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Abstract

We consider an incomplete market model with one traded stock and two correlated Brownian motions W ; eW . The

Brownian motion W drives the stock price, whose volatility and Sharpe ratio are adapted to the filtration eF:¼ðfFtÞ0ptpT

generated by eW . We show that the projections of the minimal entropy and minimal martingale measures onto fFT are

related by an Esscher transform involving the correlation between W ; eW , and the mean-variance trade-off process. The

result leads to a new formula for the marginal exponential utility-based price of an fFT -measurable European claim.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider a two-factor continuous-time incomplete market model without asset price jumps.
The model comprises two correlated Brownian motions W ; eW , with fixed correlation r 2 ½�1; 1�. The
Brownian motion W drives a stock price process S, and the parameters of the stochastic differential equation
for S are progressively measurable with respect to the filtration eF:¼ðfFtÞ0ptpT generated by eW . Many
stochastic volatility models fit into this framework, though we do not rely on a Markovian diffusion structure.
This class of models has been studied by Tehranchi (2004) in particular.

The main result is that the projections of the minimal entropy martingale measure QE and the minimal
martingale measure QM onto the sigma-fieldfFT are related by an Esscher transform involving the correlation

r and the mean-variance trade-off process at time T , KT :¼
R T

0 l2t dt, where l is the Sharpe ratio of the stock.

Some related characterisations of martingale measures in such models have appeared in the literature, notably
in Hobson (2004) and Rheinländer (2005), but the succinct result we report here has not been previously
observed.

Our result can be seen as recasting the representation equations in Hobson (2004) and Rheinländer (2005),
and also as providing a striking consequence of the well-known distortion power technique (Tehranchi, 2004;
Zariphopoulou, 2001) for solving utility maximisation problems in such incomplete models. Finally, our result
e front matter r 2007 Elsevier B.V. All rights reserved.
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leads to a new formula for the marginal utility-based price (Davis, 1997) of an fFT -measurable European
claim in this incomplete market.

In exponential indifference pricing, it is well known that the marginal price of the claim (Davis, 1997) is the
expectation of the payoff (suitably discounted) under the minimal entropy measure. With logarithmic utility
the corresponding measure is the minimal martingale measure QM, and this measure is also prominent in
quadratic hedging approaches. The Esscher transform between these measures can be viewed as quantifying
the extra premium charged by an agent with exponential utility compared with an agent who has a logarithmic
or quadratic criterion.

In the distortion power solution to utility maximisation problems, a value function uðxÞ ¼ EUðX �T Þ, in
which U is the utility function, X �T is optimal terminal wealth and x is initial wealth, is obtained in the form

uðxÞ ¼ UðxÞ½E
ePM

z1=d�d. Here, z is anfFT -measurable random variable, d is known as the distortion power and

depends on the correlation r (and, with power utility, on the risk aversion parameter), and ePM is a measure

which, with exponential utility, is the projection of QM onto fFT . Our results stem from translating this
representation into a representation for the solution of the dual to the primal utility maximisation problem,
and combining this with the representation equation in Hobson (2004) and Rheinländer (2005).

2. The market model and main theorem

Let ðO;F;PÞ be a probability space supporting two correlated Brownian motions W :¼ðW tÞ0ptpT andeW :¼ð eW tÞ0ptpT with fixed correlation r 2 ½�1; 1�. Let F:¼ðFtÞ0ptpT be the completion of the filtration

generated by the pair ðW ; eW Þ, and denote by eF:¼ðfFtÞ0ptpT the completion of the filtration generated by eW .

A stock price S:¼ðStÞ0ptpT is driven by the Brownian motion W , and is described by

dSt ¼ stStðlt dtþ dW tÞ.

We work in a world with zero interest rates, so that S represents a discounted price. The volatility ðstÞ0ptpT

and Sharpe ratio (or market price of risk) ðltÞ0ptpT are progressively measurable processes with the volatility
bounded away from zero (further integrability conditions are given later). Aside from constant correlation, the
crucial assumption we make is the following.

