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transactions costs predict nonlinear mean reversion of the futures basis
towards its equilibrium value. Nonlinearly mean-reverting models are
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indices over the post-1987 crash period, capturing empirically these theo-
retical predictions and examining the view that the degree of mean rever-
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1. INTRODUCTION

A large body of conventional finance theory assumes that financial mar-
kets are arbitrage-free at all times and also free of transactions costs on
trading assets. Although these assumptions can be criticized as unrealis-
tic, they have proved useful to construct benchmark models from which
to develop dynamic asset pricing theories. A growing body of the finance
literature is developing, however, which focuses on the implications of
relaxing some of the conventional assumptions underlying asset pricing
theories. In particular, it is obvious that trading a stock does incur costs
and that, although transactions costs are expected to be relatively small
in mature and liquid markets, they are likely to affect the stochastic
process governing asset prices. Even in the presence of transactions
costs, however, in real-world financial markets arbitrage opportunities do
arise, generating much trading activity aimed at exploiting mispricing. In
turn, this trading activity contributes to drive asset prices toward their
theoretically fair or equilibrium levels.

In the context of stock index futures markets, a number of empiri-
cal studies have focused on the persistence of deviations of the futures
basis from the equilibrium level implied by the cost of carry model or
variants of it. The cost-of-carry model predicts that spot and futures
prices co-move so that their long run equilibrium is essentially defined
by the futures basis, which also implies mean reversion in the basis.
Several studies record, however, the existence of significant nonlineari-
ties in the dynamics of the futures basis, which may be rationalized on
several grounds.! Indeed, as discussed below, it is intuitively clear that
there are several factors (including, for example, the existence of trans-
actions costs or agents heterogeneity) that generate no-arbitrage
bounds and imply a law of motion for the futures basis that is consis-
tent with nonlinear adjustment toward equilibrium. In particular,
nonzero transactions costs on trading the underlying asset of the
futures contract may lead to the basis displaying a particular form of
nonlinear mean reversion such that the basis becomes increas-
ingly mean reverting with the size of the deviation from its equilib-
rium value. Consequently, one might expect that allowing for nonlin-
ear adjustment toward equilibrium in the empirical modeling of the
futures basis may yield a more satisfactory approximation to the true
unknown data generating process driving the basis, improving upon
linear specifications.

'See, e.g., Dwyer, Locke, and Yu (1996), Martens, Kofman, and Vorst (1988), and Yadav, Pope, and
Paudyal (1994). See also Lo and MacKinlay (1999, Chap. 11).
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This paper contributes to the literature on modeling the behavior
of the futures basis on several fronts.> Specifically, the paper investi-
gates nonlinearities in basis adjustment toward its equilibrium value
and proposes a novel approach to modeling the behavior of the basis
inspired by the prediction of the theoretical arguments mentioned
above. Using data for the S&P 500 and the FTSE 100 indices during
the post-crash period since 1988, the authors provide strong evidence of
nonlinear mean reversion in the futures basis for both indices consid-
ered. The models indicate that the basis is closer to a unit root process
the closer it is to its equilibrium value and becomes increasingly mean-
reverting the further it is from its equilibrium value. Moreover, although
small shocks to the basis are highly persistent, larger shocks mean-
revert much faster, as predicted by the theoretical considerations dis-
cussed above and the widely held view that “arbitrage is like gravity”:
relatively larger deviations from fair values of asset prices (i.e., larger
mispricing) induce relatively faster adjustment of asset prices toward
their equilibrium values. These results have a natural interpretation,
being consistent with standard economic and financial intuition as well
as with the argument that there is a tendency of traders to wait for suf-
ficiently large arbitrage opportunities to open up before entering the
market and trading.’

The rest of the paper is set out as follows. Section 2 provides an
overview of the theoretical arguments that motivate nonlinear mean-
reverting behavior in the futures basis. Section 3 discusses the class of
nonlinear models employed for modeling the futures basis. Section 4
describes the data set. Section 5 reports the results of summary statistics
and univariate unit root tests applied to basis data, cointegration tests
applied to a regression involving the spot price and the futures price, lin-
earity tests applied to the basis data, and the estimation results from
employing nonlinear models to characterize the basis of the S&P 500
and the FTSE 100 indices. In Section 6 Monte Carlo integration meth-
ods are used to calculate the half-lives implied by estimated nonlinear
models for the basis, further examining how the nonlinear estimation
results can improve the profession’s understanding of the dynamics

*The literature related to the present study is very large and includes, among others, Blank (1991),
Brennan and Schwartz (1990), Chan (1992), Dwyer et al. (1996), Figlewski (1984), Fujihara and
Mougoue (1997a, 1997b), Gao and Wang (1999), Kawaller (1991), Kawaller, Koch, and Koch
(1987), Klemkosky and Lee (1991), Lekkos and Milas (2001), MacKinlay and Ramaswamy (1988),
Miller, Muthuswamy, and Whaley (1994), Modest and Sundaresan (1983), Parhizgari and de Boyrie
(1997), Sarno and Valente (2000), Stoll and Whaley (1990), Yang and Brorsen (1993, 1994), Yadav
et al. (1994).

3See, e.g., Dumas (1994) and Sofianos (1993) on this point.
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characterizing the major futures markets under investigation. A final sec-
tion briefly summarizes and concludes.

2. MOTIVATING NONLINEAR MEAN
REVERSION IN THE FUTURES BASIS

This section briefly discusses how the effects of transactions costs and
other factors characterizing stock index futures markets can induce non-
linear mean reversion of the futures basis toward its equilibrium value
such that the speed of adjustment of the basis toward equilibrium is a
function of the size of the disequilibrium.

Consider a market containing an asset, a stock index, whose price
S(t) under the equivalent martingale measure evolves according to:

dS(t) = S(t)(r — q)dt + ogdWi(t) (1)

where 7 is the (constant) risk-free interest rate; g is the (constant) divi-
dend yield on the index; o is the volatility of the index; W(t) is a one-
dimensional standard Brownian motion in a complete probability space.

Standard derivatives pricing theory gives the futures price F(t, T) at
time ¢ for delivery of the stock at time T = ¢ as:

F@, T) = E[S(T)|F(t)] (2)

where E denotes the mathematical expectation with respect to the mar-
tingale measure P, and F(t) denotes the information set at time ¢ (e.g.,
see Karatzas & Shreve, 1998). Given (1)—(2), the futures price has the
well-known formula:

F(t, T) = S@) exp(r.(T — 1)) (3)

where r, = v — q. This is the familiar expression for a futures price in a
nonrandom interest rate environment.
Defining the logarithmic basis b(t, T) at time t as

b(t, T) = log(F(t, T)/S(t)) (4)
then, using (3) and (4) yields
b(t, T) = r(T —t) (5)

A number of studies examining stock index futures prices have cata-
logued mean reverting deviations of the basis from its equilibrium level
defined as in (4) or (5). Also, it can be easily illustrated how incorporating
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stochastic factors in (1) (for example by making the cost of carry r, sto-
chastic) can lead to closed-form expressions for the futures price, which
implies mean-reversion in the futures basis (Schwartz, 1997).*

This simple model can be extended to determine bounds on stock
futures prices under the most commonly investigated market friction:
transactions costs are charged on trading the stock. If a share of stock is
bought for a price S then the buyer’s cash account is debited an amount
S(1 + v), where v > 0 is the proportional transactions cost rate for buy-
ing the index. Similarly, a stock sale credits the seller’s bank account with
an amount S(1 — w), where u > 0 is the proportional transactions cost
rate for selling stock.

