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Abstract. A new perturbative technique for solving a 
scalar q~2e theory consists of expanding a cp 2(1+~) 
interaction in powers of 6. The Green functions are 
computed as a power series in 6 by applying a linear 
differential operator to the Green functions of a 
specially constructed intermediate Lagrangian. We 
confront this linear procedure with the quadratic 
requirement of perturbative unitarity. We verify up to 
order 63 that unitarity is indeed satisfied, by virtue of 
the precise structure of the intermediate Lagrangian. 
Unitarity gives constraints on that structure, but does 
not fix it uniquely. 

I The &-expansion and unitarity 

A new technique for solving quantum field theory has 
recently been proposed [1, 2] and has been used [3-6] 
to investigate a variety of problems involving scalar 
fields. For a (o 4 scalar field theory the method involves 
writing the interaction a s  q)2(1 +6) and calculating the 
Green functions as power series in 6. 

To recapitulate the main ideas of 3-perturbation 
theory (as given in [1, 2]) we consider the following 
Lagrangian of a scalar field theory in d space-time 
dimensions. 

= �89 _ �89 _ ~ m 2 ( p 2 ( M  2 -,/~02),~ (1.1) 

where M is a mass parameter taking care of the 
dimensions and 2 is the dimensionless coupling cons- 
tant. We expand the interaction in powers of 3, yielding 
a Lagrangian with logarithmic interaction terms. 

= �89 _ �89 + 22MZ)~pz 

3 k 
- 2M2q~2 ~' k.T [ln(M2-d~02)]k" (1.2) 

k=l  . 

The logarithmic nature of (1.2) appears to rule out 
the use of a Feynman diagram technique to calculate 
the Green functions. The problem is overcome by 

setting up a provisional Lagrangian ~ r  given by 

5~ K = �89 _ �89 + 22MZ)~02 

K 
- 2M a ~ (M2-dq~E)~k+lP k. (1.3) 

k=l  

Here K is an integer specifying the order in powers 
of 6 to which we wish to calculate the Green functions 
of the theory in (1.1,1.2), the ~k (k= 1,2 . . . .  ,K) are 
regarded as integers for the present, and the coefficients 
Pk are polynomials in the ~k and 6. The form of the 
Pk for general K is not known. The first three sets of 
polynomials are: 

For K = l; 

P~ = 6 (1.4a) 

For K = 2; 
Pa = 3 + 3 2, P2 = -- 6 + 62 (1.4b) 

For K = 3; 

P1 = 3 + � 8 9  

P2 --  ~03 + 1(0) 2 -~- ~2)c ~2 -'~ 33, 

P3 = c~ +�89 + ~a)62 + 33 (1.4c) 

where ~o -- exp (2ni/3). 
As the Lagrangian 5~ K is polynomial in the field q~ 

we can develop Feynman rules for computing its Green 
functions G to order 3 K. We then regard the ~k as 
continuous and act on the functions G with the 
following differential operator, 

D K = ~ j ~  1 ~ exp[2~ij(1-k)/K] 0 j 
. =  it (1.5) 

finally setting ~1 = ~2 . . . .  ~K = 0. This procedure yields 
the Green functions G of the theory in (1.1) and (1.2), 
correct to order 3 K. 

An interesting question which arises, and which is 
the subject of this paper, is whether the scattering 
amplitudes calculated from the Green functions G 
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satisfy the unitarity equation to each order in 6. 
In conventional perturbation theory the scattering 
amplitudes satisfy, to each order in powers of the 
coupling constant, an equation reflecting the fact that 
the S-matrix is unitary. For if we write the S-matrix as 

= 1 + i/~ (1.6) 

then the condition that it is unitary yields the following 
condition on the R-matrix elements, 

2 Im Rfi = ~, R~,.R., (1.7) 
n 

where f ,  i denote the final and initial states respectively, 
and n labels the possible intermediate states. Equation 
(1.7) is the unitarity condition which is satisfied by the 
R-matrix elements, or scattering amplitudes, to all 
orders in weak-coupling perturbation theory. The 
amplitudes Rfi calculated for the theory in (1.3) are 
also obtained using conventional Feynman diagram 
techniques, and consequently they too satisfy (1.7) to 
each order in 6. 

