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Abstract

We analyse the valuation and hedging of a claim on a non-traded asset using a corre-
lated traded asset under a partial information scenario, when the asset drifts are unknown
constants. Using a Kalman filter and a Gaussian prior distribution for the unknown pa-
rameters, a full information model with random drifts is obtained. This is subjected to
exponential indifference valuation. An expression for the optimal hedging strategy is de-
rived. An asymptotic expansion for small values of risk aversion is obtained via PDE
methods, following on from payoff decompositions and a price representation equation.
Analytic and semi-analytic formulae for the terms in the expansion are obtained when
the minimal entropy measure coincides with the minimal martingale measure. Simulation
experiments are carried out which indicate that the filtering procedure can be beneficial in
hedging, but sometimes needs to be augmented with the increased option premium, that
takes into account parameter uncertainty, in order to be effective. Empirical examples are
presented which conform to these conclusions.

1 Introduction

This article analyses the optimal valuation and hedging of a contingent claim in an incomplete
market under a partial information scenario. The hedger does not know the values of the
assets’ expected returns, which are filtered from price observations, and trading strategies are
required to be adapted to the asset price filtration. We assume volatilities and correlation
are known constants, so we assume approximately continuous price monitoring. We make this
approximation as drift parameter uncertainty is much more severe than covariance uncertainty,
as discussed by Rogers [27] in an optimal investment context, and by Monoyios [22] in an
optimal hedging problem.

Partial information problems have usually been studied in the context of optimal investment
(Rogers [27], Lakner [19], Brendle [8], and Björk, Davis and Landén [7]). Nagai and Peng [24]
treat risk-sensitive control, while Pham [25] and Xiong and Zhou [28] study mean-variance
portfolio problems. Utility-based hedging of claims under partial information has received
little attention, though some mention of partial information pricing was made in Dufresne and
Hugonnier [9].

The incomplete market is a basis risk model in which a claim on a non-tradeable asset Y
is hedged using a correlated traded stock S. This has been studied by many authors in the
completely observable case, often when asset prices follow log-Brownian motions with constant
parameters (Davis [10], Henderson [15], Monoyios [21, 22]) or when some parameters depend
on the non-traded asset only (Musiela and Zariphopoulou [23] and, in a multi-dimensional case,
Imkeller and co-authors [1, 2, 3]). In the scalar versions of these models, an explicit nonlinear
expectation representation for the exponential utility-based price is available.

In our approach, significant differences arise. We begin with lognormal processes for S, Y ,
but with unknown constant drifts, hence considered as random variables with some prior dis-
tribution at time zero. After filtering the drifts from price observations, the resulting full
information model written in the observation filtration has stochastic drifts which depend on
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both asset prices. This is a departure from the models in the literature and the explicit results
of the full information case are no longer available.

Preliminary ideas on using filtering methods to deal with drift parameter uncertainty in
the basis risk model were outlined by Monoyios [22]. That analysis used two separate one-
dimensional filters for each asset drift, and the indifference valuation and hedging program was
not carried out. Here, we use a two-dimensional filter, thus introducing coupling between the
optimal filters connected with the drifts of the assets. The filtered drift of S can depend on
Y and vice versa. The rather specialised case in [22] is not, in general, obtained in the full
two-dimensional analysis.

We carry out the utility-based valuation and hedging program in the derived completely
observable model with random drifts. We derive an optimal hedging formula (Theorem 1),
giving the hedge ratio in terms of derivatives of the indifference price with respect to both asset
prices. This is a modification of the full information result (which contains derivatives with
respect to the non-traded factors only). The extra term reflects additional risk induced by drift
parameter uncertainty.

Using the PDE satisfied by the indifference price we derive some payoff decompositions
(Lemma 1, Corollary 1) and a price representation equation (Corollary 2) written under the
minimal entropy martingale measure (MEMM) QE . Mania and Schweizer [20] (see also Becherer
[5] and Kallsen and Rheinländer [17]) obtain similar (but less explicit) results using backward
stochastic differential equation methods in a continuous semimartingale model. Our results are
explicit, in that the terms appearing in the relations are identified in terms of the indifference
price and its derivatives, given the more concrete setting of our model. These results are used
to derive an asymptotic expansion (Theorem 2) of the indifference price, to linear order in the
risk aversion, with the zeroth order term being the marginal price (the zero risk aversion limit
of the indifference price). Small risk aversion results (of a slightly different form) for indifference
valuation have been obtained by Kramkov and Sirbu [18], but for a utility function defined on
the positive real line, so not directly applicable here.

The asymptotic expansion relies on identifying the MEMM QE . In general, this involves
the solution of a stochastic control problem. To obtain more explicit formulae and carry out
numerical experiments, we specialise in Section 5 to the case where QE = QM , the minimal
martingale measure. This corresponds to the case where the prior variance of S is less than or
equal to that of Y . We show (Theorem 3) that, even with stochastic risk premia generated by
the Kalman filter, the distribution of the terminal value of the non-traded asset is lognormal,
with a time-dependent variance and mean that is a function of both asset prices and time. From
this we derive new analytic formulae for most of the terms in the price expansion, involving
BS-style formulae with a random dividend yield that is a function of time and the asset prices,
and a time-dependent volatility. One term in the first order correction is not obtainable in
closed form. This is the QM -expectation of the quadratic variation of the gains process of
the marginal hedging strategy (the optimal strategy in the zero risk aversion limit), and so is
computed via simulation.

We investigate numerically whether utility-based valuation and hedging, when coupled with
learning based on filtering the asset drifts, can outperform other techniques. We test against (i)
the optimal price and hedge in the absence of filtering, implemented using the full information
results with the initial values of the asset drifts (so not updated by filtering), (ii) the perfect
correlation Black-Scholes (BS)-style price and hedge, and (iii) its correlation-weighted modifi-
cation, proposed by Hulley and McWalter [16], in which the latter two methods do not require
knowledge of the drift parameters. As a calibration, we also use the genuine full information
hedge, using the true asset drifts, once again fixed through the hedging interval. We simulate
many asset price histories and compute the distribution of terminal hedging errors, with the
hedging programs starting at the same initial wealth. We also compute the effect of using the
appropriate option premium (allied to the particular hedging method) as the initial wealth.
The latter computation is designed to show the combined effect of valuation as well as hedging
on the final profit and loss.

The results indicate that filtering the asset price drifts can often improve the terminal
profit and loss distribution, but there are instances when the prior is well suited to producing
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good results without filtering, or when the correlation-weighted BS hedge is also a good hedge,
because its approximation of zero drift for the underlying asset under the minimal measure is a
fortuitous one. The partial information method almost always gives an improvement when one
combines the filtered hedge with the appropriate valuation at time zero for the claim. This can
be traced to the fact that the parameter uncertainty induces a higher effective volatility, so the
agent charges a higher premium for the claim than without parameter uncertainty.

Finally, we show some examples with real data, hedging a basket of stocks with index futures,
and these conform to our earlier conclusions.

The rest of the paper is organised as follows. In Section 2 we set up the model and use
the Kalman-Bucy filter to convert the partial information model to a full information model
with random drifts, given in Proposition 1. In Section 3 we carry out exponential indifference
valuation in the derived full information model, present the optimal hedging formula (Theorem
1), and discuss the required smoothness of the dual value function, required for the validity of
our results. In Section 4 we derive the payoff decompositions and price representation results
leading to the asymptotic expansion (Theorem 2) for the indifference price. Section 5 derives
analytic formulae for all but one term in the price expansion in the case when QE = QM .
Numerical experiments are carried out in Section 6, and some empirical examples in Section 7.
Section 8 concludes.

2 The model

The setting is a probability space (Ω,F , P ), equipped with a filtration F := (Ft)0≤t≤T carrying
a two-dimensional Brownian motion (BS , ZS). Define a Brownian motion BY correlated with
BS according to

BY := ρBS +
√

1− ρ2ZS ,

with ρ ∈ [−1, 1] a known constant.
A traded stock price S := (St)0≤t≤T and a non-traded asset price Y := (Yt)0≤t≤T follow

dSt = σSSt(λSdt+ dBSt ), dYt = σY Yt(λY dt+ dBYt ),

where σS > 0 and σY > 0 are known constants.
The risk premia λS , λY are F0-measurable random variables, so would be known constants

if a financial agent had access to the filtration F. The new feature in this article is that an agent
will be required to use strategies adapted to the observation filtration generated by the asset
prices, so λS , λY will be unknown constants whose values will be filtered from price observations.
For simplicity, the interest rate is taken to be zero.

In taking σS , σY , ρ as known, we imply that they could be inferred from quadratic and
cross-variations, so this is an approximation of continuous asset price monitoring. We make
this assumption to focus on the more severe problem of drift uncertainty, though it would be
interesting to study similar problems with discrete monitoring of asset prices, and unknown
volatilities and correlation as well as uncertain drifts.

A European contingent claim pays the non-negative random variable C(YT ) at time T , where
C(·) is a bounded continuous function.

As is well-known, if the correlation is perfect then the claim can be perfectly replicated by
a BS-style hedge that does not require knowledge of the asset price drifts, and so is robust with
respect to drift parameter uncertainty.

In the completely observable incomplete case exponential utility-based valuation has been
studied by a number of authors. In [21, 22] it is shown that optimal valuation combined with
hedging is beneficial compared with the BS approach, in terms of the terminal hedging error
distribution produced by selling the claim at the appropriate price (the indifference price or
the BS price) and investing the proceeds in the corresponding hedging portfolio. If one focuses
exclusively on the hedging strategy, so begins with the same initial wealth for both strategies,
Hulley and McWalter [16] provide evidence that the the improved performance is not always
guaranteed, signifying that utility indifference methods rely to some extent on their initial
valuation of the derivative to be effective. We shall see examples of this in Section 6.
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We focus here on the issue of drift parameter uncertainty, and the fact that indifference
pricing requires perfect knowledge of λS , λY , which are virtually impossible to estimate accu-
rately. This can ruin the effectiveness of indifference methods, as shown in [22]. We relax the
assumption that the agent knows the values of λS , λY , and investigate if optimal valuation and
hedging is made feasible in this case by filtering the asset price drifts.

