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Optimal hedging and parameter uncertainty
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We explore the impact of drift parameter uncertainty in a basis risk model, an incomplete market in
which a claim on a nontraded asset is optimally hedged using a correlated traded stock. Using analytic
expansions for indifference prices and hedging strategies, we develop an efficient procedure to generate
terminal hedging error distributions when the hedger has erroneous estimates of the drift parameters.
These show that the effect of parameter uncertainty is occasionally benign, but often very destructive. In
light of this, we develop a filtering approach in which the hedger updates her parameter estimates from
observations of the asset prices, and we find an analytic solution to the hedger’s combined filtering and
control problem in the case that the drift of the traded asset is known with certainty.

1. Introduction

This paper examines the problem of drift parameter uncertainty on the optimal hedging of a claim
in an incomplete market. We study a ‘basis risk’ model (Davis, 2006; Henderson, 2002; Monoyios,
2004b; Musiela & Zariphopoulou, 2004) in which a claim on a nontraded assetY is optimally hedged
using a correlated traded assetS, with correlationρ ∈ [−1, 1]. Our contributions are threefold. First,
we improve the analytic approach initiated inMonoyios(2004b) for generating the terminal hedging
error distribution, associated with the utility-based hedging of the claim, over simulated asset price
paths. Second, we use this approach to examine the impact of drift parameter misestimation on the
terminal hedging error. Third, we propose a filtering approach to the parameter uncertainty problem,
incorporating Bayesian learning into the drift parameter estimation.

In a complete market, such as theBlack & Scholes(1973) (BS) setting, perfect hedging of a claim
does not require estimation of the stock price driftμ in the stochastic differential equation (SDE) (1)
for the stockS. As is well-known, estimation of the volatilityσ is possible with reasonable confidence
given sufficient data, but as discussed byRogers(2001) and as we discuss in Section3, it is virtually
impossible to have confidence in an estimate ofμ. This has serious implications for optimal investment
rules such as the classicalMerton(1969, 1971) policy, where knowledge ofμ is needed to compute the
optimal proportion of wealth to assign to the risky asset. By the same token, drift parameter uncertainty
will also have a bearing on hedging strategies for derivatives in ‘incomplete’ markets when ‘hedging’
becomes synonymous with ‘investment’ since there is, in general, no preference-free way to perfectly
replicate a claim.

In a lognormal basis risk model, it was shown inMonoyios(2004b) that an optimal strategy, based
on exponential utility maximization, gave superior hedging performance than a ‘naive’ strategy (a BS-
style hedge) that assumes the traded assetS is a good proxy for the nontraded assetY (tacitly assuming
that for high correlation, the approximationρ ≈ 1 is a good one). This was done by generating the
distribution of hedging error associated with hedging the claim over many simulated asset price paths.
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With optimal hedging, the hedging error distribution was found to have, among other features, a higher
median relative to that obtained with the BS-style strategy. This reflects the greater frequency of profits
over losses generated by optimal hedging.

Unfortunately, however, the optimal strategy requires knowledge of the drift parameters of the dif-
fusionsSandY, as well as the volatilities and correlation. The drift parameters are notoriously difficult
to estimate with precision, as already remarked. In contrast, the naive strategy only requires knowledge
of the volatilities ofSandY. Although estimation of volatility and correlation is itself not perfect, it can
be improved with more observations much more rapidly than the drift estimation. For this reason, we
focus on the severe problem of drift parameter uncertainty.

We investigate the effect of this parameter uncertainty on the hedging error distribution by supposing
that the hedger misestimates the drift parameters and we look at the effect on the median hedging
error distribution. This reveals that the effect of parameter uncertainty can indeed be severe. It can lead
to large reductions in median hedging error distribution, depending on the size and direction of the
misestimation. The direction of the misestimation can be such as to make the agent too aggressive,
leading to selling the claim at too low a price and leading to frequent hedging losses. Conversely, if the
sign of the estimation error is such as to make the agent more conservative, the relative frequency of
hedging losses is reduced, but at the cost of selling the claim at too high a price, making the agent into
an uncompetitive market maker.

We then initiate a filtering approach to this problem, allowing the agent to use observations of the
asset prices to update her estimates of the drift parameters. This approach shows promise, though ana-
lytic results for indifference prices and hedging strategies are not generally available, as the dimension of
the problem is increased by incorporating parameter uncertainty. However, we are able to develop an ana-
lytic approach in the special case when the agent is uncertain about the drift of the nontraded asset only.
The effect of such Bayesian learning on the hedging error distribution will be a topic of future papers.

Partial information problems, in which agents do not have precise knowledge of drift parameters,
have received some attention in the context of optimal investment problems such as the classicalMerton
(1969, 1971) problems, but this is the first attempt to examine such uncertainty in the context of opti-
mal hedging of derivatives.Rogers(2001) investigated the disutility arising from parameter uncertainty
versus that from discrete portfolio rebalancing for a Merton investor seeking to maximize expected util-
ity of wealth or consumption (the theoretically optimal strategy requires continuous portfolio revision).
Rogers finds that parameter uncertainty outweighs the effect of rebalancing the portfolio infrequently.
Lakner(1995, 1998) uses a dual approach to examine the impact of drift parameter uncertainty on the
Merton problem, whileBrennan(1998) derives the asset price dynamics under the observation filtration
and characterizes the optimal investment rule in terms of the solution of a Hamilton–Jacobi–Bellman
(HJB) equation. Our approach is also based on stochastic control and a HJB equation, though it differs
from Brennan’s in some significant ways. Even though we incorporate uncertainty in the drifts of two
assetsS andY (Brennan deals with the Merton problem involving a single stock), we are able to treat
the problem such that the resulting HJB equation has only one extra dimension compared to the full in-
formation case. Remarkably, in the case where the investor is uncertain only about the drift ofY, we are
able to retain the same dimensionality as the full information problem. Future work will exploit these
features to investigate in detail the effect on the hedging error distribution.

