
Utility indifference pricing with market incompletness

Michael Monoyios

Mathematical Institute, University of Oxford, 24–29 St Giles’, Oxford OX1 3LB, UK

Abstract. Utility indifference pricing and hedging theory is presented, showing how it leads
to linear or to non-linear pricing rules for contingent claims. Convex duality is first used to derive
probabilistic representations for exponential utility-based prices, in a general setting with locally
bounded semi-martingale price processes. The indifference price for a finite number of claims gives
a non-linear pricing rule, which reduces to a linear pricing rule as the number of claims tends to
zero, resulting in the so-called marginal utility-based price of the claim. Applications to basis risk
models with lognormal price processes, under full and partial information scenarios are then worked
out in detail. In the full information case, a claim on a non-traded asset is priced and hedged using a
correlated traded asset. The resulting hedge requires knowledge of the drift parameters of the asset
price processes, which are very difficult to estimate with any precision. This leads naturally to a
further application, a partial information problem, with the drift parameters assumed to be random
variables whose values are revealed to the hedger in a Bayesian fashion via a filtering algorithm.
The indifference price is given by the solution to a non-linear PDE, reducing to a linear PDE for the
marginal price when the number of claims becomes infinitesimally small.

1 Introduction

This chapter presents theory and examples of utility indifference pricing and hedging, a
method for managing risk from trading contingent claims in incomplete markets, that has
become a classical tool in the valuation of non-hedgeable claims. For a position in n claims,
it results in a non-linear pricing rule, which reduces to a linear pricing rule in the limit
of a small position in the claim. In this section we qualitatively describe the main idea
and highlight some of the literature on the technique. This review is not intended to be
exhaustive, but the reader will find ample material and further references in the citations.

Suppose we have a European contingent claim C, a contract which pays the random
amount C ≥ 0 almost surely (a.s.) at some future time T > 0. The typical example is
where C is dependent on the trajectory of a vector S = (St)0≤t≤T , which is the price
process of a set of d + 1 traded securities: S = (S0, S1, . . . , Sd). The zeroth asset S0 is
assumed riskless. For ease of exposition, we shall assume zero interest rates throughout this
chapter, so we normalise the riskless asset price to be S0

t = 1 for all t ∈ [0, T ].
As is well-known, in a complete financial market every contingent claim C can be

perfectly replicated by a controlled portfolio of the traded securities: a portfolio with wealth
processX = (Xt)0≤t≤T exists satisfyingXT = C a.s. In this case, no-arbitrage arguments
imply the option price at time 0 is the initial value X0 of the replicating portfolio, given
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by X0 = EQC, where EQ denotes expectation under the unique martingale measure Q of
the complete market. The hedging strategy for a short position in the claim is simply to
hold the replicating portfolio. The classical example of such a replication procedure is the
Black-Scholes (BS) [3] option pricing model, where S is the price process of a single stock
following a geometric Brownian motion.

By definition, an incomplete financial market is one in which not all claims C can be
replicated. In this case writing a claim entails genuine risk, and the pricing and hedging of
the claim can only be carried out by specifying the agent’s preferences towards such risk.
Classically, economists have done this by specifying the agent’s utility function U . This
was the inspiration for Hodges and Neuberger [12] to introduce the concept of utility indif-
ference pricing, in the context of option pricing under transaction costs in the BS model. In
this methodology, the agent seeks to solve for a claim price which, when incorporated into
the initial wealth, results in a maximal expected utility when trading claims that is the same
as the maximum utility in the absence of claims. The associated hedging strategy is the
difference in the agent’s optimal stock strategies with and without the random endowment
of the claim payoff at the terminal time.

Utility indifference prices usually result in price bounds which mark the bid and ask
prices at which a utility maximising investor would be prepared to buy or sell claims. They
are nonlinear pricing rules (as we will see in later sections) in that the price for the claim nC
(n ∈ R) is not n times the price for 1 claim. The utility-based price bounds are invariably
within the no-arbitrage price bounds, the latter usually being quite wide and therefore of
limited practical use.

A marginal version of utility-based pricing, based on classical economic ideas of incre-
mental pricing, was developed by Davis [4]. This gives the utility indifference price for an
infinitesimal position in claims, the so-called marginal utility-based price (MUBP), which
is (under fairly mild conditions) a unique price within the no-arbitrage interval, and within
the bid and ask utility-based prices for a finite position in claims. The marginal price is
given by a linear pricing rule, as we shall see. This linear pricing rule will emerge naturally
from considering the dual problem to the agent’s primal utility maximisation problem.

The utility indifference pricing technique has received much attention in the academic
literature. The earliest applications were to transaction cost models. Following Hodges and
Neuberger [12], Davis, Panas and Zariphopoulou [6] further developed the application to
the BS model with proportional transaction costs. An asymptotic analysis of the Davis,
Panas and Zariphopoulou [6] model, valid for small transaction costs, was carried out by
Whalley and Wilmott [33]. Monoyios [22, 23] computed the MUBP and associated hedge
in a BS model with proportional transaction costs. The marginal price depended on the
agent’s initial stock holding, and lay within bounds which marked the agent’s indifference
price for a single claim.

Karatzas and Kou [15] analysed the MUBP in continuous markets with Itô processes
for stock prices, and with portfolio constraints. They showed how it nearly always lies
within the no-arbitrage bounds. Subsequent developments were to more specific incomplete
market scenarios. In particular, a number of papers studied so-called “basis risk” models,
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in which a claim on a non-traded asset is optimally hedged with a correlated traded asset.
These models were studied by [5, 11, 24, 28] among others. In particular, Monoyios [24]
showed how exponential utility-based hedging could outperform a “naive” hedge which
took the traded asset as a perfect proxy for the non-traded asset. We shall describe basis
risk models in some detail in Section 3.

Other applications of utility-based hedging have been to stochastic volatility mod-
els [32] and to the pricing of volatility derivatives [10]. The general theory of utility-based
pricing, with a particular emphasis on relations with the dual to the primal utility maximi-
sation problem, has been studied by Delbaen et al [7], by Becherer [1], and by Kramkov
and co-authors [13, 20, 21].

The rest of the chapter is as follows. In the next section we present the theory of utility-
based pricing and hedging in a general semi-martingale setting, and use results from the
dual approach to optimal investment to derive probabilistic representations for utility-based
prices. In Section 3 we apply the methodology to a basis risk model with full information, in
which a claim on a non-traded asset is hedged with a correlated traded asset. The resulting
optimal hedge requires knowledge of the asset price drifts, which are virtually impossible
to estimate accurately. This motivates Section 4, in which drift parameter uncertainty is
acknowledged by modelling the drifts as random variables with a prior distribution, which
is updated using a Kalman filter. The resulting model becomes a full information model
with random drifts, and we derive representations for utility-based prices and hedges in this
case. The resulting hedge is approximated using the MUBP as a pricing rule, and shown
to out-perform the naive approach of taking the traded asset as a perfect proxy for the non-
traded one. We end with some concluding remarks.

2 Utility-based pricing and hedging: the general set-up

Here we present the theory of utility-based pricing in a fairly general semi-martingale set-
ting, with frictionless markets, meaning no transaction costs on trading of basic securities
such as stocks.

We start with a locally bounded vector semi-martingale S = (St)0≤t≤T on a filtered
probability space (Ω,F ,F, P ). The filtration F := (Ft)0≤t≤T satisfies the usual conditions,
and we take FT = F .

There are d+1 assets: one savings account and d stocks, so we write S = (S0, . . . , Sd),
with each Si a locally bounded semi-martingale, Si = (Sit)0≤t≤T . The zeroth asset is
riskless, with S0

t = 1 for all t ∈ [0, T ], so we are in addition assuming the interest rate is
zero, as we shall do throughout this chapter.