Under these assumptions, the futures price at time t for delivery at
T, F(t, T) must lie within the following bounds to prevent arbitrage:’

SEHA —pwexp(r(T' =) =F T) =S)(1 +v)exp(r.(T —t))
(6)

Given the definition of the logarithmic basis, equation (6) can be
rewritten defining the no-arbitrage bounds on the futures price in terms
of the basis as follows:

log(1 — w) = b, T) =< log(1 + v) (7)

The above analysis shows that when market frictions such as pro-
portional transactions costs are taken into account, the futures price can
fluctuate within a bounded interval without giving rise to any arbitrage
profits. In other words, proportional transactions costs create a band for
the basis within which the marginal cost of arbitrage exceeds the mar-
ginal benefit. Assuming instantaneous arbitrage at the edges of the band
then implies that the bounds become reflecting barriers. If the upper
bound is violated, for example, arbitrageurs would sell short the futures
contract and buy the index, which would drive the basis back within the

*It can be shown, for example, that starting from a two-factor model for the stock index price and
the interest rate (modelled as an Ornstein—Uhlenbeck process) it is possible to derive a closed-form
solution for the futures basis that displays mean reversion (full calculations available from the
authors upon request). An alternative, more sophisticated way to rationalize mean reversion in
the cost of carry model may be by showing that the volume of arbitrage activity (e.g., sell overpriced
futures and buy cheap stocks) is determined within the theoretical structure to be greater when the
deviation from equilibrium is greater. This would be a model where the quantity of activity drives
the equilibration of price.

>To establish the relationship in (6), consider the zero-cost strategy of going long the futures con-
tract (which requires no initial outlay) at time ¢, then hedging this transaction by selling the index
and investing the proceeds in a cash account. At time T the funds in this account amount to
S(t)(1— w) exp(r,(T — t)), and this cannot be more than is needed to buy the index for F(t, T) under
the terms of the futures contract, otherwise arbitrage profits would result. This establishes the
lower bound in (6), and the upper bound is established by a symmetrical argument.
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no-arbitrage bounds (and a similar upward adjustment would occur if
the lower bound is violated). Following arguments of this sort, several
studies motivate the adoption of threshold-type models of the type origi-
nally proposed by Tong (1990) to empirically characterize the behavior of
the basis. These threshold models allow for a transactions costs band
within which no adjustment takes place—so that deviations from the
basis may exhibit unit root behavior—while outside the band the process
switches abruptly to become stationary autoregressive. Studies using
threshold models provide evidence against linearity in the deviation of
the basis from its equilibrium level and in favor of threshold-type behav-
ior (e.g., Yadav et al., 1994; Dwyer et al., 1996; Martens et al., 1998).

Nevertheless, while threshold-type models are appealing in this con-
text, various arguments can be made that rationalize multiple-threshold
or smooth, rather than single-threshold or discrete, nonlinear adjust-
ment of the basis toward its equilibrium value. First, some influential
studies of arbitrage in financial as well as real markets show that the
thresholds should be interpreted more broadly than as simply reflecting
proportional transactions costs per se, but also as resulting from the ten-
dency of traders to wait for sufficiently large arbitrage opportunities to
open up before entering the market and trading (see, e.g., Dumas, 1992,
1994; Neal, 1996; Sofianos, 1993).°

Second, if one takes into account fixed as well as proportional costs
of arbitrage, this results in a two-threshold model where the basis is reset
by arbitrage to an upper or lower inner threshold whenever it hits the
corresponding outer threshold. Intuitively, arbitrage will be heavy once it
is profitable enough to outweigh the initial fixed cost, but will stop short
of returning the basis to the equilibrium value because of the propor-
tional arbitrage costs (see the discussion in Dumas, 1994, in the context
of international capital markets).

Third, one may argue that the assumption of instantaneous trade
should be replaced with the presumption that it takes some time to
observe an arbitrage opportunity and execute transactions and that trade
is infrequent. For example, a number of studies have analyzed the effects
of arbitrage in futures markets along the lines of models of the type devel-
oped by Garbade and Silber (1983), where a continuum of traders induces
movements in spot and futures prices such that the basis returns very rap-
idly to a constant equilibrium level (see Chan, 1992; Kawaller et al., 1987

“Sofianos (1993) and Neal (1996) also find that most arbitrage trades are liquidated before expira-
tion. This finding is consistent with the model of Brennan and Schwartz (1990), which predicts that
arbitrage trades are liquidated when the reversal in the mispricing is sufficiently large and trades can

be profitable.
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Stoll & Whaley, 1990). However, the assumption of a continuum of
traders acting in futures markets has often been debated; notably, Miller
et al. (1994) argue that much of the mean reversion in basis movements
may be explained by infrequent trading in the cash market.

Fourth, in a market with heterogeneous agents who face different
levels of transactions costs (or different margin requirements or position
limits), agents essentially face no-arbitrage bands of different size. For
relatively small deviations of the basis from its equilibrium level, only
some traders will be able to effect arbitrage trades. If the bounds are vio-
lated by a relatively greater amount, then progressively more agents will
enter the market to effect arbitrage trades.”® Thus, the forces pushing
the basis back within the bounds will increase as the deviation from the
bounds increases since an increasing number of agents face profitable
arbitrage opportunities, implying the possibility of a smooth transition of
the basis back towards the bounds such that the speed of mean reversion
increases with the degree of violation of the arbitrage bounds (see, e.g.,
Dumas, 1994).

Overall, the arguments discussed above suggest that the basis
should become increasingly mean reverting with the size of the deviation
from the equilibrium level. Transactions costs create a band of no arbi-
trage for the basis, but the basis can stray beyond the thresholds. Once
beyond the upper or lower threshold, the basis becomes increasingly
mean reverting with the distance from the threshold. Within the trans-
actions costs band, when no trade takes place, the process driving the
basis is divergent since arbitrage is not profitable. Under certain restric-
tive conditions (including, among others identical transactions costs,
indentical margin requirements and position limits, and homogeneity of

In practice, u is determined by the transactions costs from the reverse cash-and-carry arbitrage
trades of selling the spot good at the bid price, lending the proceeds, and buying a futures contract,
whereas v is determined by the transaction costs from the standard cash-and-carry arbitrage trades
of borrowing to buy the spot good at the asked price and selling a futures contract. Moreover, both
the lower and upper bounds are made slightly higher by the existence of other carry costs from the
reverse (standard) cash-and-carry arbitrage, which should incorporate the arbitrageur’s lending (bor-
rowing) rate and, in the case of the lower bound, should also be adjusted to reflect the possibility
that the short seller will not earn the full amount of interest on the proceeds from the short sale. In
general, depending on their borrowing and lending rates and on the levels of transactions costs they
face, different individuals will have the ability to arbitrage at different futures prices.

80ne may be tempted to argue that, once an arbitrage opportunity arises, each arbitrageur will
invest as much as possible to exploit the arbitrage opportunity. However, this is obviously not the
case in real-world futures markets since arbitrage may be risky for a number of reasons, including
the existence of margin requirements and position limits. For example, Liu and Longstaff (2000)
demonstrate that, as an effect of the existence of margin requirements, it is not optimal to take
unlimited positions in arbitrage and it is often optimal to take smaller positions in arbitrage than
margin constraints would allow.
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agents) the jump to mean-reverting behavior may be discrete, but in gen-
eral it is smooth, and Dumas (1994), Terisvirta (1994), and Granger and
Lee (1999) suggest that even in the former case, time aggregation will
tend to smooth the transition between regimes. Hence, smooth rather
than discrete adjustment may be more appropriate in the presence of
proportional transactions costs, and time aggregation and nonsynchro-
nous adjustment by heterogeneous agents is likely to result in smooth
aggregate regime switching.