The rest of the paper is organized as follows: In Section2, we outline the basis risk model. We recall
previous results (Monoyios, 2004b) for the claim’s indifference price and optimal hedging strategy, and
derive improved analytic formulae (compared toMonoyios, 2004b) for these objects, as well as a SDE
for the ‘residual risk’ (or hedging error) process, allowing for an extremely efficient generation of the
terminal hedging error distribution via simulation. We demonstrate the superiority of optimal over naive
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hedging, given perfect knowledge of parameter values. In Section3, we explore the impact of drift
parameter uncertainty. We show that one needs hundreds of years of price data to have any confidence
in drift parameter estimates, and we generate terminal hedging error distributions when the hedger
misestimates the drifts ofS andY. Section4 proposes a filtering algorithm to incorporate Bayesian
learning into the drift parameter estimation, and Section5 concludes.

2. Basis risk model

We consider a basis risk model, involving a traded assetS and a nontraded assetY, following corre-
lated log-Brownian motions, as inDavis(2006), Monoyios(2004b), Henderson(2002) andMusiela &
Zariphopoulou(2004). On a complete filtered probability space(Ω,F ,F := (Ft )06t6T , P), the stock
price processS := (St )06t6T is

dSt = μSt dt + σ St dBt (1)

and the nontraded asset price processY := (Yt )06t6T is

dYt = νYt dt + βYt dWt , (2)

whereμ, σ, ν andβ are constants and the Brownian motionsB andW have correlationρ ∈ [−1, 1]:

dBt dWt = ρ dt, W = ρB +
√

1 − ρ2Z,

whereB andZ are independent Brownian motions.
An agent may trade the stock in a self-financing fashion, leading to the portfolio wealth process

Xπ ≡ X := (Xt )06t6T satisfying

dXt = r Xt dt + σπt (λ dt + dBt ), λ := (μ − r )/σ,

wherer > 0 is a constant rate of interest andπ := (πt )06t6T is the wealth in the stock, representing the

agent’s trading strategy. An admissible trading strategy is one satisfying
∫ T

0 π2
t dt < ∞ almost surely.

Denote the set of such strategies byA.
A European claim onY paysh(YT ) at time T . The claim cannot be perfectly replicated using a

portfolio in S unless|ρ| = 1, so the market is incomplete. Suppose the agent takes a position inn
claims at some timet 6 T . The utility-indifference approach to valuing such a position in the claim has
been analysed byDavis(2006), Henderson(2002) andMusiela & Zariphopoulou(2004) among others.
This strand of research culminated withMonoyios(2004b), who analysed the optimal hedging of the
claim associated with the utility-indifference approach. This showed that optimal hedging produces a
hedge profit and loss distribution that had a higher median hedging error than a naive strategy based on
theρ → 1 limit of the optimal hedging formulae, and which therefore tacitly assumes that the traded
asset is a good proxy for the nontraded asset. In this sense, optimal hedging was shown to be beneficial,
even when the correlation is close to 1.

The major caveat to the above arguments is that the optimal strategies require knowledge of the
drift parametersμ andν of the assets, as well as the volatilities and correlation. In contrast, the naive
strategies require only knowledge of the volatilities. This casts doubt on the true efficacy of the optimal
schemes in the face of the severe parameter uncertainty associated with drift estimation.

We introduce the well-known minimal martingale measureQM of Föllmer & Schweizer(1991)
which will feature in many of our formulae. The probability measureQM has density process with
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respect toP given by

dQM

dP

∣
∣
∣
∣
Ft

= E(−λ ∙ B)t , 06 t 6 T.

UnderQM, (S, Y) follow

dSt = r St dt + σ St dBQM

t ,

dYt = (ν − βρλ)Yt dt + βYt dWQM

t ,

whereBQM
andWQM

are correlated Brownian motions underQM. The discounted stock priceS is a
local QM-martingale (the drift ofS is r ), but this is not the case for the nontraded asset unless we have
the perfect correlation caseρ = 1. In this case,Y is effectively a traded asset (asYt is then a function of
St ), so theQM-drift of Y is r . Therefore, givenσ andβ, in theρ = 1 case the drifts are related by

θ :=
ν − r

β
=

μ − r

σ
=: λ.

In this case, the market becomes complete, and perfect hedging is possible. It is easy to show that with
ρ = 1 so thatW = B, we have

Yt = Y0

(
St

S0

)β/σ

ect

c =
(

r +
1

2
σβ

)(
1 −

β

σ

)
.

Let the claim price process bev(t, Yt ), 0 6 t 6 T , wherev: [0, T ] × R+ → R+ is smooth enough to
apply the It̂o formula so that

dv(t, Yt ) = [vt (t, Yt ) +AYv(t, Yt )]dt + βYtvy(t, Yt )dWt ,

whereAY is the generator of the processY in (2). The replication conditions are

Xt = v(t, Yt ), 06 t 6 T, dXt = dv(t, Yt ).

Standard arguments then show that to perfectly hedge the claim, one must holdΔt shares ofS at t ∈
[0, T ], given by

Δt =
β

σ

Yt

St

∂v

∂y
(t, Yt ), (3)

and the claim pricing functionv(t, y) satisfies

vt (t, y) + (ν − βλ)yvy(t, y) + 1
2β2y2vyy(t, y) − r v(t, y) = 0,

v(T, y) = h(y).

But with ρ = 1, ν − βλ = r , so we get the BS partial differential equation (PDE), and

v(t, Yt ) = BS(t, Yt ),

where BS(t, y) denotes the BS option pricing formula at timet with underlying asset pricey.
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2.1 Utility-indifference valuation and hedging

Now, suppose the correlation is not perfect so that the market is incomplete. We embed the problem in a
utility-maximization framework in a manner that is by now classical. Let the agent have risk preferences
expressed via the exponential utility function

U (x) = −exp(−αx), x ∈ R, α > 0.

