distributions

1500 T T T T T T T T T
2 1000} Mean Error=0.4346
= St Dev=9.5902
% Median=2.1621
(L 500
0
-50 -40 -30 -20 -10 0 10 20 30 40 50
Terminal Hedge Error
1400 T T T T T T
1200 :
= 1000 | Mean Error=-0.8574
é 800 St Dev=10.3724
g 600 Median=0.1216
L 400
200

-50 40 -30 -20 -10 0 10 20 30 40 50
Terminal Hedge Error

FiIG. 1. Hedging error distributions over 10,000 simulated asset price histories. A short put position is hedgee-vaiff6 and
o = 0.01. The remaining parameters are as in Tdbl€he put is sold optimally for price(—1 (0, Yp) = 13.14 and naively for
price B0, Yp) = 12.66.
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TABLE 1 Model parameters for histograms in Fid).

S Yo K r U o v p T
100 100 110 5% 13% 30% 10% 25% yéar

TABLE 2 Summary statistics for histograms in Fi.

EVr sd(ViT) medV7) max(Vit) min(VT)
0.4346 9.5902 2.1621 33.40 —41.60
Ev sdVi) med V) max(VY) min(V;Y)
—0.8574 10.3724 0.1216 39.11 —47.99

3. Parameter uncertainty

The results above indicate that optimal hedging is beneficial, with the proviso that we know the parame-
tersu, o, v, f andp with certainty. This is a strong assumption, of course. The effect of drift parameter
uncertainty is particularly severe. A&ogers(2001) mentions, one can achieve reasonable confidence
in estimates of volatilities and correlation with a few years of data, but one needs hundreds of years of
data to have any confidence in estimates of drift parameters.

It is worth spelling out some precise details on this that do not appé&todgers2007). For simplic-
ity, let us taker = 0 and a stock pric& following

dS = oS (A dt + dBy),

wherel = u /o, and consider an agent trying to infer the value éfom observations of the share price.
Assume (unrealistically, of course) for simplicity that the agent observes the stock returns continuously
and that the volatilitys is known. The agent records the normalized returns

ds
g = dHds,

and uses these to estimateJsing observations over a time interval ) the best estimate dfis 4 (t)

given by
- 1 /tdSs By
My==-| —=1+—. 15
O=1 [ S=i+7 (15)
The estimator is normally distributed(t) ~ N(4, 1/t), so (A(t) — 1)/(1/+/1) is a standard normal
random variable. Hence, a 95% confidence interval fisr

- 196 - 1.96
A — —, A+ —|.
- 220+ 27
Suppose that the true parameter valuesase 20% per annum and = 20% per annum so that= 1.
We ask, for how long do we have to observe the share price to be 95% certain that we know the value
of 1 to within 5% of its true value? That is, we requjgt) — A| < 0.05. This implies that

- 1.96 - 1.96
Alt) + 7 - (/I(t) — 7) =01,
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which givest ~ 1537 years. This gives a measure of the severity of drift parameter uncertainty in
lognormal models, and it is remarkable that (to the best of our knowledge) the above calculation does
not appear in any of the standard financial mathematics texts.

In the rest of this paper, we shall restrict our attention to uncertainty in the drifts of the asset prices in
the basis risk model, assuming that the agent has precise knowledge of the volatilities and the correlation.

3.1 Optimal hedging with erroneous drift parameters

In this section, we assess the impact of drift parameter misestimation by repeating the simulation experi-
ments of Sectior2.4 using erroneous values for the drift parameterandv. That is, we assume that
the agent computes the indifference price and optimal hedging strategy using her (incorrect) estimates
of the parameters, but the simulated asset price histories are generated using the correct values of the
parameters.
Figure2 shows the optimal and naive hedging error distributions from hedging a short put position
in the case when the agent’s estimates of these parameters are 50% higher than the true values.
Summary statistics for the hedge error distributions, in Tdbkhow that the optimal hedge is still
superior to the naive hedge, though not to the extent seen earlier. (For comparisorh Jladnes the
hedging error statistics if the correct drift parameter values are used.) This can be traced to the fact that
if the agent overestimates she lowers the asking price for the put (relative to the asking price with
the true model parameters), so the claim is viewed as less risky than it truly is. The effect of parameter

Hedging Error Distributions

1400 T T T T T
1200 L I Optimal Hedge| |
Mean Error = -0.2962
> 1000 |
g StDev = 6.4436
< Median = 0.8739
o
(0]
=
[T

-40 -30 -20 ~10 0 10 20 30
Terminal Hedge Error

1400 T T T T T

1200 -

1000 | Mean Error = -0.4788 |
800 | StDev = 7.1117

Median = 0.1211

600
400
200

Frequency

-40 -30 -20 -10 0 10 20 30
Terminal Hedge Error

FiG. 2. Hedging error distributions over 10,000 simulated asset price histories when the agent overestimates;thendriftsy
50%. A short put position is hedged with= 0.75 anda = 0.01. The remaining parameters (correct values) are as in Bable
The agent optimally sells the put for price.&@ (this price would be 145 using the true values @f andv) and naively for price
BS(0, Yp) = 1250.
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TABLE 3 Model parameters for histograms in Fig.

