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Abstract

This article concerns optimal investment and hedging for agents who must use trading
strategies which are adapted to the filtration generated by asset prices, possibly augmented
with some inside information related to the future evolution of an asset price. The price
evolution and observations are taken to be continuous, so the partial (and, when applicable,
inside) information scenario is characterised by asset price processes with an unknown drift
parameter, which is to be filtered from price observations. We first give an exposition
of filtering theory, leading to the Kalman-Bucy filter. We outline the dual approach to
portfolio optimisation, which is then applied to the Merton optimal investment problem
when the agent does not know the drift parameter of the underlying stock. This is taken
to be a random variable with a Gaussian prior distribution, which is updated via the
Kalman filter. This results in a model with a stochastic drift process adapted to the
observation filtration, and which can be treated as a full information problem, and an
explicit solution to the optimal investment problem is possible. We also consider the same
problem when the agent has noisy knowledge at time 0 of the terminal value of the Brownian
motion driving the stock. Using techniques of enlargement of filtration to accommodate
the insider’s additional knowledge, followed by filtering the asset price drift, we are again
able to obtain an explicit solution. Finally we treat an incomplete market hedging problem.
A claim on a non-traded asset is hedged using a correlated traded asset. We summarise
the full information case, then treat the partial information scenario in which the hedger is
uncertain of the true values of the asset price drifts. After filtering, the resulting problem
with random drifts is solved in the case that each asset’s prior distribution has the same
variance, resulting in analytic approximations for the optimal hedging strategy.

1 Introduction

This article examines some problems of optimal investment, and of optimal hedging of a con-
tingent claim in an incomplete market, when the agent’s information set is restricted to stock
price observations, possibly augmented by some additional information related to the terminal
value of a stock price.

In classical models of financial mathematics, one usually specifies a probability space (Ω,F , P )
equipped with a filtration F = (Ft)0≤t≤T , and then writes down some stochastic process
S = (St)0≤t≤T for an asset price, such that S is adapted to the filtration F. A typical example
would be the Black-Scholes (henceforth, BS) model of a stock price, following the geometric
Brownian motion

dSt = σSt(λdt+ dBt), (1)

where B is a (P,F)-Brownian motion and the volatility σ > 0 and the Sharpe ratio λ are assumed
to be known constants. Of course, this is a strong assumption that an agent is assumed to be
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able to observe the Brownian motion process B, as well as the stock price process S. We refer
to this as a full information scenario. In this case, an agent uses F-adapted trading strategies
in S, which is an F-adapted process with known drift and diffusion coefficients.

We shall frequently relax the full information assumption in this article. We shall assume
that the agent can only observe the stock price process, and not the Brownian motion B, and so
the parameters σ, λ are not known with certainty. The agent’s trading strategies must therefore
be adapted to the observation filtration F̂ := (F̂t)0≤t≤T generated by S. We refer to this as a
partial information scenario.

In this case, the parameter λ would be regarded as an unknown constant whose value needs
to be determined from price data. In principle, one would also have to apply this philosophy to
the volatility σ, but we shall make the approximation that price observations are continuous,
so that σ can be computed from the quadratic variation [S]t of the stock price, since we have

[S]t = σ2S2
t t, 0 ≤ t ≤ T.

One way to model the uncertainty in our knowledge of the (supposed constant) parameter λ
is to take a so-called Bayesian approach. This means we consider λ to be an F0-measurable
random variable with a given initial distribution (the prior distribution). The prior distribution
initialises the probability law of λ conditional on F̂0, and this is updated in the light of new
price information, that is, as the observation filtration F̂ evolves. (In the case that λ is some
unknown process (λt)0≤t≤T (as opposed to an unknown constant), then we would consider it
to be some F-adapted process such that its starting value λ0 has a given prior distribution
conditional on F̂0.)

This is an example of a filtering problem: to compute the best estimate of a random variable
given observations up to time t ∈ [0, T ], and hence given the sigma algebra F̂t, t ∈ [0, T ]. In
the case of the BS model (1), where we model λ as an F0-measurable random variable, we are
interested in computing the conditional expectation

λ̂t := E[λ|F̂t], 0 ≤ t ≤ T.

We shall see that the effect of filtering is that the model (1) may be replaced by a model specified
on the filtered probability space (Ω, F̂T , F̂, P ) and written as

dSt = σSt(λ̂tdt+ dB̂t),

where B̂ is a (P, F̂)-Brownian motion. This model may now be treated as a full information
model, since both B̂ and λ̂ are F̂-adapted processes. The price we have paid for restoring a full
information scenario is that the constant parameter λ has been replaced by a random process λ̂.
The procedure by which a partial information model is replaced with a tractable full information
model under the observation filtration is typically only achievable in special circumstances,
such as Gaussian prior distributions and certain linearity properties in the relation between the
observable and unobservable processes, as we shall see in the next section.

In the rest of the article, we first give, in Section 2, an exposition of filtering theory (along
the lines of Rogers and Williams [32] Chapter VI.8, which draws on the seminal work of Fujisaki
et al [7]), culminating in the linear filtering case, the Kalman-Bucy filter [11]. In Section 3.1
we describe the dual (or martingale) approach to portfolio optimisation (see Karatzas [13] for
example), that we will use frequently in what follows.

In Section 3 we apply the results to the Merton problem [20, 21] of optimal investment,
which seeks a trading strategy to maximise expected utility of terminal wealth. We explicitly
solve the problem for a stock with a Gaussian drift process. The partial information case studied
by, among others, Rogers [31], as well as the classical full information case, are special cases of
this.

In Section 4 we solve the Merton optimal investment problem when the agent is assumed to
have some additional information in the form of knowledge of the value of a random variable
I, which represents noisy information on the underlying Brownian motion at time T . Further
examples of models with both inside information and parameter uncertainty can be found in
Danilova, Monoyios and Ng [3].
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Finally, in Section 5 we consider the hedging of a claim in an incomplete market setting
under partial information. Specifically, we shall consider a basis risk model involving the optimal
hedging of a contingent claim on a non-tradeable asset Y using a traded stock S, correlated with
Y , when the hedger is restricted to trading strategies in S that are adapted to the observation
filtration F̂ generated by the asset prices.

In the full information case the asset prices are correlated log-Brownian motions given by

dSt = σSt(λdt+ dBt), dYt = βYt(θdt+ dWt),

where the Brownian motions B,W are correlated with correlation ρ ∈ [−1, 1]. The parameters
σ > 0, λ, β > 0 and θ are assumed constant.

This market is complete when the correlation is perfect, but incomplete otherwise. A number
of papers, such as Henderson [8] Monoyios [22, 23] and Musiela and Zariphopoulou [27], have
used exponential indifference valuation methods to hedge the claim in an optimal manner in a
full information scenario. We outline these results before moving on to the partial information
case, where we assume the hedger does not know with certainty the drifts of S and Y . Analytic
approximations for prices and hedging strategies are given. Further work on this topic can be
found in Monoyios [24, 26].

2 Filtering theory

Filtering problems concern estimating (in a manner to be made precise shortly) something about
an unobserved stochastic process Ξ given observations of a related process Λ. In particular, one
seeks the conditional expectation E[Ξt|F̂t], 0 ≤ t ≤ T , where F̂ := (F̂t)0≤t≤T is the filtration
generated by Λ. This problem was solved for linear systems in continuous time by Kalman
and Bucy [11]. Subsequent work sought generalisations to systems with nonlinear dynamics,
see Zakai [33] for instance. Kailath [10] developed the so-called innovations approach to linear
filtering, which formulated the problem in the context of martingale theory. This approach
to nonlinear filtering was given a definitive treatment by Fujisaki, Kallianpur and Kunita [7].
Textbook treatments can be found Kallianpur [12], Lipster and Shiryaev [17, 18] and Rogers
and Williams [32], Chapter VI.8, whose treatment is closest to the one used below, and which
follows the program of Fujisaki, Kallianpur and Kunita [7].

The setting is a probability space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T . All
processes are assumed to be F-adapted. Note that F is not the observation filtration. Let us
call F the background filtration. We consider two processes, both taken to be one-dimensional
(for simplicity):

• a signal process Ξ = (Ξt)0≤t≤T which is not directly observable;

• an observation process Λ = (Λt)0≤t≤T , which is observable and somehow correlated with
Ξ, so that by observing Λ we can say something about the distribution of Ξ.

Let F̂ := (F̂t)0≤t≤T denote the observation filtration generated by Λ. That is,

F̂t := σ(Λs; 0 ≤ s ≤ t), 0 ≤ t ≤ T.

The filtering problem is to compute the conditional distribution of the signal Ξt, t ∈ [0, T ], given
observations up to that time. Or, equivalently, to compute the conditional expectation

E[f(Ξt)|F̂t], 0 ≤ t ≤ T,

where f : R→ R is some test function.
To proceed further, we need to specify some particular model for the observation process

(followed later by more structure on the signal process).

3



2.1 Observation model

Let B = (Bt)0≤t≤T be an F-Brownian motion, let H = (Ht)0≤t≤T be an F-adapted process
satisfying

E

∫ T

0

H2
t dt <∞, (2)

and we shall assume the observation process Λ is of the form

Λt =
∫ t

0

Hsds+Bt, 0 ≤ t ≤ T, (3)

The typical situation will be where Ht = h(t,Ξt), a deterministic function of time and the
current signal value. In general, H and Ξ will be suitably correlated with each other and with
the process B. A specialised situation (that we shall later focus on) is the linear case when
h(t, x) = G(t)x, with G(·) a deterministic function. Then Ht = G(t)Ξt and the observation
process stochastic differential equation (SDE) is

dΛt = G(t)Ξtdt+ dBt, Λ0 = 0, (linear observation model).

2.2 Innovations process

Introduce the notation
φ̂t := E[φt|F̂t], 0 ≤ t ≤ T,

for any process φ. Define the F̂-adapted innovations process

Nt := Λt −
∫ t

0

Ĥsds, 0 ≤ t ≤ T. (4)

Proposition 1. The innovations process N is an F̂-Brownian motion.

Proof. From (3) and (4) we have

Nt =
∫ t

0

(Hs − Ĥs)ds+Bt.