The agent maximizes the expected utility of terminal wealth at timeT with a random endowment ofn
units of claim pay-off:

J(t, x, y; π) = E[U (XT + nh(YT ))|Xt = x, Yt = y].

The value function isu(n)(t, x, y) ≡ u(t, x, y), defined by

u(t, x, y) := sup
π∈A

J(t, x, y; π), (4)

u(T, x, y) = U (x + nh(y)). (5)

Denote the optimal trading strategy that achieves the supremum in (4) by π∗ ≡ π∗,n, and denote the
optimal wealth process byX∗ ≡ X∗,n.

We make the following assumption to ensure that we get a meaningful optimization problem in (4).

ASSUMPTION1 The random endowmentnh(YT ) is bounded below.

This assumption ensures that the maximum utility in (4) is well-defined, and means that we can
cover the cases of short and long put positions and long call positions. The case of valuing a short call
position in this framework is a topic for future research.

The following definitions of utility-based price and hedging strategy are now standard (see Monoyios,
2004a,b; Musiela & Zariphopoulou, 2004, for instance).

DEFINITION 1 (Indifference price) The indifference price per claim att ∈ [0, T ], given Xt = x, Yt = y
and p(t, x, y) ≡ p(n)(t, x, y), is defined by

u(n)(t, x − np(n)(t, x, y), y) = u(0)(t, x, y).

We allow for possible dependence ont, x andy of p(n) in the above definition, but with exponential
preferences it turns out that there is no dependence onx.

DEFINITION 2 (Optimal hedging strategy) The optimal hedging strategy forn units of the claim is
π(H) := (π

(H)
t )06t6T given by

π
(H)
t := π∗,n

t − π∗,0
t , 06 t 6 T.

The solution to the optimization problem (4) is well-known, using the so-called distortion technique
(Zariphopoulou, 2001). SeeMonoyios(2004b) for more details.

The HJB equation for the value functionu is

ut + r xux +AYu −
(λux + ρβyuxy)

2

2uxx
= 0.
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The optimal trading strategyπ∗ is given byπ∗
t = Π∗(t, X∗

t , Yt ), where the functionΠ∗: [0, T ]×R×R+

is given by

Π∗(t, x, y) := −
(

λux + ρβyuxy

σuxx

)
. (6)

We have the following well-known representation for the value function and indifference price.

PROPOSITION 1 (Henderson, 2002; Monoyios, 2004b; Musiela & Zariphopoulou, 2004) The value
functionu ≡ u(n) and indifference pricep ≡ p(n), givenXt = x andYt = y for t ∈ [0, T ], are given by

u(n)(t, x, y) = −e−αb(t,T)x− 1
2λ2(T−t)[F(t, Y)]1/(1−ρ2),

F(t, y) = EQM
[exp(−α(1 − ρ2)nh(YT ))|Yt = y],

p(n)(t, y) = −
1

b(t, T)α(1 − ρ2)n
log F(t, y), (7)

whereb(t, T) := er (T−t).

The functionF(t, y) satisfies a linear PDE by virtue of the stochastic representation (7) and the
Feynman–Kac theorem. The indifference pricing functionp(t, y) ≡ p(n)(t, y) then satisfies

pt + (ν − βρλ)ypy +
1

2
β2y2 pyy − rp −

1

2
β2y2nb(t, T)α(1 − ρ2)(py)

2 = 0.

Given the above results, it is easy to show that the expression (6) for the optimal control loses its
dependence onx and simplifies to

Π∗(t, y) :=
1

ασb(t, T)

(
λ +

ρβy

1 − ρ2

Fy

F

)
.

Then, applying Definition2 gives the optimal hedging strategy for a position inn claims (seeMonoyios,
2004b, for further details of this derivation).

PROPOSITION 2 The optimal hedging strategy for a position inn claims is to holdΔ
(H)
t shares at

t ∈ [0, T ] given by

Δ
(H)
t = −nρ

β

σ

Yt

St

∂p(n)

∂y
(t, Yt ).

We note that ifn = 1 andρ = 1, we recover the perfect delta hedge (3), and that the claim price
then satisfies the BS PDE.

2.2 The residual risk process

Suppose the agent tradesn claims at time 0 for pricep(n)(0, Y0) per claim. The agent hedges this position
over [0, T ] using the strategy(Δ(H)

t )06t6T . Her overall position has value processV := (Vt )06t6T

given byVt = X(H)
t + np(n)(t, Yt ) so that

dVt = dX(H)
t + n dp(n)(t, Yt ), (8)



OPTIMAL HEDGING AND PARAMETER UNCERTAINTY 337

whereX(H) = (X(H)
t )06t6T is the value of the hedging portfolio inS, satisfying

dX(H)
t = Δ

(H)
t dSt + r (X(H)

t − Δ
(H)
t St )dt,

X(H)
0 = −np(n)(0, Y0).

Using this in (8) along with the It̂o formula and the PDE satisfied byp(n)(t, y), we obtain

dVt = rVt dt +
1

2
β2n2b(t, T)α(1 − ρ2)Y2

t (p(n)
y )2(t, Yt )dt + βn

√
1 − ρ2Yt p(n)

y (t, Yt )dZt , (9)

with V0 = 0. We callV the residual risk (or hedging error) process. The term in dZt , orthogonal to
the Brownian increments driving the stock price, is interpreted as the unhedgeable component of risk.
If ρ = 1, we see that the processV becomes riskless, reflecting the fact that the market incompleteness
disappears in this case.