We now note that the left-hand side of (1.7) is linear 
in the matrix elements of R, but that the right-hand 
side is quadratic. It is this non-linearity which raises 
the question of whether the scattering amplitudes for 
the theory in (1.2) satisfy perturbative unitarity, since 
they are calculated by applying the linear differential 
operator Dr in (1.5) to the Rfl. Suppose we calculate 
the amplitude on the left-hand side of (1.7) as 

R ~ )  = D~,~(~)L~ = o (1.8) 

where /~(~) is calculated from ~K to order 6 K. To 
obtain an expression of order 6 K on the right-hand 
side of (1.7) we must compute each of the amplitudes 
on this side up to order 5 r -  1 using fPr-~ and Dx_ ~. 
Then the condition that unitarity is satisfied in 
6-perturbation theory is that 

2 Im [DK/~)[~ = o] 

- Z [ ( D ~ - ~ P , ~  -~)  ~*'" ~(~-')1~=o)] - -  a k  = O ]  k Z J K - -  1 z~rt~ 
?1 

(1.9) 

holds to order 6 r. This is a non-trivial requirement, 
since the only constraint on the amplitudes gfi due 
to unitarity is that, at order 6 K, 

2 I m / ~ )  =/-,"I,X ~ ~(r),  --,iff(r) (1.10) 
n 

where all the amplitudes in (1.10) (unlike those in (1.9)) 
are calculated from ~K, but those on the right-hand 
side are only given to order 6 r -  1 

In conventional Feynman graph perturbation 
theory, (1.7) holds for each diagram which contributes 
to Rfv This leads to a pictorial representation of the 
unitarity equation, where for each diagram on the 
left-hand side there exists a so-called cut diagram 
on the right-hand side, for which slightly different 
Feynman rules have been invented [7, 8], these rules 
incorporating the summation over intermediate states. 

(a) (b) 

p, 

Fig. 1. a A two-particle scattering process in ~0 4 theory, b The cut 
diagram for the process shown in a 

Figure la shows a Feynman graph for a scattering 
process in ~04 theory, and Fig. lb shows its corres- 
ponding cut graph. We shall consider the elastic 
scattering process in 6-perturbation theory, to show 
how perturbative unitarity is maintained up to 
order 63 . 

2 Verification of  unitarity up to order ~3 

2.1 Unitarity to first order in 6 

If we calculate R-matrix elements to order 5, the 
right-hand side of the unitarity equation (1.7) will 
be of order 62 , and can be neglected in a first 
approximation. Then unitarity will be satisfied to order 
6 provided the imaginary part o f  RIi is zero to this 
order. 

We first need to consider/~f~, which is calculated 
from the intermediate Lagrangian in (1.3), with K = 1 
for a first order computation. 

~ 1  = �89 z - �89 + 22M2)q~2 

_ 62Ma(m 2 -d~02)a+ 1. (2.1) 

Here we have relabelled the parameter cq as a. The 
above Lagrangian has one interaction vertex which is 
proportional to 6, so that the scattering process shown 
in Fig. 2 will also be of order 6. (See [2,3J for 
more details of how to evaluate such diagrams.) The 
contribution to iffli from this diagram is 

62M~(Z-d)+2F(2c~ + 3) [_A(0)]~_ x (2.2) 
2"-1F(c0 

where A(0) represents the closed-loop propagator. 
The expression in (2.2) is real, which confirms that 

the theory in (2.1) satisfies perturbative unitarity, and 
the situation is unchanged when we act on (2.2) with 

Y 
(a- l )  s e l f - l o o p s  

Fig. 2. A two-particle scattering vertex in the theory defined by the 
Lagrangian in (2.1). The diagram has (a-  1) closed loops 



the differential operator in (1.5) with K = 1, given by 

0 
D: = ~ (2.3) 

and set ~ = 0. The quantity obtained is still real, so 
that unitarity to order ~ is satisfied for the scattering 
amplitudes of the theory in (1.1, 1.2). We note that the 
diagram in Fig. 2 does not have a corresponding cut 
graph. This is a reflection of the fact that the imaginary 
part of the associated scattering amplitude is zero. 