3. NONLINEAR MEAN REVERSION IN THE
BASIS: THE EMPIRICAL FRAMEWORK

The time series of interest in the present study is the logarithm of the
futures basis, b,, defined as in (4). Theoretical frameworks inspired by
the cost of carry model imply that a long-run relationship must exist
between the spot price and the futures price such that the basis is revert-
ing to a stable equilibrium level. In other words, while short-run devia-
tions of the basis from its equilibrium level are allowed for, the basis
must be a mean reverting process. Over the last two decades or so, a
large body of research focusing on testing the cost-of-carry model or on
modeling the basis has developed, initially largely stimulated by the early
influential studies of, among others, Modest and Sundaresan (1983) and
Figlewski (1984). In particular, a number of empirical studies have
focused on the persistence of deviations from the cost of carry using lin-
ear econometric methods. Linear methods are valid, however, only under
the maintained hypothesis of a linear autoregressive process for the
basis, which means that adjustment of the basis toward the equilibrium
value is both continuous and of constant speed, regardless of the size of
the deviation from the equilibrium value.

As discussed in the previous section, however, the presence of trans-
actions costs, possibly in addition to several other factors, are likely to gen-
erate complex nonlinear dynamics in the futures basis, which has impor-
tant implications for conventional empirical modeling procedures of the
basis. Some empirical evidence on the importance of transactions costs is
provided by several studies—cited in the introduction—investigating the
nonlinear nature of the adjustment process of the basis using threshold
models. Threshold models allow for a transactions costs band within
which no adjustment takes place (so that deviations from the equilibrium
value of the basis may exhibit unit root behavior) while outside the band
the process switches abruptly to become stationary autoregressive.
Although discrete switching of this kind represents a significant step
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ahead relative to the previous literature using stationary models and may
be appropriate when considering the effects of arbitrage on individual
stocks, discrete adjustment of the basis of a stock index would clearly
be most appropriate only when stocks have identical features of, for
example, transactions costs, interest rates and liquidity and when agents
are homogeneous. Moreover, given the discussion in the previous
section, smooth rather than discrete adjustment may be more appropri-
ate in the presence of proportional transactions costs and, as suggested
by Dumas (1994), Terisvirta (1994), and Granger and Lee (1999), time
aggregation and, most importantly, nonsynchronous adjustment by
heterogeneous agents is likely to result in smooth aggregate regime
switching.

A characterization of nonlinear adjustment that allows for smooth
rather than discrete adjustment is in terms of a smooth transition autore-
gressive (STAR) model (Granger & Terisvirta, 1993; Terisvirta, 1994).
In the STAR model, adjustment takes place in every period but the speed
of adjustment varies with the extent of the deviation from equilibrium. A
STAR model may be written:

4 I4 %
j=1 j=1

where {b,} is a stationary and ergodic process, g ~ iid(0, o*) and
(0; k) € {NT X N}, where N denotes the real line (—%, ) and N the
positive real line (0, ). The transition function ®[6; b, ; — k] deter-
mines the degree of mean reversion and is itself governed by the param-
eter 6, which effectively determines the speed of mean reversion, and the
parameter k which may be seen as the equilibrium level of {b,}. A simple
transition function suggested by Granger and Terisvirta (1993) and
Terdsvirta (1994), which is particularly attractive in the present context,
is the exponential function:

(I)[O; bt*d - K] =1- eXP[_GZ[btfd - K]z] (9>

in which case (8) would be termed an exponential STAR or ESTAR
model. The exponential transition function is bounded between zero and
unity, ® : N — [0, 1], has the properties ®[0] = 0 and lim,_, .. P[x] =
1, and is symmetrically inverse-bell shaped around zero. These proper-
ties of the ESTAR model are attractive in the present modeling context
because they allow a smooth transition between regimes and symmetric
adjustment of the basis for deviations above and below the equilibrium



294

Monoyios and Sarno

level.” The transition parameter 6 determines the speed of transition
between the two extreme regimes, with lower absolute values of 6
implying slower transition. The inner regime corresponds to b,_; = k,
when ® = 0 and (8) becomes a linear AR(p) model:

j4
by=a+ > Bb_;+e¢ (10)

=1

The outer regime corresponds, for a given 0, to limj .. ® X
[0; b, 4 — k], where (8) becomes a different AR(p) model:

4
b,=a+ a* + 2(3j+ﬁjf)bt_j+st (11)
j=
with a correspondingly different speed of mean reversion so long as
,BT # 0 for at least one value of j.

Granger and Teridsvirta (1993) and Teridsvirta (1994) also suggest
the logistic function as a plausible transition function for some appli-
cations, resulting in a logistic STAR or LSTAR model. Since, however,
the LSTAR model implies asymmetric behavior of b according to
whether it is above or below the equilibrium level, that model is con-
sidered, a priori, as inappropriate for modeling basis movements. That
is to say, it is not straightforward to think of reasons why the speed of
adjustment of the basis should vary according to whether the futures
price is above or below its fair price.'” The authors do, however, test for
nonlinearities arising from the LSTAR formulation as a test of specifi-
cation of the estimated models in the section discussing the empirical
analysis.

It is also instructive to reparameterize the STAR model (8) as
follows:

p—1
Ab, = a + pb,_, + Ed)jAbt_j

i=1

p—1
+ {a* + p*b,_, + E(]B;Abtj}q)[ﬁ; b,_;— k]l +e (12)

j=1

?Clearly, the class of nonlinear models is infinite, and this paper focuses on the ESTAR formulation
primarily because of these attractive properties, its relative simplicity, and the fact that it seems to be
the logical empirical counterpart of the theoretical considerations discussed in Section 2.

'%One notable example in the literature of a study proposing asymmetries is due to Brennan and
Schwartz (1990), who suggest that if the transactions costs of arbitrage are asymmetric and arbi-
trage affects the level of the basis then such asymmetry is likely to be reflected in the distribution of
the basis. Nevertheless, in general, there is fairly convincing evidence that the distribution of the
basis is symmetric—notably, see the evidence provided by Dwyer et al. (1996) using both parametric
and nonparametric tests of symmetry applied to data for the S&P 500 index.
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where Ab,_; =b,_;

and p*. The discussion of the effect of transactions costs in the previous

— b,_;_,. In this form, the crucial parameters are p

section suggests that the larger the deviation from the equilibrium value
of the basis the stronger will be the tendency to move back to equilib-
rium. This implies that while p = 0 is admissible, one must have
p¥ < 0and (p + p*) < 0. That is, for small deviations b, may be char-
acterized by unit root (or even explosive) behavior, but for large devia-
tions the process is mean reverting.''