2.3 Cumulant expansions

We are interested in analysing the distribution of the terminal hedging errorVT . This is not possible in
closed form, so our approach is to use the SDE (9) to simulateV over many asset price histories and
compute the distribution of terminal hedging errorVT . This is a similar approach to that inMonoyios
(2004b), but the use of the SDE (9) makes the procedure more efficient than inMonoyios(2004b).

To simulateV via (9) efficiently, we use analytic approximations forp(t, y) and py(t, y), in the
form of power series expansions in powers ofa := −α(1 − ρ2)n. These arise from a Taylor expansion
of the indifference pricing function

p(n)(t, y) =
1

b(t, T)a
log EQM

[exp(ah(YT ))| Yt = y]. (10)

For a random variableX, recall that its cumulant generating function (CGF) (Grimmett & Stirzaker,
2001; Spanos, 1999) is ΨX(a) := log E exp(aX). Using linearity of the expectation operator, it is not
hard to see that the CGF has a Taylor expansion of the form

ΨX(a) =
∞∑

j =1

1

j !
kj (X)a j ,

wherekj (X) ≡ kj is the ‘j th cumulant’ ofX related to thej th central moment ofX as described below.
Writing

mj (X) := E(X j ), μ j (X) := E[(X − m1)
j ], j ∈ N,

for the j th raw and central moments, it is not hard to show that

k1(X) = m1(X),

k2(X) = μ2(X),

k3(X) = μ3(X),

k4(X) = μ4(X) − 3μ2
2(X),

k5(X) = μ5(X) − 10μ2(X)μ3(X),
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which can also be expressed in terms of the raw moments only: forj ∈ {2, 3, 4, 5},

k2 = m2 − m2
1,

k3 = m3 − 3m1m2 + 2m3
1,

k4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1,

k5 = m5 − 5m1m4 − 10m2m3 + 20m2
1m3 + 30m1m2

2 − 60m3
1m2 + 24m5

1, (11)

where the dependence onX is suppressed for brevity.
Since the pricing function (10) is proportional to the CGF of the pay-off under the minimal measure,

we have the following analytic approximation for the indifference pricing function.

PROPOSITION3 The indifference pricing functionp(n)(t, y) has the power series expansion

p(n)(t, y) =
1

b(t, T)

5∑

j =1

1

j !
kj (h(YT ))a j −1 + O(a5), (12)

wherea = −α(1 − ρ2)n andkj is the j th cumulant of the pay-off underQM, conditional onYt = y.
The expansion is valid for model parameters satisfying

EQM
[exp(ah(YT ))|Yt = y] 6 2. (13)

Proof. Expand the exponential inside the expectation in (10) as a Taylor series and use linearity of the
expectation operator to give

p(n)(t, y) =
1

ab(t, T)
log



1 +
∞∑

j =1

a j

j !
mj (h(YT ))



 ,

wheremj (h(YT )) ≡ EQM
[h j (YT )|Yt = y]. Then, (12) follows from applying the Taylor expansion of

log(1 + x). This is valid for|x| 6 1. In our case, this means we require

∞∑

j =1

a j

j !
mj (h(YT )) 6 1,

which is implied by (13), and the proof is complete. �
Using these equations, we are able to produce an accurate perturbation series forp(n)(t, y), as a

series of BS-type formulae, which can be differentiated term by term to give an analytic approximation
for py(t, y). The leading-order term in the price expansion is Davis’ (1997) marginal price. The terms

in the expansion depend ultimately on the momentsmj := EQM
[h j (YT )|Yt = y], j ∈ N, and (in the

case ofpy(t, y)) on their partial derivatives∂mj := ∂mj /∂y, j ∈ N. The formulae up to ordera4 are
given below in the case of a put option on the nontraded asset. The formulae are extensions of those in
Monoyios(2004b): first, the power series expansions forp(n)(t, y) andp(n)

y (t, y) are extended to higher
order ina than inMonoyios(2004b); second, we develop a single succinct formula for thej th moment
mj := EQM

[h j (YT )|Yt = y], j ∈ N, and also for its derivative∂mj := ∂mj /∂y, j ∈ N. These follow
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from the fact that underQM, conditional uponYt = y, logYT is normally distributed. WithN (M,Σ2)
denoting the normal probability law with meanM and varianceΣ2, we have

logYT ∼N
(

log y + b −
1

2
v2, v2

)
,

b = (r − q)(T − t),

q = r − (ν − βρλ),

v2 = β2(T − t). (14)

For the optimal hedging strategy, the explicit results are obtained by differentiating (12) with respect
to y, giving the following corollary. Denote by∂κ j the partial derivative ofκ j with respect toy:

∂κ j ≡
∂κ j

∂y
,

whereκ j denotes any ofmj , μ j andkj .

COROLLARY 1 The partial derivative of the indifference pricep(n)(t, y) with respect toy has the power
series expansion

∂p(n)

∂y
(t, y) =

1

b(t, T)

5∑

j =1

1

j !
(∂kj )a

j −1 + O(a5).

The partial derivatives of the cumulants are related toμ j and∂μ j by

∂k1 = ∂m1,

∂k2 = ∂μ2,

∂k3 = ∂μ3,

∂k4 = ∂μ4 − 6μ2∂μ2,

∂k5 = ∂μ5 − 10(μ2∂μ3 + μ3∂μ2).

For j ∈ {2, 3, 4, 5}, these relations may recast in terms ofmj and∂mj :

∂k2 = ∂m2 − 2m1∂m1,

∂k3 = ∂m3 − 3(m1∂m2 + m2∂m1 − 2m2
1∂m1),

∂k4 = ∂m4 − 4(m1∂m3 + m3∂m1) − 6m2∂m2

+ 12m1(m1∂m2 + 2m2∂m1 − 2m2
1∂m1),

∂k5 = ∂m5 − 5(m1∂m4 + m4∂m1) − 10(m2∂m3 + m3∂m2)

+ 20m1(m1∂m3 + 2m3∂m1) + 30m2(2m1∂m2 + m2∂m1)

− 60m2
1(m1∂m2 + 3m2∂m1 − 2m2

1∂m1).
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The significance of the expansions is that they give easily computed closed-form approximations
for the indifference price and optimal hedge. In the specific case of a put option, we have the following
formulae for the raw moments of the pay-off under the minimal measureQM.