2.2 Unitarity to second order in 6 

To order 62 the intermediate Lagrangian fa  r is given 
by (1.3) with K = 2, as 

~e 2 = �89 _ 1(#2 + 22M2)q~Z 
- -  (C~ -b (~2)2Md(M2 -dq)2)=+ 1 

_ ( _ f i  + c~2)2Ma(M 2 --d(pZ)fl+ 1 (2.4) 

where we have put ~1 = ~ and ~2 = ft. We call the 
two interaction vertices ~- and fl-type vertices. The 
contribution to the left-hand side of the unitarity 
equation (1.9) comes only from two-vertex diagrams 
(since the one-vertex diagrams have zero imaginary 
part, as in the previous section). The diagrams we shall 
consider are of the type shown in Fig. 3a, with 21 
propagators joining the two vertices. (In the final 
expression for the scattering amplitude we sum all such 
two-vertex diagrams over the possible values of l.) 
There arefour ~agrams with 21 lines which we denote 
by M~,  Map, M~p and MB~, the subscripts labelling 
the types of vertices in the diagrams. For each of these 
diagrams there exists a corresponding cut graph of the 
type shown in Fig. 3b, and unitarity for the theory in 
(2.4) is satisfied to order 62 by each diagram, in the 
conventional way of (1.10). 

For instance, the uncut ~c~ graph yields, to order 62, 

)VI~ = 6222M4"K(1)A(pt,p2,pa,p4)[F(c~, I)] 2 (2.5) 

where A(pl,p2,Pa,P4 ) includes all the factors for the 
21 propagators, and where 

K(1)= 1 [=__ l  2, 
1"(21 + 1) La(O) A 

F(cq I) = [�89 2-aA(0)]" r (2~  + 3) (2.6) 
F(cr - I + 1)" 

" ' .  . . "  

T 
2t lines 

(a) 

2t' lines 

r 

Fig. 3. a A two-particle scattering diagram with 21 propagators. 
For an s-type vertex there are (~-/) closed loops on the vertex. 
b The cut diagram for the process shown in a 
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The other uncut graphs of the type in Fig. 3 are 
given by similar expressions: 

M ~  = [ F ~ ; 4 1 2  [F(f l ,  l ) ]  ~ 

~ , p  =/~rp~ - [ F ~ , ~ ]  2 F(e,l)F(fl,1). (2.7) 

The cut graphs yield the same expressions as those 
in (2.5,2.7) but with A(pl,p2,p3,p4 ) replaced by the 
corresponding expression for the cut propagators, 
which we call A(pl, P2,Pa, P4)c, and unitarity to order 
6 z for the theory in (2.4) is satisfied by virtue of the 
fact that 

2 Im A(p l, P2, P3, P4) = A(p:, P2, P3, P4)c" (2.8) 

However, if we wish to verify unitarity to order 6 z 
for the theory_in (1.2) we must use the provisional 
Lagrangian 5r in (2.1) to calculate each of the 
amplitudes on the right-hand side of (1.9) to order 6. 
In other words, there is only one cut graph with 21 
propagators, since 5 ~  has only one type of interaction 
vertex. In this case, the unitarity equation (1.9) reads 

= 6222M4K(l)A(Pa, P2, P3, P4)c(DIF(~, l)1= = 0)2 
(2.9) 

We use (2.5)-(2.8) to reduce the condition (2.9) to 

Dz((V(e, l ) -  F(fl, l))Z)l,=p= o = (D1F(cq I)1~=o) 2 (2.10) 

and using (1.5) with K = 2 to give D z we find that (2.10) 
indeed holds, so that perturbative unitarity is main- 
tained to order 62 . 

2.3 Unitarity to third order in 6 

At order 63, the Lagrangian ~K in (1.3) with K = 3 
has three types of vertices, which we call ~-, fl- and 
7-type vertices. We again consider two-vertex diagrams 
of the type shown in Fig. 3, but now we must also 
consider three-vertex diagrams of the type shown in 
Figs. 4 and 5, which have 21 propagators joining one 
pair of vertices, and 2r propagators joining the second 
pair. (The final expression for the scattering amplitude 
is obtained by summing over the possible values of l 
and r.) We shall find that the two-vertex and three- 
vertex diagrams satisfy the unitarity relation separately, 
so that unitarity for the overall scattering amplitude 
is also maintained. 

First we consider the two-vertex diagrams, of which 
there are nine, ~stinguished by different types of 
vertices. We use ~q~3 to evaluate the nine diagrams to 
order 63, which enter the left-hand side of the unitarity 
equation. We use ~ 2  to evaluate the four cut graphs, 
which incorporate each amplitude on the right-hand 
side of the unitarity equation to order 62. Following 
the same procedure as in Sect. 2.2 we find that the 
condition for perturbative unitarity of the theory in 
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�9 ... .." 