The return parameters λS , λY are hence modelled as random variables with some prior
distribution. Define the processes ξS , ξY by

ξSt :=
1
σS

∫ t

0

dSu
Su

= λSt+BSt , ξYt :=
1
σY

∫ t

0

dYu
Yu

= λY t+BYt , 0 ≤ t ≤ T.

Using the Itô formula these may be expressed as deterministic functions of the asset prices,
given by

ξSt ≡ ξS(t, St) =
1
σS

log
(
St
S0

)
+

1
2
σSt, ξYt ≡ ξY (t, Yt) =

1
σY

log
(
Yt
Y0

)
+

1
2
σY t. (1)

For brevity of notation we shall often write ζt ≡ ζ(t, St, Yt) for any process ζ that is a function
of time and current asset prices, whenever no confusion arises.

We regard the two-dimensional process

Ξt :=
(
ξSt
ξYt

)
, 0 ≤ t ≤ T,

as an “observation process” in a Kalman-Bucy filtering framework, corresponding to noisy
observations of the “signal process” (in our case, an unknown constant) Λ, defined by

Λ :=
(
λS

λY

)
.

Define the observation filtration F̂ := (F̂t)0≤t≤T by

F̂t = σ(ξSu , ξ
Y
u ; 0 ≤ u ≤ t), 0 ≤ t ≤ T.

We assume a Gaussian prior distribution, given by

Law(Λ|F̂0) = N(Λ0, V0), (2)

with

Λ0 =
(
λS0
λY0

)
, V0 =

(
vS0 c0
c0 vY0

)
, c0 = ρmin(vS0 , v

Y
0 ), (3)

for given constants λS0 , λ
Y
0 , v

S
0 , v

Y
0 , which may be determined as described below.

A motivation for this prior is the idea that an agent might use data before time zero to
make a point estimate of Λ, and could then use the distribution of the estimator as the prior.
With historical data for ξS (respectively, ξY ) over a time interval interval tS (respectively, tY ),
then an unbiased estimator of Λ is Gaussian according to (2) and (3) with λi0 equal to the point
estimate of λi, and vi0 = 1/ti, for i = S, Y . Hence, we shall suppose that Λ, considered as a
random variable, is bivariate normal according to (2) and (3). This distribution will be updated
via subsequent observations of ξS , ξY over the hedging interval [0, T ].

2.1 Two-dimensional Kalman-Bucy filter

We are firmly within the realm of a two-dimensional Kalman filtering problem. In [22], Monoyios
outlined preliminary ideas connecting the partial information basis risk model to a Kalman
filtering problem, and two one-dimensional Kalman-Bucy filters were used to obtain the filtered
random drifts. Here, we properly treat the filtering problem with a two-dimensional Kalman
filter.
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Remark 1. In principle, one could model the unknown risk premia λS , λY as processes following
linear SDEs, without leaving the Kalman filtering framework, as Brendle [8] does in the context
of an optimal portfolio problem. We do not pursue this here, as we are seeking maximally
explicit formulae for the indifference price and optimal hedge. It is not certain at this point
that this is feasible in the linear SDE framework. This is left for future research.

The observation and signal SDEs are

dΞt = Λdt+DdBt, dΛ =
(

0
0

)
,

where

D =
(

1 0
ρ
√

1− ρ2

)
, Bt =

(
BSt
ZSt

)
.

The optimal filter Λ̂t := E[Λ|F̂t], 0 ≤ t ≤ T , is therefore the two conditional expectations

λ̂it := E[λi|F̂t], 0 ≤ t ≤ T, i = S, Y.

The conditional variances and covariance are defined by

vit := E
[

(λi − λ̂it)2
∣∣∣ F̂t] , 0 ≤ t ≤ T, i = S, Y,

ct := E
[

(λS − λ̂St )(λY − λ̂Yt )
∣∣∣ F̂t] , 0 ≤ t ≤ T,

and the covariance matrix will be denoted by

Vt :=
(

vSt ct
ct vYt

)
, 0 ≤ t ≤ T. (4)

As usual with a Kalman filter, this will be a deterministic function of time. For ρ2 6= 1, define
the functions

mt := min(vSt , v
Y
t ), Mt := max(vSt , v

Y
t ), bt :=

Mt − ρ2mt

1− ρ2
, 0 ≤ t ≤ T, (5)

and note that bt = mt = Mt when the asset variances vSt = vYt are equal.
The Kalman-Bucy filter converts the partial information model to a completely observable

model as given below.

Proposition 1. On the filtered probability space (Ω, F̂T , F̂, P ) we have a full information model
with asset price dynamics given by

dSt = σSSt(λ̂St dt+ dB̂St ), dYt = σY Yt(λ̂Yt dt+ dB̂Yt ), (6)

where B̂S , B̂Y are correlated (P, F̂)-Brownian motions with correlation ρ, and λ̂S , λ̂Y are F̂-
adapted processes, given in terms of the asset prices and time as follows.

For i, j ∈ {S, Y }, if m0 = vi0 < vj0 = M0, then

λ̂it =
λi0 +m0ξ

i
t

1 +m0t
, λ̂jt =

λj0 + b0ξ
j
t

1 + b0t
− ρ

(
λi0 + b0ξ

i
t

1 + b0t
− λi0 +m0ξ

i
t

1 +m0t

)
, 0 ≤ t ≤ T, i, j ∈ {S, Y }.

(7)
The covariance matrix V in (4) is given by

vit = mt, vjt = Mt = ρ2mt + (1− ρ2)bt, ct = ρmt, 0 ≤ t ≤ T, i, j ∈ {S, Y }, (8)

with m,M, b defined in (5), and m, b given by

mt =
m0

1 +m0t
, bt =

b0
1 + b0t

, 0 ≤ t ≤ T. (9)

In the case that m0 = vS0 = vY0 = M0, then (7)–(9) still hold, with b0 = m0, and hence bt = mt

for all t ∈ [0, T ].
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Proof. By the Kalman-Bucy filter (for example, Theorem V.9.2 in Fleming and Rishel [12]),
the process Λ̂ satisfies the SDE

dΛ̂t = Vt
(
DDT

)−1
(dΞt − Λ̂tdt) =: Vt

(
DDT

)−1
dNt, Λ̂0 = Λ0, (10)

where N is the innovations process, defined by

Nt := Ξt −
∫ t

0

Λ̂udu, 0 ≤ t ≤ T, (11)

and is a two-dimensional correlated F̂-Brownian motion, given by

Nt =
(
B̂St

B̂Yt

)
, 〈B̂S , B̂Y 〉t = ρt, 0 ≤ t ≤ T. (12)

Using (11), (12) and the price dynamics in the form

d

(
St
Yt

)
=
(
σSSt
σY Yt

)
dΞt,

gives the dynamics (6) of S, Y in the observation filtration F̂.
The covariance matrix Vt satisfies the Riccati equation

dVt
dt

= −Vt
(
DDT

)−1
Vt,

with V0 given in (3). Then Ft := V −1
t satisfies the Lyapunov equation

dFt
dt

=
(
DDT

)−1
.

Lengthy (but straightforward) calculations confirm that the Lyapunov equation is solved by (8)
and (9). Using these formulae in the filtering equation (10) we find that for i, j ∈ {S, Y }, if
m0 = vi0 < vj0 = M0, then

dλ̂it = mtdB̂
i
t = mt(dξit − λ̂itdt), λ̂i0 = λi0,

d(λ̂jt − ρλ̂it) = bt(dB̂
j
t − ρdB̂it) = bt[d(ξjt − ρξit)− (λ̂jt − ρλ̂it)dt], λ̂j0 = λj0.

and in the case that m0 = vS0 = vY0 = M0, these SDEs are valid with b = m. Solving these
SDEs we obtain (7).

Remark 2. Written explicitly, the dependence of the random risk premia on the asset prices is
according to

λ̂St ≡ λ̂S(t, St), λ̂Yt ≡ λ̂Y (t, St, Yt), if vS0 < vY0 ,
λ̂St ≡ λ̂S(t, St), λ̂Yt ≡ λ̂Y (t, Yt), if vS0 = vY0 ,
λ̂St ≡ λ̂S(t, St, Yt), λ̂Yt ≡ λ̂Y (t, Yt), if vS0 > vY0 ,

(13)

satisfying the SDEs

dλ̂St = mtdB̂
S
t , dλ̂Yt − ρdλ̂St = bt(dB̂Yt − ρdB̂St ), if vS0 < vY0 ,

dλ̂St = mtdB̂
S
t , dλ̂Yt = mtdB̂

Y
t , if vS0 = vY0 ,

dλ̂Yt = mtdB̂
Y
t , dλ̂St − ρdλ̂Yt = bt(dB̂St − ρdB̂Yt ), if vS0 > vY0 .

(14)

When both asset drifts have equal prior variance, the optimal filters decouple, somewhat sim-
ilarly to the situation that arises when one uses two one-dimensional Kalman filters on each
asset, as done in Monoyios [22] (though one can have different prior variances for each asset
with two one-dimensional filters).