With s ≤ t, we have

E[Nt|F̂s]−Ns = E

[∫ t

s

(Hu − Ĥu)du+Bt −Bs
∣∣∣∣ F̂s]

= E

[∫ t

s

(
E[Hu|F̂u]− Ĥu

)
du

∣∣∣∣ F̂s]+ E
[
E(Bt −Bs|Fs)| F̂s

]
= 0,

using the Tower property of conditional expectation. So N is is continuous F̂-martingale with
quadratic variation [N ]t = [B]t = t, so N is an F̂-Brownian motion.

2.2.1 The Innovations Conjecture

Denote by FN := (FNt )0≤t≤T the filtration generated by N , so FNt := σ(Ns; 0 ≤ s ≤ t). Since
N is F̂-adapted, we have (FNt ) ⊆ (F̂t). For linear systems, we shall see that in fact we have

FNt = F̂t, 0 ≤ t ≤ T, (5)

so that in this case the observations and the innovations represent the same information (because
there is an invertible map that derives one from the other). The “innovations conjecture” (of
Kailath) is that the identity (5) holds in general, but we now know that this is not the case
(though it is true when H and B are independent [1]). However, the following positive and very
useful result is true.
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Theorem 1. Every local F̂-martingale M admits a representation of the form

Mt = M0 +
∫ t

0

ΦsdNs, 0 ≤ t ≤ T,

where Φ is F̂-adapted and
∫ T

0
Φ2
tdt <∞ a.s. If M happens to be a square-integrable martingale,

then Φ can be chosen so that E
∫ T

0
Φ2
tdt <∞.

To prove this result, we shall use the following well-known result on representation of local
martingales with respect to a Brownian filtration. See Theorems 3.4.2 and 3.4.15 in Karatzas
and Shreve [15].

Theorem 2 (Local martingale representation). Let W be a Brownian motion and let FW denote
its natural filtration. Every local martingale M with respect to FW admits a representation of
the form

Mt = M0 +
∫ t

0

bsdWs, 0 ≤ t <∞,

for an FW -adapted process b satisfying
∫ t

0
b2sds < ∞ almost surely for every 0 < t < ∞. In

particular, every such M has continuous sample paths. If M happens to be a square-integrable
martingale (EM2

t <∞,∀t ≥ 0), then b can be chosen so that E
∫ t

0
b2sds <∞ for every 0 < t <

∞.

Note that, if only the innovations conjecture (5) were true in general, then Theorem 1 would
follow directly from Theorem 2. As the innovations conjecture is not true in general, we shall
prove the theorem by performing a measure change that turns Λ into a Brownian motion, then
apply Theorem 2, then invert the change of measure to revert back to the innovations process
N .

Proof of Theorem 1. We carry this out only in the case of bounded H, to present the ideas with
the minimum of technical fuss. We make some remarks on how to deal with the non-bounded
case after the proof.

If H is bounded, then so is Ĥ, so the process

Zt := E(−Ĥ ·N)t = exp
(
−
∫ t

0

ĤsdNs −
1
2

∫ t

0

Ĥ2
sds

)
, 0 ≤ t ≤ T, (6)

is a (P, F̂)-martingale. By the Girsanov Theorem, since N is a (P, F̂)-Brownian motion, the
process

Nt +
∫ t

0

Ĥsds = Λt, 0 ≤ t ≤ T,

that is, the observation process, is a (P̃ , F̂)-Brownian motion, where the probability measure P̃
is defined on (Ω, F̂) by

dP̃

dP

∣∣∣∣∣ bFt

= Zt, 0 ≤ t ≤ T.

Notice that the inverse likelihood ratio is

dP

dP̃

∣∣∣∣ bFt

= Γt :=
1
Zt

= exp
(∫ t

0

ĤsdNs +
1
2

∫ t

0

Ĥ2
sds

)
= exp

(∫ t

0

ĤsdΛs −
1
2

∫ t

0

Ĥ2
sds

)
= E(Ĥ · Λ)t.

The SDEs for Z,Γ are therefore

Zt = 1−
∫ t

0

ZsĤsdNs, Γt = 1 +
∫ t

0

ΓsĤsdΛs. (7)
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Using the so-called Bayes rule, for s ≤ t and an F̂t-measurable random variable X:

Ẽ[X|F̂s] =
1
Zs
E[ZtX|F̂s],

we find that, since M is a local (P, F̂)-martingale, then ΓM is a local (P̃ , F̂)-martingale, as we
now show. With (τn)∞n=1 a localising sequence1 then (M (n)

t ) := (Mt∧τn
) is a (P, F̂)-martingale.

So, with s ≤ t, we have

Ẽ[ΓtM
(n)
t |F̂s] =

1
Zs
E[ZtΓtM

(n)
t |F̂s] = ΓsE[M (n)

t |F̂s] = ΓsM (n)
s ,

so that ΓM is a local (P̃ , F̂)-martingale, as claimed.
An application of the martingale representation theorem, Theorem 2, gives a representation

for ΓM of the form

ΓtMt = Γ0M0 +
∫ t

0

ΨsdΛs = Γ0M0 +
∫ t

0

Ψs(dNs + Ĥsds), (8)

for some process Ψ satisfying
∫ T

0
Ψ2
tdt <∞ a.s. Now from (8), (7) and the integration by parts

formula,2 we obtain

Mt = (ΓtMt)Zt

= (Γ0M0)Z0 +
∫ t

0

(ΓsMs)dZs +
∫ t

0

Zsd(ΓsMs) + [ΓM,Z]t

= M0 +
∫ t

0

ΓsMs(−ZsĤsdNs) +
∫ t

0

ZsΨs(dNs + Ĥsds)−
∫ t

0

ZsĤsΨsd[N ]s

= M0 +
∫ t

0

(ZsΨs −MsĤs)dNs

= M0 +
∫ t

0

ΦsdNs,

for Φ = ZΨ−MĤ.

Remark 1 (If H is not necessarily bounded). An examination of the above proof shows that
the boundedness of H (and hence of Ĥ) was needed so that the exponential local martingale
Z was actually a martingale, and so could be used to define the equivalent probability measure
P̃ . If H is not bounded, and merely satisfies the integrability condition (2), then a little more
care is needed in defining the relevant equivalent probability measure. Here is an outline of the
procedure. See Rogers and Williams [32], Chapter VI.8, for more details.

One first fixes n ∈ N and defines the F̂ stopping time

Tn := inf
{
t ≥ 0 :

∣∣∣∣∫ t

0

ĤsdNs

∣∣∣∣+
∫ t

0

Ĥ2
sds = n

}
∧ T.

(Notice that the sequence (Tn)∞n=1 → T as n→∞.) Then with Z defined by (6), we have that
the stopped process

Z
(n)
t := Zt∧Tn , 0 ≤ t ≤ Tn,

1A localising sequence is defined as follows. Given a filtered probability space (Ω,F , (Ft)t∈[0,∞), P ), an
adapted process (Xt,Ft)t∈[0,∞) is a local martingale if there exists an increasing sequence (τn)∞n=1 of (Ft)-
stopping times with limn→∞ τn = ∞ a.s. such that the stopped process (X

(n)
t ,Ft)t∈[0,∞), defined by X

(n)
t :=

Xt∧τn , is a martingale for all n ≥ 1. The sequence (τn)∞n=1 is called a localising sequence.
2For any two processes X,Y ,

XtYt = X0Y0 +

Z t

0
XsdYs +

Z t

0
YsdXs + [X,Y ]t.
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is a positive (P, F̂)-martingale so can be used to define an equivalent probability measure P̃ (n)

on (Ω, F̂Tn
) by

dP̃ (n)

dP
= Z

(n)
Tn
.

One now applies the Girsanov Theorem to deduce that the process

Λ(n)
t := Nt +

∫ t∧Tn

0

Ĥsds, 0 ≤ t ≤ Tn,

is a (P̃ (n), F̂)-Brownian motion. Defining the inverse likelihood ratio

Γ(n)
t :=

dP

dP̃ (n)

∣∣∣∣ bFt

, 0 ≤ t ≤ Tn,

one shows that (Γ(n)
t Mt)0≤t≤Tn

is a (P̃ (n), F̂)-local martingale, and consequently that it has
a stochastic integral representation with respect to Λ(n), and hence that (Mt)0≤t≤Tn has a
stochastic integral representation with respect to N . This procedure works for each fixed n ∈ N.
Letting n→∞ completes the proof.

To proceed further, we now need yet more structure, this time on the signal process Ξ.

2.3 Signal process model

We take the signal process to be of the form

Ξt = Ξ0 +
∫ t

0

b(s,Ξs)ds+
∫ t

0

σ(s,Ξs)dWs, 0 ≤ t ≤ T, (9)

where W is a (P,F)-Brownian motion independent of the F0-measurable random variable Ξ0,
and correlated with B in the observation model (3) according to

[W,B]t = ρt, 0 ≤ t ≤ T, ρ ∈ [−1, 1].

The functions b : [0, T ] × R → R and σ : [0, T ] × R → R are assumed to satisfy the Lipschitz
and linear growth conditions

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|, ∀x, y ∈ R,
|b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|), ∀x ∈ R,

for some real K > 0. Then there exists a unique process Ξ that satisfies (9).
Let f ∈ C2

0 (R) be a twice continuously differentiable function with compact support3. The
generator of Ξ is At given by

Atf(x) = b(t, x)f ′(x) +
1
2
σ2(t, x)f ′′(x).

For brevity we use the notation

ft ≡ f(Ξt), (Af)t ≡ Atf(Ξt), 0 ≤ t ≤ T.

By Itô’s formula we have that

Mf
t := ft − f0 −

∫ t

0

(Af)sds =
∫ t

0

σ(s,Ξs)f ′(Ξs)dWs (10)

is an F-local martingale, and in fact a square-integrable martingale if f is of compact support.
We assume this is the case. The cross-variation of Mf with B is

[Mf , B]t =
∫ t

0

σ(s,Ξs)f ′(Ξs)d[W,B]s =
∫ t

0

ρσ(s,Ξs)f ′(Ξs)ds =:
∫ t

0

αfsds, (11)

where we have defined the process αf by

αft := ρσ(t,Ξt)f ′(Ξt), 0 ≤ t ≤ T.
3So f is zero outside of a compact set.
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2.4 Fundamental filtering equation

The fundamental filtering theorem is the following.