.v 1, 
2t lines 2r lb~es 

(c) 

Fig. 4. a A three-vertex scattering diagram in the theory defined 
by the Lagrangian ~ 3 .  If the centre vertex is an a-type vertex then 
it has  (~ - l - r + 1) closed loops on it. b, c. The cut graphs for the 
process shown in a 

(1.2) to order 63 is, for the two-vertex diagrams, 

D3[(aZi32 + 2allaiz33)[F(a, 1)32 

+ (a~tfz + 2a21a2263)[F(fl,/)]2 
+ (a2162 + 2a3ta3263)[F(7, 1)]2 

+ 2(al la2162 + (ax 1 a22 + al 2a21)63)F(cq l)F(fl, I) 
+ 2(ai 1 a3162 + (ax 1 a32 + at 2a3 i)63)F( c~, l)F(% l) 

+ 2(a2ia3132 + (a2ia32 + a22a31)63) 

�9 F(/~, OF(y, l)] I~=~=,=o 
= (62 + 263)(DaF(a,/)]~=0) 2 

+ (a 2 - 2a3)(D2F(fl, l)le=o) 2 

-- 262D2F( 0~, l)[a=oDzF(fl, l) la= o (2.11) 

where D2, 03 are given by (1.5) with "l  = ", a2 = t ,  
cq = 7, and the polynomials in (1.4c) for K = 3 have 
been written as 

P1 = ar ia  + a1232 + a13 b3, 

P2 = a216 + a22 b2 + a2333, 

P3 = a3tfi + a32 fi2 + a33 ~3. (2.12) 
We use (1.4) to simplify (2.11) and find that both 

sides are equal so that the unitarity equation (1.9) is 
indeed satisfied to order fi3 for the two-vertex graphs. 

Now we consider the three-vertex diagrams. There 
are twenty-seven diagrams of the type shown in 
Fig. 4a, involvingall  possible vertex types. We use 
the Lagrangian ~ 3  to evaluate these twenty-seven 

2~ ~ lines 

~ 2r lines 

2r lines 

(a) (b} 

c 

'../~l / 

; . ~ / 2 r  l i n e s  

2C lines 

~ 2r  lines 

2~ lines 

(e) (d) 

Fig.5. a,b Three-vertex scattering diagrams in the theory defined 
by ~a 3. e The cut diagram for the process shown in a. d The cut 
diagram for the process shown in b 

diagrams to order 63 , and operate on the result with 
the differential operator D3, finally setting a = fi = ? = 0. 
This yields 

- 6323M6(�89 P2, P3, P4) 
3 "B(p,, P2, P3, p4)D3 [a~l V~, + a31 Vp~p + aa~ V ~  

+alla2ta31(V~p~+ V,~+ V~,~+ Vp~+ V~,~ + V~,) 

+a~la2t(V=e + V,p~ + Vp=) 
+ aZla31(V=~ + V,~, + V~=) 

+ at taL(v  m + vB~ p + v~ee) 

+aLa~,(v~p, + vp,~ + v,~) 
+a~taL(V.~ + V,~, + Ve.)] I~=0=,=o (2.13) 

where A(pt, P2, Pa, P4) once again includes the factors 
for the 21 propagators, B(p~,pE,P3,p,) includes the 
factors for the 2r propagators, and where we have 
defined 

V,,~ = F(x, 1)H(y, I, r)F(z, r) 

H(x, 1,r) = [�89 ~ F(2x  + 3) (2.14) 
F(x  - I -- r + 2) 

with F(x, I) defined by (2.6). It is twice the imaginary 
part of (2.13) which appears on the left-hand side of 
the unitarity equation. 