In empirical applications, Granger and Terdsvirta (1993) and
Terisvirta (1994) suggest choosing the order of the autoregression, p,
through inspection of the partial autocorrelation function, PACF; the
PACEF is to be preferred to the use of an information criterion since it
is well known that the latter may bias the chosen order of the autore-
gression towards low values, and any remaining serial correlation may
affect the power of subsequent linearity tests. Granger and Terisvirta
(1993) and Terisvirta (1994) then suggest applying a sequence of
linearity tests to artificial regressions which can be interpreted as
second or third-order Taylor series expansions of (8) (see also
Luukkonen et al., 1988). This allows detection of general nonlinearity
through the significance of the higher-order terms in the Taylor expan-
sions, with the value of d selected as that yielding the largest value of
the test statistic. The tests can also be used to discriminate between
ESTAR and LSTAR formulations, since third-order terms disappear in
the Taylor series expansion of the ESTAR transition function. This
method of selecting the order of d and choosing whether an ESTAR or
LSTAR formulation is appropriate is termed the Terisvirta Rule below.
In the Monte Carlo study of Terisvirta (1994), the Terdsvirta Rule
worked well in selecting d and also in discriminating between ESTAR
and LSTAR unless, understandably, the two models are close substi-
tutes—that is, when most of the observations lie above the equilibrium
level k so that only one half of the inverse-bell shape of the ESTAR
transition function is relevant and is well approximated by a logistic
curve.

Hence, using results provided by Terisvirta (1994), prior to model-
ing the basis using smooth transition models, the tests for linearity
are constructed as follows. The following the artificial regression is

""This analysis has implications for conventional unit root tests based on the maintained hypothesis
of a linear autoregressive model where the degree of mean reversion is measured by the size of p,
implicitly assuming p* = 0—e.g., see the discussion in Michael, Nobay, and Peel (1997) in the con-
text of testing for nonstationarity of real exchange rates.
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estimated:

P
_ 2 3
b, = Yoo + E{¢szt—j + ¢1jzt—jzt—d + d)Zth—th—d + ¢3jzt—jzt—d}
i=1

+ puzt_ 4 + ¢sz}_, + innovations (13)

where ¢, and ¢5 become zero if d = p. Keeping the delay parameter d
fixed, testing the null hypothesis Hy: ¢, = ¢, = ¢35, = ¢, = ds =0 Vj €
{1, 2, ..., p} against its complement is a general test (LM®) of the
hypothesis of linearity against smooth transition nonlinearity. Given that
the ESTAR model implies no cubic terms in the artificial regression (i.e.,
¢3; = ¢s = 0if the true model is an ESTAR, but ¢;; # ¢s # 0 if the true
model is an LSTAR), however, testing the null hypothesis that H,: ¢;; =
ds=0Vje{l,2,...,p}provides a test (LM?) of ESTAR nonlinearity
against LSTAR-type nonlinearity. Moreover, if the restrictions ¢;; = ¢5 =
0 cannot be rejected at the chosen significance level, then a more power-
ful test (LMF) for linearity against ESTAR-type nonlinearity is obtained
by testing the null hypothesis Hy: ¢; = ¢,; = ¢, = 0|3, = ds =0 Vj €
{1,2,...,ph

In the empirical analysis, therefore, the authors specify a set of val-
ues for d in the range {1, 2, . .., D} and employ each of the tests LM,
LM? and LM*. Subject to LM being significant and LM? being insignif-
icant, d = d* is selected such that LM®(d*) = SUP; LME(d) for § =
{1, 2, ..., D} (for further details, see Terisvirta, 1994).

4. DATA

The data set comprises daily time series on futures written on the S&P
500 index and the FTSE 100 index, as well as price levels of the
corresponding underlying cash indices, over the sample period from
January 1, 1988 to December 31, 1998. The data were obtained
from Datastream. Given the focus of the present paper on investigating
the importance of allowing for nonlinearity and aggregate regime
switching in modeling the basis, the authors deliberately choose to use
data after the 1987 crash in order to reduce the risk that the nonlin-
earity detected and modeled in the empirical analysis could be deter-
mined by or attributed to a unique and perhaps exceptional event
occurred over the sample.

A number of related studies motivated by microstructure considera-
tions or focusing on modeling intraday or short-lived arbitrage have used
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intraday data at different intervals.'? Given that the basic goal of this study
is to shed light on the mean-reverting properties of the futures basis and to
measure the role of the persistent, low-frequency properties of the basis
data, the span of the time series—in terms of years—is much more impor-
tant than the number of observations per se (e.g., see Shiller & Perron,
1985). Therefore, to reduce the noise element in the futures basis data
the authors choose to employ data at daily frequency. The authors did,
however, estimate nonlinear models also using intraday data at 5-min inter-
vals. The estimation results were qualitatively identical, suggesting that
aggregation and systematic sampling may not have a particularly strong
effect on the stochastic mean-reverting behavior of the futures basis."?

The data set under examination covers an eleven-year period,
which may be sufficiently long to capture some of the main features of
the unknown stochastic process driving the basis, while also providing a
sufficiently large number of observations T = 2,870 to be fairly confi-
dent of the estimation results. Also, given that in the UK the futures
market ceases trading at 16.10 and the underlying index closes at 16.30,
FTSE 100 index levels at 16.10 are used in order to avoid the problems
caused by nonsynchronous market closure. Similarly, given that for the
S&P 500 the futures market ceases trading at 16.15 EST and the under-
lying index closes at 16.00 EST, S&P 500 futures index levels at 16.00
EST are used. Obviously, the futures contract is paired up with the spot
price comparing the spot price to the contract nearest to maturity. (All
times are EST.)

Using these data, the authors construct—for each of the two indices
analyzed—the time series of interest in this paper, namely the logarithm
of the basis, b, = f, — s,, where f, and s, denote the logarithm of the
futures price and the logarithm of the spot price respectively.

5. EMPIRICAL ANALYSIS

5.1 Preliminary Statistics and
Cointegration Analysis

Panel (a) of Table I provides some summary statistics for f, s,, and b,. For
both the S&P 500 and the FTSE 100, the first moment of the futures price
is slightly larger than the first moment of the spot price (although it is not
the case that f, > s, at each point in time), while the second moments of

2For example, Chan (1992), Dwyer et al. (1996), and Miller et al. (1994) have used 5-, 15-, and
5-min intervals, respectively.

3For an application of nonlinear models to higher frequency data in this context, see Taylor, van
Dijk, Franses, and Lucas (2000).
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TABLE |

Preliminary Data Analysis

S&P 500 FTSE 100
fi s, b, 1 s, b,
Panel (a): Summary Statistics
Minimum 5.4837 5.4915 —0.0195 7.4277 7.4351 —0.0259
Maximum 7.1346 7.1243 0.0221 8.7358 8.7289 0.0316
Mean 6.1802 6.1752 0.0000 8.0113 8.0033 0.0000
Variance 0.1734 0.1730 1.77E-5 0.1096 0.1109 6.24E-5
PACF:
lag 1 0.9984 0.9984 0.7717 0.9983 0.9984 0.8959
lag 2 0.0285 0.0119 0.3284 0.0111 —0.0074 0.2304
lag 3 0.0012 0.0003 0.1635 0.0149 0.0103 0.1114
lag 4 0.0106 0.0129 0.0626 0.0177 0.0107 0.0740
lag 5 0.0075 0.0045 0.0645 —0.0040 —0.0050 0.0477
lag 6 —0.0390 —0.0323 0.0244 —0.0044 —0.0041 —0.0005
lag 7 0.0139 0.0108 0.0113 —0.0101 —0.0057 0.0097
lag 8 0.0188 0.0165 0.0029 0.0242 0.0130 0.0061
lag 9 0.0008 0.0002 0.0065 —0.0131 —0.0064 0.0021
lag 10 0.0061 0.0037 0.0067 0.0060 0.0116 0.0007
lag 15 -0.0179 —-0.0173 —0.0099 —0.0048 —0.0054 0.0020
lag 20 0.0047 0.0091 —0.0097 0.0124 0.0107 —0.0074
Panel (b): Unit Root Tests
Futures Price
ﬁ(c) ft(c,T) Aﬁ(C) Ath(C)
S&P 500 —0.0697 —1.6101 —40.2570 —66.6875
FTSE 100 —-0.2877 —2.9778 —39.1603 —64.2835
Spot Price
St(C) st(C,T) Ast(l-') AZSl(C)
S&P 500 —0.0832 —1.4489 —23.5721 —63.7417
FTSE 100 —0.2356 —2.7981 —49.3863 —62.8683
Basis
b, bt(C) Abt(”) Azbt(c)
S&P 500 —21.2437 —8.9122 —55.4507 —80.8012
FTSE 100 —14.8101 —7.2860 —20.5121 —73.0704