PROPOSITION4 For a put option,h(y) = (K − y)+, whereK > 0 is the strike price, thej th moment
mj := EQM

[h j (YT )|Yt = y], j ∈ N, is given by

mj =
j∑

`=0

(
j
`

)
(−y)`K ( j −`) exp

[
`

(
b +

1

2
(` − 1)v2

)]
N(−d1 − (` − 1)v),

whereN(∙) denotes the standard cumulative normal distribution function, and where

d1 =
1

v

[
log

( y

K

)
+ b +

1

2
v2
]

,

b = (r − q)(T − t),

q = r − (ν − βρλ),

v2 = β2(T − t).

Proof. For the put pay-off, we have, forj ∈ N,

(h(YT )) j = ((K − YT )+) j

= (K − YT ) j I{YT6K }

=
j∑

`=0




j

`



 (−1)`K ( j −`)Y`
T I{YT6K },

whereI{YT6K } denotes the indicator function of the event{YT 6 K }. Given the lognormal distribution
(14) of YT , it is easy to show that

EQM
[

Y`
T I{YT6K }

∣
∣
∣Yt = y

]
= y` exp

(
`

(
b +

1

2
(` − 1)v2

))
N(−d1 − (` − 1)v),

from which the result follows. �

PROPOSITION5 Let j ∈ N. For a put option pay-off,h(y) = (K − y)+, ∂mj is given by

∂mj = −
j∑

`=1

(
j
`

)
(−y)(`−1)K ( j −`) exp

(
`

(
b +

1

2
(` − 1)v2

))
`N(−d1 − (` − 1)v).

Proof. This is a straightforward (but lengthy) exercise in differentiation. �
We now have a fast (instantaneous) and accurate (seeMonoyios, 2004b) computation of the optimal

price and hedging strategy. Note that the leading-order term in the expansion for the price is the marginal
price, p̂(t, y) = EQM

[h(YT )|Yt = y], of the claim.
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2.4 Optimal versus naive hedging

We wish to compare the hedging of the claim with the optimal strategy with the naive strategy (3) which
takesS as a good proxy forY. To this end, repeat the calculation leading to the residual risk SDE (9),
but with the claim traded at the BS price BS(0, Y0) per claim and hedged using theρ → 1 limit of
hedging formula (even though the true value ofρ is not equal to 1). This results in the naive hedging
error processV N following

dV N
t = rV N

t dt + nβYt (θ − λ)vy(t, Yt )dt + nβYtvy(t, Yt )[(ρ − 1)dBt +
√

1 − ρ2 dZt ].

Once again, we note that this is not riskless, but becomes so if the true value ofρ is indeed 1. The naive
trader hopes this proves a good approximation.

Suppose the agent sells a put option (son = −1) on the nontraded asset. Figure1 shows the optimal
and naive hedging error distributions generated from 10,000 asset price histories forρ = 0.75.α = 0.01
with the other parameters as in Table1. Summary statistics for the hedge error distributions, in Table2,
show that the optimal hedge error distribution has a higher mean, lower standard deviation and a higher
median than the naive hedge error distribution. The increased median, in particular, shows how the
relative frequency of profits over losses is increased when hedging optimally.

FIG. 1. Hedging error distributions over 10,000 simulated asset price histories. A short put position is hedged withρ = 0.75 and
α = 0.01. The remaining parameters are as in Table1. The put is sold optimally for pricep(−1)(0, Y0) = 13.14 and naively for
price BS(0, Y0) = 12.66.
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TABLE 1 Model parameters for histograms in Fig.1

S0 Y0 K r μ σ ν β T

100 100 110 5% 13% 30% 10% 25% 1year

TABLE 2 Summary statistics for histograms in Fig.1

EVT sd(VT ) med(VT ) max(VT ) min(VT )

0.4346 9.5902 2.1621 33.40 −41.60

EVN
T sd(V N

T ) med(V N
T ) max(V N

T ) min(V N
T )

−0.8574 10.3724 0.1216 39.11 −47.99

3. Parameter uncertainty

The results above indicate that optimal hedging is beneficial, with the proviso that we know the parame-
tersμ, σ, ν, β andρ with certainty. This is a strong assumption, of course. The effect of drift parameter
uncertainty is particularly severe. AsRogers(2001) mentions, one can achieve reasonable confidence
in estimates of volatilities and correlation with a few years of data, but one needs hundreds of years of
data to have any confidence in estimates of drift parameters.

It is worth spelling out some precise details on this that do not appear inRogers(2001). For simplic-
ity, let us taker = 0 and a stock priceS following

dSt = σ St (λ dt + dBt ),

whereλ = μ/σ , and consider an agent trying to infer the value ofλ from observations of the share price.
Assume (unrealistically, of course) for simplicity that the agent observes the stock returns continuously
and that the volatilityσ is known. The agent records the normalized returns

dSt

σ St
= λ dt + dBt ,

and uses these to estimateλ. Using observations over a time interval [0, t ], the best estimate ofλ is λ̄(t)
given by

λ̄(t) =
1

t

∫ t

0

dSs

σ Ss
= λ +

Bt

t
. (15)

The estimator is normally distributed,λ̄(t) ∼ N(λ, 1/t), so (λ̄(t) − λ)/(1/
√

t) is a standard normal
random variable. Hence, a 95% confidence interval forλ is

[
λ̄(t) −

1.96
√

t
, λ̄(t) +

1.96
√

t

]
.