A probability measureQ is called an equivalent martingale measure if it is equivalent to
P and if S is a local martingale under Q. We denote by M the family of all such measures
and assume that

M 6= ∅.
This condition is essentially equivalent to the absence of arbitrage opportunities in the mar-
ket; see Delbaen and Schachermayer [8] for precise statements and more details.
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A self-financing portfolio is defined by a pair (x,H) where x ∈ R defines the initial
capital and H = (H i)di=1 is a predictable and S-integrable process specifying the number
of shares of each of the stocks held in the portfolio. Hence, for each i = 1, . . . , d, H i =
(H i

t)0≤t≤T . The value process of a self-financing portfolio evolves in time as the stochastic
integral of the process H with respect to the stock price:

Xt := x+ (H · S)t = x+
∫ t

0
HsdSs, t ∈ [0, T ].

(Here,
∫ t
0 HsdSs ≡

∑d
i=1

∫ t
0 H

i
sdS

i
s.) The market is, in general, incomplete, so not every

contingent claim C can be replicated by a self-financing portfolio. Then there is no unique
martingale measure, and the possible no-arbitrage prices span an interval given by(

inf
Q∈M

EQC, sup
Q∈M

EQC

)
. (1)

This was shown by Kramkov [18]. When the market is complete, there exists a unique self-
financing portfolio satisfying XT = C. In this case we say the strategy H replicates C, and
H is the unique hedging strategy for the claim. In this case, there is a unique martingale
measure Q, the interval (1) reduces to a single point, and the no-arbitrage price of the claim
at time 0 is pNA

0 := EQC.
In an incomplete market, one is faced with choosing one of the martingale measures

Q ∈ M as a pricing measure. At first sight, this choice appears to have little to do with
optimal investment. But the incompleteness means that selling a claim entails opening
oneself up to non-zero terminal risk, as represented by the difference XT − C, where XT

is the terminal wealth of any self-financing portfolio. The question arises as to how one
should deal with the residual risk XT − C. This can only be answered by specifying the
risk preferences of the financial agent selling the claim. This will be done via a utility
function. We shall see that a possible pricing measure then emerges naturally, via the dual
to a primal utility maximisation problem.

We consider an economic agent whose preferences over terminal wealth are represented
by a utility functionU : R → R, which is assumed to be strictly increasing, strictly concave,
continuously differentiable, and is assumed to satisfy the Inada conditions:

U ′(−∞) = lim
x→−∞

U ′(x) = ∞, U ′(∞) = lim
x→∞

U ′(x) = 0.

The utility function that we shall employ in this chapter is the exponential utility function:

U(x) = − exp(−αx), α > 0, (2)

with constant risk aversion parameter α.
The convex conjugate of the agent’s utility function is defined to be the Legendre trans-

form of the convex function −U(−·). That is,

V (η) := sup
x∈R

[U(x)− xη], η > 0. (3)
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The conjugate function is then a continuously differentiable, strictly decreasing and strictly
convex function satisfying −V ′(−∞) = ∞, V ′(∞) = 0.

The supremum in (3) is achieved by x = x∗ satisfying

U ′(x∗) = η ⇔ x∗ = I(η), (4)

where I is the inverse of U ′. Then V (η) may be written as

V (η) = U [I(η)]− ηI(η). (5)

Further, from (3) we have the inequality

V (η) ≥ U(x)− xη, with equality iff x = x∗ such that U ′(x∗) = η. (6)

Also, differentiating (5) gives
V ′(η) = −I(η), (7)

so that the agent’s marginal utility is the inverse of minus the gradient of the convex conju-
gate:

U ′(−V ′(x)) = x.

We note that the defining duality relation (3) is equivalent to the bidual relation

U(x) = inf
η>0

[V (η) + xη], x ∈ R, (8)

since this gives that the value of η achieving the above infimum is η∗ satisfying

V ′(η∗) = −x,

or, by (7),
I(η∗) = x⇔ U ′(x) = η∗,

which is (4). Note also that the bidual relation (8) implies the inequality (6).
For the exponential utility function, the convex conjugate is given by

V (η) =
η

α

(
log
( η
α

)
− 1
)
. (9)

For a martingale measure Q ∈M, define the relative entropy H(Q,P ) between Q and
P by

H(Q,P ) := E

[
dQ

dP
log

dQ

dP

]
.

This quantity will play a role in the dual to a primal utility maximisation problem under
exponential utility. Denote the set of martingale measures with finite relative entropy by
Mf .
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For an agent with exponential utility function, we we follow Becherer [1] and define
the set A of admissible strategies H by

A := {H : (H · S) is a Q-martingale for all Q ∈Mf} . (10)

Other choices for A are possible. For instance, one may follow Schachermayer [31] and
consider strategies with wealth bounded from below, and then maximise over the L1(P )-
closure of the set of all random variables U(Γ) such that Γ can be super-hedged by some
trading strategy. The good news is that these choices lead to the same solution for the dual
to the primal utility maximisation problem [7, 14, 31].

For an initial capital x, the agent’s primal value function is u(x) defined by

u(x) := sup
H∈A

EU(XT ) = sup
H∈A

EU

(
x+

∫ T

0
HtdSt

)
. (11)

Define, for any Q ∈M, the change of measure martingale Z = (Zt)0≤t≤T by

Zt :=
dQ

dP

∣∣∣∣
Ft

.

Define the dual value function v(η) by

v(η) := inf
Q∈M

EV (ηZT ). (12)

We shall assume that this function is finite valued. A celebrated body of work has shown
that the primal value function may be computed by solving the dual problem. This work
culminated in the paper by Kramkov and Schachermayer [19], who considered semi-
martingale processes S, following earlier work by several authors based on Itô price pro-
cesses, notably Karatzas et al [16]. The monograph by Karatzas and Shreve [17] contains
an authoritative account of this theory for continuous models based on Itô price processes.
For an application of duality theory in two-factor incomplete markets, in which explicit
representations for the dual minimiser are obtained, see Monoyios [25].

We assume that there is a unique dual optimiser attaining the infimum in (12). This
will be the case in the models we tackle in subsequent sections. Denote the dual optimiser
by Q∗, the associated change of measure martingale by Z∗, the optimal terminal wealth
attaining the supremum in (11) by X∗

T , and the optimal trading strategy by H∗.
The main results of the dual approach to optimal investment are summarised in Theorem

1 below.

Theorem 1 1. The primal and dual value functions u(x) and v(η) in (11) and (12) are
conjugate:

v(η) = sup
x∈R

[u(x)− xη], u(x) = inf
η>0

[v(η) + xη],

so that u′(x) = η (equivalently, v′(η) = −x);
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2. The optimal terminal wealth X∗
T and optimal dual minimiser Q∗ are unique and

related by

U ′(X∗
T ) = η

dQ∗

dP
, equivalently, X∗

T = I

(
η
dQ∗

dP

)
;

3. The following properties for u′(x) and v′(η) hold true:

u′(x) = EU ′(X∗
T ), v′(η) = EQ

∗
V ′
(
η
dQ∗

dP

)
. (13)

For a proof of this theorem, see [19].
To define utility-based prices, we introduce a utility maximisation problem with a ran-

dom terminal endowment involving a claim C. Define the primal value function with ran-
dom endowment, u(n), as the maximum expected utility when receiving a terminal payoff
of n claims:

u(n)(x) := sup
H∈A

EU(XT + nC) = sup
H∈A

EU

(
x+

∫ T

0
HtdSt + nC

)
. (14)

Clearly, the value function u(x) of (11) coincides with u(0)(x).
Define the dual problem to (14), with value function v(n), by

v(n)(η) := inf
Q∈M

E [V (ηZT ) + ηZTnC)] . (15)

Clearly, the value function v(η) of (12) coincides with v(0)(η).
Denote the dual optimiser in (15) byQ∗,n, the associated change of measure martingale

by Z∗,n, the optimal terminal wealth attaining the supremum in (14) by X∗,n
T , and the op-

timal trading strategy by H∗,n. Then the corresponding optimal quantities of the problems
(11,12) without claims are given by Q∗ ≡ Q∗,0, and similarly for Z∗, X∗

T ,H
∗.

For the value functions u(n), v(n) involving a random terminal endowment, and with
exponential utility, a similar duality result to Theorem 1 has been obtained by Delbaen et
al [7].

Theorem 2 Given an exponential utility function U(x) = − exp(−αx), we have:

1. The value functions u(n)(x) and v(n)(η) of (14) and (15) are conjugate:

v(n)(η) = sup
x∈R

[u(n)(x)− xη], u(n)(x) = inf
η>0

[v(n)(η) + xη],

so that u(n)
x (x) = η (equivalently, v(n)

η (η) = −x);

2. The optimal terminal wealth X∗,n
T and optimal dual minimiser Q∗,n are unique and

related by

U ′(X∗,n
T + nC) = η

dQ∗,n

dP
, equivalently, X∗,n

T + nC = I

(
η
dQ∗,n

dP

)
;(16)



8 Michael Monoyios

3. The following properties for u(n)
x (x) and v(n)

η (η) hold true:

u(n)
x (x) = EU ′(X∗,n

T + nC), v(n)
η (η) = EQ

∗,n

[
V ′
(
η
dQ∗

dP

)
+ nC

]
. (17)

We will use these theorems to derive properties of the indifference prices, the major
objects of interest in this chapter, which we now define.