Property 1. The volatility st and Sharpe ratio lt are fFt-measurable for all t 2 ½0;T �.

In particular, this implies that the increasing process Kt:¼
R t

0 l
2
u du; 0ptpT , sometimes called the mean-

variance trade-off process, is eF-adapted.
Remark 1. The above assumption is restrictive, but encompasses stochastic volatility models (Fouque et al.,
2000; Hobson, 2004), without requiring a Markovian structure. One could associate the volatility with another
Itô process Y , writing st ¼ f ðt;Y tÞ for some function f , with Y following a process of the form:

dY t ¼ at dtþ bt d eW t,

and yet more structure could be added by assuming the processes l; a; b are also functions of Y , making the
model Markovian. Our analysis is valid without such assumptions.

Consider the class M of equivalent local martingale measures Q�P on FT with density processes given by

Zt �
dQ

dP

����
Ft

¼ Eð�l �W � c �W?Þt; 0ptpT , (1)

where E is the Doléans exponential and W? is a Brownian motion independent of W . Here c is an F-adapted
process, and we assume l;c are such that the Novikov condition E expð1

2
ðKT þ

R T

0 c2
t dtÞÞo1 is satisfied, so

that ðZtÞ0ptpT is a ðP;FÞ-martingale, and measures Q 2M are equivalent to P.
The minimal martingale measure QM of Föllmer and Schweizer (1991) corresponds to ct ¼ 0; 0ptpT . For

models with continuous price trajectories, QM minimises the reverse relative entropy HðP;QÞ:¼
E½� logðdQ=dPÞ� over all Q 2M (Schweizer, 1999), though the original appearance of this measure in
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finance was in a quadratic hedging context. Under QM the traded asset price becomes a local martingale, but
the drift of any Brownian motion orthogonal to W is left unchanged. This corresponds to leaving unhedgeable
risk unpriced.

The minimal entropy martingale measure QE is defined by

QE:¼ arg min
Q2M

HðQ;PÞ,

where HðQ;PÞ is the relative entropy of Q 2M with respect to P:

HðQ;PÞ:¼
E

dQ

dP
log

dQ

dP

� �
if Q5P on FT ;

þ1 otherwise:

8<:
Let eQE; eQM denote the projections of QE;QM onto fFT . A simple calculation establishes that

d eQM

dP
¼ Eð�rl � eW ÞT . (2)

Similarly, suppose that QE is given by

dQE

dP
¼ Eð�l �W � x �W?ÞT ,

for some choice c ¼ x of the integrand in (1). Then eQE is given by

d eQE

dP
¼ E½�ðrlþ r̄xÞ � eW �T , (3)

where r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
.

The following theorem is the main result of the paper.

Theorem 1. The measures QM;QE, projected onto the sigma-field fFT , are related by the Esscher transform

d eQE

d eQM
¼

expðyKT Þ

E
eQM

expðyKT Þ

,

where y ¼ �1
2ð1� r2Þ and KT ¼

R T

0 l2t dt is the mean-variance trade-off at T .

Esscher transforms have a long history in actuarial pricing, and have been used by some authors to define a
possible pricing measure in incomplete markets (Bühlmann et al., 1996; Gerber and Shiu, 1994). In this
context the Esscher transform is quantifying the ‘‘economic premium’’ (Bühlmann, 1980) associated with
pricing under the minimal entropy measure QE (and hence with exponential hedging) over and above pricing
with the minimal measure QM (and essentially leaving unhedgeable risk unpriced).

3. Proofs

The proof of Theorem 1 rests on fusing two results. The first is a representation equation of Hobson (2004)
for the so-called q-optimal measure (q 2 R) in stochastic volatility models. For q ¼ 1, the q-optimal measure is
the minimal entropy measure, and Hobson’s result reduces to a representation equation of Rheinländer
(2005). The second result is the well-known distortion solution (Tehranchi, 2004; Zariphopoulou, 2001) for
utility maximisation problems in two-factor incomplete markets, suitably translated into a representation for
the optimal measure of the dual to the primal utility maximisation problem.