In general, the asset price with smaller prior variance enters the formulae for both random
risk premia. With the interpretation that the prior distribution is set using past data for the
asset prices, then the longer historical dataset influences the optimal filters for both assets,
and the shorter dataset only gives information on its respective asset price drift. The intuition
behind this result is that estimation of the drift of a geometric Brownian motion depends only
on the length of the time interval for which it is observed.
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3 Exponential valuation and hedging with random drifts

On the stochastic basis (Ω, F̂ , F̂, P ), we consider exponential indifference valuation and hedging
of the claim.

An agent trades the stock with F̂-adapted strategy θ = (θt)0≤t≤T , an S-integrable process
representing the number of shares held in the portfolio. Denote the portfolio wealth process by
X = (Xt)0≤t≤T . For t ∈ [0, T ], given Xt = x, the wealth evolution is given by

Xu = x+
∫ T

t

θudSu = x+ σS
∫ T

t

πu(λ̂Sudu+ dB̂Su ), t ≤ u ≤ T,

where π := θS. Denote by Θ (respectively, Π) the set of admissible θ (respectively, π), defined
shortly.

The set of equivalent martingale measures is denoted by

Pe := {Q ∼ P |S is a local (Q, F̂)-martingale}.

Denote by H(Q,P ) the relative entropy between Q ∈ Pe and P :

H(Q,P ) := E

[
dQ

dP
log

dQ

dP

]
, (if finite, else H(Q,P ) :=∞).

The set of measures with finite relative entropy is denoted by

Pe,f := {Q ∈ Pe|H(Q,P ) <∞},

and we assume this set is nonempty. The set of admissible strategies is defined in a similar
manner to Becherer [4] and Mania and Schweizer [20], as

Θ := {θ|(θ · S) is a (Q, F̂)-martingale for all Q ∈ Pe,f}.

For measures Q ∈ Pe,f denote the likelihood ratio process by a (P, F̂)-martingale ΓQ:

ΓQt :=
dQ

dP

∣∣∣∣ bFt

, 0 ≤ t ≤ T. (15)

We assume the agent has an exponential utility function

U(x) := exp(−αx), x ∈ R, α > 0,

with risk aversion parameter α.
The primal value function is the maximal expected utility from terminal wealth from trading,

with the additional random terminal endowment of a short position in the claim:

uC(t, x, s, y) := sup
π∈Π

Et,x,s,y[U(XT − C(YT ))], (16)

where Et,x,s,y denotes expectation given (Xt, St, Yt) = (x, s, y), for t ∈ [0, T ]. Denote by u0 the
value function when no claim is sold.

The indifference selling price at time t ≤ T is p(t, St, Yt), where the function p : [0, T ]× R2
+

is defined as usual by
uC(t, x+ p(t, s, y), s, y) = u0(t, x, s, y).

As always with exponential utility, we anticipate that the indifference price is independent of
initial wealth.

Denote the optimal strategy for (16) by πC , and the optimal strategy with no claim by π0.
The optimal hedging strategy π(H) is defined by

π(H) := πC − π0. (17)
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Well-known duality theory for the problem (16) (see Delbaen et al [11], for example) implies
that the primal value function has the representation

uC(t, x, s, y) = − exp
(
−αx−HC(t, s, y)

)
, (18)

where the function HC originates from the dual problem to (16), and is defined by

HC(t, s, y) := inf
Q∈Pe,f

EQt,s,y

[
log

(
ΓQT
ΓQt

)
− αC(YT )

]
, (19)

where EQt,s,y denotes Q-expectation given (St, Yt) = (s, y).
Denote by H0 the function in (19) when no claim is present, or equivalently when C ≡ 0.

This is the value function corresponding to the problem of minimising the relative entropy
between Q ∈ Pe,f and P , so that H0(0, ·, ·) = H(QE , P ). To emphasise the link with QE , we
shall sometimes write H0 ≡ HE .

Applying the definition of the the indifference price and using the separable form (18) of the
value function leads to the well-known entropic representation

p(t, s, y) = − 1
α

(HC(t, s, y)−H0(t, s, y)). (20)

3.1 Optimal hedging theorem

The result below is a representation for the optimal hedging strategy in terms of derivatives of
the indifference price.

Theorem 1. Suppose the indifference pricing function p : [0, T ]× R+ is of class C1,2([0, T ]×
R+). Then the optimal hedge for a short position in the claim is to hold θ

(H)
t shares of St at

t ∈ [0, T ], given by

θ
(H)
t =

(
∂p

∂s
(t, St, Yt) + ρ

σY

σS
Yt
St

∂p

∂y
(t, St, Yt)

)
, 0 ≤ t ≤ T.

Remark 3. The required regularity of the indifference price for the validity of the theorem
is established in Section 3.3. The additional term ps(t, St, Yt), compared with other papers
[1, 15, 21, 23] in which the drift parameters do not depend on the traded stock price, reflects
the additional risk induced by parameter uncertainty. It is easy to see that the formula still
holds if the volatilities and correlation are also functions of time and current asset prices.

Proof. The HJB equation associated with the primal the value function (16) is

∂uC

∂t
+ max

π
AX,S,Y uC = 0,

where AX,S,Y denotes the generator of (X,S, Y ) under P . Performing the maximisation in
the HJB equation gives the optimal feedback control πC(t, s, y) in terms of derivatives of the
value function. Then using the separable form (18) of the value function, we obtain the optimal
strategy as πCt = πC(t, St, Yt), where

πC(t, s, y) =
λ̂S

σSα
− 1
α

(
sHC

s + ρ
σY

σS
yHC

y

)
.

A similar formula holds for the optimal strategy π0 in the case when no claim is present, with
HC replaced by H0. Applying the definition (17) of the optimal hedging strategy, we obtain

π(H)(t, s, y) = − 1
α

[
s(HC

s −H0
s ) + ρ

σY

σS
y(HC

y −H0
y )
]
.

The result now follows from the entropic representation (20) of the indifference price.
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3.2 The dual stochastic control problem

We consider the dual problem in (19) from a stochastic control perspective, to derive a PDE
for HC(t, s, y). We discuss the existence of a sufficiently smooth solution to this PDE, so that
the value function and indifference price are smooth enough for the hedging theorem to be
valid. From the resulting PDE satisfied by the indifference price we shall derive, in the next
section, payoff decompositions and an indifference price representation equation, leading to an
asymptotic expansion for the indifference price, for small values of risk aversion.

Parametrise the measures Q ∈ Pe,f via F̂-adapted processes ψ in the P -martingale ΓQ of
(15), according to

ΓQt = E(−λ̂S · B̂S − ψ · ẐS)t, 0 ≤ t ≤ T,

where ẐS is a (P, F̂)-Brownian motion orthogonal to B̂S . By the Girsanov Theorem we have a
two-dimensional (Q, F̂)-Brownian motion (B̂S,Q, ẐS,Q) defined by

B̂S,Qt := B̂St +
∫ t

0

λ̂Sudu, ẐS,Qt := ẐSt +
∫ t

0

ψudu, 0 ≤ t ≤ T,

with ψ = 0 corresponding to the minimal martingale measure QM , so that ẐS is also a (QM , F̂)-
Brownian motion. Then, for Q ∈ Pe,f , we have

EQt,s,y

[
log

ΓQT
ΓQt

]
= EQt,s,y

[
1
2

∫ T

t

[
(λ̂Su)2 + ψ2

u

]
du

]
<∞, (21)

where the integrability condition on the right hand side is associated with the finite entropy
condition and ensures that the stochastic integrals on the left hand side have zero expectation.

Let Ψ denote the set of integrands ψ such that (21) is satisfied. Then HC in (19) is the
value function of the stochastic control problem

HC(t, s, y) := inf
ψ∈Ψ

EQt,s,y

[
1
2

∫ T

t

[
(λ̂Su)2 + ψ2

u

]
du− αC(YT )

]
, (22)

where, under Q ∈ Pe,f , the state variables S, Y follow

dSt = σSStdB̂
S,Q
t ,

dYt = σY Yt

[
(λ̂Yt − ρλ̂St −

√
1− ρ2ψt)dt+ dB̂Y,Qt

]
,

(23)

and B̂Y,Q is a (Q, F̂)-Brownian motion given by B̂Y,Q = ρB̂S,Q+
√

1− ρ2ẐS,Q. The risk premia
λ̂S , λ̂Y are functions of the asset prices according to (13).

The HJB equation for HC is

HC
t +AQ

M

S,YH
C+

1
2

(λ̂S)2 +min
ψ

[
1
2
ψ2 −

√
1− ρ2σY yψHC

y

]
= 0, HC(T, s, y) = −αC(y), (24)

where AQ
M

S,Y is the generator of (S, Y ) under QM . The function H0 corresponding to finding
the minimal entropy measure QE satisfies (24) with terminal condition H0(T, s, y) = 0.

The optimal feedback control in (24) is ψC , given by

ψC(t, s, y) =
√

1− ρ2σY yHC
y (t, s, y). (25)

and in particular, the problem with no claim gives the integrand ψE ≡ ψ0 in the density of the
minimal entropy measure:

dQE

dP
= E(−λ̂S · B̂S − ψE · ẐS)T ,

where the process ψE is given by ψEt = ψE(t, St, Yt), 0 ≤ t ≤ T , with

ψE(t, s, y) =
√

1− ρ2σY yH0
y (t, s, y). (26)

9



Inserting the optimal feedback control (25) back into the Bellman equation yields the PDE

HC
t +AQ

M

S,YH
C +

1
2

(λ̂S)2 − 1
2

(1− ρ2)(σY yHC
y )2 = 0, HC(T, s, y) = −αC(y).