Definition 1 (Utility indifference price) The utility indifference price per claim,
p(n), for a random endowment of n claims, is defined by

u(n)(x− np(n)) = u(0)(x). (18)

In other words, when issuing or purchasing claims, the agent ensures that the price per claim
results in no loss of utility compared with the alternative strategy of not writing or buying
any claims.

The optimal hedging strategy is defined as the difference of the optimal trading strate-
gies with and without the random endowment of n claims.

Definition 2 (Optimal hedging strategy) The optimal hedging strategy for n units of the
claim is H(H) := (H(H)

t )0≤t≤T given by

H
(H)
t := H∗,n

t −H∗,0
t , 0 ≤ t ≤ T.

The marginal utility-based price (MUBP), p̂, of the claim, may be defined in a number
of ways. One is that it corresponds to a price which solves (18) as n→ 0:

Definition 3 (Marginal price) The marginal utility-based price of the claim at time 0 is p̂
defined by

p̂ := lim
n→0

p(n). (19)

It is well known that with exponential utility the marginal price is also equivalent to the limit
of the indifference price as risk aversion goes to zero. Under appropriate conditions (satis-
fied in this model) it is given by the expectation of the payoff under the optimal measure of
the dual to the problem without the claim. We shall derive these results shortly.

Definition 3 is equivalent to the definition below, which was the original definition due
to Davis [4]. Suppose one diverts an amount c of the initial capital into the purchase or
sale of claims. If the unit price per claim is p then the number of claims traded is c/p. We
consider the value function u(c/p)(x) and make the following definition.

Definition 4 (Marginal price [4]) The marginal price p̂ of the claim is the price which
solves

∂u(c/p)

∂c
(x− c)

∣∣∣∣∣
c=0

= 0. (20)
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In [4] it is shown that under suitable smoothness conditions p̂ is given by the following
theorem.

Theorem 3 The marginal price is given by

p̂ =
E [U ′ (X∗

T )C]
u′(x)

. (21)

In the next subsection we shall show the equivalence of (21) and (19), by showing that
both representations result in

p̂ = EQ
∗
C = EQ

E
C,

where QE is the minimal entropy measure, which is the optimal dual measure Q∗ of the
dual problem (12) for exponential utility, and is defined by

QE := arg min
Q∈M

H(Q,P ).

2.1 Dual representations for exponential utility-based prices

Using the fundamental duality results in Theorem 2 we can obtain the following representa-
tion for the primal value function u(n), from which dual representations for the indifference
prices follow.

Theorem 4 The value function u(n)(x) in (14) has the representation

u(n)(x) = − exp
[
−αx− inf

Q∈M

(
H(Q,P ) + αnEQC

)]
.

Proof Using the definition (15) of the dual value function v(n), and the formula (9) for
the conjugate function corresponding to exponential utility, we have

v(n)(η) = V (η) +
η

α
inf
Q∈M

(
H(Q,P ) + αnEQC

)
. (22)

The duality between u(n) and v(n) in Theorem 2 implies v(n)(η) = −x, so (22) gives that
η > 0 is given by

η = α exp
[
−αx− inf

Q∈M

(
H(Q,P ) + αnEQC

)]
.

Using this representation for η in (16) we find that the optimal terminal wealth satisfies

exp(−αX∗,n
T ) = Z∗,nT exp

[
−αx− inf

Q∈M

(
H(Q,P ) + αnEQC

)]
.

The result then follows from u(n)(x) = EU(X∗,n
T ).
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�

In particular, we have that the primal value function in the absence of claims is given by

u(0)(x) = − exp
(
−αx−H(QE , P )

)
,

whereQE is the minimal entropy measure, the optimal dual measure of the problem without
claims.

We then have the following immediate corollary, from the definitions of the indifference
price.

Corollary 1 The indifference price p(n) is given by

p(n) =
1
αn

[
inf
Q∈M

(
H(Q,P ) + αnEQC

)
−H(QE , P )

]
.

In particular, for n > 0, we have that the utility indifference bid price per claim for n
claims is given by

p
(n)
bid := p(n) = inf

Q∈M

[
EQC +

1
αn

(
H(Q,P )−H(QE , P )

)]
, n > 0. (23)

From this, we see that, in the limit α→∞, we obtain

lim
α→∞

p
(n)
bid = inf

Q∈M
EQC,

which is the lower bound of the no-arbitrage interval (1).
Similarly, for n < 0, say n = −m, with m > 0, we obtain that the utility indifference

ask price per claim for m claims is given by

p
(m)
ask := p(−m) = sup

Q∈M

[
EQC − 1

αm

(
H(Q,P )−H(QE , P )

)]
, m > 0. (24)

In the limit α→∞, we obtain

lim
α→∞

p
(m)
ask = sup

Q∈M
EQC,

which is the upper bound of the no-arbitrage interval (1). We conclude that the possible
indifference prices for exponential utility span the entire no-arbitrage interval, as we vary
the risk aversion parameter.

For the marginal price, we have the following equivalences.

Theorem 5 The marginal price has the equivalent representations

p̂ := lim
n→0

p(n) = lim
α→0

p(n) = EQ
E
C, (25)

and these coincide with the representation (21).
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Proof First, (25) follows by letting α→ 0 or n ↓ 0 in (23) and letting α→ 0 or m ↓ 0 in
(24). The equivalence with (21) follows from Theorem 1, which implies that

U ′(X∗
T )

u′(x)
=
dQ∗

dP
,

and the fact that for exponential utility, Q∗ = QE , the minimal entropy measure.

�

Theorem 5 confirms that the marginal indifference price is governed by a linear pricing
rule, as given by an expectation of the payoff under the optimal dual measure.

3 Basis risk model

Here is a quintessential example of an incomplete market in which the ideas of utility-
based pricing given in the previous section can be illustrated with great clarity and explicit
solutions. A number of papers ( [5,11,24,26,28] to name but a few) have studied such basis
risk models.

The setting is a filtered probability space (Ω,F ,F := (Ft)0≤t≤T , P ), where the fil-
tration F is the P -augmentation of that generated by a two-dimensional Brownian motion
(B,B⊥). A traded stock price S := (St)0≤t≤T follows a log-Brownian process given by

dSt = σSt(λdt+ dBt) =: σStdξt, (26)

where σ > 0 and λ are known constants. For simplicity, the interest rate is taken to be 0.
The process ξ in (26) defined by dξt := λdt + dBt will play a role as one component of
an “observation process” in a partial information model in the next section, when λ will be
treated as a random variable rather than as a known constant.

A non-traded asset price Y := (Yt)0≤t≤T follows the correlated log-Brownian motion

dYt = βYt(θdt+ dWt) =: βYtdζt, (27)

with β > 0 and θ known constants. The Brownian motionW is correlated withB according
to

d[B,W ]t = ρdt, W = ρB +
√

1− ρ2B⊥, ρ ∈ [−1, 1],

and the process ζ, given by dζt := θdt + dWt, will act as the second component of an
observation process in a partial information model in the next section, when θ will be con-
sidered a random variable. We shall refer to the Sharpe ratios λ (respectively, θ) as the drift
of S (respectively, Y ), for brevity.

A European contingent claim pays the non-negative random variable h(YT ) at time T ,
where h is a bounded continuous function. If |ρ| = 1, the model is complete and a BS-style
perfect hedge is possible (as we shall show). But for |ρ| 6= 1 the market is incomplete.
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Examples of underlying assets that are either not traded (or are difficult to trade) include
weather indices or baskets of many stocks. There is no tradeable asset which can be used
to perfectly replicate the claim payoff. Traders may resort to using a correlated traded asset
to hedge the claim, where the correlation is presumed to be close to 1, in effect taking the
traded asset as a perfect proxy for the non-traded one. A typical case is the hedging of a
basket option using a futures contract on a stock index, where the composition of the basket
and the index are not identical.

The set M of local martingale measures Q is defined via the density process Z =
(Zt)0≤t≤T given by

Zt := E(−λ ·B − ψ ·B⊥)t, 0 ≤ t ≤ T,

where E denotes the stochastic exponential, and ψ = (ψt)0≤t≤T is a process satisfying∫ T
0 ψ2

t dt < ∞ a.s. If, in addition, Z is a martingale, then we may define probability
measures Q equivalent to P by

dQ

dP

∣∣∣∣
Ft

= Zt.

The set M of martingale measures is then in one-to-one correspondence with the set of
integrands ψ.

The minimal martingale measure QM , which will feature in many of our formulae,
corresponds to ψ = 0, so has density process with respect to P given by

dQM

dP

∣∣∣∣
Ft

= E (−λ ·B)t , 0 ≤ t ≤ T.