Notes. f, s, and b, denote the log-level of the futures price, the log-level of the spot price, and the demeaned log-level of
the basis, respectively. In Panel (a), PACF is the partial autocorrelation function, and its standard deviation can be approxi-
mated by the square root of the reciprocal of the number of observations, T = 2,870, hence being about 0.0187. In Panel (b),
statistics are augmented Dickey—Fuller test statistics for the null hypothesis of a unit root process; the (¢) (¢, ) superscript
indicates that a constant (a constant and a linear trend) was (were) included in the augmented Dickey—Fuller regression,
while absence of a superscript indicates that neither a constant nor a trend were included; A is the first-difference operator.
The critical value at the five percent level of significance is —1.95 to two decimal places if neither a constant nor a time trend
is included in the regression, —2.86 if a constant only is included, and —3.41 if both a constant and a linear trend are
included (Fuller, 1976; MacKinnon, 1991).
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the spot price and the futures price are virtually the same. The summary
statistics for b, (demeaned prior to the empirical analysis, hence generat-
ing a mean exactly equal to zero) indicate much lower variability relative
to futures and spot prices. Nevertheless, it is interesting to note that,
while the variance of the S&P 500 futures and spot prices is (about 60%)
higher than the variance of the FTSE 100 futures and spot prices, the
variance of the S&P 500 basis is (about 70%) lower than the variance of
the FTSE 100 basis. The partial autocorrelation functions, reported in
Panel (a) of Table I, suggest that both futures and spot prices display very
strong first-order serial correlation but they do not appear to be signifi-
cantly serially correlated at higher lags; the basis appears to be less
strongly serially correlated but displays a slower decay of the partial auto-
correlation function at higher lags.

As a preliminary exercise, the authors test for unit root behavior of
each of the futures price and spot price time series by calculating standard
augmented Dickey—Fuller (ADF) test statistics, reported in Panel (b) of
Table I. In each case, the number of lags is chosen such that no residual
autocorrelation was evident in the auxiliary regressions.'* In keeping with
the very large number of studies of unit root behavior for these time series
and conventional finance theory, the authors are in each case unable to
reject the unit root null hypothesis applied to each of the futures price and
the spot price for both indices at conventional nominal levels of signifi-
cance. On the other hand, differencing the price series appears to induce
stationarity in each case, clearly indicating that both f, and s, are realiza-
tions from stochastic processes integrated of order one. Nevertheless, the
results suggest strongly a rejection the unit root null hypothesis applied to
b,in levels as well as in differences, suggesting stationarity of the basis and
possibly the existence of a cointegrating relationship between the futures
price and the spot price for each of the S&P 500 and the FTSE 100."

To complete the analysis of the long-run properties of the data, the
authors test for cointegration between f, and s,, employing the well-known

“Moreover, using non-augmented Dickey—Fuller tests or augmented Dickey—Fuller tests with any
number of lags in the range from 1 to 20 yielded results qualitatively identical to those reported in
Panel (b) of Table I, also regardless of whether a constant or a deterministic trend was included
in the regression. Also, note that a deterministic trend was found to be statistically significantly
different from zero at conventional nominal levels of significance in the auxiliary regressions for
both the futures price and the spot price (not for the basis), consistent with a large empirical litera-
ture in this context.

PIn addition to the ADF tests, the authors also execute unit root tests of the type proposed by
Phillips and Perron (1988) as well as Johansen likelihood ratio tests (Johansen, 1988, 1991) in a
vector autoregression with one series. The results were perfectly consistent with the ADF tests
results, indicating that both f, and s, are I(1), whereas b, is I(0) (results not reported but available
from the authors upon request).
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Johansen (1988, 1991) maximum likelihood procedure in a vector
autoregression comprising f, and s,, and allowing for a lag length of 5 and
an unrestricted constant term.'® Both Johansen likelihood ratio (LR)
test statistics (based on the maximum eigenvalue and on the trace of the
stochastic matrix respectively) clearly suggest that a cointegrating rela-
tionship exists for both indices under investigation. Also, the restriction
suggested by conventional finance theory in the spirit of the cost of carry
model that the cointegrating parameter equals unity could not be rejected
at conventional nominal levels of significance for both the S&P 500 and
the FTSE 100. In fact, estimation of the vector autoregression with the
cointegrating parameter left unrestricted produced estimated values of
the cointegrating parameter equal to 1.0001 for the S&P 500 and equal
to 1.0003 for the FTSE 100. Then, estimation of the VAR with the impo-
sition of the restriction that the cointegrating parameter equals unity pro-
duced the results given in Table II, suggesting that a unique cointegrating
relationship exists between f, and s, for both the S&P 500 (Panel (a)) and
the FTSE 100 (Panel (b)).!"!8

5.2 Linearity Tests

As a preliminary to employing nonlinear stochastic models to characterize
the basis, the authors carry out both a general test for linearity of the
residuals from an autoregressive process for the basis as well as the lin-
earity tests discussed in Section 3 do discriminate between a linear
model, an ESTAR model and an LSTAR model.

The first linearity test employed is a RESET (Ramsey, 1969) test of
the null hypothesis of linearity of the residuals from an AR(5) for b,

'The authors were very careful in selecting the number of lags in the vector autoregression, being
aware of the sensitivity of vector autoregression analysis to the lag length in this context. Both the
Akaike information criterion (AIC) and the Schwartz information criterion (SIC) suggested a lag
length of 5 for both systems. Nevertheless, in the present application, the results were found to be
very robust to the choice of the lag length. Also, note that the VAR considered is essentially model
H/(r) in Johansen (1995, p. 83) notation, where a linear deterministic trend is implicitly allowed
for but this can be eliminated by the cointegrating relations and the process contains no trend-
stationary components; hence the model allows for a linear trend in each variable but not in the
cointegrating relations.

LR tests of the hypothesis that the cointegrating parameter equals unity could not be rejected with
p-values equal to .503 and .582 for the S&P 500 and the FTSE 100 respectively. Also, note that test-
ing for cointegration between f, and s, under the unity restriction on the cointegrating parameter is
tantamount to testing for nonstationarity of the basis.