Using the fact that H0 satisfies the same PDE with zero terminal condition, along with the
entropic representation (20) of the indifference price, we subtract the PDE for H0 from that
for HC to yield that the indifference price satisfies

pt +AQ
M

S,Y p+
1
2
α(1− ρ2)(σY ypy)2 − 1

2

√
1− ρ2σY ypyψ

E(t, s, y) = 0, p(T, s, y) = C(y),

where we have used (26). Using the fact that the drift of Y under QE is given by (23) with
ψ = ψE , we recast the above PDE into the form

pt +AQ
E

S,Y p+
1
2
α(1− ρ2)(σY ypy)2 = 0, p(T, s, y) = C(y). (27)

For α = 0 this PDE becomes linear and the indifference price becomes the the so-called marginal
utility-based price pE , given as an expectation of the payoff under QE , as is well-known:

pE(t, s, y) := lim
α→0

p(t, s, y) = EQ
E

t,s,yC(YT ).

Remark 4 (The case QE = QM ). In the case when vS0 ≤ vY0 , then by (13), λ̂S loses all
dependence on the non-traded asset price, the infimum in the dual problem (22) for C = 0 is
achieved by ψE = 0, and the MEMM coincides with the minimal martingale measure, QE =
QM . Then H0 loses dependence on the non-traded asset price and (26) gives ψE = 0, as it
should. The indifference pricing PDE (27) then becomes tractable, as the unknown function
ψE(t, s, y) in the generator AQ

E

S,Y is set to zero. We shall therefore focus in Section 5 on the case
QE = QM to obtain more explicit results.

3.3 Regularity of the value function

In this section we discuss the required smoothness of the dual value function HC , and hence
of the indifference price, required for the validity of Theorem 1. We outline how smoothness
can be established in the case when vS0 ≤ vY0 . The arguments are identical (but with modified
formulae in places) when vS > vY0 .

The existence of sufficiently smooth solutions to semi-linear PDEs of the type (24) has been
considered by Pham [26] and Benth and Karlsen [6], and similar techniques could in principle
be used to establish that HC is indeed a classical solution to (24). We do not pursue this here,
but instead follow Davis [10] and make the transformations

St :=
1
σS

logSt, Yt :=
1
σY

log Yt, f(y) := C(exp(σY y)).

The function HC expressed in the new variables is J , defined by the stochastic control problem

J(t, s, y) := inf
ψ
EQ

[
1
2

∫ T

t

[
L2(t,Su) + ψ2

u

]
du+ f(YT )

∣∣∣∣∣St = s,Yt = y

]
, (28)

where the function L(t, s) is given by transforming the formula for λ̂S from Proposition 1 into
the new variables:

L(t, s) = mt

(
λS0
m0
− S0 +

1
2
σSt+ s

)
.

The dynamics of the state variables in (28) are

dSt = −1
2
σSdt+ dB̂S,Qt ,

dYt = [a(t,St,Yt)−
√

1− ρ2ψt]dt+ dB̂Y,Qt ,

10



where a(t, s, y) is equal to λ̂Yt − ρλ̂St − 1
2σ

Y , transformed to the new variables:

a(t, s, y) = bt

[
λY0 − ρλS0

b0
− (Y0 − ρS0) +

1
2

(σY − ρσS)t+ y − ρs
]
− 1

2
σY ,

with b0 = m0 (and hence bt = mt) in the case where vS0 = vY0 . Then a is Lipschitz in s, y for all
t ∈ [0, T ]. The point of making this transformation is that (28) is a standard form of stochastic
control problem, whose solution can be shown to be given by a classical solution of the HJB
equation

Jt+a(t, s, y)Jy−
1
2
σSJs+

1
2
Jss+ρJsy+

1
2
Jyy+

1
2
L2(t, s)+min

ψ

[
1
2
ψ2 −

√
1− ρ2ψJy

]
= 0, (29)

with J(T, s, y) = f(y). The salient feature of this equation is that it is uniformly elliptic or
parabolic1 for ρ2 ≤ 1, and the proof of Lemma 1 and Theorem 2 in Davis [10] can be adapted
to show that the value function J is the unique classical solution of (29), and hence that the
function HC(t, s, y) is a classical solution of (24), and thus the primal value function uC is
smooth enough for the proof of Theorem 1 to be valid.

4 Payoff decompositions and asymptotic expansions

4.1 Payoff decompositions and price representation

We shall obtain an asymptotic representation of the indifference price valid for small values of
risk aversion, following from payoff decompositions and a price representation equation.

We work under the MEMM QE , with asset price dynamics given by (23) with ψ = ψE .
Define the local (QE , F̂)-martingale L by

Lt :=
√

1− ρ2σY
∫ t

0

Yupy(u, Su, Yu)dẐS,Q
E

u , 0 ≤ t ≤ T, (30)

where ẐS,Q
E

is a (QE , F̂)-Brownian motion orthogonal to the Brownian motion B̂S,Q
E

driving
the stock under QE . Note that from (25), (26), the entropic representation (20) of the indif-
ference price and the integrability condition (21), that L is a (QE , F̂)-martingale. We have the
following decomposition of the claim payoff.

Lemma 1 (Payoff decomposition). The claim payoff admits the decomposition

C(YT ) = p(t, St, Yt) +
∫ T

t

θ(H)
u dSu + LT − Lt −

1
2
α(〈L〉T − 〈L〉t), 0 ≤ t ≤ T, (31)

where θ(H) is the optimal hedging strategy for the claim, given in Theorem 1.

Remark 5. Mania and Schweizer [20] have obtained a similar result in a backward stochastic
differential equation representation (see equation (4.5) in Theorem 13 of [20]), in a more abstract
model. The new feature of Lemma 1 is that the integrand θ(H) and the QE-martingale L are
given in terms of derivatives of the indifference price. Naturally, we have been able to obtain this
because we are considering a more explicit model, allowing the Itô formula and PDE methods
to be exploited.

Remark 6. Lemma 1 is similar in spirit to Theorem 7 in Musiela and Zariphopoulou [23], but
our hedging strategy depends, of course, on derivatives of the indifference price with respect to
both state variables (S, Y ), rather than the single variable Y of [23].

1In other words, writing the second order terms as a11Jss + 2a12Jsy + a22Jyy , we have a2
12 ≤ a11a22.
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Proof of Lemma 1. This is established by computing the differential dp(t, St, Yt) under QE and
using the PDE satisfied by p, to give

dp(t, St, Yt) = −1
2
α(1− ρ2)[σY Ytpy(t, St, Yt)]2dt+ ps(t, St, Yt)dSt + σY Ytpy(t, St, Yt)dB̂

Y,QE

t ,

(32)
where B̂Y,Q

E

is a (QE , F̂)-Brownian motion driving the non-traded asset price. We have

B̂Y,Q
E

= ρB̂S,Q
E

+
√

1− ρ2ẐS,Q
E

,

as well as dSt = σSStdB̂
S,QE

t . Using these relations, along with the optimal hedging formula
of Theorem 1 and the definition (30) of L, converts (32) to

dp(t, St, Yt) = −1
2
αd〈L〉t + θ

(H)
t dSt + dLt,

and the result follows by integrating from t to T .

Define the process LE as the α → 0 limit of L, given by replacing the indifference price p
with the marginal price pE in the definition (30) of L:

LEt :=
√

1− ρ2σY
∫ t

0

Yup
E
y (u, Su, Yu)dẐS,Q

E

u , 0 ≤ t ≤ T. (33)

We have the immediate corollary below, from setting α = 0 in Lemma 1, the Föllmer-Schweizer-
Sondermann [13, 14] decomposition of the payoff under QE in our specific model.

Corollary 1 (Föllmer-Schweizer-Sondermann decomposition). The claim payoff admits the
decomposition

C(YT ) = pE(t, St, Yt) +
∫ T

t

θEu dSu + LET − LEt , 0 ≤ t ≤ T, (34)

where pE is the marginal utility-based price of the claim, θE is the marginal hedging strategy for
the claim, given by Theorem 1 with pE in place of the indifference price, and LE is the process
in (33).

The following corollary of Lemma 1 follows by taking conditional expectations of (31) under
QE , given (St, Yt) = (s, y).

Corollary 2 (Indifference price representation). The indifference pricing function p : [0, T ]×R2
+

has the representation

p(t, s, y) = pE(t, s, y) +
1
2
αEQ

E

t,s,y[〈L〉T − 〈L〉t]. (35)

Remark 7. A more abstract form of this result appears in Mania and Schweizer [20] (see the last
equation before Theorem 18 in their paper). Once again, the new feature here is the explicit
identification of the QE-martingale L with the derivative of the indifference price according to
(30).

4.2 Asymptotic expansions

Denote by
v(t, s, y) := varQ

E

t,s,y[C(YT )],

the conditional variance of the claim payoff under QE . Define the gains process GE associated
with the marginal hedging strategy by

GEt :=
∫ t

0

θEu dSu, 0 ≤ t ≤ T.

The asymptotic expansion for the indifference price to first order in α is then given by the
following theorem.

12



Theorem 2. The indifference pricing function p(t, s, y) has the asymptotic expansion

p(t, s, y) = pE(t, s, y) +
1
2
α
(
v(t, s, y)− EQ

E

t,s,y[〈GE〉T − 〈GE〉t]
)

+O(α2).

Proof. Write
p(t, s, y) = pE(t, s, y) + αp(1)(t, s, y) +O(α2).

Insert this expansion into the price representation equation (35), and use the definition (30) of
L, to obtain

αp(1)(t, s, y)+O(α2) =
1
2
α(1−ρ2)(σY )2EQ

E

t,s,y

∫ T

t

Y 2
u

(
pEy (u, Su, Yu) + αp(1)

y (u, Su, Yu) +O(α2)
)2

du.