Under QM , (S, Y ) follow

dSt = σStdB
QM

t ,

dYt = βYt

[
(θ − ρλ) dt+ dWQM

t

]
, (28)

where BQM
,WQM

are correlated Brownian motions under QM . The stock price S is a
local QM -martingale but this is not the case for the non-traded asset.

3.1 Perfect correlation case

In the perfect correlation case, ρ = 1, Y is effectively a traded asset, so no-arbitrage requires
the QM -drift of Y to be 0. Therefore, given σ, β, in the ρ = 1 case the Sharpe ratios of the
assets are related by

θ = λ. (29)

In fact, with ρ = 1, W = B, so we have

Yt = Y0

(
St
S0

)β/σ
exp

[
1
2
β(σ − β)

]
.
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We show that in this case the market becomes complete, and perfect hedging is possible.
Let the claim price process be P (t, Yt), 0 ≤ t ≤ T , where P : [0, T ]×R+ → R+ is smooth
enough to apply the Itô formula, so that

dP (t, Yt) = [Pt(t, Yt) +AY P (t, Yt)] dt+ βYtPy(t, Yt)dBt,

where AY is the generator of the process Y in (27), and we have used the fact that W = B
if ρ = 1.

A self-financing portfolio with initial capital x and (Ht)0≤t≤T shares of stock at time
t ∈ [0, T ] has wealth process X = (Xt)0≤t≤T given by

Xt = x+
∫ t

0
HsdSs.

To hedge a purchase of n claims, one replicates a position in −n claims, so we require
XT = −nh(YT ) a.s., and in particular

Xt = −nP (t, Yt), 0 ≤ t ≤ T, dXt = −ndP (t, Yt).

Then the perfect hedge is H(P)
t (the superscript P denoting “perfect”) units of S at t ∈

[0, T ], where

H
(P)
t = −nβ

σ

Yt
St

∂

∂y
P (t, Yt), (30)

and the claim pricing function P (t, y) then satisfies

Pt(t, y) +
1
2
β2y2Pyy(t, y) = 0, P (T, y) = h(y),

where we have used the no-arbitrage condition (29). This is the BS partial differential
equation (PDE), so

P (t, Yt) = BS(t, Yt;β),

where BS(t, y;β) denotes the BS formula at time t for underlying asset price y and volatility
β. An important feature of (30) is that the perfect hedge does not require knowledge of the
values of the drifts λ, θ.

3.2 Utility-indifference valuation and hedging

Now suppose the correlation is not perfect, so that the market is incomplete. We embed the
problem in a utility maximisation framework. Let the agent have risk preferences expressed
via the exponential utility function (2). The agent maximises expected utility of terminal
wealth at time T , with a random endowment of n units of claim payoff. Define π =
(πt)0≤t≤T as the process of wealth in the stock, so that πt := HtSt. Given a starting time
t ∈ [0, T ] the objective to be maximised is

J (n)(t, x, y;π) = E[U(XT + nh(YT ))|Xt = x, Yt = y].
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The value function is u(n)(t, x, y), defined by

u(n)(t, x, y) := sup
π∈A

J (n)(t, x, y;π), (31)

u(n)(T, x, y) = U(x+ nh(y)). (32)

Denote the optimal trading strategy that achieves the supremum in (31) by π∗,n, and denote
the optimal wealth process by X∗,n.

We assume the random endowment nh(YT ) is bounded below. This ensures the maxi-
mum utility in (31) is well-defined.

The utility-based price at t ∈ [0, T ] is given by the analogue of Definition 1 for a starting
time t ∈ [0, T ]. Given Xt = x, Yt = y, the price per claim is p(n)(t, x, y), defined by

u(n)(t, x− np(n)(t, x, y), y) = u(0)(t, x, y).

We allow for possible dependence on t, x, y of p(n) in the above definition, but with expo-
nential preferences it turns out that there is no dependence on x, as we shall see.

The optimal hedging strategy is given by Definition 2. In terms of the variable
π := HS, we have that the optimal hedging strategy for n units of the claim is π(H) :=
(π(H)
t )0≤t≤T given by

π
(H)
t := π∗,nt − π∗,0t , 0 ≤ t ≤ T. (33)

The solution to the optimisation problem (31) is well-known, using a so-called distortion
transformation (see Zariphopoulou [34]) to linearise the Hamilton-Jacobi-Bellman (HJB)
equation for u(n). See [24] for more details of the computation in this model.

The HJB equation for the value function u(n) is

u
(n)
t +AY u(n) −

(
λu

(n)
x + ρβyu

(n)
xy

)2

2u(n)
xx

= 0. (34)

The optimal trading strategy π∗,n is given by π∗,nt = Π∗,n(t,X∗,n
t , Yt), where the function

Π∗,n : [0, T ]× R× R+ is given by

Π∗,n(t, x, y) := −

(
λu

(n)
x + ρβyu

(n)
xy

σu
(n)
xx

)
. (35)

We have the following representation for the value function and indifference price.

Proposition 1 [24] The value function u ≡ u(n) and indifference price p ≡ p(n), given
Xt = x, Yt = y for t ∈ [0, T ], are given by

u(n)(t, x, y) = −e−αx−
1
2
λ2(T−t) [F (t, Y )]1/(1−ρ

2) ,

F (t, y) = EQ
M [

exp
(
−α(1− ρ2)nh(YT )

)∣∣Yt = y
]
, (36)

p(n)(t, y) = − 1
α(1− ρ2)n

logF (t, y).
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The function F (t, y) satisfies a linear PDE by virtue of the stochastic representation (36)
and the Feynman-Kac theorem. It is easy to verify that the value function as given in
the proposition then satisfies the HJB equation (34). The indifference price formula then
follows from its definition.

The indifference pricing function p(n)(t, y) satisfies

p
(n)
t + β(θ − ρλ)yp(n)

y +
1
2
β2y2p(n)

yy −
1
2
β2y2nα(1− ρ2)(p(n)

y )2 = 0,

with p(n)(T, y) = h(y). This is a semi-linear PDE, and in this sense the indifference pricing
methodology constitutes a non-linear pricing rule.

For n = 0, the indifference pricing PDE becomes linear, and by the Feynman-
Kac Theorem we obtain the following representation for the marginal price p̂(t, y) :=
limn→0 p

(n)(t, y):
p̂(t, y) = EQ

M
[h(YT )|Yt = y].

This is a special case of the general representation in Theorem 5, since in the basis risk
model the minimal entropy measure QE coincides with the minimal martingale measure
QM . This is because the relative entropy between a martingale measure Q ∈ M and P is
given by

H(Q,P ) = EQ
[
1
2

(
λ2T +

∫ T

0
ψ2
t dt

)]
,

and this is clearly minimised by ψ = 0.
Given the form of the value function, it is easy to show that the expression (35) for the

optimal control loses its dependence on x. Then, applying Definition 2 gives the optimal
hedging strategy for a position in n claims (see [24] for further details of this derivation).

Proposition 2 The optimal hedging strategy for a position in n claims is to hold H
(H)
t

shares at t ∈ [0, T ], given by

H
(H)
t = −nρβ

σ

Yt
St

∂p(n)

∂y
(t, Yt). (37)

We note that for ρ = 1 we recover the perfect delta hedge (30), and the claim price then
satisfies the BS PDE.

3.3 Residual risk process

Suppose the agent trades n claims at time 0 for price p(n)(0, Y0) per claim. The agent
hedges this position over [0, T ] using the strategy (H(H)

t )0≤t≤T . Her overall position has
value process R := (Rt)0≤t≤T given by Rt = X

(H)
t + np(n)(t, Yt), so that

dRt = dX
(H)
t + ndp(n)(t, Yt), (38)
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where X(H) = (X(H)
t )0≤t≤T is the value of the hedging portfolio in S, satisfying

dX
(H)
t = H

(H)
t dSt,

X
(H)
0 = −np(n)(0, Y0).

Using this in (38) along with the Itô formula and the PDE satisfied by p(n)(t, y), we obtain

dRt =
1
2
β2n2α(1− ρ2)Y 2

t

(
p(n)
y

)2
(t, Yt)dt+ βn

√
1− ρ2Ytp

(n)
y (t, Yt)dB⊥t , (39)

with R0 = 0. We call R the residual risk (or hedging error) process. The term in dB⊥t ,
orthogonal to the Brownian increments driving the stock price, is interpreted as the un-
hedgeable component of risk. If ρ = 1 we see that the process R becomes riskless (recall
that the interest rate is zero), reflecting the fact that the market incompleteness disappears
in this case.