Theorem 3. For the observation and signal process models of (3) and (9) we have, for every
f ∈ C2

0 (R), and with ft ≡ f(Ξt), using the notation φ̂t := E[φt|F̂t] for any process φ, the
fundamental filtering equation

f̂t = f̂0 +
∫ t

0

(Âf)sds+
∫ t

0

(
f̂sHs − f̂sĤs + α̂fs

)
dNs, 0 ≤ t ≤ T. (12)

The proof will require the following lemma.

Lemma 1. Consider two F-adapted processes P,C with E|Pt| <∞,∀t ∈ [0, T ] and E
∫ T

0
|Ct|dt <

∞. If Jt := Pt −
∫ t

0
Csds is an F-martingale, then

Ĵt := P̂t −
∫ t

0

Ĉsds is an F̂-martingale.

Proof. For s ≤ t, writing
∫ t

0
Cudu =

∫ s
0
Cudu +

∫ t
s
Cudu and using the fact that J is an F-

martingale, we have

E

[
Pt −

∫ s

0

Cudu−
∫ t

s

Cudu

∣∣∣∣Fs] = Ps −
∫ s

0

Cudu

⇒ E

[
Pt −

∫ t

s

Cudu

∣∣∣∣Fs] = Ps, (13)

which we shall use shortly.
Now consider

E[Ĵt|F̂s] = E

[
P̂t −

∫ t

0

Ĉudu

∣∣∣∣ F̂s]
= E

[
P̂t −

∫ s

0

Ĉudu−
∫ t

s

Ĉudu

∣∣∣∣ F̂s]
= E

[
P̂t −

∫ t

s

Ĉudu

∣∣∣∣ F̂s]− ∫ s

0

Ĉudu

= E

[
E[Pt|F̂t]−

∫ t

s

E[Cu|F̂u]du
∣∣∣∣ F̂s]− ∫ s

0

Ĉudu

= E[Pt|F̂s]−
∫ t

s

E[Cu|F̂s]du−
∫ s

0

Ĉudu

= E[E[Pt|Fs]F̂s]−
∫ t

s

E[E[Cu|Fs]F̂s]du−
∫ s

0

Ĉudu

= E

[
E

[
Pt −

∫ t

s

Cudu

∣∣∣∣Fs]∣∣∣∣ F̂s]− ∫ s

0

Ĉudu

= E[Ps|F̂s]−
∫ s

0

Ĉudu (using (13)

= P̂s −
∫ t

s

Ĉudu

= Ĵs.

Proof of Theorem 3. Recall from (10) that

ft = f0 +
∫ t

0

(Af)sds+Mf
t , (14)
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where Mf
t =

∫ t
0
σ(Ξs)f ′(Ξs)dWs is an F-martingale. So, using Lemma 1 and Theorem 1 we

have

M̂f
t := f̂t − f̂0 −

∫ t

0

(Âf)sds = F̂-martingale =:
∫ t

0

ΦsdNs, (15)

for a suitable F̂-adapted process Φ such that E
∫ T

0
Φ2
tdt < ∞. We want to compute Φ, to

establish that
Φt = f̂tHt − f̂tĤt + α̂ft , 0 ≤ t ≤ T. (16)

This will be accomplished by computing E[ftΛt|F̂t] = f̂tΛt in two ways and comparing the
results.

On the one hand, using (14), (3), (11) and the integration by parts formula,

ftΛt = f0Λ0 +
∫ t

0

fsdΛs +
∫ t

0

Λsdfs + [f,Λ]t

=
∫ t

0

fs(Hsds+ dBs) +
∫ t

0

Λs
(
(Af)sds+ dMf

s

)
+ [Mf , B]t

=
∫ t

0

(
fsHs + Λs(Af)s + αfs

)
ds+ F-martingale.

So by Lemma 1,

f̂tΛt = f̂tΛt =
∫ t

0

(
f̂sHs + Λs(Âf)s + α̂fs

)
ds+ F̂-martingale. (17)

On the other hand, from (15), (4) and the integration by parts formula, we obtain

f̂tΛt = f̂0Λ0 +
∫ t

0

f̂sdΛs +
∫ t

0

Λsdf̂s + [f̂ ,Λ]t

=
∫ t

0

f̂s(Ĥsds+ dNs) +
∫ t

0

Λs
(

(Âf)sds+ ΦsdNs
)

+
∫ t

0

Φsds

=
∫ t

0

(
f̂sĤs + Λs(Âf)s + Φs

)
ds+ F̂-martingale. (18)

Comparing (17) and (18), the difference between the bounded variation parts is a continuous
martingale of bounded variation, so is constant, and is null at zero, so is identically zero, and
therefore (16) holds.

2.4.1 Linear observations

Take Ht = h(t,Ξt) = G(t)Ξt and f(x) = xk, k = 1, 2, . . .. Then we obtain from (12):

Ξ̂t = Ξ̂0 +
∫ t

0

̂b(s,Ξs)ds+
∫ t

0

[
G(s)

(
Ξ̂2
s − (Ξ̂s)2

)
+ ρ ̂σ(s,Ξs)

]
dNs, (k = 1), (19)

Ξ̂kt = Ξ̂k0 + k

∫ t

0

(
̂b(s,Ξs)Ξk−1

s +
1
2

(k − 1) ̂σ2(s,Ξs)Ξk−2
s

)
ds

+
∫ t

0

[
G(s)

(
Ξ̂k+1
s − Ξ̂sΞ̂ks

)
+ kρ ̂σ(s,Ξs)Ξk−1

s

]
dNs, k = 2, 3, . . . . (20)

Equations (19) and (20) convey the complexity of non-linear filtering. To solve the equation
for the kth conditional moment, one needs to know the (k + 1)th conditional moment as well
as E[g(s,Ξs)|F̂s] for g(s, x) = b(s, x)xk−1, g(s, x) = σ2(s, x)xk−2, g(s, x) = σ(s, x)xk−1. This
means the computation of conditional moments cannot be achieved by induction on k and the
problem is inherently infinite dimensional except in the linear case.
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2.4.2 Linear observations and linear signal

Now take h(t, x) = G(t)x as before, and b(t, x) = A(t)x, σ(t, x) = C(t), for deterministic
functions A(·), C(·), and suppose that the signal process has a Gaussian initial distribution.
Hence the signal and observation processes follow

dΞt = A(t)Ξtdt+ C(t)dWt, Ξ0 ∼ N(µ, v),
dΛt = G(t)Ξtdt+ dBt, Λ0 = 0,

with Ξ0 independent of B and of W , and where N(µ, v) denotes the normal probability law with
mean µ and variance v. The two-dimensional process (Ξ,Λ) is then Gaussian, so the conditional
distribution of Ξt given the sigma-field F̂t = σ(Λs; 0 ≤ s ≤ t) generated by the Λ will also be
normal (and so, in particular, is completely characterised by its mean and variance), with mean

Ξ̂t := E[Ξt|F̂t]

and variance
Vt := var[Ξt|F̂t] = E[(Ξt − Ξ̂t)2|F̂t] = Ξ̂2

t −
(

Ξ̂t
)2

.

Notice that the initial values are

Ξ̂0 = E[Ξ0|F̂0] = EΞ0 = µ,

and
V0 = E[(Ξ0 − Ξ̂0)2|F̂0] = E[(Ξ0 − µ)2] = var(Ξ0) = v.

The problem then boils down to finding an algorithm for computing the sufficient statistics
Ξ̂t, Vt from their initial values Ξ̂0 = µ, V0 = v.

Now, from (19) we obtain, along with the initial condition Ξ̂0 = µ, the SDE

dΞ̂t = A(t)Ξ̂tdt+ [G(t)Vt + ρC(t)] dNt, Ξ̂0 = µ. (21)

From (20) with k = 2 we obtain

dΞ̂2
t =

(
C2(t) + 2A(t)Ξ̂2

t

)
dt+

[
G(t)

(
Ξ̂3
t − Ξ̂tΞ̂2

t

)
+ 2ρC(t)Ξ̂t

]
dNt, Ξ̂2

0 − µ2 = v. (22)

But for a normal random variable X ∼ N(m, s2), we have

E[X3] = m(m2 + 3s2),

whence

Ξ̂3
t = E[Ξ3

t |F̂t] = E[Ξt|F̂t]
((

E[Ξt|F̂t]
)2

+ 3var[Ξt|F̂t]
)

= Ξ̂t

[(
Ξ̂t
)2

+ 3Vt

]
,

and therefore

Ξ̂3
t − Ξ̂tΞ̂2

t = Ξ̂t

[(
Ξ̂t
)2

+ 3Vt − Ξ̂2
t

]
= 2VtΞ̂t.

Using this, (21), (22) and the Itô formula, we obtain

dVt = d

[
Ξ̂2
t −

(
Ξ̂t
)2
]

=
(
C2(t) + 2A(t)Ξ̂2

t

)
dt+

[
G(t)

(
2VtΞ̂t

)
+ 2ρC(t)Ξ̂t

]
dNt − 2Ξ̂tdΞ̂t − d[Ξ̂]t,

which simplifies to the non-stochastic Riccati equation

dVt
dt

= (1− ρ2)C2 + 2 (A(t)− ρC(t)G(t))Vt = G2(t)V 2
t , V0 = v. (23)

In other words, the conditional variance Vt is a deterministic function of t, and given by the
solution of (23). Thus, there is in fact only one sufficient statistic, the conditional mean Ξ̂t
which satisfies the linear SDE (21), which is the celebrated Kalman-Bucy filter. We summarise
all this below.
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Theorem 4 (One-dimensional Kalman-Bucy filter). On a filtered probability space (Ω,F ,F, P ),
with F = (Ft)0≤t≤T , let Ξ = (Ξt)0≤t≤T be an F-adapted signal process satisfying

dΞt = A(t)Ξtdt+ C(t)dWt,

and let Λ = (Λt)0≤t≤T be an F-adapted observation process satisfying

dΛt = G(t)Ξtdt+ dBt, Λ0 = 0,

where W,B are F-Brownian motions with correlation ρ, and the coefficients A(·), C(·), G(·) are
deterministic functions satisfying∫ T

0

(
|A(t)|+ C2(t) +G2(t)

)
dt <∞.