For q ¼ 1, the Hobson representation equation is as follows.

Proposition 1 (Hobson, 2004; Rheinländer, 2005). Suppose there are previsible processes Z and x and a finite

constant c such that

1
2

KT ¼MT þ LT þ
1
2
½L�T þ c, (4)
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where

Mt:¼

Z t

0

ZuðdW u þ lu duÞ; Lt:¼

Z t

0

xu dW?
u .

Then, provided
R T

0 ðZt � ltÞ
2 dt has an exponential moment under P, the minimal entropy measure QE is given by

dQE

dP
¼ Eð�l �W � x �W?ÞT , (5)

and the constant c is given by

c ¼ HðQE;PÞ � E
dQE

dP
log

dQE

dP

� �
. (6)

The salient point concerning the above proposition is that, provided a solution to (4) is found, in the form of
the processes Z; x and the constant c, then the minimal entropy measure is identified via (5), provided certain
integrability conditions are satisfied.

The second ingredient we need to prove Theorem 1 is the distortion power solution (Tehranchi, 2004) for
utility maximisation problems in models such as ours. The consequences of this solution for the dual problem
will be exploited to obtain an alternative expression for the constant c in (4). Combining all these results will
lead to our final theorem.

The primal utility maximisation problem is as follows. Given an initial endowment x, an investor who forms
a self-financing portfolio involving S will generate wealth process X :¼ðX tÞ0ptpT given by

X t ¼ xþ

Z t

0

supulu duþ

Z t

0

supu dW u, (7)

where p:¼ðptÞ0ptpT is the wealth held in the stock and represents the agent’s trading strategy. We write
X � Xp if we need to emphasise dependence on p at any point. A trading strategy is an adapted process p
satisfying

R t

0
s2up

2
u duo1 for all t 2 ½0;T �, so that the stochastic integral in (7) is well defined.

With an exponential utility function UðxÞ ¼ � expð�gxÞ; g40;x 2 R, the objective is to maximise expected
utility of wealth at time T , over some class A of admissible trading strategies. The value function is

uðxÞ:¼ sup
p2A

EUðXp
T Þ. (8)

A minimal assumption on the set A of admissible strategies is such that the expected utility EU ðX p
T Þ is well

defined for all p 2A. However, to exclude pathologies such as ‘‘doubling strategies’’ one usually imposes
further integrability on the set of admissible strategies. We follow Tehranchi (2004), and define A as the set of
strategies p satisfying E supt2½0;T � expð�g

0X p
t Þo1 for some g04g. There are other possible characterisations of

admissibility in exponential utility maximisation problems, and these are discussed in depth in Delbaen et al.
(2002) and Schachermayer (2001), to which the interested reader is referred.

We then have the following proposition, due to Tehranchi (2004), which extends results of Zariphopoulou
(2001) to a non-Markovian scenario.

Proposition 2 (Tehranchi, 2004). The value function in (8) is given by

uðxÞ ¼ UðxÞ½E
eQM

expðyKT Þ�
1=ð1�r2Þ, (9)

where eQM is the projection of the minimal martingale measure onto fFT , given by (2), and y ¼ �1
2
ð1� r2Þ.

We shall also use the convex dual to this problem. Let V : Rþ ! R denote the convex conjugate of the
utility function U :

V ðyÞ:¼ sup
x2R

½UðxÞ � xy�; y40, (10)
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satisfying the bidual relation

UðxÞ ¼ inf
y2Rþ
½V ðyÞ þ xy�; x 2 R.

The dual problem is to minimise the expectation of V ðy dQ=dPÞ over local martingale measures Q 2M, and
its value function is

vðyÞ:¼ inf
Q2M

EV y
dQ

dP

� �
. (11)

We need a lemma relating the constant c ¼ HðQE;PÞ in (6) to the expectation in (9).