3.4 Power series expansions for the indifference price and hedge

We are interested in analysing the distribution of the terminal hedging error RT . This is
not possible in closed form, so our approach is to use the SDE (39) to simulate R over
many asset price histories, and compute the distribution of terminal hedging error RT . This
programme was carried out in [24] and [26].

To simulate R via (39) efficiently, one may use analytic approximations for p(n)(t, y)
and p(n)

y (t, y), in the form of power series expansions in powers of a := −α(1 − ρ2)n.
These arise from a Taylor expansion of the indifference pricing function

p(n)(t, y) =
1
a

logEQ
M

[ exp (ah(YT ))|Yt = y] . (40)

For a random variable X , recall that its cumulant generating function (CGF) is ΨX(a) :=
logE exp(aX). Using linearity of the expectation operator, it is not hard to see that the
CGF has a Taylor expansion of the form

ΨX(a) =
∞∑
j=1

1
j!
kj(X)aj ,

where kj(X) ≡ kj is the jth cumulant of X . The cumulants are related to the central
moments of X . For instance, writing

mj(X) := E(Xj), µj(X) := E[(X −m1)j ], j ∈ N,

for the jth raw and central moments, it is not hard to show that the first three cumulants are
the mean, variance and skewness:

k1(X) = m1(X),
k2(X) = µ2(X),
k3(X) = µ3(X).
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The first two cumulants being equal to the mean and variance implies that the low order
approximation to the optimal hedge is a mean-variance hedging strategy, as pointed out by
Kramkov and Sirbu [21].

Since the pricing function (40) is proportional to the cumulant generating function of
the payoff under the minimal measure, it is easy to generate an analytic formula for the
indifference pricing function. In [26], Monoyios gives the following representation.

Proposition 3 The indifference pricing function p(n)(t, y) has the power series expansion

p(n)(t, y) =
5∑
j=1

1
j!
kj (h(YT )) aj−1 +O(a5), (41)

where a = −α(1 − ρ2)n and kj is the jth cumulant of the payoff under QM , conditional
on Yt = y. The expansion is valid for model parameters satisfying

EQ
M

[ exp(ah(YT ))|Yt = y] ≤ 2. (42)

This means one can produce an accurate perturbation series for p(n)(t, y), as a series of
BS-type formulae, which can be differentiated term by term to give an analytic approxima-
tion for p(n)

y (t, y). In particular, the leading order term in the price expansion is Davis’ [4]
marginal price. Once again, this shows how the non-linear pricing rule given by the indif-
ference price reduces to the linear pricing rule of the marginal price as the number of claims
tends to zero.

The terms in the expansion depend ultimately on the moments mj :=
EQ

M
[hj(YT )|Yt = y], j ∈ N and (in the case of p(n)

y (t, y)) on their partial derivatives
∂mj := ∂mj/∂y, j ∈ N. These are easy to compute (in the case of a put option we give
some results shortly) since, under QM , and conditional upon Yt = y, log YT is normally
distributed: with N(m,Σ2) denoting the normal probability law with mean m and variance
Σ2, we have

log YT ∼ N
(
log y + b− 1

2Σ2,Σ2
)
,

b = β(θ − ρλ)(T − t),
Σ2 = β2(T − t).

(43)

For the optimal hedging strategy, the explicit results are obtained by differentiating (41)
with respect to y. If we denote by ∂κj the partial derivative of κj with respect to y:

∂κj ≡
∂κj
∂y

,

where κj denotes any of mj , µj , kj , then we have:

Corollary 2 The partial derivative of the indifference price p(n)(t, y) with respect to y has
the power series expansion

∂p(n)

∂y
(t, y) =

5∑
j=1

1
j!

(∂kj)aj−1 +O(a5).
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The partial derivatives of the cumulants are related to µj , ∂µj . For instance, up to j = 3
we have

∂k1 = ∂m1,
∂k2 = ∂µ2,
∂k3 = ∂µ3.

(See [26] for full details and more more formulae.)
The significance of the expansions is that they give easily computed closed form ap-

proximations for the indifference price and optimal hedge. In the specific case of a put
option, we have the following formulae for the raw moments of the payoff under the mini-
mal measure QM .

Lemma 1 For a put option, h(y) = (K − y)+, where K > 0 is the strike price, the jth

moment mj := EQ
M

[hj(YT )|Yt = y], j ∈ N, is given by

mj =
j∑
`=0

(
j
`

)
(−y)`K(j−`) exp

[
`

(
b+

1
2
(`− 1)Σ2

)]
Φ(−d1 − (`− 1)Σ),

where Φ(·) denotes the standard cumulative normal distribution function, and where

d1 =
1
Σ

[
log
( y
K

)
+ b+

1
2
Σ2

]
b = β(θ − ρλ)(T − t),

Σ2 = β2(T − t).

Proof For the put payoff, we have, for j ∈ N,

(h(YT ))j =
(
(K − YT )+

)j
= (K − YT )jI{YT≤K}

=
j∑
`=0

(
j
`

)
(−1)`K(j−`)Y `

T I{YT≤K},

where I{YT≤K} denotes the indicator function of the event {YT ≤ K}. Given the lognormal
distribution (43) of YT , it is easy to show that

EQ
M
[
Y `
T I{YT≤K}

∣∣∣Yt = y
]

= y` exp
(
`

(
b+

1
2
(`− 1)Σ2

))
Φ(−d1 − (`− 1)Σ),

from which the result follows.

�

Lemma 2 Let j ∈ N. For a put option payoff, h(y) = (K − y)+, ∂mj is given by

∂mj = −
j∑
`=1

(
j
`

)
(−y)(`−1)K(j−`) exp

(
`

(
b+

1
2
(`− 1)Σ2

))
`N(−d1− (`−1)Σ).
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Proof This is a straightforward exercise in differentiation.

�

This power series expansions for p(n)(t, y) and p(n)
y (t, y) give a closed form and ex-

tremely accurate (see [24]) computation of the optimal price and hedging strategy, with
the leading order term in the expansion for the price being the marginal price, p̂(t, y) =
EQ

M
[h(YT )|Yt = y], of the claim.

3.5 Optimal versus naive hedging

In [24, 26], a comparison was made between hedging a claim with the optimal strategy
versus with the BS-style “naive” strategy (30) which takes S as a good proxy for Y .

In the BS-style hedge, let us repeat the calculation leading to the residual risk SDE (39),
but with the claim traded at the BS price P (0, Y0) = BS(0, Y0) per claim and hedged using
the ρ→ 1 limit of hedging formula (even though true value of ρ is not equal to 1). We then
obtain the “naive” hedging error process RN , following

dRNt = nβYt(θ − λ)Py(t, Yt)dt+ nβYtPy(t, Yt)[(ρ− 1)dBt +
√

1− ρ2dB⊥t ].

Once again, we note that this is not riskless, but becomes so if the true value of ρ is indeed
1. The “naive” trader hopes this proves a good approximation.

For the case when the agent sells a put option (n = −1) on the non-traded asset, in
[26] Monoyios generated optimal and naive hedging error distributions using 10,000 asset
price histories. These showed that the optimal hedge error distribution has a higher mean,
lower standard deviation, and a higher median, than the naive hedge error distribution. The
increased median, in particular, showed how the relative frequency of profits over losses is
increased when hedging optimally. We shall see some examples of this type of simulation
in the next section, in the context of a partial information model.

Thus, the hedging strategy in (37) is, at first sight, superior to the BS-style hedge (30)
But from (28) we see that the exponential hedge requires knowledge of λ, θ, which are
impossible to estimate with any degree of accuracy (see Rogers [30] or Monoyios [26]).
This can ruin the effectiveness of indifference hedging, as shown in [26].

It is therefore difficult to draw any meaningful conclusions on the effectiveness of
utility-based hedging in this model without relaxing the assumption that the agent knows
the true values of the drifts. This is the subject of the next section.

4 Partial information basis risk model

In the basis risk model of the previous section, we now assume the hedger does not know
the values of the return parameters λ, θ, so these are considered to be random variables.
Equivalently, the agent cannot observe the Brownian motionsB,W driving the asset prices,
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so is required to use strategies adapted to the observation filtration F̂ generated by asset
returns. This is a partial information scenario.

Partial information problems under various scenarios have been studied by a number
of authors, usually in the context of optimal investment. Examples include Rogers [30],
Björk, Davis and Landén [2], Nagai and Peng [29], and Monoyios [27], who treats the case
of exponential hedging of basis risk, the subject of this section.