'8The finding of cointegration between the spot and futures price is expected in the light of the cost
of carry model but it is not a trivial result. Several authors have not been able to detect cointegration
between the spot and the futures price or mean reversion in the basis. Notably, Miller et al. (1994)
find that the S&P 500 index basis appears nonstationary (using intraday data), implying that the
spot and the futures price may not cointegrate.
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TABLE 1l
Johansen Maximum Likelihood Cointegration Procedure

H, H, LR 5% Critical Value

Panel (a): S&P 500

LR Tests Based on the Maximum Eigenvalue of the Stochastic Matrix

g=0 g=1 380.12 14.06

g=1 g=2 0.30 3.84
LR Tests Based on the Trace of the Stochastic Matrix

g=0 g=1 380.04 15.41

g=1 g=2 0.30 3.84

Panel (b): FTSE 100

LR Tests Based on the Maximum Eigenvalue of the Stochastic Matrix

g=0 g=1 59.85 14.06

g=1 g=2 58E—3 3.84
LR Tests Based on the Trace of the Stochastic Matrix

g=0 g=1 59.86 15.41

g=1 g=2 58E-3 3.84

Notes. The vector autoregression under consideration comprises the futures price and the spot price, as
described in the text. H, and H, denote the null hypothesis and the alternative hypothesis, respectively; g
denotes the number of cointegrating vectors; the 5% critical values reported in the last column are taken from
Osterwald-Lenum (1992).

against the alternative hypothesis of general model misspecification.
Under the RESET test statistic, the alternative model involves a higher-
order polynomial to represent a different functional form; under the null
hypothesis, the statistic is distributed as y*(q) with q equal to the num-
ber of higher-order terms in the alternative model. Table III reports the
results from executing RESET test statistics where in the alternative
model a quadratic and a cubic term are included; the null hypothesis
is very strongly rejected for the basis of both indices considered with
p-values of virtually zero, clearly suggesting that a linear autoregressive
process for the basis is misspecified.

Upon inspection of the partial autocorrelation functions of the
basis, for both the S&P 500 and the FTSE 100, the authors consider a
lag length of 5 for executing the linearity tests discussed in Section 3.
Table IV reports values of the test statistics LM®, LM?, and LM*. The
authors consider d € {1, 2, ..., 10} as plausible values for the delay
parameter, although it seems plausible to expect a rather fast reaction of
agents to deviations of the basis from the equilibrium value and, hence,
a relatively low value of d. From Table 1V it can be seen that linearity is
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TABLE 111
RESET Tests on the Basis

S&P 500 FTSE 100

532.3466 {0.0000} 614.6272 {0.0000}

Notes. RESET test statistics are computed considering a linear ADF regression for the basis with four lags
with no constant and no time trend against an alternative model with a quadratic and a cubic term. In construct-
ing the tests the F-statistic form is used since it is well known that in finite samples the actual test size of the F
approximation may be closer to the nominal significance level than the actual size of the x? approximation.
Figures in braces denote marginal significance levels (p-values).

TABLE IV
Linearity Tests on the Basis

LMC¢ LM? LMFE
Panel (a): S&P 500
d=1 271.616 {0.0} 6.5301 {0.2580} 90.7058 {0.0}
d=2 88.6367 {0.0} 5.4172 {0.3671) 82.2928 {0.0}
d=3 62.2970 {1.0E—-7} 4.1220 {0.5320} 441118 {3.14E-6}
d=4 103.864 {0.0} 8.9173 {0.1124} 56.0570 {0.2.0E—8}
d=5 112.989 {0.0} 7.1421 {0.2103} 78.9965 {0.0}
d=6 105.218 {0.0} 5.1217 {0.4012} 76.4296 {0.0}
d=7 79.3125 {0.0} 2.9515 {0.7075} 64.2786 {0.0}
d=8 60.8880 {1.8E—7} 3.1005 {0.6845} 49.0440 {4.0E-7}
d=9 66.1436 {2.0E—8) 4.7150 {0.4516) 42.1225 {7.13E—6}
d=10 73.6207 {0.0} 6.1023 {0.2964} 45.8093 {1.55E—-6}
Panel (b): FTSE 100
d=1 135.742 {0.0} 3.9694 {0.5538) 66.3531 {0.0}
d=2 34.4171 {0.0030} 4.5238 {0.4767} 27.2210 {0.0024}
d=3 80.9632 {0.0} 7.6144 {0.1788} 28.5829 {0.0014}
d=4 24.3906 {0.0587} 4.4830 {0.4822} 18.6640 {0.0447}
d=5 32.2180 {0.0060} 3.0715 {0.6890} 20.9364 {0.0215}
d=6 43.2861 {0.0001} 6.3820 {0.2708} 29.6207 {0.0010}
d=7 29.2760 {0.0148} 8.4462 {0.1333} 19.8501 {0.0307}
d=8 18.3425 {0.2451) 4.6442 {0.4608) 15.5808 {0.1123}
d=9 22,2351 {0.1018} 4.8443 {0.4352) 17.3302 {0.0674}
d=10 35.1728 {0.0023} 6.6501 {0.1556} 23.4487 {0.0092}

Notes. The statistics LMS, LM®, and LME are Lagrange multiplier test statistics for linearity constructed as dis-
cussed in the text for different delays d € {1, 2, . . ., 10}. The order of the autoregression, p equals five in each
case. In constructing the tests the F-statistic form is used since it is well known that in finite samples the actual test
size of the F approximation may be closer to the nominal significance level than the actual size of the x2 approxi-
mation. Figures in braces denote marginal significance levels (p-values); p-values equal to zero to the eight deci-
mal place are considered as virtually zero and reported as {0.0}.

easily rejected at the 5% significance level for the S&P 500 for each value
of the delay parameter considered and for the FTSE 100 for all values of
the delay parameter except 5, 8, and 9. Also, the rejections are particularly
strong (p-values are very low) for d = 1. LM? is always insignificantly
different from zero at conventional significance levels for any value of
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the delay parameter considered and for both indices under investigation,
implying that greater power may be obtained using LM*. LM is, in fact,
statistically significant for each value of d for the S&P 500 index and for
8 out of 10 values of d for the FTSE 100 index. Following the Terisvirta
Rule—i.e., minimize the significance level of LM*—an ESTAR model
with delay parameter equal to unity is selected for both indices."’

5.3 Nonlinear Estimation Results

The results reported and discussed in the previous section led to the
choice of an ESTAR model for each of the two bases examined, with the
lag length set equal to 5 and the delay parameter set equal to unity.
Hence, for each of the bases, ESTAR models are estimated in first-
difference form as in equation (12) with p = 5 andd = 1.

Experimentation with various starting values for the parameters
yielded identical results, indicating the location of a global optimum. For
each of the estimated ESTAR models, the authors could not reject, at
the 5% significance level, the hypothesis of no remaining nonlinearity for
values of d ranging from 2 to 10, on the basis of Lagrange multiplier tests
(Table V reports only the maximum value of the LM statistic testing for
no remaining ESTAR nonlinearity, NLES,, ). Neither could the authors
reject at the 5% level the hypothesis of no remaining nonlinearity of the
LSTAR variety with values of the delay parameter in the range from 1 to
10 (NLLS,,,x in Table V). This procedure therefore provides support for
setting d = 1 and for using a symmetric nonlinear transition function.

With p = 4, the delay parameter, d, is also estimated directly together
with the other model parameters, by nonlinear least squares involving a
grid search over values of d from 1 to 10. A value of d = 1 was again
implied for each of the bases. It is significant that d = 1 is the least
squares estimate because, as noted by Hansen (1997), since the parame-
ter space for d is discrete, its least squares estimate is super-consistent and
can be treated as known for the purposes of further inference.