Lemma 1. The constant c ¼ HðQE;PÞ in (6) is given by

c ¼ HðQE;PÞ ¼ �
1

1� r2
logE

eQM

expðyKT Þ,

where y ¼ � 1
2
ð1� r2Þ.

Proof. For UðxÞ ¼ � expð�gxÞ we have, from (10), that V ðyÞ ¼ ðy=gÞðlogðy=gÞ � 1Þ, and so (11) gives

vðyÞ ¼ V ðyÞ þ
y

g
HðQE;PÞ. (12)

It is well known (for example Delbaen et al., 2002; Schachermayer, 2001) that the value functions uðxÞ and vðyÞ

are conjugate:

vðyÞ ¼ sup
x2R

½uðxÞ � xy�; uðxÞ ¼ inf
y2Rþ
½vðyÞ þ xy�.

Using this with (12) connects the primal value function with the minimal entropy:

uðxÞ ¼ � exp½�gx�HðQE;PÞ�.

Comparing this with Proposition 2 gives

exp½�HðQE;PÞ� ¼ ½E
eQM

expðyKT Þ�
1=ð1�r2Þ,

from which the result follows. &

Proof of Theorem 1. Since the Brownian motions W ; eW have correlation r, write eW ¼ rW þ r̄W?, where
r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
and W? is orthogonal to W . Define also a Brownian motion eW? orthogonal to eW by

eW?:¼r̄W � rW?.

We have, using (2) and (3),

d eQE

d eQM
¼

d eQE

dP

d eQM

dP

,

¼
E½�ðrlþ r̄xÞ � eW �T

Eð�rl � eW ÞT
¼ Eð�r̄x � eW ÞT exp �rr̄

Z T

0

ltxt dt

� �
. ð13Þ

Note that since the left-hand side is fFT -measurable, this implies that the process x identifying the minimal
entropy measure in our model is eF-adapted. We shall use this shortly.
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Now use the fundamental representation equation (4), which we re-write in terms of the Brownian motionseW ; eW?, and use Lemma 1 to substitute for the constant c, giving (4) in the form

1

2
KT ¼

Z T

0

ðrZt þ r̄xtÞd eW t þ

Z T

0

ðr̄Zt � rxtÞd eW?
t þ

Z T

0

Ztlt þ
1

2
x2t

� �
dt

�
1

1� r2
logE

eQM

expðyKT Þ. ð14Þ

Now, the left-hand side of (14) isfFT -measurable, and we know that x is also eF-adapted. Therefore, to find a
process Z that satisfies (14) we need to eliminate the stochastic integral with respect to eW?, so that Z must
satisfy

r̄Zt � rxt ¼ 0; 0ptpT .

With this choice of Z, (14) becomes, on multiplying by r̄2 ¼ 1� r2 and re-arranging terms,

�r̄ðx � eW ÞT � 1

2
r̄2
Z T

0

x2t dt� rr̄
Z T

0

ltxt dt ¼ �
1

2
r̄2KT � logE

eQM

expðyKT Þ,

or, equivalently,

Eð�r̄x � eW ÞT exp �rr̄
Z T

0

ltxt dt

� �
¼

expð� 1
2
r̄2KT Þ

E
eQM

expðyKT Þ

,

and the result follows from (13). &

4. A new formula for the marginal price of a claim

A corollary of Theorem 1 is the following representation, in incomplete models of the class studied here, for
the marginal exponential-utility-based price (Davis, 1997) of a European claim paying an fFT -measurable
random variable eG at time T .

Corollary 1. With exponential utility, the marginal price of a European fFT -measurable claim eG has the

representation

~p ¼
E
eQM

½expðyKT Þ eG�
E
eQM

½expðyKT Þ�

.

Proof. The marginal utility-based price of Davis (1997) has, with exponential utility, a representation as the
QE-expectation (suitably discounted) of the payoff (see Becherer, 2003 for example). When the payoff isfFT -

measurable this expectation reduces to one under eQE, and the result is immediate on writing ep ¼ E
eQE eG and

using Theorem 1 to express the price as a eQM-expectation. &
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