Define the observation filtration F̂ := (F̂t)0≤t≤T by

F̂t := σ(Λs; 0 ≤ s ≤ t).

Suppose Ξ0 is an F0-measurable random variable, and that the distribution of Ξ0 is Gaussian
with mean µ and variance v, independent of W and B. Then the conditional expectation
Ξ̂t := E[Ξt|F̂t] for 0 ≤ t ≤ T satisfies

dΞ̂t = A(t)Ξ̂tdt+ [G(t)Vt + ρC(t)] dNt, Ξ̂0 = µ,

where N = (Nt)0≤t≤T is the innovations process, an F̂-Brownian motion satisfying

dNt = dΛt −G(t)Ξ̂tdt,

and Vt = var[Ξt|F̂t], for 0 ≤ t ≤ T , is the conditional variance, which is independent of F̂t and
satisfies the deterministic Riccati equation

dVt
dt

= (1− ρ2)C2(t) + 2 [A(t)− ρC(t)G(t)]Vt −G2(t)V 2
t , V0 = v.

Remark 2 (Validity of innovations conjecture for linear systems). It is now straightforward to
confirm the validity of the innovations conjecture FNt = F̂t, 0 ≤ t ≤ T , for linear systems. The
solution Ξ̂ of the SDE (21) is adapted to the filtration FN of the driving Brownian motion N ,
so (F bΞ

t ) ⊆ (FNt ), where F bΞ
t = σ(Ξ̂s; 0 ≤ s ≤ t). So from the relation Λt = Nt +

∫ s
0
G(s)Ξ̂s we

see that Λ is FN -adapted, i.e. (F̂t) ⊆ (FNt ). Because the reverse inclusion (FNt ) ⊆ (F̂t) always
holds, the two filtrations are the same.

2.5 Multi-dimensional Kalman-Bucy filter

A multi-dimensional version of the Kalman-Bucy filter can be derived along similar lines to the
one-dimensional case. We state the result below.

Theorem 5. Consider a filtered probability space (Ω,F ,F, P ), with F = (F)0≤t≤T , and two
F-adapted processes Ξ,Λ as given below.

Let Ξ = (Ξt)0≤t≤T be an n-dimensional signal process satisfying

dΞt = A(t)Ξtdt+ C(t)dWt, Ξ0 ∼ N(µ, v), (linear signal), (24)

where Ξ0 ∼ N(µ, v) denotes an n-dimensional F0-measurable Gaussian vector with mean µ ∈ Rn
and covariance matrix v ∈ Rn × Rn, independent of the d-dimensional Brownian motion W ,
and where A(t) ∈ Rn × Rn, C(t) ∈ Rn × Rd.

Let Λ = (Λt)0≤t≤T be an m-dimensional observation process satisfying

dΛt = G(t)Ξtdt+D(t)dBt, Λ0 = 0, (linear observations),
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where G(t) ∈ Rm×Rn, C(t) ∈ Rm×Rk, and B is a k-dimensional Brownian motion independent
of W and Ξ0.

We assume that A,C,G,D are bounded on bounded intervals, that DDT is non-singular,
and that (D(t)D(t)T)−1 is bounded on every bounded t-interval.

Let F̂ = (F̂t)0≤t≤T denote the observation filtration generated by Λ, so that F̂t = σ(Λs; 0 ≤
s ≤ t).

The conditional expectation vector Ξ̂t := E[Ξt|F̂t], 0 ≤ t ≤ T , satisfies the SDE

dΞ̂t = A(t)Ξ̂tdt+ VtG
T(t)

(
D(t)DT(t)

)−1
(
dΛt −G(t)Ξ̂tdt

)
, Ξ̂0 = µ,

= A(t)Ξ̂tdt+ VtG
T(t)

(
D(t)DT(t)

)−1
dNt, Ξ̂0 = µ, (25)

where N is the innovations process, defined by

Nt := Λt −
∫ t

0

G(s)Ξ̂sds, 0 ≤ t ≤ T,

and satisfying

Nt =
∫ t

0

D(s)dB̂s, (26)

where B̂ is a standard k-dimensional F̂-Brownian motion.
The error Ξt − Ξ̂t is independent of F̂t, and the error covariance

Vt := E[(Ξt − Ξ̂t)(Ξt − Ξ̂t)T|F̂t] = var[Ξt|F̂t],

satisfies the deterministic matrix Riccati equation

dVt
dt

= A(t)Vt + VtA
T(t)− VtGT(t)(D(t)DT(t))−1G(t)Vt + C(t)CT(t), V0 = v.

Notice that:

• by (26) we can rewrite (25) as

dΞ̂t = A(t)Ξ̂tdt+ VtG
T(t)

(
D(t)DT(t)

)−1
D(t)dB̂t, Ξ̂0 = µ,

which is a linear SDE of the same type as (24);

• since Ξ, Ξ̂ satisfy (24), (25) and Ξ0 is Gaussian, then Ξt, Ξ̂t are Gaussian vectors for each
t, and the error Ξt − Ξ̂t is also Gaussian: Ξt − Ξ̂t has mean 0 and covariance Vt, and
Law(Ξt|F̂t) = N(Ξ̂t, Vt).

3 Optimal investment problems with random drift

3.1 Portfolio optimisation via convex duality

We wish to apply the filtering theory developed in the previous section to portfolio optimisa-
tion and optimal hedging problems when the agent does not know the drift parameters of the
underlying assets. The filtering approach will lead to portfolio problems in which the assets
follow SDEs with random drift parameters. The dual approach to portfolio optimisation is well
suited to such problems, so in this section we outline this approach in a complete market, and
summarise the results for an incomplete market. The dual approach to portfolio problems is
well documented by Karatzas [13] to which the reader is referred for more details and further
references.

Consider an agent with a continuous, differentiable, increasing, concave utility function
U : R+ → R. Define the convex conjugate Ũ : R+ → R of U by

Ũ(η) := sup
x∈R+

[U(x)− xη], η > 0. (27)

12



Then Ũ is a decreasing, continuously differentiable, convex function, satisfying the inequality

Ũ(η) ≥ U(x)− xη, with equality iff x = x∗ such that U ′(x∗) = η. (28)

In other words, the supremum in (27) is achieved by x = x∗ satisfying

U ′(x∗) = η ⇔ x∗ = I(η), (29)

where I is the inverse of U ′, so that U ′(I(η)) = I(U ′(η)) = η. Then Ũ(η) may be written as

Ũ(η) = U (I(η))− ηI(η). (30)

Differentiating (30) gives
Ũ ′(η) = −I(η), (31)

so the marginal utility is the inverse of minus the gradient of the convex conjugate:

U ′(−Ũ ′(x)) = x.

We note that the defining duality relation (27) is equivalent to the bidual relation

U(x) = inf
η∈R+

[Ũ(η) + xη], x > 0, (32)

since this gives that the value of η achieving the above infimum is η∗ satisfying

Ũ ′(η∗) = −x,

or, by (31),
I(η∗) = x⇔ U ′(x) = η∗,

which is equivalent to (29). Note also that (32) implies (28).
We are interested in solving an optimal portfolio problem for an agent in a complete market

with a single stock whose price process is a continuous semimartingale. To be precise, on an
a probability space (Ω,F , P ) equipped with a filtration F = (Ft)0≤t≤T , suppose a stock price
S = (St)0≤t≤T follows

dSt = σtSt(λtdt+ dBt),

where σ = (σt)0≤t≤T and λ = (λt)0≤t≤T are F-adapted processes, and B = (Bt)0≤t≤T is an
F-Brownian motion. For simplicity, we take the interest rate to be zero.

The wealth process X = (Xt)0≤t≤T associated with a self-financing portfolio involving S is
given by

dXt = σtθtXt(λtdt+ dBt), X0 = x,

where the process θ = (θt)0≤t≤T represents the proportion of wealth placed in the stock, and
constitutes the agent’s trading strategy. Define the set A of admissible trading strategies as
those whose wealth process satisfies Xt ≥ 0 a.s. for all t ∈ [0, T ].

The unique martingale measure Q ∼ P on FT is defined by

dQ

dP
= ZT , (33)

where Z = (Zt)0≤t≤T is the exponential local martingale defined by

Zt := E(−λ ·B)t, 0 ≤ t ≤ T,

satisfying
dZt = −λtZtdBt, Z0 = 1.

We shall assume that

E exp

(
1
2

∫ T

0

λ2
tdt

)
<∞,
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so that Z is indeed a martingale and Q is indeed a probability measure equivalent to P .
Under Q, the process BQ defined by

BQt := Bt +
∫ t

0

λsds, 0 ≤ t ≤ T,

is a Brownian motion. The Q-dynamics of S,X are

dSt = σtStdB
Q
t , dXt = σtθtXtdB

Q
t .

In particular, the solution of the SDE for X, given X0 = x, is

Xt = xE(σθ ·BQ)t, 0 ≤ t ≤ T.

We assume that

EQ exp

(
1
2

∫ T

0

σ2
t θ

2
t dt

)
<∞,

so that X is a Q-martingale, satisfying

EQ[Xt|Fs] = Xs, 0 ≤ s ≤ t ≤ T.

In particular, with t = T , s = 0 and X0 = x,

EQXT = x,

or
E [ZTXT ] = x, (34)

which we shall regard as a constraint on the terminal wealth XT . This is the foundation of
the dual approach to portfolio optimisation, namely to enforce the martingale constraint on the
wealth process.

The primal portfolio problem (also called the primal problem) is, given X0 = x, to maximise
expected utility of wealth at time T :

u(x) := sup
θ∈A

EU(XT ), (35)

subject to (34).
The dual value function is ũ : R+ → R defined by

ũ(η) := EŨ

(
η
dQ

dP

)
, η > 0.

Then the main result on portfolio optimisation via convex duality for this model is as follows.