The cut graphs corresponding to the diagrams 
represented by Fig. 4a are of the type shown in Fig. 4b 



and c. There are eight diagrams of each type, devised 
from the possible tY[2es of a- and fi-type vertices (recall 
that we are using ~ z  to evaluate the amplitudes on 
either side of the cut to order 652, and finding the overall 
expression for the cut graph to order 63). We operate 
with D2 on the expressions on either side of the cut, 
and set a = fl = 0. When this is done for all sixteen cut 
graphs we obtain 

- 6323M6(�89 

"[A(pl, P2, P3, P4)B(Pl, P2, P3, P4)~Dz [W== + VC~p 

-- W~p - W/~=] [~=a=oD2 IF(a ,  r) - F(fl ,  r)] [,=t~= o 

+ A(Pi,  P2, P3, P4)~B*(pi, P2, P3, P4) 

�9 D2[F(cq l) - F(fi, l)3 I==,=o 

�9 D2[X~= + X ~  - X=p - Xp~] 1~=~=0] (2.15) 

where 

Wxy = F(x, l)H(y, l, r) 

Xxr = n ( x ,  l, r)F(y, r) 

and 

(2.16) 

2 Im A(pl, P2, P3, P4) - A(pl, P2, P3, P4)c 

2 Im B(pi, P2, P3, P4) = B(pi, P2, P3, P4-)c. (2.1 7) 

It is the quantity in (2.15) which appears on the 
right-hand side of the unitarity equation. We simplify 
(2.13) and (2.15), and using the fact that 

2 Im A(pl ,  P2, P3, P4)B(Pl, P2, Pa, P4) 

= A(Pl,  P2, P3, P4)B(pi, P2, P3, P4)c 

+ A(p l ,p2 ,P3 ,p4)cB*(p l ,pz ,p3 ,p4  ) (2.18) 

we find that perturbative unitarity for the class of 
graphs shown in Fig. 4a is indeed satisfied to order 653. 

In the same way we find that unitarity is satisfied 
for the types of graphs shown in Fig. 5a and b, whose 
cut diagrams are shown in Fig. 5c and d respectively. 
Thus perturbative unitarity is satisfied for the complete 
scattering amplitude in 3-perturbation theory to order 
6 3 , in the manner prescribed by (1.9). 
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P i = 3 + x6 2 + 3 3, P2 =- 6965 + y3 2 Jr- 65 3, 
P3 = 0923 + z3r + 33 (3.1) 

where x, y and z are not known. Let us further suppose 
that x, y and z are linear functions of the parameters 
a~ = a, a2 = fi and a3 = ~, that is 

X = Xo q- X1O~-JF X2fl q- X37 

Y : Yo + y i~  + Y2fl q- Ya2 

z = z o + zlc~ + zzfl + z37. (3.2) 

Imposing the unitarity constraint (2.11) yields the 
following five conditions on the unknown coefficients 
in (3.2) 

(xi + Yi + zi) + (Dz(x2 ~- Y2 + z2) + (D(X3 "~- Y3 "q- Z3) = 0 

(X0 + Y0 + Zo) = 0 

(Xi + Yi + Zi) + CO(X2 + Y2 + Z2) + ~2(X3 + Y3 + Z3) = 0 

(X0 + co2y0 + COZ0) + (Xi + o9y2 + (02Z3) = 0 

(Xo + ogy0 + C02Z0) = 3. (3.3) 

These conditions are not sufficient to fix the poly- 
nomials uniquely (and it can be shown that no 
additional conditions are obtained from considering 
three-vertex diagrams). The form of the polynomials 
in (1.4) was originally arrived at using a functional 
integral representation of the Green functions G of the 
theory in (1.2), and requiring that D~GI~k=o=G, 
correct to order 3 K. If we do this to order 33, and 
assume once again that the polynomials are given by 
(3.1, 3.2), we obtain the same conditions as in (3.3), 
along with the following additional condition. 

(Xl -I- Y2 + Z3) =3 .  (3.4) 

Unitarity thus provides powerful constraints, which 
are indeed satisfied by the polynomials of (1.4). 
However, additional constraints, and indeed arbitrary 
choices, are needed in order to arrive at the specific 
forms used in [1] and [2], and given in (1.4). 
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3 Unitarity as a constraint on the polynomials  Pk 

We have observed that the structure of the differential 
operator D K and the polynomials Pk, which is designed 
to produce the correct 3-expansion for the Green 
functions of the Lagrangian in (1.2), a/so preserves the 
unitarity relation perturbatively. Unlike the differential 
operator DK, the polynomials Pk (k = 1, 2 . . . . .  K) are 
not known for general K. We might hope to constrain 
the form of these polynomials using the requirement 
of perturbative unitarity. 

Consider, for example, the analysis in Sect. 2.3 of 
unitarity to order 3 3 for the two-vertex graphs. Let us 
suppose  that we know the polynomials for K = 2, but 
that for K = 3 our knowledge of them is incomplete, 
so that they are given by 
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