5)) Yo K r u o v p T
100 100 110 0 13% 18% 10% 15% ykar

TABLE 4 Summary statistics for histograms in Fig).

EVr sd(V1) medV7) max(VT) min(VT)
—0.2962 6.4436 0.8739 20.44 —3058
EVN sA(VY) medV;N) max(V;N) min(VyY)
-0.4788 7.1117 0.1211 27.42 —30.88

TABLE 5 Summary statistics for hedging a short put when the drifemndv
are correctly estimated with = 0.75anda = 0.01. The remaining param-
eters are as in Tabl8. The agent optimally sells the put for priéd4.45 and
naively for priceBS(0, Yp) = 1250

EVr sd(VT) med V) max(VT) min(Vr)
0.1923 6.5562 1.3779 21.91 —29.73
VAN sd(Vv) medV;Y) max(V;Y) min(VyY)
—0.5089 7.2561 0.0962 26.67 —32.86

misestimation in this case is relatively benign, mainly because the misestimation is in the same direction
for both driftsu andv. As we shall see, this is not always the case.

Table 6 shows the results if the drifts are both underestimated by 50%. In this case, the optimal
hedging appears to be even more beneficial than before because the agent perceives the claim to be
riskier than it truly is, and raises the asking price of the put (relative to the asking price with the true
model parameters).

Table7 shows the results when the stock price drifts overestimated by 50% and the nontraded
asset price drift is underestimated by 50%. The effect of parameter misestimation now becomes more
significant. The agent believes that the claim is riskier than it truly is, and this effect is exacerbated
by hedging with a traded asset which the agent believes is a less-effective hedging instrument than it
really is. The result is that the agent significantly raises the price at which she sells the option (by about
50% over the price she would charge if she knew the true drift values), and this results in an optimal
hedging error distribution that is much more favourable than the naive hedging distribution. Of course,
this improvement has come at a cost of selling the claim at a very high price, so the agent becomes a
very uncompetitive market maker who may not be able to sell the put at her chosen price.

Finally, Table8 shows the results in the case that the stock price drift underestimated by 50%
and the nontraded asset price drifts overestimated by 50%. Now, the effect of parameter misesti-
mation becomes truly destructive. The agent believes that the claim is ‘less’ risky than it truly is, so
becomes overly aggressive, selling the claim for a low price, and this results in an optimal hedging
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TABLE 6 Summary statistics for hedging a short put when the drifendv are
underestimated b§0%with p = 0.75anda = 0.01. The remaining parameters
are as in Table8. The agent optimally sells the put for prit& 11 (this price would
be11.45using the true values @f andv) and naively for pricdBS(0, Yp) = 12.50

EVr sd(VT) med V) max(V) min(VT)
0.8916 6.4686 1.9822 23.01 —27.11
EVN sdV) medV;N) max(V;V) min(Vy')
—0.3958 7.1714 0.2745 28.18 —30.02

TABLE 7 Summary statistics for hedging a short put when the stock price drift
is overestimated b$0% and the nontraded asset price driftis underestimated
by 50%with p = 0.75anda = 0.01. The remaining parameters are as in TaBle
The agent optimally sells the put for prié8.27 (this price would bel1.45 using
the true values ofi andv) and naively for priceBS(0, Yp) = 12.50

EVr sd(Vr) medVT) max(Vr) min(VT)
6.3905 6.6061 7.0682 27.71 —28.69
EVN sd(VyY) med V) max(V;Y) min(V;N)
—0.5497 7.3022 0.1482 29.93 —38.36

TABLE 8 Summary statistics for hedging a short put when the stock price drift
is underestimated b§0% and the nontraded asset price driftis overestimated
by 50%with p = 0.75anda = 0.01. The remaining parameters are as in TaBle
The agent optimally sells the put for priéed3 (this price would bel1.45 using
the true values oft andv) and naively for priceBS(0, Yp) = 1250

EVr sd(VT) medV7) max(V'T) min(VT)
—4.3950 6.7976 —2.6025 14.55 —35.41
EVN sdV) med V) max(V{) min(Vy")
—0.5102 7.2510 0.0854 26.67 —32.86

error distribution that is much less favourable than the naive hedging distribution. This would lead to
disastrous losses in practice.

Overall, we conclude that drift parameter misestimation is occasionally benign, but can be extremely
destructive, depending on the sign of the misestimation. In Section 4, we propose a Bayesian learning
algorithm that may help remedy this situation.