4.1 Choice of prior

We shall take the the two-dimensional random variable

U :=
(
λ

θ

)
to have a Gaussian distribution which will be updated as the agent attempts to filter the
values of the drifts from asset observations during the hedging interval [0, T ].

The choice of Gaussian prior is motivated by the idea that the agent has some past
observations of S, Y before time 0, uses these to obtain classical point estimates of the
drifts, and the joint distribution of the estimators is used as the prior in a Bayesian frame-
work. Ultimately, in order to obtain explicit solutions, we shall assume that the agent uses
observations before time 0 of equal length for both assets. Throughout, we make the ap-
proximation that the asset price observations are continuous, so that σ, β, ρ are known from
the quadratic variation and co-variation of S, Y . This is because our goal here is to focus
on the severest problem of drift parameter uncertainty.

Consider an observer with data for S over a time interval of length tS , and for Y over a
window of length tY , who considers λ and θ as constants, and records the returns dSt/St
and dYt/Yt in order to estimate the values of the drifts. The best estimator of, say, λ is
λ̄(tS) given by

λ̄(tS) =
1
tS

∫ t0+tS

t0

dSu
Su

= λ+
Bt0+tS

tS

∼ N
(
λ,

1
tS

)
,

The estimator of λ is normally distributed, with a similar computation for the estimator of θ.
The estimator, (λ̄, θ̄), of the (supposed constant) vector (λ, θ) is bivariate normal. Defining
v0 := 1/tS and w0 := 1/tY it is easily checked that(

λ̄

θ̄

)
∼ N(M,C),

where the mean vector M and covariance matrix C are given by

M =
(
λ

θ

)
, C =

(
v0 ρmin(v0,w0)

ρmin(v0,w0) w0

)
. (44)
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With this in mind, we shall suppose that (λ, θ), now considered as a random variable, is
bivariate normal according to

λ ∼ N(λ0, v0), θ ∼ N(θ0,w0), cov(λ, θ) = c0 := ρmin(v0,w0).

This distribution will be updated via subsequent observations of

ξt :=
1
σ

∫ t

0

dSu
Su

= λt+Bt, ζt :=
1
β

∫ t

0

dYu
Yu

= θt+Wt

over the hedging interval [0, T ].

4.2 Kalman-Bucy filter

We are firmly within the realm of a two-dimensional Kalman filtering problem, which we
treat as follows. Define the observation filtration by

F̂ := (F̂t)0≤t≤T , F̂t = σ(ξs, ζs; 0 ≤ s ≤ t).

The observation process, O, and unobservable signal process, U , are defined by

O :=
(
ξt
ζt

)
0≤t≤T

, U :=
(
λ

θ

)
,

satisfying the stochastic differential equations

dOt = Udt+DdBt, dU =
(

0
0

)
,

where

D =
(

1 0
ρ
√

1− ρ2

)
, Bt =

(
Bt
B⊥t

)
.

The optimal filter is Ût := E[U |F̂t], 0 ≤ t ≤ T , a two-dimensional process defining the
best estimates of λ and θ given observations up to time t ∈ [0, T ]:

Ût ≡
(
λ̂t
θ̂t

)
:=
(
E[λ|F̂t]
E[θ|F̂t]

)
,

(
λ̂0

θ̂0

)
=
(
λ0

θ0

)
. (45)

The solution to this filtering problem converts the partial information model to a full infor-
mation model with random drifts, given in the following proposition. To avoid a prolifera-
tion of different symbols, we abuse notation and write, for example, λ̂t ≡ λ̂(t, St) when a
process λ̂ is a function of time and current stock price.
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Proposition 4 The partial information model is equivalent to a full information model in
which the asset price dynamics in the observation filtration F̂ are

dSt = σSt(λ̂tdt+ dB̂t), (46)

dYt = βYt(θ̂tdt+ dŴt), (47)

where B̂, Ŵ are F̂-Brownian motions with correlation ρ, and the random drifts λ̂, θ̂ are
F̂-adpated processes.

If λ and θ have common initial variance v0, then λ̂, θ̂ are given by(
λ̂t
θ̂t

)
=
(
λ0

θ0

)
+
∫ t

0
vu

(
dB̂u
dŴu

)
, 0 ≤ t ≤ T, (48)

where (vt)0≤t≤T is the deterministic function

vt =
v0

1 + v0t
.

Equivalently, λ̂, θ̂ are given as functions of time and current asset price by

λ̂t = λ̂(t, St) =
λ0 + v0ξt
1 + v0t

, θ̂t = θ̂(t, Yt) =
θ0 + v0ζt
1 + v0t

, (49)

with

ξt =
1
σ

log
(
St
S0

)
+

1
2
σt, ζt =

1
β

log
(
Yt
Y0

)
+

1
2
βt. (50)

Proof By the Kalman-Bucy filter, for example Theorem V.9.2 in Fleming and Rishel [9],
Û satisfies the stochastic differential equation

dÛt = Vt
(
DDT

)−1 (dOt − Ûtdt) =: Vt
(
DDT

)−1
dNt, (51)

where (Nt)0≤t≤T is the innovations process, defined by

Nt := Ot −
∫ t

0
Ûsds

=
(
ξt −

∫ t
0 λ̂sds

ζt −
∫ t
0 θ̂sds

)
=:

(
B̂t
Ŵt

)
, (52)

and classical filtering theory implies that B̂, Ŵ are F̂-Brownian motions with correlation ρ.
The deterministic matrix function V is the conditional variance-covariance matrix defined
by

Vt := E
[
(U − Ût)(U − Ût)T

∣∣∣ F̂t] = E
[
(U − Ût)(U − Ût)T

]
,



Utility indifference pricing with market incompleteness 23

(T denoting transpose) where the last equality follows because the error U − Ût is indepen-
dent of F̂t (Theorem V.9.2 in [9] again).

Using (52), and writing dSt in terms of dξt, as in (26), gives the dynamics (46) of S in
the observation filtration; (47) is established similarly.

The matrix V = (Vt)0≤t≤T satisfies the Riccati equation

dVt
dt

= −Vt
(
DDT

)−1
Vt, V0 = C,

where C is the covariance matrix in (44). Then Rt := V −1
t satisfies the Lyapunov equation

dRt
dt

=
(
DDT

)−1
.

Define the elements of the conditional covariance matrix by

Vt =:
(

vt ct
ct wt

)
.

Then the filtering equation (51) is a pair of coupled stochastic differential equations:(
dλ̂t
dθ̂t

)
=

1
1− ρ2

(
vt − ρct ct − ρvt
ct − ρwt wt − ρct

)(
dξt − λ̂tdt

dζt − θ̂tdt

)
=

1
1− ρ2

(
vt − ρct ct − ρvt
ct − ρwt wt − ρct

)(
dB̂t
dŴt

)
.

Solving the Lyapunov equation yields 3 equations for vt,wt, ct:

vt
vtwt − c2

t

− v0

v0w0 − c2
0

=
t

1− ρ2
,

wt

vtwt − c2
t

− w0

v0w0 − c2
0

=
t

1− ρ2
, (53)

ct
vtwt − c2

t

− c0

v0w0 − c2
0

=
ρt

1− ρ2
,

where we have written c0 ≡ ρmin(v0,w0) for brevity.
Now make the simplification w0 = v0. From the discussion on Section 4.1, we see that

this corresponds to using past observations over the same length of time, tS = tY , for both
S and Y in fixing the prior. Then c0 = ρv0, and the solution to the system of equations (53)
gives the entries of the matrix Vt as

vt =
v0

1 + v0t
, wt = vt, ct = ρvt.

With this simplification, the equation for the optimal filter simplifies to(
dλ̂t
dθ̂t

)
= vt

(
dξt − λ̂tdt

dζt − θ̂tdt

)
= vt

(
dB̂t
dŴt

)
, (54)
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which, along with the initial condition in (45), yields (48) and (49).
Finally, the expression in (50) for ξt follows easily from the solution of (26) for S:

log
(
St
S0

)
= σ

(
ξt −

1
2
σt

)
,

and a similar calculation gives the formula for ζt.

�

With Proposition 4 we may now treat the model as a full information model with random
drift parameters (λ̂t, θ̂t), and this is done in the next section.