Theorem 6. 1. The primal and dual value functions u(x) and ũ(η) are conjugate:

ũ(η) = sup
x∈R+

[u(x)− xη], u(x) = inf
η>0

[ũ(η) + xη],

so that u′(x) = η (equivalently, ũ′(η) = −x);

2. The optimal terminal wealth in (35) is X∗T satisfying

U ′(X∗T ) = η
dQ

dP
, equivalently, X∗T = I

(
η
dQ

dP

)
.
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Proof. With dQ/dP = ZT given by (33), consider the maximisation of the objective functional
EU(XT ) subject to the constraint E[ZTXT ] = x, via the Lagrangian

L(XT , η) := EU(XT ) + η (x− E [ZTXT ])
= ηx+ E [U(XT )− ηZTXT ]

≤ ηx+ EŨ (ηZT ) , [by (28)]
= ηx+ ũ(η), (36)

with equality in (36) if and only if XT = X∗T given by

U ′(X∗T ) = ηZT ⇔ X∗T = I (ηZT ) . (37)

Since maximising the left-hand-side of (36) gives the primal value function u(x), we conclude
that (37) identifies the optimal terminal wealth, which proves part 2 of the theorem.

The value of the multiplier η is needed to completely specify X∗T , and this is fixed by inserting
(37) into the constraint E[ZTX∗T ] = x, giving

E[ZT I(ηZT )] = x,

or
χ(η) = x, (38)

where we have defined the function

χ(η) := E[ZT I(ηZT )], η > 0.

Define Υ(·) := χ−1(·) as the inverse of the function χ(·). Then, inverting (38) we write η as

η = Υ(x). (39)

Now, differentiating the defining relation ũ(η) = EŨ(ηZT ) gives

ũ′(η) = E[ZT Ũ ′(ηZT )] = −E[ZT I(ηZT )],

since I(·) = −Ũ ′(·). In other words, χ(·) and ũ′(·) are related by

ũ′(η) = −χ(η),

which together with (38) implies
ũ′(η) = −x.

Using (37) and (39) we write X∗T as

X∗T = I[Υ(x)ZT ]. (40)

Now define the function

G(η) := EU [I(ηZT )], η > 0.

Using (40), write u(x) as

u(x) = EU(X∗T ) = EU [I(Υ(x)ZT )],

or
u(x) = G[Υ(x)]. (41)

Note also that

G(η)− ηχ(η) = E [U(I(ηZT ))− ηZT I(ηZT )]

= EŨ(ηZT ), [by (30)],
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or

ũ(η) = G(η)− ηχ(η), η > 0. (42)

Moreover, by (41) we have u[χ(η)] = G[Υ(χ(η))], or, since Υ(·), χ(·) are inverses of each other,

u[χ(η)] = G(η). (43)

Now, inequality (36) holds for arbitrary x ∈ R+, θ ∈ A, η > 0, so we have in particular, taking
the optimal strategy θ∗ ∈ A on the left-hand-side of (36),

u(x) ≤ ηx+ ũ(η), ∀x ∈ R+,

whence
sup
x∈R+

[u(x)− xη] ≤ ũ(η), ∀η > 0. (44)

On the other hand, (42) gives

ũ(η) = G(η)− ηχ(η)
= u[χ(η)]− ηχ(η) [by (43)]
≤ sup

x∈R+
[u(x)− xη], ∀η > 0. (45)

So (44) and (45) imply
ũ(η) = sup

x∈R+
[u(x)− xη],

which establishes part 1 of the theorem, and the proof is complete.

3.2 Incomplete markets

Similar duality theorems have been developed for incomplete market situations, and also when
the agent has a random terminal endowment, possibly in the form of a contingent claim. For
the incomplete market case, see the seminal paper by Karatzas et al [14] for markets with
continuous price processes, and Kramkov and Schachermayer [16] for the case with general
semimartingale price processes. For problems involving a terminal random endowment in the
form of an FT -measurable random variable, contributions have been made by (among others)
Hugonnier and Kramkov [9], Owen [28] and by Delbaen et al [6] for an agent with an exponential
utility function. We shall use the results of [6] in Section 5, when we examine the exponential
hedging of a contingent claim in a basis risk model.

For an incomplete market, in which the setM of martingale measures is no longer a single-
ton, the significant change is that the dual value function is then defined by

ũ(η) := inf
Q∈M

EŨ

(
η
dQ

dP

)
. (46)

The form of the duality theorem for an incomplete market is similar to Theorem 6, but with the
unique martingale measure Q of the complete market replaced by the optimal dual minimiser
Q∗ that achieves the infimum in (46). We formalise this in Theorem 7 below, whose proof is
omitted. See [13], for instance, for details in an Itô process setting.

Theorem 7. In an incomplete market model with martingale measures Q ∈ M, define the
primal value function by

u(x) := sup
θ∈A

EU(X(θ)
T ), x ∈ dom(U),

where X
(θ)
T denotes the terminal wealth generated from using a trading strategy θ from the

admissible set A.
Define the dual value function ũ by (46). Then:
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1. u(x) and ũ(η) are conjugate:

ũ(η) = sup
x∈dom(U)

[u(x)− xη], u(x) = inf
η>0

[ũ(η) + xη],

so that u′(x) = η (equivalently, ũ′(η) = −x);

2. The optimal terminal wealth X∗T and optimal dual minimiser Q∗ are unique and related
by satisfying

U ′(X∗T ) = η
dQ∗

dP
, equivalently, X∗T = I

(
η
dQ∗

dP

)
;

3.3 Optimal investment with Gaussian drift process

We wish to apply filtering theory and the martingale approach to portfolio optimisation to the
classical optimal portfolio problem of Merton [20, 21], in the case that the agent does not know
the drift parameter of the stock. As we shall see, this will involve a portfolio problem in which
the market price of risk of the stock is a Gaussian process. Hence we first describe the solution
to such a problem.

Suppose a stock price S = (St)0≤t≤T follows the process

dSt = σSt(λtdt+ dBt),

on a filtered probability space (Ω,F ,F = (Ft)0≤t≤T , P ), with B an F-Brownian motion and λ
an F-adapted process following

λt = λ0 +
∫ t

0

wsdBs, wt =
w0

1 + w0t
, 0 ≤ t ≤ T, (47)

for constants λ0,w0.
The self-financing wealth process X from trading S is given by

dXt = σθtXt(λtdt+ dBt), X0 = x, (48)

where the trading strategy θ = (θt)0≤t≤T is the proportion of wealth invested in stock. We
define the set A of admissible strategies as those satisfying

∫ T
0
θ2
t dt < ∞ almost surely, such

that Xt ≥ 0 almost surely for all t ∈ [0, T ].
The value function is

u(x) := sup
θ∈A

E[U(XT )|F0] (49)

where U(x) is the power utility function given by

U(x) =
xγ

γ
, 0 < γ < 1. (50)

Theorem 8. Assume that
−1 < w0T <

1− γ
γ

.

Then the value function (49) is given by

u(x) =
xγ

γ
C1−γ , (51)

where C is given by

C =
(

(1 + w0T )q

1 + qw0T

)1/2

exp
(
−1

2
q(1− q)λ2

0T

1 + qw0T

)
, q = − γ

1− γ
. (52)

The optimal trading strategy θ∗ achieving the supremum in (49) is given by

θ∗t =
λt

σ(1− γ)

(
1

1 + qwt(T − t)

)
, 0 ≤ t ≤ T. (53)
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Proof. Let Q denote the unique martingale measure for this market. The change of measure
martingale Z := (Zt)0≤t≤T is given by

Zt :=
dQ

dP

∣∣∣∣
Ft

= E(−λ ·B)t, 0 ≤ t ≤ T,

and satisfies the SDE
dZt = −λtZtdBt, Z0 = 1. (54)

Notice that

lim
w0→0

Zt = E(−λ0B)t = exp
(
−λ0Bt −

1
2
λ2

0t

)
. (55)

We may write Zt = f(t, λt) where f : [0, T ] × R → R+ is a smooth function, and apply Itô’s
formula along with the SDE (47) for λ to give

dZt =
[
ft(t, λt) +

1
2

w2
t fxx(t, λt)

]
dt+ wtfx(t, λt)dBt, (56)

with subscripts of f denoting partial derivatives. Equating (54) and (56) yields the partial
differential equations for f

wtfx(t, x) = −xf(t, x),

ft(t, x) +
1
2

w2
t fxx(t, x) = 0,

with f(0, ·) = Z0 = 1. The solution to these equations gives Zt in the form

Zt =
(

w0

wt

)1/2

exp
[
−1

2

(
λ2
t

wt
− λ2

0

w0

)]
, 0 ≤ t ≤ T (57)

Note that this function is actually well-defined even for w0 → 0. It is not hard to check that
(57) reduces to (55) in the limit w0 → 0.

For power utility, the convex conjugate Ũ of then utility function is given by

Ũ(η) = −η
q

q
, q = − γ

1− γ
, η > 0. (58)

The dual value function is defined by

ũ(η) := E[Ũ(ηZT )|F0], η > 0.

Using (58) we obtain

ũ(η) = −η
q

q
C,

where
C := E [ZqT | F0] . (59)

From Theorem 6, the primal and dual value functions are conjugate, which yields that the
primal value function is indeed given by (51), with C defined by (59). It therefore remains to
show that C is indeed equal to the expression in (52) and that the optimal strategy is given by
(53).

Once again using Theorem 6, the optimal terminal wealth X∗T , attained by adopting the
strategy that achieves the supremum in (49), is given by

X∗T = −Ũ ′(u′(x)ZT ).

Hence, using the form (51) for u, we obtain

X∗T =
x

C
(ZT )−(1−q)

.
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The optimal wealth process X∗ is a (Q,F)-martingale, so

X∗t = EQ[X∗T |Ft] =
1
Zt
E[ZTX∗T |Ft] =

x

CZt
E [ZqT |Ft] , 0 ≤ t ≤ T. (60)

So, to compute explicit formulae for C = E[ZqT |F0] and the optimal wealth process (from which
the optimal trading strategy will be derived), we need to evaluate the conditional expectation
E [ZqT |Ft] , 0 ≤ t ≤ T .

From (47), for t ≤ T , and conditional on Ft, λT is normally distributed according to

Law(λT |Ft) = N(λt,wt − wT ), 0 ≤ t ≤ T.