4. Afiltering approach

In this section, we acknowledge uncertainty in drift parameters by taking them to be random variables
with known prior distribution, and we shall require the agent’s trading strategies to be adapted to the
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observation filtration generated by the asset prigasdY. We shall refer to this problem as one of ‘par-

tial information’. A number of authord_@kner, 1995 1998 Brennan 1998 have treated the classical
Merton (1969 1971 optimal investment problems under partial information. Our approach is similar
though our problem is more complex. We show how it is possible to treat the problem as a Markovian
one with only one extra dimension compared to the full information problem.

Furthermore, we are able to treat a special case, where the agent only has uncertiityan
analytic fashion. The implementation of the filtering solution to simulated and real data is left as a topic
for future work. Here, in a preliminary foray into the filtering approach, we are concerned with showing
the ideas behind the technique.

For simplicity, we take = 0. The asset price SDEs are then

dS =c S (A dt +dBy),
dY: = Y1 (0 dt + dW), (16)
wherel = u /o andd = v/B. We shall suppose that the distributionsicdndé are normal, with
4~ N(4o,Vvo), 6~ N(bo,y0).

We suppose that the agent infers the valuelp@ind \y (respectivelygp andyo) by observing the values
of S(respectivelyY) over some time intervaHz, 0], and using classical estimation theory, as described
by (15). The agent will then filter (update) her estimates @ndé from subsequent observations of

1 tdS_:,
Gi== | = =it+B,
" 0 S
1 rtdy.
Gi== | —=0t+W, 17)
o Ys

over the hedging interval [O]. We can treat this as a standard Kalman filtering problem with the
following solution.

THEOREM 1 LetH := (Ht)ogtgT denote the observation filtration, witH; = ]—f U ]—‘f, where
(F Jogt<T denotes the natural filtration ¢f(and similarly forg).

The problem with partial information can be reduced to one with full information, with the parame-
ters/ andd replaced by random parametéis= /(t, §) andéd; = 4(t, Y;) given by

5 20 + Vo&

M=

~ 17/

vy = Lo roct (18)
1+ yot

where

1, (s 1
&= . log (§) + 50t

1 Y, 1
a= E log (Y_o) + Eﬂt' (29)
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The asset price dynamics are then
dS =0 S, SHdt + dBy), (20)

dY: = AY; (O (t, Yo)dt + dWh), (21)
whereW andB are correlated Brownian motions in the observation filtration.

Proof. We give the analysis for the filtering of the stock price drift. The analysis is identical for the case
of the nontraded asset.

Using the nomenclature @ksendal(2003 for filtering theory, the ‘observation process’ds=
(¢)ogtT, described by

d& = A dt + dB:.
The unobservable ‘signal process’isdescribed by
di =0.
Define the optimally filtered value df, the proces§ = (it)ogtg by the conditional expectation
I = EDIRL o= o,
and denote the conditional varianceidby the process v (vt)ogt<T, given by
vi = E[(4 — ;lt)2|ff],
with initial value . R R
The ‘innovations process’ B = (Bt)ogt<T, defined by

t
B = a—/ Js ds. (22)
0

By classical filtering results (e.g. Lemma 6.2.6dksendal 2003, Bis anff—Brownian motion. Fur-
ther, by the celebrated Kalman—Bucy filter (e.g. Theorem 6.2@kisendal 2003, the optimal filteri;
satisfies the SDE

d/Alt = —Vt:lt dt + v; d&. (23)
Moreover, y solves the Riccati equation
th _ 2
da — v
which has solution
Vo
Vi = .
1+ vot

Inserting this into 23) and solving the SDE fok; give (18). Moreoverg = At + By (from (17)), while
the stock price SDE1) has solution

S = Soexp(—%azt +o(it + Bt)) = Soexp(—%azt + ag“t) ,

from which (@9) follows.
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Finally, using the definitionZ2) of the innovations process, we can write the SDE for the stock in
terms of processes adapted to the observation filtration as follows:

dS =0 S d& = 0 S (e dt +dBy),

which is 0). O
Using Theoreni, we can now use standard techniques to solve the agent’s optimal hedging problem
with asset price dynamics given b30) and 1). The agent’s value function is now

u(t,s, x,y) :=supd(,s,x,y; ),
TeA

J(t,x,y; ) :=E[UXT +nh(YT)|S =S, Xt =X, Y; = V],

u(T, s, x, y) = U(x+nh(y)),

whereX is the wealth process described bYid= (7i/S)dS.
Define the differential operatod(@")SY as the generator of the 2D proceSsy in (20) and @1)

under the minimal martingale measure:
AQDSY § - %0232 fss+ Y@ — pl) fy + %ﬁzyz fyy + papsyty,
for any functionf (t, s, y). We then have the following result.
PrRoOPOSITIONG The value function(t, s, X, y) is given by
ut,s, x,y) = —e “*f(,s,y), (24)
where the functionf satisfies