4.3 Indifference hedging with random drifts

On the stochastic basis (Ω, F̂ , F̂, P ), the wealth process associated with trading strategy
π := (πt)0≤t≤T , an F̂-adapted process satisfying

∫ T
0 π2

t dt < ∞ a.s., is Xπ ≡ X :=
(Xt)0≤t≤T , satisfying

dXt = σπt(λ̂tdt+ dB̂t). (55)

We use an exponential utility function, U(x) = − exp(−αx), x ∈ R, α > 0. The primal
value function u(n) is defined once again as the maximum expected utility of wealth at T
from trading S and receiving n units of the claim on Y , when starting at time t ∈ [0, T ]:

u(n)(t, x, s, y) := sup
π∈A

E[U(XT + nh(YT ))|Xt = x, St = s, Yt = y], (56)

whereA denotes the set of admissible trading strategies. The dynamics of the state variables
X,S, Y are given by (55) and (46,47). The set of admissible strategies is defined as in (10).
Once again denote the optimal trading strategy by π∗ ≡ π∗,n, and the optimal wealth
process by X∗ ≡ X∗,n.

The utility indifference price and hedge for a position in n claims are defined in the
classical manner as earlier. In this case, we have that the indifference price per claim at
t ∈ [0, T ], given Xt = x, St = s, Yt = y, is p(n) given by

u(n)(t, x− np(n)(t, x, s, y), s, y) = u(0)(t, x, s).

The optimal hedging strategy, πH :=
(
πH
t

)
0≤t≤T , is defined by

πH
t := π∗,nt − π∗,0t , 0 ≤ t ≤ T.

As before, with exponential utility the indifference price will not in fact depend on the initial
cash wealth x, so we shall write p(n)(t, x, s, y) ≡ p(n)(t, s, y) from now on.

For small positions in the claim, the marginal utility-based price of the claim at t ∈
[0, T ] is p̂(t, s, y) defined by

p̂(t, s, y) := lim
n→0

p(n)(t, s, y).
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We have seen that with exponential utility the marginal price is also equivalent to the limit of
the indifference price as risk aversion goes to zero. Under appropriate conditions (satisfied
in this model) it is given by the expectation of the payoff under the optimal measure of the
dual to the problem without the claim. As we shall see in the next section, in our case this
measure will be the minimal martingale measureQM , and we shall obtain the representation
p̂(t, s, y) = EQ

M
[h(YT )|St = s, Yt = y].

4.4 The dual problem

We shall attack the primal utility maximisation problem (56) via its dual problem.
The class M of local martingale measures for this model are measures Q with density

processes defined by

Zt :=
dQ

dP

∣∣∣∣
F̂t

= E(−λ̂ · B̂ − ψ · B̂⊥)t, 0 ≤ t ≤ T,

for integrands ψ satisfying
∫ T
0 ψ2

t dt <∞ a.s. (
∫ T
0 λ̂2

tdt <∞ is not hard to show). For ψ =

0 we obtain the minimal martingale measureQM , with density process ZQ
M

t = E(−λ̂·B̂)t,
for t ∈ [0, T ].

The change of measure density ZQ
M

t satisfies dZQ
M

t = −λ̂tZQ
M

t dB̂t and, since λ̂t =
λ̂(t, St) is a function of St, then so is ZQ

M

t . The relevance of this is that the dual value
function will be a function of the current asset prices at any initial time, as we shall see.

Under Q ∈M, (B̂Q, B̂⊥,Q) is two-dimensional Brownian motion, where

dB̂Q
t := dB̂Q

t + λ̂tdt, dB̂⊥,Qt := dB̂⊥t + ψtdt.

Further, under Q ∈M, the asset prices and random drifts satisfy (with ρ̄ :=
√

1− ρ2)

dSt = σStdB̂
Q
t ,

dYt = βYt[(θ̂t − ρλ̂t − ρ̄ψt)dt+ dŴQ
t ],

dλ̂t = vt[−λ̂tdt+ dB̂Q
t ],

dθ̂t = vt[−(ρλ̂t + ρ̄ψt)dt+ dŴQ
t ],

where ŴQ = ρB̂Q + ρ̄B̂⊥,Q.
The dual value function v ≡ v(n) is defined by

v(n)(t, η, s, y) := inf
Q∈M

E

[
V

(
η
ZT
Zt

)
+ η

ZT
Zt
nh(YT )

∣∣∣∣St = s, Yt = y

]
,

where V is the convex conjugate of the utility function U .
The primal value function u(n)(t, x, s, y) is then recovered from the bidual relation

u(n)(t, x, s, y) = inf
η>0

[v(n)(t, η, s, y) + xη].



26 Michael Monoyios

Expressing the density process (Zt)0≤t≤T in terms of Q-Brownian motions and using the
form of the convex conjugate function V it is easy to obtain the dual value function in the
form

v(n)(t, η, s, y) = V (η) +
η

α
inf
Q∈M

EQ
[
log
(
ZT
Zt

)
+ αnh(YT )

∣∣∣∣St = s, Yt = y

]
, (57)

with

log
(
ZT
Zt

)
= −

∫ T

t
λ̂udB̂

Q
u −

∫ T

t
ψudB̂

⊥,Q
u +

1
2

∫ T

t

(
λ̂2
u + ψ2

u

)
du.

It is not difficult to see that EQ
∫ t
0 λ̂

2
udu <∞ for all t ∈ [0, T ]. If, in addition,

EQ
∫ t

0
ψ2
udu <∞, t ∈ [0, T ], (58)

then the stochastic integrals in (57) will have zero expectation. Denoting by M′ the subset
of M for which (58) holds, we clearly have

inf
Q∈M

EQ
[
log
(
ZT
Zt

)
+ αnh(YT )

∣∣∣∣St = s, Yt = y

]
= inf

Q∈M′
EQ

[
log
(
ZT
Zt

)
+ αnh(YT )

∣∣∣∣St = s, Yt = y

]
.

Then the dual value function decomposes as

v(n)(t, η, s, y) = V (η) +
η

α
(H(t, s) +G(t, s, y)) ,

where

H(t, s) := EQ
[

1
2

∫ T

t
λ̂2
udu

∣∣∣∣St = s, Yt = y

]
,

and where G(t, s, y) is the value function of a stochastic control problem:

G(t, s, y) := inf
ψ
EQ

[
1
2

∫ T

t
ψ2
udu+ αnh(YT )

∣∣∣∣St = s, Yt = y

]
. (59)

Note also that for n = 0, then G = 0, and we also have the dual value function for n 6= 0
given directly in terms of its counterpart for no claim on Y :

v(n)(t, η, s, y) = v(0)(t, η, s, y) +
η

α
G(t, s, y),

which will be useful in obtaining a representation for the indifference price. The primal
value function is then recovered from the bidual relation as

u(n)(t, x, s, y) = u(0)(t, x, s) exp[−G(t, s, y)], (60)

where
u(0)(t, x, s) = U(x) exp[−H(t, s)]. (61)

Applying the definition of the indifference price then gives the following representation.
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Theorem 6 The indifference price at t ∈ [0, T ] is given by

p(n)(t, s, y) =
1
αn

G(t, s, y),

where the value function G is defined in (59).

Remark 1 Theorem 6 is a special case of the general dual representation for the indiffer-
ence price, Corollary 1, since the relative entropyH(Q,P ) between a measure Q ∈M and
P is given by

H(Q,P ) = EQ
[
1
2

∫ T

0

(
λ̂2
t + ψ2

t

)
dt

]
.

The Hamilton-Jacobi-Bellman (HJB) equation for G(t, s, y) is

Gt +AQ
M

S,Y G+ min
ψ

[
1
2
ψ2 − βρ̄ψyGy

]
= 0 G(T, s, y) = αnh(y),

where AQ
M

S,Y is the generator of (S, Y ) under the minimal measure:

AQ
M

S,Y G =
1
2
ssGss + β(θ̂ − ρλ̂)yGy +

1
2
β2y2Gyy + ρσβsyGsy.

The optimal control is ψ∗t ≡ ψ∗(t, St, Yt) where

ψ∗(t, s, y) = ρ̄βyGy(t, s, y)

so the HJB equation is the semi-linear PDE

Gt +AQ
M

S,Y G−
1
2
(1− ρ2)β2y2G2

y = 0.

Hence, the indifference price p(n) satisfies

p
(n)
t +AQ

M

S,Y p
(n) − 1

2
αn(1− ρ2)β2y2

(
p(n)
y

)2
= 0. p(n)(T, s, y) = h(y)

The optimal hedging strategy is obtained easily, since the HJB equation for primal value
function gives the optimal trading strategy π∗,n in terms of derivatives of G(t, s, y), and
hence in terms of derivatives of the indifference price, and we have the following theorem.

Theorem 7 The optimal hedging strategy is to hold (∆H
t )0≤t≤T shares of S at time t ∈

[0, T ], given by

∆H
t = −n

(
p(n)
s (t, St, Yt) + ρ

β

σ

Yt
St
p(n)
y (t, St, Yt)

)
.