For a normally distributed random variable Y ∼ N(m, s2), we have

E exp(cY 2) =
1√

1− 2cs2
exp

(
cm2

1− 2cs2

)
,

so that, given the explicit expression (57) for Zt, both C and the right-hand-side of (60) can be
computed in closed form. We find that C is indeed given by (52). Notice that 1 + qw0T > 0
and 1 + w0T > 0 due to the conditions on w0T , thus the solution is well defined.

For the optimal wealth process, we obtain the formula

X∗t = x

(
Ψt

Ψ0

) 1
2

exp
(

1
2

(1− q)(Φt − Φ0)
)
, 0 ≤ t ≤ T, (61)

where

Ψt :=
wt

1 + qwt(T − t)
, Φt :=

λ2
t

wt(1 + qwt(T − t))
, 0 ≤ t ≤ T.

To compute the optimal trading strategy θ∗, we apply the Itô formula to (61), using the SDE
for λ and noting that the derivative of wt is given by

dwt
dt

= −w2
t .

We compare the coefficient of dBt in dX∗t with that in (48) for the case of the optimal wealth
process. This gives (53).

3.3.1 Classical Merton problem

In the limit w0 → 0, the drift of the stock becomes the constant λ0, and Theorem 8 gives the
solution to the classical full information Merton optimal investment problem for a stock with
constant market price of risk λ0 and volatility σ. In this case it is easy to check that the value
function (51) becomes

u(x) =
xγ

γ
exp

(
1
2

γ

1− γ
λ2

0T

)
,

and the optimal trading strategy (53) becomes

θ∗t =
λ0

σ(1− γ)
, 0 ≤ t ≤ T.

That is, the Merton investor keeps a constant proportion of wealth invested in the stock, as is
well known.
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3.4 Merton problem with uncertain drift

We can now solve the Merton problem when the agent has uncertainty over the true value of the
drift parameter. Optimal investment models under partial information have been considered
by many authors. We refer the reader to Rogers [31], Björk, Davis and Landén [2], and Platen
and Runggaldier [30], for example.

A stock price process S = (St)0≤t≤T follows

dSt = σSt(λdt+ dBt), (62)

on a complete probability space (Ω,F , P ) equipped with a filtration F := (Ft)0≤t≤T , with
B = (Bt)0≤t≤T an F-Brownian motion. In a partial information model with continuous stock
price observations, an agent must use F̂-adapted trading strategies, where where F̂ := (F̂t)0≤t≤T
is the observation filtration, defined by

F̂t := σ(ξs; 0 ≤ s ≤ t) = σ(Ss; 0 ≤ s ≤ t).

Then σ is known from the quadratic variation of S, but λ is an unknown constant, and hence
modelled as an F0-measurable random variable. We assume the distribution of λ is Gaussian,
λ ∼ N(λ0, v0), independent of B.

Let us define the process ξ = (ξt)0≤t≤T , by

ξt :=
1
σ

∫ t

0

dSu
Su

= λt+Bt. (63)

The process ξ will be considered as the observation process in a filtering framework, correspond-
ing to noisy observations of λ, with B representing the noise.

We are faced with a Kalman-Bucy type filtering problem whose unobservable signal process
is the market price of risk λ. The signal process SDE is

dλ = 0, (64)

and the observation process SDE is (63).
We apply Theorem 4 to the signal process λ in (64) and observation process ξ in (63). Then

the optimal filter
λ̂t := E[λ|F̂t], 0 ≤ t ≤ T,

satisfies
dλ̂t = vtdB̂t, λ̂0 = λ0, (65)

where
vt := E[(λ− λ̂t)2|F̂t], 0 ≤ t ≤ T,

is the conditional variance. This satisfies the Riccati equation

dvt
dt

= −v2
t , (66)

with initial value v0, so that
vt =

v0

1 + v0t
, 0 ≤ t ≤ T. (67)

The process B̂ is an F̂-Brownian motion, the innovations process, satisfying

dB̂t = dξt − λ̂tdt. (68)

Using this in (65), the optimal filter can also be written in terms of the observable ξ as

λ̂t =
λ0 + v0ξt
1 + v0t

, 0 ≤ t ≤ T. (69)
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The effect of the filtering is that the agent is now investing in a stock with dynamics given by
dSt = σStdξt which, using (68), becomes

dSt = σSt(λ̂tdt+ dB̂t). (70)

Our agent has a power utility function (50) and may invest a portion of his wealth in shares and
the remaining wealth in a cash account with zero interest rate (for simplicity). The (F̂-adapted)
wealth process X0 then follows

dX0
t = σθ0

tX
0
t (λ̂tdt+ dB̂t), X0

0 = x, (71)

where θ0
t is the proportion of wealth invested in shares at time t ∈ [0, T ], an F̂-adapted process

satisfying
∫ T

0

(
θ0
t

)2
dt <∞ almost surely, and such that X0

t ≥ 0 almost surely for all t ∈ [0, T ].
Denote by A0 the set of such admissible strategies.

The objective is to maximise expected utility of terminal wealth over the F̂-adapted admis-
sible strategies. The value function is

u0(x) := E[U(X0
T )|F̂0].

This may now be treated as a full information problem, with state dynamics given by (71).
We see from equations (65), (67) and (70), that the solution to the partial information

optimal portfolio problem is given by Theorem 8, when we replace the process λ of Theorem 8
by λ̂, and replace (wt)0≤t≤T by (vt)0≤t≤T . We have therefore proved the following result.

Theorem 9 (Merton problem with uncertain drift). In a complete market with stock price
process S given by (62), suppose an agent is restricted to using stock price adapted strategies to
maximise expected utility of terminal wealth, with power utility function given by (50). Suppose
further that the agent’s prior distribution for λ is Gaussian, according to

Law(λ|F̂0) = N(λ0, v0),

and assume that
−1 < v0T <

1− γ
γ

.

Then the agent’s value function is given by

u0(x) =
xγ

γ
C1−γ

0 .

where

C0 =
[

(1 + v0T )q

1 + qv0T

]1/2

exp
[
−1

2
q(1− q)λ2

0T

1 + qv0T

]
, q = − γ

1− γ
,

The optimal trading strategy is θ0,∗ = (θ0,∗
t )0≤t≤T , given by

θ0,∗
t =

λ̂t
σ(1− γ)

(
1

1 + qvt(T − t)

)
, 0 ≤ t ≤ T,

where λ̂ = (λ̂t)0≤t≤T satisfies (65) and vt is given by (67).

The classical Merton strategy is thus altered in two ways: the constant λ is replaced by its
filtered estimate λ̂t, and the risky asset proportion is decreased by the factor (1+qvt(T − t))−1.
We note that the more risk averse the investor, the less likely he is to invest in shares, and as
t→ T , the optimal strategy gets closer and closer to the Merton rule.
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4 Investment with inside information and drift uncertainty

We again consider the Merton optimal investment problem in which the agent does not know the
stock price drift, but now with the added feature that the agent has some additional information
at time zero, represented by noisy knowledge of the terminal value BT of the Brownian motion
driving the stock. We refer the reader to Danilova, Monoyios and Ng [3] for further examples,
such as when the additional information involves noisy knowledge of the terminal stock price.
The work in this section and in [3] extends the classical inside information model of Pikovsky
and Karatzas [29] by considering the situation where the insider does not know the stock’s
appreciation rate. The agent must use strategies that are adapted to the stock price filtration,
but enlarged by the additional information. We must therefore utilise a filtering algorithm
which computes the best estimate of the drift, given stock price observations and the additional
information. The usual Kalman-Bucy equations hold in this scenario, but with modified initial
conditions reflecting the additional information.

The market is the same one as in Section 3.4, with a single stock whose price process S
follows (62), repeated below:

dSt = σSt(λdt+ dBt), (72)

on a complete probability space (Ω,F , P ) equipped with a background filtration F := (Ft)0≤t≤T ,
with B an F-Brownian motion. We shall again allow for uncertainty in the value of λ, so consider
it to be an F0-measurable random variable. Once again we take the interest rate to be zero.

As before, we define the observation process ξ = (ξt)0≤t≤T by (63), repeated below:

ξt :=
∫ t

0

dSs
σSs

= λt+Bt, 0 ≤ t ≤ T, (73)

and the filtration generated by ξ is again denoted by F̂ = (F̂t)0≤t≤T . Since the background
filtration F contains the Brownian filtration and also the sigma-field generated by λ, we have
F̂t ⊆ Ft, for all t ∈ [0, T ].

Also as before, the uncertainty in the F0-measurable random variable λ is modelled by
assuming that its prior distribution conditional on F̂0 is Gaussian, according to

Law(λ|F̂0) = N(λ0, v0), independent of B, (74)

for given constants λ0, v0.4

In contrast to earlier, the utility-maximising agent will not only have access to F̂ in order
to estimate λ and implement an optimal strategy, but will be able to augment F̂ with some
additional information, represented by knowledge of a random variable I.

Our procedure in this section is to first enlarge the background filtration F with the informa-
tion carried by the random variable I. Denote the enlarged filtration by Fσ(I) = (Fσ(I)

t )0≤t≤T ,
with

Fσ(I)
t := Ft ∨ σ(I), 0 ≤ t ≤ T.

By starting with an enlarged background filtration and then considering the optimal investment
problem with uncertain drift, we aim to incorporate the insider’s additional information in the
estimation of the unknown market price of risk λ.

The next step is to write the stock price SDE (72) in terms of quantities adapted to Fσ(I).
As F contains the Brownian filtration, we apply classical initial enlargement results (see, for
instance, Mansuy and Yor [19]). There exists an Fσ(I)-adapted process ν, the information drift,
such that the Brownian motion B decomposes according to

Bt := BIt +
∫ t

0

νsds, 0 ≤ t ≤ T, (75)

where BI is an Fσ(I)-Brownian motion. We shall characterise the information drift via Lemma
2 shortly.