Suppose that the true parameter values areμ = 20% per annum andσ = 20% per annum so thatλ = 1.
We ask, for how long do we have to observe the share price to be 95% certain that we know the value
of λ to within 5% of its true value? That is, we require|λ̄(t) − λ| 6 0.05. This implies that

λ̄(t) +
1.96
√

t
−
(

λ̄(t) −
1.96
√

t

)
= 0.1,
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which givest ≈ 1537 years. This gives a measure of the severity of drift parameter uncertainty in
lognormal models, and it is remarkable that (to the best of our knowledge) the above calculation does
not appear in any of the standard financial mathematics texts.

In the rest of this paper, we shall restrict our attention to uncertainty in the drifts of the asset prices in
the basis risk model, assuming that the agent has precise knowledge of the volatilities and the correlation.

3.1 Optimal hedging with erroneous drift parameters

In this section, we assess the impact of drift parameter misestimation by repeating the simulation experi-
ments of Section2.4 using erroneous values for the drift parametersμ andν. That is, we assume that
the agent computes the indifference price and optimal hedging strategy using her (incorrect) estimates
of the parameters, but the simulated asset price histories are generated using the correct values of the
parameters.

Figure2 shows the optimal and naive hedging error distributions from hedging a short put position
in the case when the agent’s estimates of these parameters are 50% higher than the true values.

Summary statistics for the hedge error distributions, in Table4, show that the optimal hedge is still
superior to the naive hedge, though not to the extent seen earlier. (For comparison, Table5 shows the
hedging error statistics if the correct drift parameter values are used.) This can be traced to the fact that
if the agent overestimatesν, she lowers the asking price for the put (relative to the asking price with
the true model parameters), so the claim is viewed as less risky than it truly is. The effect of parameter

FIG. 2. Hedging error distributions over 10,000 simulated asset price histories when the agent overestimates the driftsμ andν by
50%. A short put position is hedged withρ = 0.75 andα = 0.01. The remaining parameters (correct values) are as in Table3.
The agent optimally sells the put for price 10.81 (this price would be 11.45 using the true values ofμ andν) and naively for price
BS(0, Y0) = 12.50.
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TABLE 3 Model parameters for histograms in Fig.2

S0 Y0 K r μ σ ν β T

100 100 110 0 13% 18% 10% 15% 1year

TABLE 4 Summary statistics for histograms in Fig.2

EVT sd(VT ) med(VT ) max(VT ) min(VT )

−0.2962 6.4436 0.8739 20.44 −30.58

EVN
T sd(V N

T ) med(V N
T ) max(V N

T ) min(V N
T )

−0.4788 7.1117 0.1211 27.42 −30.88

TABLE 5 Summary statistics for hedging a short put when the driftsμ andν
are correctly estimated withρ = 0.75 andα = 0.01. The remaining param-
eters are as in Table3. The agent optimally sells the put for price11.45 and
naively for priceBS(0, Y0) = 12.50

EVT sd(VT ) med(VT ) max(VT ) min(VT )

0.1923 6.5562 1.3779 21.91 −29.73

EVN
T sd(V N

T ) med(V N
T ) max(V N

T ) min(V N
T )

−0.5089 7.2561 0.0962 26.67 −32.86

misestimation in this case is relatively benign, mainly because the misestimation is in the same direction
for both driftsμ andν. As we shall see, this is not always the case.

Table6 shows the results if the drifts are both underestimated by 50%. In this case, the optimal
hedging appears to be even more beneficial than before because the agent perceives the claim to be
riskier than it truly is, and raises the asking price of the put (relative to the asking price with the true
model parameters).

Table7 shows the results when the stock price driftμ is overestimated by 50% and the nontraded
asset price driftν is underestimated by 50%. The effect of parameter misestimation now becomes more
significant. The agent believes that the claim is riskier than it truly is, and this effect is exacerbated
by hedging with a traded asset which the agent believes is a less-effective hedging instrument than it
really is. The result is that the agent significantly raises the price at which she sells the option (by about
50% over the price she would charge if she knew the true drift values), and this results in an optimal
hedging error distribution that is much more favourable than the naive hedging distribution. Of course,
this improvement has come at a cost of selling the claim at a very high price, so the agent becomes a
very uncompetitive market maker who may not be able to sell the put at her chosen price.

Finally, Table8 shows the results in the case that the stock price driftμ is underestimated by 50%
and the nontraded asset price driftν is overestimated by 50%. Now, the effect of parameter misesti-
mation becomes truly destructive. The agent believes that the claim is ‘less’ risky than it truly is, so
becomes overly aggressive, selling the claim for a low price, and this results in an optimal hedging
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TABLE 6 Summary statistics for hedging a short put when the driftsμ andν are
underestimated by50%with ρ = 0.75 andα = 0.01. The remaining parameters
are as in Table3. The agent optimally sells the put for price12.11(this price would
be11.45using the true values ofμ andν) and naively for priceBS(0, Y0) = 12.50

EVT sd(VT ) med(VT ) max(VT ) min(VT )

0.8916 6.4686 1.9822 23.01 −27.11

EVN
T sd(V N

T ) med(V N
T ) max(V N

T ) min(V N
T )

−0.3958 7.1714 0.2745 28.18 −30.02

TABLE 7 Summary statistics for hedging a short put when the stock price driftμ
is overestimated by50% and the nontraded asset price driftν is underestimated
by50%with ρ = 0.75andα = 0.01. The remaining parameters are as in Table3.
The agent optimally sells the put for price18.27 (this price would be11.45 using
the true values ofμ andν) and naively for priceBS(0, Y0) = 12.50

EVT sd(VT ) med(VT ) max(VT ) min(VT )

6.3905 6.6061 7.0682 27.71 −28.69

EVN
T sd(V N

T ) med(V N
T ) max(V N

T ) min(V N
T )

−0.5497 7.3022 0.1482 29.93 −38.36

TABLE 8 Summary statistics for hedging a short put when the stock price driftμ
is underestimated by50% and the nontraded asset price driftν is overestimated
by50%with ρ = 0.75andα = 0.01. The remaining parameters are as in Table3.
The agent optimally sells the put for price6.03 (this price would be11.45 using
the true values ofμ andν) and naively for priceBS(0, Y0) = 12.50

EVT sd(VT ) med(VT ) max(VT ) min(VT )

−4.3950 6.7976 −2.6025 14.55 −35.41

EVN
T sd(V N

T ) med(V N
T ) max(V N

T ) min(V N
T )

−0.5102 7.2510 0.0854 26.67 −32.86

error distribution that is much less favourable than the naive hedging distribution. This would lead to
disastrous losses in practice.