Hence, the Teridsvirta Rule appears to be very robust in the present
application and an ESTAR model with p = 5 and d = 1 is the preferred
model for both series. The resulting ESTAR models, estimated by non-
linear least squares,?® are reported in Table V.

YAs a check of model adequacy against nonlinearity with other delays, however, the authors report
below a Lagrange multiplier test for no remaining nonlinearity in the estimated ESTAR models, as
suggested by Eitrheim and Terisvirta (1996).

*0Regularity conditions for the consistency and asymptotic normality of the nonlinear least squares
estimator are discussed in this context by Tjostheim (1986).
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TABLE V

Nonlinear Estimation Results

S&P 500 FTSE 100

bi(= =7 —0.456 (0.032) —0.408 (0.029)
$o(= —3) —0.243 (0.033) —0.229 (0.027)
da(= —d3) —0.152 (0.032) —0.139 (0.026)
b= —d%) —-0.107 (0.027) —0.079 (0.024)
p* 0.303 (0.016) 0.120 (0.015)
62 0.205 (0.031) {2E—8} 0.272 (0.067) {8E—5}
R? 0.645 0.820
s 2.51E-3 3.35E-3
Diagnostic tests:

AR(10) {0.674} {0.349}

ARCH(10) {0.750} {0.752}

NLES,,, {0.456} {0.551}

NLLS,x {0.393} {0.642}

JB {0.436} {0.368}

LR {0.430} {0.542}

SKALIN {6E—8} {1E-4}

Notes. The model estimated is of the form (12) with the restrictions discussed in Section 5.3. R? denotes the adjusted
coefficient of determination, and s is the standard error of the regression. AR(10) and ARCH(10) are Lagrange multiplier
test statistics for up to tenth-order serial correlation in the residuals constructed as in Eitrheim and Terasvirta (1996) and
test statistics for up to tenth-order autoregressive conditional hetereoskedasticity constructed as in Engle (1982), respec-
tively. NLES,,,x is the maximal Lagrange multiplier test statistic for no remaining ESTAR nonlinearity with delays in the
range from 2 to 10; NLLS,,x is the maximal Lagrange multiplier test statistic for no remaining LSTAR nonlinearity with
delay in the range from 1 to 10 (Eitrheim & Terasvirta, 1996). JB is a Jarque—Bera test statistic for normality of the residu-
als (Jarque & Bera, 1987). LR is a likelihood ratio statistic for the parameter restrictions on the unrestricted ESTAR model.
SKALIN is a parametric bootstrap likelihood ratio test of linearity constructed as suggested by Skalin (1998). Figures in
parentheses below coefficient estimates denote estimated standard errors. Figures in braces denote marginal significance
levels (p-values). For test statistics which are distributed as central y? (the LR and JB statistics) or F (the AR, ARCH,
NLES,,,x, and NLLS,,, statistics) under the null hypothesis, only the marginal significance level is reported. Marginal sig-
nificance levels for the estimated transition parameters and for SKALIN are calculated by simulation methods as described
in the text.

Table V in fact reports only the most parsimonious form of the esti-
mated equations, since in no case the restrictions that p = 0, ¢; = —qﬁj

and ¢ = a®

= k = 0 could be rejected at the 5% significance level (see
the likelihood ratio statistic, LR, in Table V). These restrictions imply an
equilibrium log-level of the basis of zero, in the neighborhood of which b,
is nonstationary, becoming increasingly mean reverting with the absolute
size of the deviation from equilibrium.

The residual diagnostic statistics are satisfactory in all cases
(Eitrheim & Terésvirta, 1996). The estimated transition parameter

(standardized by dividing it by the estimated variance of the dependent
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variable, as suggested by Terisvirta, 1994, 1998) in each case appears
to be strongly significantly different from zero on the basis of the
individual “t-ratios.” It should be clear on reflection, however, that
the “t-ratios” for these parameters should be interpreted with caution
since, under the null hypothesis H,: 6> = 0, the basis follows a unit
root process. Hence, the presence of a unit root under the null hypoth-
esis complicates the testing procedure analogously to the way in which
the distribution of a Dickey—Fuller statistic cannot be assumed to be
Student’s t. The authors therefore calculate the empirical marginal
significance levels of these test statistics by Monte Carlo methods
assuming that the true data generating process for the logarithm of
each of the basis series was a random walk, with the parameters of the
data generating process calibrated using the actual basis data over the
sample period.?' From these empirical marginal significance levels
(reported in braces next to the coefficient estimates in Table V), the
estimated transition parameter is found to be significantly different
from zero at the one percent significance level in each case. Since
these tests may be thought of as nonlinear unit root tests, the results
indicate strong evidence of nonlinear mean reversion for each of the
basis examined over the sample.??

The strongly nonlinear behavior implied by the empirical results is
made clear by Figure 1, which displays the plot of the estimated transi-
tion function against the transition variable b,_,, showing that the limit-
ing case of ®[-] =1 is attained for both series, although—ceteris
paribus—the S&P 500 basis appears to adjust toward equilibrium faster
than the FTSE 100 basis.

Opverall, the nonlinear estimation results are encouraging, uncover-
ing statistically significant evidence of nonlinear mean reversion for each
of the two bases examined over the post-1987 sample period. The esti-
mated models are in every case statistically well determined, provide
good fits to the data and pass a battery of diagnostic tests.

2'The empirical significance levels were based on 5,000 simulations of length 2,970, initialized at
b, = 0, from which the first 100 data points were in each case discarded. At each replication a system
of ESTAR equations identical in form to those reported in Table V was estimated. The percentage of
replications for which a “t-ratio” for the estimated transition parameters greater in absolute value
than that reported in Table V was obtained was then taken as the empirical significance level in each
case.

#In addition, to provide corroborating evidence in favor of significant ESTAR nonlinearity in b
and its nonlinear mean reversion to a stable equilibrium level, the authors also test for the signif-
icance of 6% using Skalin’s (1998) parametric bootstrap likelihood ratio test. The resulting likeli-
hood ratio statistic for the null hypothesis that §* = 0 for each ESTAR model is very large, with a
marginal significance level, similarly calculated by Monte Carlo methods, of virtually zero.
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FIGURE 1
Estimated transition functions.

6. THE EMPIRICAL IMPORTANCE OF
NONLINEARITY IN THE BASIS: HOW MUCH
DOES THE SIZE OF THE SHOCK MATTER?

While the estimated ESTAR models given in Table V impart some idea of
the degree of mean reversion exhibited by the basis, a sensible way to
gain a full insight into the mean-reverting properties of the estimated
nonlinear models is through dynamic stochastic simulation. In particu-
lar, an analysis of the impulse response functions will allow the half life
of shocks to the basis models to be gauged and these can give a clearer
understanding of the importance of nonlinear dynamics in the basis and
the validity of the prior that the degree of mean reversion is stronger the
bigger the shock to the basis, that is, the larger the deviation of the basis
from its equilibrium value.