4One way to choose λ0, v0 would be to use past data before time zero to obtain a point estimate of λ, and to
use the distribution of the estimator as the prior, as in Monoyios [24] and Section 5 of this article.
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Using (75), the stock price dynamics (72) is written in terms of Fσ(I)-adapted processes, to
give

dSt = σSt
(
λIt dt+ dBIt

)
, (76)

where
λIt := λ+ νt, 0 ≤ t ≤ T,

is Fσ(I)-adapted. If the insider happened to know the value of λ, then we would interpret (76)
as his stock price SDE, with a stochastic market price of risk λI , on the filtered probability
space (Ω,Fσ(I)

T ,Fσ(I), P ).
We study a problem where the inside information consists of noisy Brownian inside infor-

mation. In other words, we take I to be given by

I := aBT + (1− a)ε, 0 < a < 1, (77)

and where ε is a standard normal random variable independent of B and λ.
Define the insider’s observation filtration F̂σ(I) = (F̂σ(I)

t )0≤t≤T by

F̂σ(I)
t := σ(I, ξs; 0 ≤ s ≤ t), 0 ≤ t ≤ T.

We now incorporate the insider’s uncertainty in the knowledge of λ by treating it as an Fσ(I)
0 -

measurable Gaussian random variable with distribution conditional on F̂0 given by (74). In
this example, λ is independent of I, so its distribution conditional on F̂σ(I)

0 is unaltered from
that in (74):

Law(λ|F̂σ(I)
0 ) = Law(λ|F̂0) = N(λ0, v0). (78)

Treating λI as an unobservable signal process, we shall see that λI will satisfy a linear SDE
with respect to Fσ(I). The Kalman-Bucy filter then allows the insider to infer the conditional
expectation

λ̂It := E[λIt |F̂
σ(I)
t ], 0 ≤ t ≤ T, (79)

that is, the best estimate of the signal λI based on the insider’s observation filtration F̂σ(I),
which turns out to be a Gaussian process, fully characterised by the filtering algorithm. The
initial condition for the optimal filter incorporates the inside information, and the SDE for the
filter augments this with the stock price observations. This will convert the partial information
model (76) to a full information model on the filtered probability space (Ω, F̂σ(I)

T , F̂σ(I), P ) with
the stock price following

dSt = σSt(λ̂It dt+ dB̂It ), (80)

where B̂I is an F̂σ(I)-Brownian motion. Finally, once we have the full information model (80),
we are able to compute the maximum utility via duality.

Denote the agent’s F̂σ(I)-adapted wealth process by XI = (XI
t )0≤t≤T , with trading strategy

θI = (θIt )0≤t≤T , the proportion of wealth invested in the stock, an F̂σ(I)-adapted process satis-
fying

∫ T
0

(
θIt
)2
dt < ∞ almost surely, such that XI

t ≥ 0 almost surely for all t ∈ [0, T ]. Denote
by AI the set of such admissible strategies.

The value function for this problem is

uI(x) := sup
θI∈AI

E[U(XI
T )|F̂σ(I)

0 ], x > 0, (81)

where U is the power utility function (50). We emphasise that the objective function in (81) is
conditioned on F̂σ(I)

0 .
Define the modulated terminal time Ta by

Ta := T +
(

1− a
a

)2

, (82)

which will appear in our results. Then the solution to this problem is as follows.
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Theorem 10. Assume that

T

Ta
− 1 < v0T <

T

Ta
+

1− γ
γ

.

Define the function vI : [0, T ]→ R by

vIt :=
vI0

1 + vI0t
, vI0 := v0 −

1
Ta
, 0 ≤ t ≤ T. (83)

Then the process λ̂I in (79) is given by

λ̂It = λ0 +
I

aTa
+
∫ t

0

vIsdB̂
I
s , 0 ≤ t ≤ T, (84)

where I is defined in (77) and Ta in (82). The value function of the insider with knowledge of
I at time zero is given by

uI(x) =
xγ

γ
C1−γ
I , (85)

where CI is the F̂I0 -measurable random variable given by

CI =
(

(1 + vI0T )q

1 + qvI0T

)1/2

exp

(
−1

2
q(1− q)(λ̂I0)2T

1 + qvI0T

)
, q = − γ

1− γ
.

The insider’s optimal trading strategy is θI,∗ = (θI,∗t )0≤t≤T , given by

θI,∗t =
λ̂It

σ(1− γ)

(
1

1 + qvIt (T − t)

)
, 0 ≤ t ≤ T.

Of course, the value function (85) depends explicitly on I, through its dependence on λ̂I0.
We note the similarity in the structure of the solution to this problem with that of the Merton
problem with uncertain drift and no inside information. The function vI plays a similar role to
the function v in the conventional partial information problem. It turns out that vI is related
to (but not identical to) the variance of λI conditional on F̂I , as we shall see.

4.1 Computing the information drift

The first result we need in order to prove Theorem 10 is a lemma that gives an explicit formula for
the information drift in (75). Recall that we begin with a background filtration F = (Ft)0≤t≤T
that includes the Brownian filtration and the sigma-field generated by λ. We enlarge F with the
information carried by the random variable I. Define, for a bounded Borel function f : R→ R,
the process (πt(f))0≤t≤T as the continuous version of the martingale (E[f(I)|Ft])0≤t≤T :

πt(f) := E[f(I)|Ft], 0 ≤ t ≤ T.

There then exists a predictable family of measures (µt(dx))0≤t≤T such that

πt(f) =
∫

R
f(x)µt(dx).

For fixed t ∈ [0, T ], the measure µt(dx) is the conditional distribution of I given Ft. Suppose I
is such that there exists a density function g(t, x, y) for each t ∈ [0, T ], and such that

πt(f) =
∫

R
f(x)µt(dx) =

∫
R
f(x)g(t, x,Bt)dx. (86)

The enlargement decomposition formula is given by the following lemma.
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Lemma 2. Suppose that I is continuous random variable with conditional (on Ft) distribution
given by g(t, x,Bt). Assume also that this distribution satisfies the following conditions:∫

R
|gy(t, x, y)|dx <∞,

∫
R

∣∣∣∣gy(t, x, y)
g(t, x, y

∣∣∣∣ dx <∞,
for a.e. t ∈ [0, T ] and a.e. y ∈ R. Then the F- Brownian motion B decomposes with respect to
the enlarged filtration Fσ(I) according to

Bt = BIt +
∫ t

0

νsds, 0 ≤ t ≤ T,

where BI is an Fσ(I)-Brownian motion. The information drift ν is given by

νt =
gy(t, I, Bt)
g(t, I, Bt)

, 0 ≤ t ≤ T.

Proof. Let f be a test function. Introduce the F-predictable process (π̇t(f))0≤t≤T such that

πt(f) = Ef(I) +
∫ t

0

π̇s(f)dBs,

which exists by the representation property of Brownian martingales as stochastic integrals with
respect to B. There exists a predictable family of measures (µ̇t(dx))0≤t≤T such that

π̇t(f) =
∫

R
f(x)µ̇t(dx),

such that for each t ∈ [0, T ] the measure µ̇t(dx) is absolutely continuous with respect to µt(dx).
Define α(t, x) by

µ̇t(dx) = α(t, x)µt(dx).

Now suppose we have a continuous F-martingale M given by

Mt =
∫ t

0

msdBs, 0 ≤ t ≤ T.

By Theorem 1.6 in Mansuy and Yor [19], there exists an Fσ(I)-local martingale M I such that

Mt = M I
t +

∫ t

0

α(s, I)d[M,B]s,

provided that, almost surely, ∫ t

0

|α(s, I)|d[M,B]s <∞.

In particular, if
∫ t

0
|α(s, I)|ds <∞ almost surely, then B decomposes as

Bt = BIt +
∫ t

0

α(s, I)ds, 0 ≤ t ≤ T,

with BI an Fσ(I)-Brownian motion.
From the definition of α(t, x) we have

π̇t(f) =
∫

R
f(x)α(t, x)µt(dx) =

∫
R
f(x)α(t, x)g(t, x,Bt)dx.

Hence,

dπt(f) = π̇t(f)dBt =
(∫

R
f(x)α(t, x)g(t, x,Bt)dx

)
dBt,
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so that

d[π(f),M ]t =
(∫

R
f(x)α(t, x)g(t, x,Bt)dx

)
d[B,M ]t. (87)

But from the defining representation (86), the right-hand side of which is a smooth function of
Bt, the Itô formula gives

d[π(f),M ]t =
(∫

R
f(x)gy(t, x,Bt)dx

)
d[B,M ]t, (88)

and comparing (87) with (88) yields the result.

Proof of Theorem 10. For I given by (77), the conditional distribution of I given Ft, for t ≤ T ,
is

N(aBt, a2(T − t) + (1− a)2) = N(aBt, a2(Ta − t)),

where Ta is defined in (82). Hence the conditional density is

g(t, x,Bt) =
1

a
√

2π(Ta − t)
exp

[
−1

2
(x− aBt)2

a2(Ta − t)

]
.

So by Lemma 2, the information drift is

νt =
I − aBt
a(Ta − t)

, 0 ≤ t ≤ T. (89)

Using the information drift in (89) we write the stock price SDE (72) in terms of Fσ(I)-adapted
processes, to obtain (76), where the Fσ(I)-adapted market price of risk λI is given by

λIt := λ+ νt = λ+
I − aBt
a(Ta − t)

=: h(t, Bt), 0 ≤ t ≤ T,

and where h : [0, T ]× R→ R is defined by

h(t, x) := λ+
I − ax
a(Ta − t)

.

Applying the Itô’s formula and using dBt = νtdt+ dBIt , we obtain

dλIt = − 1
Ta − t

dBIt , λI0 = λ+
I

aTa
. (90)

With ξ being the returns process in (73), we have

dξt = λIt dt+ dBIt . (91)

We now regard λ as an unknown constant, and hence a random variable, whose distribution
conditional on F̂σ(I)

0 is given by (78). Then we regard (λIt )0≤t≤T as an unobservable signal
process following (90), and ξ as an observation process following (91), in a filtering framework
to give the best estimate of λIt conditional on F̂σ(I)

t .
Using (78), we can write down the initial distribution of λI0 given F̂σ(I)

0 :

Law(λI0|F̂
σ(I)
0 ) = Law

(
λ+

I

aTa

∣∣∣∣ F̂σ(I)
0

)
= N

(
λ0 +

I

aTa
, v0

)
.