Overall, we conclude that drift parameter misestimation is occasionally benign, but can be extremely
destructive, depending on the sign of the misestimation. In Section 4, we propose a Bayesian learning
algorithm that may help remedy this situation.

4. A filtering approach

In this section, we acknowledge uncertainty in drift parameters by taking them to be random variables
with known prior distribution, and we shall require the agent’s trading strategies to be adapted to the
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observation filtration generated by the asset pricesSandY. We shall refer to this problem as one of ‘par-
tial information’. A number of authors (Lakner, 1995, 1998; Brennan, 1998) have treated the classical
Merton (1969, 1971) optimal investment problems under partial information. Our approach is similar
though our problem is more complex. We show how it is possible to treat the problem as a Markovian
one with only one extra dimension compared to the full information problem.

Furthermore, we are able to treat a special case, where the agent only has uncertainty inθ , in an
analytic fashion. The implementation of the filtering solution to simulated and real data is left as a topic
for future work. Here, in a preliminary foray into the filtering approach, we are concerned with showing
the ideas behind the technique.

For simplicity, we taker = 0. The asset price SDEs are then

dSt = σ St (λ dt + dBt ),

dYt = βYt (θ dt + dWt ), (16)

whereλ = μ/σ andθ = ν/β. We shall suppose that the distributions ofλ andθ are normal, with

λ ∼ N(λ0, v0), θ ∼ N(θ0, γ0).

We suppose that the agent infers the values ofλ0 and v0 (respectively,θ0 andγ0) by observing the values
of S(respectively,Y) over some time interval [−τ, 0], and using classical estimation theory, as described
by (15). The agent will then filter (update) her estimates ofλ andθ from subsequent observations of

ξt :=
1

σ

∫ t

0

dSs

Ss
= λt + Bt ,

ζt :=
1

β

∫ t

0

dYs

Ys
= θ t + Wt , (17)

over the hedging interval [0, T ]. We can treat this as a standard Kalman filtering problem with the
following solution.

THEOREM 1 Let H := (Ht )06t6T denote the observation filtration, withHt = F ξ
t ∪ F ζ

t , where

(F ξ
t )06t6T denotes the natural filtration ofξ (and similarly forζ ).
The problem with partial information can be reduced to one with full information, with the parame-

tersλ andθ replaced by random parametersλ̂t ≡ λ̂(t, St ) andθ̂t ≡ θ̂ (t, Yt ) given by

λ̂(t, St ) =
λ0 + v0ξt

1 + v0t
,

θ̂ (t, Yt ) =
θ0 + γ0ζt

1 + γ0t
, (18)

where

ξt =
1

σ
log

(
St

S0

)
+

1

2
σ t,

ζt =
1

β
log

(
Yt

Y0

)
+

1

2
βt. (19)
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The asset price dynamics are then

dSt = σ St (λ̂(t, St )dt + dB̂t ), (20)

dYt = βYt (θ̂(t, Yt )dt + dŴt ), (21)

whereŴ and B̂ are correlated Brownian motions in the observation filtration.

Proof. We give the analysis for the filtering of the stock price drift. The analysis is identical for the case
of the nontraded asset.

Using the nomenclature ofØksendal(2003) for filtering theory, the ‘observation process’ isξ =
(ξt )06t6T , described by

dξt = λ dt + dBt .

The unobservable ‘signal process’ isλ, described by

dλ = 0.

Define the optimally filtered value ofλ, the procesŝλ = (λ̂t )06t6T by the conditional expectation

λ̂t := E[λ|F ξ
t ], λ̂0 = λ0,

and denote the conditional variance ofλ by the process v= (vt )06t6T , given by

vt := E[(λ − λ̂t )
2|F ξ

t ],

with initial value v0.
The ‘innovations process’ iŝB = (B̂t )06t6T , defined by

B̂t := ξt −
∫ t

0
λ̂s ds. (22)

By classical filtering results (e.g. Lemma 6.2.6 inØksendal, 2003), B̂ is anF ξ
t -Brownian motion. Fur-

ther, by the celebrated Kalman–Bucy filter (e.g. Theorem 6.2.8 inØksendal, 2003), the optimal filterλ̂t

satisfies the SDE

dλ̂t = −vt λ̂t dt + vt dξt . (23)

Moreover, vt solves the Riccati equation

dvt

dt
= −v2

t ,

which has solution

vt =
v0

1 + v0t
.