Equating terms of order α and using the definition (33) of LE , we obtain

p(1)(t, s, y) =
1
2
EQ

E

t,s,y[〈LE〉T − 〈LE〉t]. (36)

Now use the Föllmer-Schweizer-Sondermann decomposition (34) to compute

v(t, s, y) = varQ
E

t,s,y[C(YT )] = EQ
E

t,s,y[(C(YT )− pE(t, s, y))2]

= EQ
E

t,s,y

[
(GET −GEt + LEt − LEt )2

]
.

The processes GE , LE are orthogonal QE-martingales, so this becomes

v(t, s, y) = EQ
E

t,s,y[〈GE〉T − 〈GE〉t + 〈LE〉T − 〈LE〉t],

and inserting this into (36) gives the result.

Remark 8. Contrast the expansion in Theorem 2 with the corresponding result in the full
information case, which is obtained from a Taylor expansion of a non-linear expectation repre-
sentation of the indifference price, and which is of the form (see [21], for instance)

pFI(t, y) = pE,FI(t, y) +
1
2
α(1− ρ2)vFI(t, y) +O(α2), (full information expansion) (37)

(where the superscript FI denotes full information). In this case, QE = QM , and the indifference
price has no dependence on s. As a result, 〈LE,FI〉 = ((1− ρ2)/ρ2)〈GE,FI〉, and the variance of
the payoff in the full information case is given by

vFI(t, y) := varQ
E

t,y [C(YT )]

= EQ
E

t,y

[
〈LE,FI〉T − 〈LE,FI〉t + 〈GE,FI〉T − 〈GE,FI〉t

]
=

1
ρ2
EQ

E

t,y

[
〈GE,FI〉T − 〈GE,FI〉t

]
.

The first order term in the price expansion of the theorem reduces to

1
2
α
(
vFI(t, y)− EQ

E

t,y

[
〈GE,FI〉T − 〈GE,FI〉t

])
=

1
2
α(1− ρ2)vFI(t, y),

in accordance with (37). This expansion can be written in analytic form, so numerical compu-
tation for non-zero risk aversion is considerably easier in the completely observable case than
in the partial information model.

13



5 Analytic formulae when QE = QM

From now on we specialise to the case when vS0 ≤ vY0 , so that λ̂St ≡ λ̂S(t, St) does not depend
on the non-traded asset price, and QE = QM , as in Remark 4.

For convenience, define the process ν̂ by

ν̂t := λ̂Yt − ρλ̂St , 0 ≤ t ≤ T,

with ν̂0 = λY0 − ρλS0 . The dynamics of Y under QM are

dYt = σY Yt(ν̂tdt+ dB̂Y,Q
M

t ),

with B̂Y,Q
M

a QM -Brownian motion.
The dynamics of ν̂t under QM follow from transforming (14) from P to QM , giving

dν̂t =
√

1− ρ2btdẐ
S
t ,

where ẐS is a QM -Brownian motion (and also a P -Brownian motion) perpendicular to the
Brownian motion B̂S,Q

M

driving the stock, related to B̂Y,Q
M

by

B̂Y,Q
M

= ρB̂S,Q
M

+
√

1− ρ2ẐS . (38)

From Proposition 1, when vS0 ≤ vY0 , ν̂ is a function of the current asset prices, ν̂t ≡ ν̂(t, St, Yt),
given by

ν̂(t, s, y) =
ν̂0 + b0(ξY (t, y)− ρξS(t, s))

1 + b0t
, (39)

with b0 = m0 in the case that vS0 = vS0 , and where ξS(t, s) and ξY (t, y) are the functions in (1)
evaluated at St = s and Yt = y.

The following result shows that log YT is normal under QM , with a mean which depends on
the current asset prices, and a with a time-dependent variance.

Theorem 3. Suppose vS0 ≤ vY0 . Under QM , conditional on St = s, Yt = y,

log YT ∼ N
(
µ(t, s, y),Σ2(t)

)
,

with

µ(t, s, y) = log y + σY ν̂(t, s, y)(T − t)− 1
2
(
σY
)2

(T − t),

Σ2(t) =
[
1 + (1− ρ2)bt(T − t)

]
(σY )2(T − t), (40)

where ν̂(t, s, y) is given in (39) and bt is given in (9). (When vS0 = vY0 the same formulae hold
with bt = mt, for 0 ≤ t ≤ T .)

Proof. We use the SDEs for Y and ν̂ under QM . Applying the Itô formula to log Y under QM ,
we obtain

log YT = log Yt + σY
∫ T

t

ν̂udu−
1
2

(σY )2(T − t) + σY
∫ T

t

dB̂Y,Q
M

u , 0 ≤ t ≤ T. (41)

From the dynamics of ν̂t under QM we have

ν̂u = ν̂t +
√

1− ρ2

∫ u

t

brdẐ
S
r , t ≤ u ≤ T.

Hence, after changing the order of integration in a double integral, we have∫ T

t

ν̂udu = ν̂t(T − t) +
√

1− ρ2

∫ T

t

bu(T − u)dẐSu .
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Inserting this into (41) and using (38) gives

log YT = log Yt + σY

[
ν̂t(T − t) +

√
1− ρ2

∫ T

t

(1 + bu(T − u)) dẐSu + ρ

∫ T

t

dB̂S,Q
M

u

]

− 1
2

(σY )2(T − t), 0 ≤ t ≤ T.

The stochastic integrals are orthogonal Gaussian processes with zero conditional expectation
given (St, Yt) = (s, y), from which the distribution of log YT follows.

Using this distribution we obtain BS-style formulae for the marginal price with a dividend
rate that depends on the asset prices, and with a time-dependent volatility. We also get an
analytic formula for the conditional variance v(t, s, y) in Theorem 2.

Denote by µj the jth moment of the payoff under QM :

µj(t, s, y) := EQ
M

t,s,y

[
Cj(YT )

]
, t ≤ T, j ∈ N.

The marginal pricing function pE(t, s, y) = EQ
M

t,s,yC(YT ) is given by

pE(t, s, y) = µ1(t, s, y),

and the variance v(t, s, y) := varQ
M

t,s,y[C(YT )] is given by

v(t, s, y) = µ2(t, s, y)− µ2
1(t, s, y). (42)

For a put option of strike K, the first and second moments are given by the following formulae.

Lemma 2. With µ(t, s, y) and Σ(t) as in Theorem 3, define q ≡ q(t, s, y) by

µ(t, s, y) = log y − q(t, s, y)− 1
2

Σ2(t).

The marginal price at time t ∈ [0, T ] of a put option with payoff (K − YT )+ is pE(t, St, Yt),
given by

pE(t, s, y) = KΦ(−d1(t, s, y) + Σ(t))− y exp(−q(t, s, y))Φ(−d1(t, s, y)),

d1(t, s, y) :=
1

Σ(t)

[
log
( y
K

)
− q(t, s, y) +

1
2

Σ2(t)
]
,

where Φ(·) denotes the standard cumulative normal distribution function.
The second moment of the payoff under QM is given by

µ2(t, s, y) = K2Φ(−d1(t, s, y) + Σ(t))− 2Ky exp(−q(t, s, y))Φ(−d1(t, s, y))
+ y2 exp(Σ2(t)− 2q(t, s, y))Φ(−d1(t, s, y)− Σ(t)).

To implement the optimal hedging strategy we need the derivatives with respect to s and y
of the indifference price. Approximating the indifference price by the asymptotic expansion of
Theorem 2, we obtain the derivatives of pE , and of the variance v. The calculations are similar
(but not identical to) those in [21, 22], but some nice cancellations occur to give formulae with
a similar flavour to those in [21, 22].

Lemma 3. The marginal hedging strategy for a short put position is

θE(t, s, y) = −ρσ
Y

σS
y

s
exp(−q(t, s, y))Φ(−d1(t, s, y)).
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The derivatives of the variance in (42) satisfy

vs(t, s, y) + ρ
σY

σS
y

s
vy(t, s, y)

= −2ρ
σY

σS
y

s
e−q(t,s,y)

[
KΦ(−d1(t, s, y))− y exp(Σ2(t)− q(t, s, y))Φ(−d1(t, s, y)− Σ(t))

]
− 2pE(t, s, y)θE(t, s, y).

The final term we need to implement the optimal hedge with the asymptotic expansion of
Theorem 2 is the quadratic variation term involving 〈GE〉. Using the explicit formula for the
marginal price, this term is given as follows.

Lemma 4. The expectation under QM of the quadratic variation 〈GE〉 for a put option satisfies

EQ
M

t,s,y[〈GE〉T − 〈GE〉t] =
(
ρσY

)2
EQ

M

t,s,y

∫ T

t

[Yu exp(−q(u, Su, Yu))Φ(−d1(u, Su, Yu))]2 du.

This expression will be evaluated numerically by Monte-Carlo simulation, as will its deriva-
tives with respect to s and y.

6 Numerical results and experiments

We conducted extensive numerical investigations into the partial information valuation and
hedging scheme.

An initial gauge of the effect of parameter uncertainty on the valuation and hedging of the
claim is given in Table 2, showing put option prices and hedging strategies at time zero from
the partial information model and the full information model, for varying correlation and for
risk aversions α = 0 and α = 0.01. We set the means of the prior equal to the true risk premia.
These and other parameters are shown in Table 1. The option prices are higher in the partial
information case as the agent incorporates the risk from parameter uncertainty into a higher
effective volatility, given by (40). This effect does not translate to the hedges, in that the agent
generally takes a bigger short position with full information, except for high correlation and non-
zero risk aversion. This is a first indication that the biggest effect of parameter uncertainty on
utility-based methods is incorporated into the valuation of the claim, as opposed to the hedge.
This will be borne out by simulation results which follow, and is not altogether surprising.
Utility-based valuation insists on achieving unchanged utility only when selling the option at
the indifference price, and not necessarily by trading judiciously with an option premium that
is at odds with the agent’s objective.