Thus, the authors examine the dynamic adjustment in response to
shocks through impulse response functions which record the expected
effect of a shock at time t on the model at time t + j. For a linear
model, the impulse response function is equivalent to a plot of the coef-
ficients of the moving average representation (e.g., Hamilton, 1994,
p. 318). Estimating the impulse response function for a nonlinear
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model raises special problems both of interpretation and of computation
(Gallant et al., 1993; Koop et al., 1996). In particular, with nonlinear
models, the shape of the impulse response function is not independent
with respect to either the history of the model at the time the shock
occurs, the size of the shock considered, or the distribution of future
exogenous innovations. Exact estimates can only be produced—for a
given shock size and initial conditions—by multiple integration of the
non-linear function with respect to the distribution function of each of
the j future innovations, which is computationally impracticable for the
long forecast horizons required in impulse response analysis. In this
paper, the impulse response functions are calculated, conditional on
average initial history, using the Monte Carlo integration method dis-
cussed by Gallant et al. (1993).

Specifically, Monte Carlo methods are employed to forecast a path for
b,.; given its average history, with and without a shock of size k at time
t. Starting at the first data point, b,_, is set equal to {| b(1988 : 01 : 01) —
K| + k}. If b(1988 : 01 : 01) — k is positive, this is just b(1988 : 01 : 01)
itself; however, if b(1988: 01 :01) — k is negative, then {| b(1988:01:01)

— k| + k} is the value which is an equal absolute distance above the
estimated equilibrium value k. This transformation is necessary because
only positive shocks are considered, and it is innocuous because of
the symmetric nature of ESTAR adjustment below and above equilibrium.
Two hundred simulations of length two hundred, with and without a
positive shock of size k at time t are then generated using the estimated
ESTAR model, and realizations of the differences between the two simu-
lated paths are calculated and stored as before. The authors then move up
one data point (hence settingt — 1 = 1988 : 01 : 02), and repeat this
procedure. Once this has been done for every data point in the sample up
to the last sample observation, an average over all of the simulated
sequences of differences in the paths of the basis with and without the
shock at time ¢ is taken as the estimated impulse response function condi-
tional on the average history of the given basis and for a given shock size. In
all, this procedure requires 2,870 X 200 = 574,000 simulations for each
basis and each shock size.

For linear time series models the size of shock used to trace out an
impulse response function is not of particular interest since it serves only
as a scale factor, but it is of crucial importance in the nonlinear case. In
the present application the authors are particularly concerned with the
effect of shocks to the level of the basis. The estimated impulse response
functions, obtained from implementing the method discussed above, are
graphed in Figure 2 for each of the two bases examined and various
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Nonlinear impulse response functions.

shock sizes k. Precisely, denoting o, the sample standard deviation of
the basis, k € {1 X 0}, 2 X 0}, 3 X 03, 4 X 7y, 5 X 03, 10 X 7,}. These
graphs illustrate very clearly the nonlinear nature of the adjustment,
with the impulse response functions for larger shocks decaying much
faster than those for smaller shocks.

The estimated quarter lives and half lives of the two basis models,
reported in Table VI also illustrate the nonlinear nature of the estimated
models, with larger shocks displaying much less persistence than smaller
shocks for both indices examined.?* The S&P 500 basis model shows
much faster adjustment in terms of the half life than the FTSE 100 basis
model, consistent with the impression given by the plots of the estimated
transition functions discussed in Section 5. In fact, for the S&P 500
basis, the model indicates quite fast mean reversion, ranging from a half
life of one day for the largest shock size of ten standard deviations to

#Given a particular value of the log basis at time ¢, b,, a shock of k percent to the level of the basis
involves augmenting b, additively by log(1 + k/100). Hence, a natural measure for the half life is the
discrete number of days taken until the shock to the level of the basis has dissipated by a half—i.e.,
when the impulse response function falls below log(1 + k/200).
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TABLE VI
Estimated Lives of Basis Shocks

S&P 500 FTSE 100
Shock Size (%) 1/4 Life 1/2 Life 1/4 Life 1/2 Life
1 X4, 21 7 39 13
2 X, 20 6 37 11
3% 4, 19 4 35 9
4x6, 15 3 28 7
5% 6, 11 2 23 5
10 X &, 5 1 12 3

Notes. Half lives are calculated by Monte Carlo integration as discussed in the text; &, denotes the sample
standard deviation of the basis.

about one week for very small shocks of one standard deviation. The
FTSE 100 basis displays much higher persistence, with half lives ranging
from three days for a ten standard deviations shock to just less than two
weeks for a one standard deviations shock.

These results seem to shed some light on the importance of nonlin-
earities in basis dynamics. For small shocks occurring when the basis is
near its equilibrium level the nonlinear models consistently yield
relatively long half lives, presumably because transactions costs prevent
profitable arbitrage opportunities. Large shocks imply, however, faster
mean reversion in the basis and fairly plausible half lives, albeit perhaps
far longer than believers in a no-arbitrage world would expect. These
results contrast with the microstructure literature focusing on intraday
data, which typically suggests that arbitrage opportunities are washed
out within a day or so. Of course, one possibility is that futures index
markets are characterized by heterogeneous traders’ populations with
different horizons of arbitrage. Nevertheless, although the approach
taken in this paper does not allow to distinguish between different plau-
sible explanations of slow or gradual mean reversion in the futures basis,
the data clearly suggest that mean reversion in futures markets is, in gen-
eral, puzzlingly slow at the daily frequency.

7. CONCLUSION

This article illustrates how, in a world characterized by nonzero transac-
tions costs, the resulting correction to the futures price and the basis
may yield a process for the futures basis which exhibits nonlinearly
mean-reverting behavior. Employing a nonlinear empirical model for the
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basis designed to capture the implications of plausible theoretical
considerations provided strong confirmation that the bases of both the
S&P 500 and the FTSE 100 indices are well characterized by nonlinear-
ly mean reverting processes over the post-crash period since 1988. The
crucial estimated parameters, the transition parameters, were of the cor-
rect signs and plausible magnitudes and were shown to be strongly
statistically significantly different from zero, allowing for a unit root
process under the null hypothesis and calculating their empirical signifi-
cance levels by Monte Carlo methods. The estimated models imply an
equilibrium level of the basis in the neighborhood of which the behavior
of the basis is nonstationary, becoming increasingly mean reverting with
the absolute size of the deviation from equilibrium, consistent with the-
oretical arguments in the spirit of nonzero transactions costs.

Impulse response functions were calculated by Monte Carlo inte-
gration. Because of the nonlinearity, the half-lives of shocks to the basis
vary both with the size of the shock and with the initial conditions. By
taking account of statistically significant nonlinearities, the speed of
adjustment of the basis towards its equilibrium value is found to be an
increasing function of the size of the shock (deviation from equilibrium).
However, the half lives recorded in this paper also suggest that deviations
from equilibrium appear to be quite persistent in the futures markets
considered.

Although these results aid the profession’s understanding of basis
behavior, they should be viewed as a tentatively adequate characteriza-
tion of the data that appears to be consistent with both the underlying
pricing theory and the view held by a number of academics and practi-
cioners that “arbitrage is like gravity.” Although the nonlinear model pro-
posed appears superior to linear basis modeling in a number of respects
and highlights important features of the dynamics that characterizes the
futures basis of the major stock index futures markets examined, it is of
course capable of improvement. In particular, one may gain further
insights into the adjustment process by developing nonlinear equilibrium
correcting systems of equations involving spot prices, futures prices and
other economic and financial variables capable of affecting both the
equilibrium level of the basis and the dynamic adjustment of the basis
towards equilibrium. Also, it would be interesting to use the nonlinear
model proposed in this paper or variants of it to investigate the forecast-
ing performance of this nonlinear framework relative to conventional
linear and nonparametric methods used for modeling and forecasting
purposes in stock index futures markets. These challenges remain on the
agenda for future research.
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