Inserting this into (23) and solving the SDE for̂λt give (18). Moreover,ξt = λt + Bt (from (17)), while
the stock price SDE (16) has solution

St = S0 exp

(
−

1

2
σ 2t + σ(λt + Bt )

)
= S0 exp

(
−

1

2
σ 2t + σξt

)
,

from which (19) follows.
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Finally, using the definition (22) of the innovations process, we can write the SDE for the stock in
terms of processes adapted to the observation filtration as follows:

dSt = σ St dξt = σ St (λ̂t dt + dB̂t ),

which is (20). �
Using Theorem1, we can now use standard techniques to solve the agent’s optimal hedging problem

with asset price dynamics given by (20) and (21). The agent’s value function is now

u(t, s, x, y) := sup
π∈A

J(t, s, x, y; π),

J(t, x, y; π) := E[U (XT + nh(YT ))|St = s, Xt = x, Yt = y],

u(T, s, x, y) = U (x + nh(y)),

whereX is the wealth process described by dXt = (πt/St )dSt .
Define the differential operatorA(QM)S,Y as the generator of the 2D processS, Y in (20) and (21)

under the minimal martingale measure:

A(QM)S,Y f =
1

2
σ 2s2 fss + βy(θ̂ − ρλ̂) fy +

1

2
β2y2 fyy + ρσβsy fsy,

for any function f (t, s, y). We then have the following result.

PROPOSITION6 The value functionu(t, s, x, y) is given by

u(t, s, x, y) = −e−αx f (t, s, y), (24)

where the functionf satisfies

ft +A(QM)S,Y −
1

2
λ̂2 f −

(ρβy fy + σs fs)2

2 f
= 0, (25)

with f (T, s, y) = e−αnh(y). The optimal trading strategy isπ = (π∗
t )06t6T given byπ∗

t = Π∗(t, St , Yt ),
where

Π∗(t, s, y) =
λ̂

σα
+

ρβy fy + σs fs
σα f

. (26)

Proof. The HJB equation foru(t, s, x, y) is

ut +ASu +AYu + ρσβsyusy −
(λ̂ux + ρβyuxy + σsusx)

2

2uxx
= 0,

whereAS andAY are the generators of the diffusions (20) and (21). The optimal trading strategy isπ∗ =
(π∗

t )06t6T given byπ∗
t = Π∗(t, St , X∗

t , Yt ), where the optimal feedback control functionΠ∗(t, s, x, y)
is given by

Π∗(t, s, x, y) := −

(
λ̂ux + ρβyuxy + σsusx

σuxx

)

(27)

andX∗
t is the optimal wealth process satisfying dX∗

t = (π∗
t /St )dSt . Now, separate out the dependence

on initial wealthx as in (24). Then, the functionf satisfies (25), and the expression (27) for the optimal
control then simplifies to (26). �
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REMARK 1 In the above proof, we have implicitly supposed that a classical solution to the PDE (25)
exists, to which the It̂o formula can be applied. If this is the case, then optimality of the proposed
solution for the value function follows from a verification theorem. In the absence of a classical solution
to (25), techniques based on generalized solutions such as viscosity solutions would have to be used to
demonstrate that the candidate solution is indeed optimal. This will be investigated in future research
when a full solution to the optimal hedging problem under partial information will be sought.

We recognize the first term in (26) as the classical Merton strategy. The subsequent terms represent
the additional hedging associated with (i) the randomness inY (the risk from the claim), which includes
uncertainty in the drift ofY, and (ii) the risk associated with uncertainty in the drift ofS.

4.1 A special case with an analytic solution

We now consider the special case that the agent has precise knowledge of the stock price drift, but we
retain uncertainty in the drift of the nontraded asset. Then, the dependence of the value function and
optimal trading strategy onSdisappears. The problem becomes similar to the full information problem
and the distortion (Zariphopoulou, 2001) technique can be used to give the following solution for the
value function and optimal trading strategy.

PROPOSITION7 In the case where the agent has precise knowledge of the stock price drift, with uncer-
tainty in the drift of the nontraded asset, the value function and indifference price are given by

u(t, x, y) = −e−αx− 1
2λ2(T−t)[H(t, y)]1/(1−ρ2),

H(t, y) = EQM
[exp(−α(1 − ρ2)nh(YT ))|Yt = y],

p(t, y) = −
1

α(1 − ρ2)n
log H(t, y),

whereQM denotes the minimal martingale measure for the market (20) and (21), under whichY follows

dYt = β(θ̂(t, Yt ) − ρλ)Yt dt + βYt dŴQM

t ,

andŴQM
is a QM-Brownian motion.

In this special case, the problem solution becomes remarkably similar to the full information solution
with the proviso that the market price of risk of the nontraded asset,θ = ν/β, is replaced by the random
processθ(t, Yt ). In particular, the optimal hedging strategy for the claim will also be given by a formula
similar to that in Proposition2.

It is feasible that analytic formulae for the indifference price and optimal hedging strategy can be
derived in this case. This is in progress, as is a numerical solution of the general partial information
model, based upon finite-difference solution of the PDE (25). The aim will be to determine if, with
partial information and Bayesian updating of the drift parameter estimates, the optimal hedging strategy
is indeed superior to the BS-style strategy that does not require estimation of the drift parameters.

5. Conclusions

We have developed an efficient approach, based on enhanced analytic approximations for indifference
prices and optimal hedging strategies, for examining the impact of drift parameter uncertainty on the
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optimal hedging of a claim on a nontraded asset. This showed that the effect of parameter misestimation
can be highly destructive, calling into question whether optimal hedging really is an improvement over a
BS-style hedge that does not rely on drift parameter estimation. We then developed a filtering approach
to incorporate Bayesian learning into the drift parameter estimation, and we were able to reduce this
problem to one in which the HJB equation increased in dimensionality by only one dimension, compared
to the full information case. Finally, we were able to treat analytically the special case where the agent
has precise knowledge of the stock price drift, while being uncertain of the nontraded asset price drift.
This approach shows promise, opening the possibility of incorporating parameter uncertainty into the
optimal hedging program. The efficacy of such strategies will be the subject of forthcoming work, which
will require efficient numerical solution of a 3D PDE. This will allow the optimal hedge to be tested
over a large number of simulated asset price histories so that the terminal hedging error distribution can
be computed. An empirical implementation over real data, as was done in the full information case in
Monoyios(2004b), will also be a significant topic for future research.
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