Note the dependence of the results on the QM -drift of Y , given by σY ν̂ in the partial
information case, and by the corresponding quantity with the true risk premia in the full
information case. The negative of this drift acts as a dividend yield in the option pricing
formulae, the put option premia increase as this drift decreases, and the hedge ratios become
larger in absolute value. This is reflected in the lower half of Table 2.

We then conducted simulation experiments on the hedging of the claim. Using a given prior
distribution λi0, v

i
0, i = S, Y , either chosen or estimated randomly from simulated data over

[−ti, 0], i = S, Y (and setting λi0 to the point estimates of the risk premia, with vi0 = 1/ti), we
hedged a short position in a put option of strike K over [0, T ], using some fixed rebalancing
interval δt (we used δt = 1/252, one trading day in all results we report). The prior distribution
was updated over [0, T ] and the claim was hedged using the optimal strategy of Theorem 1 with
the indifference price approximated by the asymptotic expansion of Theorem 2, or by its α→ 0
limit, the marginal price. We generated a terminal hedging error over the simulated paths and
repeated this over many price paths to produce a hedging error distribution, and compared this
distribution with that produced from alternative strategies, namely:

• The utility-based hedge which does not incorporate the learning from filtering. This uses
the indifference hedging formulae of the completely observable incomplete model with
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Table 1: Partial and full information (FI) put option prices and hedge ratios at time zero,
for risk aversion α = 0 (indexed with superscript E) and α = 0.01 from the first order in α
expansions (indexed with superscript 1). The parameters in the upper half of the table are as
in Table 1, and in the lower half of the Table we have λY = λY0 = 0.325. The BS price is 9.95
and the BS hedge is −0.3752.

ρ pE p1 pE,FI p1,FI θE θ1 θE,FI θ1,FI

0.25 11.50 12.88 6.68 7.21 -0.0704 -0.0779 -0.0737 -0.0791
0.5 11.64 12.91 7.60 8.08 -0.1493 -0.1653 -0.1601 -0.1689
0.75 11.19 12.15 8.60 8.91 -0.2426 -0.2701 -0.2588 -0.2667
0.85 10.76 11.53 9.02 9.22 -0.2870 -0.3213 -0.3016 -0.3073
0.95 10.11 10.63 9.45 9.52 -0.3389 -0.3823 -0.3463 -0.3485
0.25 12.58 14.08 7.84 8.45 -0.0743 -0.0817 -0.0816 -0.0872
0.5 13.03 14.42 9.12 9.68 -0.1593 -0.1752 -0.1786 -0.1877
0.75 12.96 14.04 10.52 10.88 -0.2633 -0.2905 -0.2902 -0.2980
0.85 12.72 13.60 11.11 11.35 -0.3147 -0.3483 -0.3385 -0.3441
0.95 12.32 12.91 11.71 11.80 -0.3769 -0.4193 -0.3889 -0.3910

Table 2: Parameters for prices and hedge ratios in Table 2

S0 Y0 K T λS σS λY σY λS0 λY0 vS0 vY0
100 100 100 1 year 0.5 0.3 0.425 0.25 0.5 0.425 2 2

the asset drifts set to their initial values λS0 , λ
Y
0 , and kept fixed throughout the hedging

time-frame. To order α the indifference price at t ∈ [0, T ] is given by (37), where we take
the drift of Y under QM to be σY (λY0 − ρλS0 ). The optimal hedging strategy is given by
Theorem 1 (with, of course, no derivative with respect to s).

• The BS-style hedge which assumes that S is a perfect proxy for Y , given by

θBS
t =

σY

σS
Yt
St

∂

∂y
BS(t, Yt;σY ), 0 ≤ t ≤ T. (43)

where BS(t, y;σY ) denotes the BS formula with underlying asset price y and volatility
σY .

• A variant of the BS hedge proposed by Hulley and McWalter [16], which multiplies the
hedge in (43) by the correlation ρ. In effect, this approximates the QM -drift of Y by zero.

We also carried out the tests using the full information hedge, with the drift of Y under QM

taken to be its true value σY (λY − ρλS) =: σY ν. This strategy is not available in reality to the
agent, but we include it as a calibration. It is not guaranteed to produce the best results, as
any finite sample of data may not reflect the true drifts of the assets.

The initial wealth was set to the time zero BS price for all the strategies. We also computed
the hedging error when starting with the appropriate option premium corresponding to the
hedging program, to assess the effect of valuation as well as the benefits or otherwise of the
hedging strategy.

First, we present results in which we used the marginal hedging strategies (with or without
filtering) for the utility-based methods. In this case analytic formulae were available for all
quantities involved, and with the ensuing fast computation we carried out extensive simulations
over a range of scenarios, a representative sample of which we report.

Table 3 shows summary statistics for the hedging error distributions when the prior risk
premia were set equal to the true risk premia, λi0 = λi, for i = S, Y . Of course, in this case, the
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full information results will be identical to those without filtering. We use this as a base case
and then vary the prior to illustrate how the benefits or otherwise of the partial information
approach vary with the prior.

The hedge with filtering gives a higher mean, median and expected utility than the other
strategies. The standard deviation is higher than that of the unfiltered hedge and the correlation-
weighted BS hedge. The BS hedge is the worst performer, and is massively improved by weight-
ing it by the correlation. With the parameters used in the upper half of the table, the true drift
of Y under the minimal measure is positive (we have ν := λY − ρλS = 0.05). Under these con-
ditions the utility-based hedges tend to generate a positive terminal wealth by under-hedging
(that is, taking a small short position), as the option tends to end up out of the money. The
correlation-weighted BS hedge in effect approximates the QM -drift of Y drift by zero, so lower
than the true value. It then tends to over-hedge (that is, take a larger a short position than the
utility-based hedges) and thus under-perform. Conversely, if we change the risk premium of Y
to λY = 0.325, then the QM -drift of Y becomes negative, and we obtain the results in the lower
half of Table 3 (over a fresh set of simulated paths). Here, the correlation-weighted BS hedge
outperforms the utility-based hedge without learning, but once again the filtering has improved
the performance so that it turned out to be the best strategy in terms of mean, median and
expected utility.

If we incorporate the effect of valuation, and start the hedging programs at the indifference
price implied by the hedging method, then the filtering procedure massively outperforms the
other methods. We found this to be true in virtually all our simulation results.

These initial results indicate that the filtering procedure can improve the performance of
the utility-based method without filtering, regardless of initial wealth, and regardless of the
fact the the unfiltered hedge used the true values of the risk premia. The latter point reflects
the fact that asset data over any finite time period may well not reflect the true values of the
drifts (the notorious difficulty of drift parameter uncertainty) and the updating of filtering has
counteracted this to some extent.

The quality of strategies that do not use filtering appear to be related to the perceived
QM -drift of Y relative to its true value. This is indicated by the results in Table 4. In the
upper half of the table, the agent who does not incorporate filtering perceives the QM -drift of
Y as greater than the true value, though both are positive. The non-filtered strategy under-
hedges, and when the option is unlikely to be exercised, this is a successful policy (when all
hedges begin with common initial wealth). The improvement in hedging offered by filtering
is now less pronounced (the mean hedging error with filtering is larger than without, but the
median is not). A caveat to this is that if agents use their respective option premia as the initial
wealth, then the agent who does not incorporate learning will suffer. Similarly, the correlation-
weighted BS hedge approximates the QM -drift of Y by zero, and does not perform so well in
this case. Overall, the filtering procedure appears to be of benefit. This is supported by the
results in the lower half of the table. Now the agent who does not filter perceives the QM -drift
of Y as negative, and the correlation-weighted BS hedge outperforms the utility-based hedge
without filtering, but if we incorporate filtering, then the utility-based method has an improved
performance.

Occasionally, we found that the filtering procedure was not beneficial, usually when the
prior gave an extremely poor estimate of ν := λY − ρλS . The filtering then appears to be of
limited use in improving the hedge, and relies on its increased valuation of the claim to be at
all effective.

To this end, the upper half of Table 5 shows results in the case that the risk premium of Y
is initially badly over-estimated and the risk premium of S is badly under-estimated. In this
scenario, ν = −0.375, while the initial value of this quantity in the prior is ν0 = 0.425. The
non-filtering agent perceives the put as much less risky than in reality, and his hedging strategy
produces losses. But the prior is so poor that the filtering procedure fails to update it drastically
enough to change this perception, and the filtered hedge is also poor. The filtering method
performs better than the non-filtered hedge if the agents incorporate their initial valuations of
the option into the initial wealth, but in this case both strategies do worse than the correlation-
weighted BS hedge. If we improve the prior a little, we get the results shown in the lower half
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Table 3: Hedging error statistics as a fraction of the initial wealth (the BS price at time zero),
over 40, 000 asset price paths, with the risk premia of the prior set to be equal to the true risk
premia. The utility-based hedges used the marginal (α = 0) hedging strategies. Parameters
in the upper half of the table are as in Table 1, δt = 1/252, and ρ = 0.75. The time zero
option premia are pE0 = 11.93, pE,NF

0 = pE,FI = 9.39 (NF denoting no filtering), pBS
0 = 9.95.

Figures in parentheses show results obtained if the option premium corresponding to the hedging
method was used as the initial wealth (so standard deviations and the BS-related statistics are
unchanged), again as a percentage of the time zero BS price. The last column of the table is
the expected utility of the terminal wealth with random endowment. In the lower half of the
Table we set λY0 = λY = 0.325, with all other parameters as before. In this case the initial
utility-based option premia are pE0 = 12.96, pE,NF

0 = pE,FI = 10.52.