1.,

2
fi+AQDSY 2321 — (Byly + oSk _

2f

with f(T, s, y) = e *""¥) The optimal trading strategy is = (f)ogigT givenbyrf = IT*(t, §, V),
where

0, (25)

. pi
I (t,s,y) = + -

— (26)
oo
Proof. The HIB equation fou(t, s, X, y) is

(/Alux + pBYyUuxy + 0 SUsx)? .
Uy -

Ut 4+ ASu + AU + pofsyusy — 0,
whereASand A are the generators of the diffusior®f and @1). The optimal trading strategy is* =
(r)ogtgT givenbyz = IT*(t, §, X{, Yt), where the optimal feedback control functifff (t, s, X, y)
is given by

(27)

U u s
H*(t,S,X,y) =_( X+pﬁy Xy+U uSX)

o Uxx

and X{ is the optimal wealth process satisfyingtl= (z;*/S)dS. Now, separate out the dependence
on initial wealthx as in 4). Then, the functiorf satisfies 25), and the expressio27) for the optimal
control then simplifies to26). O
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REMARK 1 In the above proof, we have implicitly supposed that a classical solution to the ZIDE (
exists, to which the & formula can be applied. If this is the case, then optimality of the proposed
solution for the value function follows from a verification theorem. In the absence of a classical solution
to (25), techniques based on generalized solutions such as viscosity solutions would have to be used to
demonstrate that the candidate solution is indeed optimal. This will be investigated in future research
when a full solution to the optimal hedging problem under partial information will be sought.

We recognize the first term ir26) as the classical Merton strategy. The subsequent terms represent
the additional hedging associated with (i) the randomne¥s(the risk from the claim), which includes
uncertainty in the drift ofY, and (ii) the risk associated with uncertainty in the driftSf

4.1 A special case with an analytic solution

We now consider the special case that the agent has precise knowledge of the stock price drift, but we
retain uncertainty in the drift of the nontraded asset. Then, the dependence of the value function and
optimal trading strategy o8 disappears. The problem becomes similar to the full information problem
and the distortion4ariphopouloy 2001 technique can be used to give the following solution for the
value function and optimal trading strategy.

PROPOSITION7 In the case where the agent has precise knowledge of the stock price drift, with uncer-
tainty in the drift of the nontraded asset, the value function and indifference price are given by

u(t, x, y) = —e~ 2T H ¢, y)] /A=),
_g¥ 2 .
H(t,y) = E® fexp(—a(l = p*)nh(¥Y) Yo = y].

1
1-p?

whereQM denotes the minimal martingale measure for the mag@tand @1), under whichy follows

p(t,y)=— logH(t, y),
a n

dY; = BO. Y — pA)Yedt + BY; AW,

andW<?" is a QM-Brownian motion.

In this special case, the problem solution becomes remarkably similar to the full information solution
with the proviso that the market price of risk of the nontraded ag8sety /S, is replaced by the random
proces¥(t, Y;). In particular, the optimal hedging strategy for the claim will also be given by a formula
similar to that in Propositio@.

It is feasible that analytic formulae for the indifference price and optimal hedging strategy can be
derived in this case. This is in progress, as is a numerical solution of the general partial information
model, based upon finite-difference solution of the PRB).(The aim will be to determine if, with
partial information and Bayesian updating of the drift parameter estimates, the optimal hedging strategy
is indeed superior to the BS-style strategy that does not require estimation of the drift parameters.

5. Conclusions

We have developed an efficient approach, based on enhanced analytic approximations for indifference
prices and optimal hedging strategies, for examining the impact of drift parameter uncertainty on the
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optimal hedging of a claim on a nontraded asset. This showed that the effect of parameter misestimation
can be highly destructive, calling into question whether optimal hedging really is an improvement over a
BS-style hedge that does not rely on drift parameter estimation. We then developed a filtering approach
to incorporate Bayesian learning into the drift parameter estimation, and we were able to reduce this
problem to one in which the HIB equation increased in dimensionality by only one dimension, compared
to the full information case. Finally, we were able to treat analytically the special case where the agent
has precise knowledge of the stock price drift, while being uncertain of the nontraded asset price drift.
This approach shows promise, opening the possibility of incorporating parameter uncertainty into the
optimal hedging program. The efficacy of such strategies will be the subject of forthcoming work, which
will require efficient numerical solution of a 3D PDE. This will allow the optimal hedge to be tested
over a large number of simulated asset price histories so that the terminal hedging error distribution can
be computed. An empirical implementation over real data, as was done in the full information case in
Monoyios(2004Hh), will also be a significant topic for future research.
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