Note that, compared with the full information case, the optimal hedging strategy contains an
additional term involving a derivative with respect to the stock price variable. This in turn
has resulted from the extra dimension of the associated control problems. The drift param-
eter uncertainty has led to additional risk and hence to an extra hedging term to counteract
the added risk.
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Proof of Theorem 7 The HJB equation for the primal value function is

u
(n)
t + max

π
AX,S,Y u(n) = 0,

where AX,S,Y is the generator of (X,S, Y ) under P . Performing the maximisation over π
yields the optimal Markov control as π∗,nt = π∗,n(t,X∗,n

t , St, Yt), where

π∗,n(t, x, s, y) = −

(
λ̂u

(n)
x + σsu

(n)
xs + ρβyu

(n)
xy

σu
(n)
xx

)
,

and where the arguments of the functions on the right-hand-side are omitted for brevity.
For the case n = 0 there is no dependence on y in the value function u(0), and we have
π∗,0t = π∗,0(t,X∗,0

t , St), where

π∗,0(t, x, s) = −

(
λ̂u

(0)
x + σsu

(0)
xs

σu
(0)
xx

)
.

Applying the definition of the optimal hedging strategy along with the representations (60)
and (61) for the value functions, gives the result.

�

4.4.1 Linear approximation for the indifference price

To obtain analytic results and hence conduct a simulation study of the effectiveness of the
optimal hedging strategy, we may approximate the indifference price by the marginal price.
For n = 0 the indifference price PDE becomes linear, and the Feynman-Kac theorem gives
the marginal price as follows.

Corollary 3 The marginal price at t ∈ [0, T ] is given by

p̂(t, s, y) = EQ
M

[h(YT )|St = s, Yt = y].

This is perfectly consistent with the general result of Theorem 5 since the minimal entropy
measure QE coincides with QM , as can be seen from Remark 1.

The marginal price (and hence the optimal trading strategy) can be computed in analytic
form since, under QM , log YT is Gaussian. We have the following result.

Proposition 5 Under QM , conditional on St = s, Yt = y,

log YT ∼ N(m,Σ2)

m = log y + β

(
θ̂(t, y)− ρλ̂(t, s)− 1

2
β

)
(T − t)

Σ2 =
[
1 + (1− ρ2)vt(T − t)

]
β2(T − t)
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Proof This is established by computing the SDEs for Y and for θ̂t − ρλ̂t under QM .
Indeed, applying the Itô formula to log Yt under QM , we obtain, for t < T ,

log YT = log Yt + β

∫ T

t

(
θ̂u − ρλ̂u

)
du− 1

2
β2(T − t) + β

∫ T

t
dŴQM

u , (62)

where ŴQM
is a Brownian motion under QM . The dynamics of θ̂t − ρλ̂t under QM are

d(θ̂t − ρλ̂t) = ρ̄vtdB̂
⊥,QM

t ,

where B̂⊥,Q
M

is aQM -Brownian motion perpendicular to that driving the stock, and related
to ŴQM

by ŴQM
= ρB̂QM

+ ρ̄B̂⊥,Q
M

, where B̂QM
is the Brownian motion driving S.

Hence, for u > t, after changing the order of integration in a double integral, we obtain∫ T

t

(
θ̂u − ρλ̂u

)
du =

(
θ̂t − ρλ̂t

)
(T − t) + ρ̄

∫ T

t
vu(T − u)dB̂⊥,Q

M

u .

This can be inserted into (62) to yield the desired result.

�

We are thus able to obtain BS-style formulae for the price and hedge. For a put option of
strikeK we obtain the following explicit formulae for the marginal price and the associated
optimal hedging strategy, where Φ denotes the standard cumulative normal distribution
function.

Corollary 4 With m and Σ as in Proposition 5, define b ≡ b(t, s, y) by

m = log y + b− 1
2
Σ2.

Then the marginal price at time t ∈ [0, T ] of a put option with payoff (K − YT )+ is
p̂(t, St, Yt), where

p̂(t, s, y) = KΦ(−d1 + Σ)− yebΦ(−d1),

d1 =
1
Σ

[
log
( y
K

)
+ b+

1
2
Σ2

]
.

The optimal hedging strategy given by Theorem 7 with p̂ as an approximation to the indif-
ference price is ∆̂t ≡ ∆̂(t, St, Yt), where

∆̂(t, s, y) = nρ
β

σ

y

s
ebΦ(−d1).
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4.5 Performance of the optimal strategy

To assess the performance of the optimal strategy based on the marginal price, we conduct
the following simulation experiment.

Using chosen values for the “true” drifts λ, θ, we generate asset price paths S, Y over
a time frame t0 (1 year) and use this “data” to estimate the asset drifts, and so set a prior
distribution at time 0. We then set initial asset prices S0, Y0 and generate a price history
over [0, T ].

We suppose a put option of strike K is sold at time 0 for p̂(0, S0, Y0) and optimally
hedged over [0, T ] (T = 1year), incorporating updating from filtering, and using daily
rebalancing. In this way, we generate a terminal hedging error. We repeat this procedure
of setting a prior using past “data” and then hedging over [0, T ], over many paths (with the
same values of S0, Y0 in each simulation) to generate a terminal hedging error distribution.
Note that we used a new set of “past data” to set the prior on each simulation. The idea is
to allow for occasions where the mean of prior distribution is of variable quality in relation
to the true values of the drifts.

We repeat the hedging error computation over the same asset price histories using the
BS-style hedge (30), and also with a hedge in the absence of filtering, where we used the
initial estimates of the asset drifts to compute the hedge throughout the hedging time frame.
This uses the hedge in (37) and the approximation formulae from Monoyios [26].

The parameters were set as below. The initial BS price and delta are denoted by BS0

and ∆BS
0 . The notation p̄0 denotes the average marginal price that the put was sold for

(recall that each simulation run results in a different initial prior). The average mean for the
prior distribution of λ is denoted λ̄0 (and similarly for θ); “NF” denotes “no filtering”.

λ = 0.5, σ = 0.22, θ = 0.45, β = 0.18, ρ = 0.85
S0 = 100, Y0 = 100, K = 100
BS0 = 7.17, ∆BS

0 = −0.46
p̄0 = 7.20, ∆̄0 = −0.32
p̄NF
0 = 7.33, ∆̄NF

0 = −0.47
λ̄0 = 0.11, θ̄0 = 0.09.

The results are shown in Figure 1 and Table 1. They clearly show that the optimal hedge
with learning produces a hedging error distribution with higher mean, lower standard devi-
ation and, significantly, a higher median (all as percentages of the initial option premium),
than either the BS hedge or the hedge without learning. Thus, the frequency of profits over
losses is increased by the optimal hedging program incorporating learning.

Varying some parameters slightly gave the results in Figure 2 and Table 2. The results
are still favourable, even if one sells the option for a lower value than the BS price, showing
that the improvement in hedging performance is not due to starting with a higher wealth in
the initial hedging portfolio.

The conclusion is that optimal hedging combined with a filtering algorithm to deal with
drift parameter uncertainty can indeed give improved hedging performance over methods
which take S as a perfect proxy for Y .
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Table 1: Hedging error statistics for Figure 1 (as percentage of premium)

Mean SD Median
Optimal Hedge 2.09 62.8 12.3
BS Hedge -17.6 80.5 -11.6
Unfiltered Hedge -15.7 79.4 -10.1
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Figure 1: Percentage hedging error distribution

Table 2: Hedging error statistics for Figure 2 (as percentage of premium). The parameters
are the same as those for Table 1 except for λ = 0.4, β = 0.23, ρ = 0.9. In this case the BS
price was 9.16, the average optimal price was 8.99 and the average price without filtering
was 9.12.

Mean SD Median
Optimal Hedge 7.09 51.8 13.1
BS Hedge 5.57 52.8 10.0
Unfiltered Hedge 5.16 53.1 9.60
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Figure 2: Percentage hedging error distribution

Conclusion

In this chapter we analysed utility-based pricing and hedging in incomplete security mar-
kets. We have derived probabilistic representations for indifference prices. In general these
are non-linear pricing rules reducing to linear pricing rules as the number of claims be-
comes small. We computed prices and optimal hedging strategies in basis risk models,
under full and partial information scenarios. these showed how optimal hedging can indeed
outperform hedging methods based on complete market approximations. This is therefore
of relevance to practitioners as well as to academics. The take-up of utility-based pricing
by practitioners has been somewhat limited, given the need to specify a utility function. It
is possible that the results of this chapter can show the potential benefits of applying such
techniques in practice.
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