Mean SD Median EU(XT − C(YT ))
Filtered hedge 0.0647 (0.2637) 0.7625 0.2347 (0.4337) -0.9965 (-0.9770)
Non-filtered hedge 0.0551 (-0.0005) 0.7449 0.2211 (0.1654) -0.9973 (-1.0029)
BS hedge -0.0753 0.8159 0.0226 -1.0109
ρ.BS hedge 0.0480 0.7444 0.2044 -0.9980
Full information hedge 0.0551 (-0.0005) 0.7449 0.2211 (0.1654) -0.9973 (-1.0029)

With λY = λY0 = 0.325
Filtered hedge -0.0397 (0.2628) 0.8066 0.1291 (0.4316) -1.0073 (-0.9774)
Non-filtered hedge -0.0548 (0.0026) 0.7907 0.1129 (0.1703) -0.9973 (-1.0029)
BS hedge -0.1731 0.8572 -0.0550 -1.0211
ρ.BS hedge -0.0480 0.7916 0.1288 -1.0080
Full information hedge -0.0548 (0.0026) 0.7907 0.1129 (0.1703) -0.9973 (-1.0029)

Table 4: Hedging error statistics with λY0 = 0.525 (upper table) and λY0 = 0.325 (lower table).
The utility-based hedges used α = 0, and all other parameters as in Tables 1 and 3. The time
zero option premia are for the upper table are pE0 = 10.94, pE,NF

0 = 8.34, pE,FI = 9.39, with the
BS price and the full information price as in Table 3. For the lower table we have pE0 = 12.96,
pE,NF

0 = 10.52.

With λY0 = 0.525 Mean SD Median EU(XT − C(YT ))
Filtered hedge 0.0650 (0.1652) 0.7726 0.2474 (0.3476) -0.9966 (-0.9867)
Non-filtered hedge 0.0628 (-0.0988) 0.7566 0.2510 (0.0895) -0.9967 (-1.0128)
BS hedge -0.0770 0.8253 0.0240 -1.0112
ρ.BS hedge 0.0416 0.7543 0.2029 -0.9988
Full information hedge 0.0486 (-0.0071) 0.7547 0.2189 (0.1632) -0.9981 (-1.0036)

With λY0 = 0.325
Filtered hedge 0.0568 (0.3593) 0.7684 0.2198 (0.5224) -0.9974 (-0.9678)
Non-filtered hedge 0.0391 (0.0966) 0.7513 0.1882 (0.2456) -0.9990 (-0.9933)
BS hedge -0.0784 0.8255 0.0237 -1.0113
ρ.BS hedge 0.0462 0.7513 0.2047 -0.9983
Full information hedge 0.0534 (-0.0023) 0.7516 0.2201 (0.1645) -0.9976 (-1.0031)
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Table 5: Hedging error statistics with λY = 0 and λS0 = 0 (upper table). Other parameters are
as in Tables 1 and 3. The time zero option premia are pE0 = 8.50, pE,NF

0 = 5.83, pE,FI = 14.63,
with the BS price as in Table 3. In the lower table the prior is improved: λS0 = 0.4, λY0 = 0.1,
and the time zero option premia are pE0 = 14.59, pE,NF

0 = 12.34, with other prices unchanged.

λS0 = 0, λY0 = 0.425 Mean SD Median EU(XT − C(YT ))
Filtered hedge -0.3935 (-0.5393) 0.9583 -0.1996 (-0.3454) -1.0448 (-1.0600)
Non-filtered hedge -0.3670 (-0.7810) 0.9672 -0.1068 (-0.5208) -1.0421 (-1.0859)
BS hedge -0.5645 0.9820 -0.4048 -1.0629
ρ.BS hedge -0.4251 0.9310 -0.2105 -1.0478
Full information hedge -0.4710 (0.0001) 0.9157 -0.3069 (0.1641) -1.0524 (-1.0042)

λS0 = 0.4, λY0 = 0.1 Mean SD Median EU(XT − C(YT ))
Filtered hedge -0.4231 (0.0343) 0.9364 -0.2560 (0.2104) -1.0486 (-1.0010)
Non-filtered hedge -0.4503 (-0.2102) 0.9211 -0.2585 (-0.0184) -1.0503 (-1.0255)
BS hedge -0.5654 0.9815 -0.4036 -1.0630
ρ.BS hedge -0.4247 0.9312 -0.2068 -1.0477
Full information hedge -0.4709 (0.0001) 0.9158 -0.3031 (0.1680) -1.0630 (-1.0477)

of the table. Now the filtered hedge improves the unfiltered hedge, but still not to the point of
out-performing the correlation-weighted BS hedge, unless the initial option premium is used as
the initial wealth.

The conclusion to be drawn from these tests is that filtering can be of benefit, provided the
prior is not extremely poor. If a fortuitous combination of parameters aids other methods, then
the partial information approach needs to incorporate its valuation of the claim into the initial
wealth to be effective.

To confirm these ideas, we conducted some modified experiments. Table 6 shows results
of two simulation experiments in which the prior was randomly generated using data before
time zero. These results are in line with our earlier conclusions. In both cases the filtering has
improved the hedging performance of the unfiltered hedge.

We conducted a modified simulation experiment in which a different prior was generated
randomly on each simulation run. The results are shown in Table 7. The non-filtered hedge
then out-performed the filtered hedge. With multiple priors, the quality of the prior averaged
out over many estimations to be perfectly adequate, so that the unfiltered hedge performed well.
When the initial option premium allied to the hedging method is used as the initial wealth, the
filtering method is more effective.

The main insurance provided against parameter uncertainty by utility-based methods ap-
pears to be incorporated into the initial valuation of the claim. The intuition here is that the
rate of learning provided by the filter on the asset drifts is simply not great enough (especially
with an unfortunate prior) to counteract parameter uncertainty without the extra insurance of
an increased option premium.

Very similar results were obtained when using non-zero risk aversion. As an example, we
show in Table 8 the hedging error statistics obtained using 5,000 paths and one randomly
generated prior. In this case the prior gives ν0 = −1.3267, against a true value of ν = 0.05. The
unfiltered hedge is improved by the filtering, but both are out-performed by the correlation-
weighted BS hedge. But if the option premia are incorporated into the initial wealth, the partial
information hedge is the best performer.

The overall conclusion to be drawn from these results is that the filtering procedure can
sometimes help in hedging, but there are instances when it is of limited, if any use, unless
accompanied by the safety net of the increased option premium that it would charge, taking
into account the uncertainty in parameter estimation. If one considers the combined valuation
and hedging program together, then incorporating parameter uncertainty and using a filtering
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Table 6: Hedging error statistics as a fraction of the initial wealth (the time zero BS price),
over 40, 000 asset price paths. For the utility-based hedges, we used the marginal hedges. The
true risk premia and volatilities were as in Table 1 (so ν = 0.05) as was the maturity and option
strike, and the correlation was ρ = 0.75. A single prior distribution was estimated using data
before time zero, with S−tS = Y−tY = 90, tS = tY = 0.5, so the prior variances are as in Table
1. The risk premia of the prior were estimated from this data. In the upper table this gave
λS0 = 0.8289, λY0 = 0.1173, and the initial asset prices were S0 = 99.65, Y0 = 89.91. The time
zero option premia were pE0 = 23.72, pE,NF

0 = 22.84, pE,FI
0 = 14.64, pBS

0 = 15.33. In the lower
table we have λS0 = −0.9736, λY0 = −0.1654, S0 = 76.04, Y0 = 86.79, pE0 = 12.45, pE,NF

0 = 9.68,
pE,FI

0 = 16.61, pBS
0 = 17.34.

With ν0 = −0.5044 Mean SD Median EU(XT − C(YT ))
Filtered hedge 0.0455 (0.5933) 0.5962 0.1295 (0.6772) -0.9973 (-0.9170)
Non-filtered hedge 0.0104 (0.5011) 0.5901 0.0718 (0.5624) -1.0025 (-0.9219)
BS hedge -0.0621 0.6437 -0.0052 -1.0145
ρ.BS hedge 0.0404 0.5902 0.1382 -0.9980
Full information hedge 0.0440 (-0.0009) 0.5908 0.1471 (0.1022) -0.9974 (-1.0043)

With ν0 = 0.5648
Filtered hedge 0.0767 (-0.2049) 0.5674 0.1621 (-0.1195) -0.9917 (-1.0413)
Non-filtered hedge 0.0749 (-0.3501) 0.5632 0.1853 (-0.2398) -0.9919 (-1.0678)
BS hedge -0.0601 0.5955 -0.0181 -1.0159
ρ.BS hedge 0.0370 0.5472 0.1139 -0.9982
Full information hedge 0.0399 (-0.0018) 0.5479 0.1199 (0.0782) -0.9977 (-1.0049)

Table 7: Hedging error statistics as a fraction of initial wealth (the BS price at time zero)
over 40, 000 simulations. We repeatedly estimated the prior using data before time zero, with
tS = tY = 0.5, T = 1, δt = 1/252, S−tS = Y−tY = 90, λS = 0.5, σS = 0.3, λY = 0.425,
σY = 0.25, ρ = 0.75, K = 100, α = 0. The average initial wealth was X̄0 = 14.57. The average
initial asset prices at time zero were S̄0 = 97.15, Ȳ0 = 94.93. The average time zero risk premia
were λ̄S0 = 0.5079, λ̄Y0 = 0.4266. The average initial prices were p̄E0 = 18.41, p̄E,NF

0 = 17.24,
p̄E,FI

0 = 13.97, p̄BS0 = X̄0.

Mean SD Median EU(XT − C(YT ))
Filtered hedge 0.0835 (0.2230) 0.7907 (0.9659) 0.1973 (0.2857) -0.9943 (-0.9601)
Non-filtered hedge 0.1054 (0.0892) 0.7987 (0.9706) 0.2183 (0.1101) -0.9945 (-0.9721)
BS hedge -0.0649 0.8305 0.0033 -1.0120
ρ.BS hedge 0.0480 0.7504 0.1532 -0.9975
Full information hedge 0.0547 (0.0041) 0.7498 (0.7496) 0.1668 (0.1188) -0.9970 (-1.0030)
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Table 8: Hedging error statistics as a fraction of initial wealth (the BS price at time zero) over
5, 000 simulations, using the O(α) utility-based hedges. A single prior was randomly generated
using data over [−ti, 0], i = S, Y , with tS = tY = 0.5, T = 1, S−tS = Y−tY = 90, λS = 0.5,
σS = 0.3, λY = 0.4, σY = 0.25, ρ = 0.75, K = 100, α = 0.01. The initial wealth was the
time zero BS price, X0 = pBS

0 = 13.58. The initial asset prices at time zero were S0 = 123.67,
Y0 = 92.86. The time zero risk premia were λS0 = 0.2.2688, λY0 = 0.3749. The initial option
prices were p0 = 35.05, pNF

0 = 34.34, pFI
0 = 13.68.

Mean SD Median EU(XT − C(YT ))
Filtered hedge -0.0069 (1.5745) 0.6504 0.0602 (1.6415) -1.0049 (-0.8107)
Non-filtered hedge -0.0473 (1.4814) 0.6636 -0.0225 (1.5062) -1.0106 (-0.8211)
BS hedge -0.0922 0.7073 -0.0142 -1.0174
ρ.BS hedge 0.0207 0.6466 0.1420 -1.0011
Full information hedge 0.0190 (0.0267) 0.6464 0.1381 (0.1457) -1.0014 (-1.0003)

Table 9: Stocks comprising the non-traded basket.

Abbey National British Airports Authority BAE Systems British Gas
Boots PLC British Telecom Shell Tesco Vodafone

approach is of benefit.

7 Empirical examples

In this section we illustrate how the hedging approach we have developed can be applied in an
empirical situation. We tackle the case of hedging a basket of nine UK stocks using futures
contracts on the FTSE100 index. We do not claim to be carrying out an exhaustive empirical
testing procedure, which is a good topic for future research.

We obtained daily (closing price) data from January 1, 1990 to 30 August, 2003, on the
closest to maturity futures contract on the FTSE100 index, and on nine stocks (listed in Table
9) used to construct an equally weighted basket. All data were obtained from Datastream.

We consider a put option on the basket. We estimate the risk premia and volatilities of the
futures price and the basket, and the correlation, from the returns of a selected time period
ending at the inception date of the option. We use the estimated risk premia in the prior, and
either keep them fixed and use the full information model formulae, or update them via filtering
and use the partial information formulae.

The first example is an at the money put option written on October 1, 1996 and maturing
March 31, 1998. Data from April 1, 1996 up to the inception date of the option were used to
estimate the volatilities, correlation and the prior risk premia, and as usual we set vi0 = 1/ti,
i = S, Y , where ti is the time between the 1 April and 1 October. The relevant parameters are
given in Table 10, along with the risk aversion α. We used a zero interest rate. We valued and
hedged the option assuming daily portfolio re-balancing.

Figure 1 shows the futures price (scaled down by a factor of 10) and the basket price paths

Table 10: Empirical parameters used to value and hedge a put option on a basket of stocks
from October 1996 to March 1998. The hedge is illustrated in Figure 1.

S0 Y0 K λS0 σS λY0 σY vS0 = vY0 ρ α
4028 313.1 313.1 1.5667 0.1009 0.7980 0.1039 1.9944 0.8233 0.01
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Figure 1: Asset price paths, filtered risk premia and hedge portfolios from October 1996 to
March 1998. The parameters are as in Table 10. The estimates of volatilities, correlation and
the prior risk premia were obtained from six months of data before the inception of the option.
The average values of the filtered risk premia over the hedging time-frame were λ̄S = 1.8105,
λ̄Y = 2.0241. In the figure, all hedges begin with an initial wealth equal to the time zero BS
price, pBS = 15.86. The utility-based option premia are p0 = 33.42 (partial information) and
pNF

0 = 30.67 (without filtering).

over the option life, along with the filtered risk premia, the hedge ratios and hedge portfolios
over these paths. One can see the filtered hedge outperforming the others in the graph on the
bottom right.

When all the strategies began with an initial wealth equal to the time zero BS price the
terminal hedging errors as a fraction of this initial wealth are 0.6747 for the optimal hedge with
filtering, 0.2654 without filtering, −0.038 for the BS hedge and −0.0313 for the correlation-
modulated BS hedge. So in this case the filtering was of great benefit. This can be traced to
the fact that the prior risk premia give ν̂0 = −0.4919, while the average filtered risk premia
over the option life give ¯̂ν = 0.5335. In other words, the unfiltered hedge and the modulated BS
hedge would tend to hedge too aggressively, and this is counteracted by the learning procedure
of the filtering. If one uses the appropriate initial option premia as the initial wealth, the partial
information outperforms the others even more. So, in this example, the parameters of the prior
and the subsequent realisations of the risk premia meant that the filtering method was of benefit
without recourse to the extra insurance provided by the increased partial information option
premium.

A second example shows how if the parameters of the prior are fortuitously set for the
unfiltered hedge, it can apparently do well, but this is also loaded with danger, as the option
premium such an agent would use would lead to losses.

In Figure 2 we hedge an at the money put option written on 1 October 1997 and maturing
on 31 March 1999. Data from 1 April 1997 up to the option inception were used for estimating
the prior and other parameters, shown in Table 11. In this case the terminal hedging errors as a
fraction of the (common) initial wealth are 0.5087 for the filtered hedge, 0.6603 for the unfiltered
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Table 11: Empirical parameters used to value and hedge a put option on a basket of stocks
from October 1997 to March 1999. The hedge is illustrated in Figure 2.

S0 Y0 K λS0 σS λY0 σY vS0 = vY0 ρ α
5392 452.7 452.7 2.7878 0.1727 3.0729 0.1624 1.9944 0.7726 0.01
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Figure 2: Asset price paths, filtered risk premia and hedge portfolios from October 1997 to
March 1999. Parameters are as in Table 11. The average values of the filtered risk premia over
the hedging time-frame were λ̄S = 1.8105, λ̄Y = 2.0241. In the figure, all hedges begin with
an initial wealth equal to the time zero BS price, pBS = 35.82. The utility-based option premia
are p0 = 21.86 (partial information) and pNF

0 = 7.39 (without filtering).

hedge, 0.1267 for the BS hedge and 0.3253 for the correlation-modulated BS hedge. On this
basis, the unfiltered hedge is the best performer, and this can be traced to the values of the prior
risk premia versus the realised values over the hedging time-frame. We have ν̂0 = 0.9190, while
the average values of the filtered risk premia over [0, T ] give ¯̂ν = 0.8216. In other words, the
option is unlikely to end up in the money, the unfiltered hedge takes an even higher estimate
for the QM -drift of Y , and hence under-hedges and realises a larger profit than the filtered
hedge. The correlation weighted BS hedge approximates ν by zero, tends to hedge unnecessarily
aggressively, and generates losses. If the agents use their respective option premia as the initial
wealth, then the unfiltered hedge performs much worse than the filtered hedge. The terminal
error as a fraction of the BS price is then 0.1189 for the hedge with filtering, −0.1333 without
filtering. Although on this basis both hedges then do worse than the modified BS hedge, it is
significant that the partial information model has generated a terminal profit even though its
prior is not fortuitously set up to do so.

These empirical examples tend to reinforce the conclusions from the simulation experiments,
that a partial information approach can have benefits, but these are not categorical. Any
improvement comes in part from the updating procedure applied to the dynamic hedge, but
a significant benefit of the partial information method is encapsulated in the increased option
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premium, that takes into account the uncertainty in the drift parameters.

8 Conclusions

Using a Kalman filter and a Gaussian prior distribution for the uncertain risk premia of a
two-asset basis risk model, we have derived representations and an asymptotic expansion for
utility-based prices and hedging strategies. Analytic results are possible for zero risk aversion,
and semi-analytic results for small risk aversion. Simulation results show that the filtering
procedure can help the hedging performance of the utility-based hedge, but the improvements
are not universal. If we incorporate the agent’s subjective valuation of the claim into the initial
wealth, the partial information model almost invariably performs better, by incorporating extra
insurance against parameter uncertainty.

This highlights a feature of utility indifference methods that some may regard as a drawback.
They succeed primarilty by charging an appropriate price for a non-exchange traded option.
This is implicit by definition, since they insist on achieving utility indifference by setting an
appropriate initial option price. Developing other methods of hedging in incomplete markets,
which work well independently of which price is charged for a claim, with an associated numerical
and empirical study, would be a good topic for future research.
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[14] H. Föllmer and D. Sondermann, Hedging of nonredundant contingent claims, in Contributions
to mathematical economics, North-Holland, Amsterdam, 1986, pp. 205–223.

[15] V. Henderson, Valuation of claims on nontraded assets using utility maximization, Math. Fi-
nance, 12 (2002), pp. 351–373.

[16] H. Hulley and T. A. McWalter, Quadratic hedging of basis risk. Preprint, 2008.

25



[17] J. Kallsen and T. Rheinländer, Asymptotic utility-based pricing and hedging for exponential
utility. Preprint, 2008.
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