This defines the prior distribution of the signal process λI . Of course, since I is F̂σ(I)
0 -

measurable, it does not contribute to the initial variance.
The Kalman-Bucy filter, Theorem4, is directly applicable, and yields that the optimal filter

λ̂It := E[λIt |F̂
σ(I)
t ], 0 ≤ t ≤ T,
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satisfies the SDE

dλ̂It =
(
V It −

1
Ta − t

)
dB̂It , λ̂I0 = λ0 +

I

aTa
, (92)

where B̂I is the innovations process, an F̂σ(I)-Brownian motion defined by

B̂It := ξt −
∫ t

0

λ̂Isds, 0 ≤ t ≤ T, (93)

and V It is the conditional variance of λIt :

V It := E

[(
λIt − λ̂It

)2
∣∣∣∣ F̂σ(I)

t

]
, 0 ≤ t ≤ T,

which satisfies
dV It
dt

=
2

Ta − t
V It −

(
V It
)2
, V I0 = v0.

If we define
vIt := V It −

1
Ta − t

, 0 ≤ t ≤ T,

then (92) becomes

dλ̂It = vIt dB̂
I
t , λ̂I0 = λ0 +

I

aTa
. (94)

Note that (94) is of the same form as (47) with wt replaced by vIt and with Bt replaced by B̂It .
Indeed, vIt plays the role of an ‘effective variance’, satisfying the Riccati equation (66), with a
modified initial condition:

dvIt
dt

= −
(
vIt
)2
, vI0 = v0 −

1
Ta
.

The solution to this equation is then given by (83), and the solution to (94) is then (84).
Using (93) in the SDE (94), the optimal filter may also be written explicitly in terms of the

observable ξ, as

λ̂It =
λ̂I0 + vI0ξt
1 + vI0t

, 0 ≤ t ≤ T.

This is of the same form as (69), with λ0 replaced by λ̂I0 and v0 replaced by vI0.
The effect of the filtering is that the agent is now investing in a stock with dynamics given

by dSt = σStdξt which, using (93), becomes (80). The F̂σ(I)-adapted wealth process XI then
follows

dXI
t = σθItX

I
t (λ̂It dt+ dB̂It ), XI

0 = x,

where θI is the F̂σ(I)-adapted trading strategy. The theorem then follows immediately from
making the replacements

w→ vI , λ→ λ̂I ,

in Theorem 8.

It can be shown that the additional information increases the insider’s utility over the regular
agent: see [3] for this and other effects of the inside information.

5 Optimal hedging of basis risk with partial information

In this section we analyse the hedging of a contingent claim in a basis risk model, a tractable
example of an incomplete market, first under a full information assumption, and then under a
partial information scenario. Basis risk models involve a claim on a non-traded asset, which
is hedged using a correlated traded asset. They were first studied systematically by Davis [5]
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(whose preprint on the subject originated in 2000) who used a dual approach to derive approx-
imations for indifference prices. Subsequently, Henderson [8], and Musiela and Zariphopoulou
[27] derived an expectation representation (given in Theorem 11) for the value function of the
utility maximisation problem involving a random endowment of the claim. This was used by
Monoyios [22] to derive accurate analytic approximations for indifference prices and hedging
strategies. In simulation experiments, Monoyios showed that exponential indifference hedging
could outperform the BS approximation of taking the traded asset as a good proxy for the
non-traded asset. Unfortunately, the utility-based hedge requires knowledge of the drift pa-
rameters of the assets. These are hard to estimate accurately, as shown by Rogers [31] and
Monoyios [23], who showed that drift parameter mis-estimation could ruin the effectiveness of
the optimal hedge. Finally, in [24, 26] Monoyios developed a filtering algorithm to deal with the
drift parameter uncertainty, and showed that with this added ingredient, utility-based hedging
was indeed effective, even in the face of parameter uncertainty. We shall describe some of these
results in this section.

5.1 Basis risk model: full information case

In a full information model, the setting is a filtered probability space (Ω,F ,F := (Ft)0≤t≤T , P ),
where the filtration F is the P -augmentation of that generated by a two-dimensional Brownian
motion (B,B⊥). A traded stock price S := (St)0≤t≤T follows a log-Brownian process given by

dSt = σSt(λdt+ dBt) =: σStdξt, (95)

where σ > 0 and λ are known constants. For simplicity, the interest rate is taken to be zero.
The process ξ in (95) defined by dξt := λdt+dBt will subsequently play a role as one component
of an observation process in a partial information model, when λ will be treated as a random
variable rather than as a known constant.

A non-traded asset price Y := (Yt)0≤t≤T follows the correlated log-Brownian motion

dYt = βYt(θdt+ dWt) =: βYtdζt, (96)

with β > 0 and θ known constants. The Brownian motion W is correlated with B according to

[B,W ]t = ρt, W = ρB +
√

1− ρ2B⊥, ρ ∈ [−1, 1],

and the process ζ, given by dζt := θdt+dWt, will act as the second component of an observation
process in a partial information model, when θ will be considered a random variable. We shall
henceforth refer to the Sharpe ratios λ (respectively, θ) as the drift of S (respectively, Y ), for
brevity.

A European contingent claim pays the non-negative random variable h(YT ) at time T ,
where h : R+ → R+. In what follows we shall consider utility maximisation problems with the
additional random terminal endowment nh(YT ), for n ∈ R. We assume the random endowment
nh(YT ) is continuous and bounded below, with finite expectation under any martingale measure.

An agent may trade the stock in a self-financing fashion, leading to the portfolio wealth
process X = (Xt)0≤t≤T satisfying

dXt = σπt(λdt+ dBt),

where π := (πt)0≤t≤T is the wealth in the stock, representing the agent’s trading strategy,
satisfying

∫ T
0
π2
t dt <∞ almost surely.

5.1.1 Perfect correlation case

This market is incomplete for |ρ| 6= 1. If the correlation is perfect, however, the market becomes
complete and perfect hedging is possible, as we now show.

The minimal martingale measure QM has density process with respect to P given by

dQM

dP

∣∣∣∣
Ft

= E (−λ ·B)t , 0 ≤ t ≤ T.
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Under QM , (S, Y ) follow

dSt = σStdB
QM

t ,

dYt = β (θ − ρλ)Ytdt+ βYtdW
QM

t , (97)

where BQ
M

,WQM

are correlated Brownian motions under QM . The stock price S is a local
QM -martingale, but this is not the case for the non-traded asset, unless we have the perfect
correlation case, ρ = 1. In this case Y is effectively a traded asset (as Yt is then a deterministic
function of St), so the QM -drift of Y vanishes. Therefore, given σ, β, when ρ = 1 the Sharpe
ratios λ, θ are equal:

θ = λ.

In this case the market becomes complete, and perfect hedging is possible. It is easy to show
that with ρ = 1, so that W = B, we have

Yt = Y0

(
St
S0

)β/σ
ect, c =

1
2
σβ

(
1− β

σ

)
.

Let the claim price process be v(t, Yt), 0 ≤ t ≤ T , where v : [0, T ]×R+ → R+ is smooth enough
to apply the Itô formula, so that

dv(t, Yt) =
[
vt(t, Yt) +AY v(t, Yt)

]
dt+ βYtvy(t, Yt)dWt,

where AY is the generator of the process Y in (96). The replication conditions are

Xt = v(t, Yt), 0 ≤ t ≤ T, dXt = dv(t, Yt).

Standard arguments then show that to perfectly hedge the claim one must hold ∆t shares of S
at t ∈ [0, T ], given by

∆t =
β

σ

Yt
St

∂v

∂y
(t, Yt), 0 ≤ t ≤ T, (98)

and the claim pricing function v(t, y) satisfies

vt(t, y) + β(θ − λ)yvy(t, y) +
1
2
β2y2vyy(t, y) = 0, v(T, y) = h(y).

But with ρ = 1, θ = λ, so we get the BS partial differential equation (PDE), and hence

v(t, Yt) = BS(t, Yt), 0 ≤ t ≤ T,

where BS(t, y) denotes the BS option pricing formula at time t, with underlying asset price y.
Therefore, a position in n claims is hedged by ∆(BS)

t units of S at t ∈ [0, T ], where

∆(BS)
t = −nβ

σ

Yt
St

∂

∂y
BS(t, Yt;β), 0 ≤ t ≤ T, (99)

and where BS(t, y;β) denotes the BS formula at time t for underlying asset price y and volatility
β. From our perspective, the salient feature of (99) is that the perfect hedge does not require
knowledge of the values of the drifts λ, θ.

5.1.2 Incomplete case

Now suppose the correlation is not perfect, so that the market is incomplete. We embed the
problem in a utility maximisation framework in a manner that is by now classical. Let the
agent have risk preferences expressed via the exponential utility function

U(x) = − exp(−αx), x ∈ R, α > 0.
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The agent maximises expected utility of terminal wealth at time T , with a random endowment
of n units of claim payoff:

J(t, x, y;π) = E[U(XT + nh(YT ))|Xt = x, Yt = y].

The value function is u(n)(t, x, y) ≡ u(t, x, y), defined by

u(t, x, y) := sup
π∈A

J(t, x, y;π), (100)

u(T, x, y) = U(x+ nh(y)).

Denote the optimal trading strategy that achieves the supremum in (100) by π∗ ≡ π∗,n, and
denote the optimal wealth process by X∗ ≡ X∗,n.

The following definitions of utility-based price and hedging strategy are now standard.

Definition 1 (Indifference price). The indifference price per claim at t ∈ [0, T ], given Xt =
x, Yt = y, p(t, x, y) ≡ p(n)(t, x, y), is defined by

u(n)(t, x− np(n)(t, x, y), y) = u(0)(t, x, y)

We allow for possible dependence on t, x, y of p(n) in the above definition, but with expo-
nential preferences it turns out that there is no dependence on x.

Definition 2 (Optimal hedging strategy). The optimal hedging strategy for n units of the
claim is πH := (πHt )0≤t≤T given by

πHt := π∗,nt − π∗,0t , 0 ≤ t ≤ T.

We have the following representation for the value function and indifference price.

Theorem 11. The value function u ≡ u(n) and indifference price p ≡ p(n), given Xt = x, Yt = y
for t ∈ [0, T ], are given by

u(n)(t, x, y) = −e−αx− 1
2λ

2(T−t) [F (t, Yt)]
1/(1−ρ2)

,

F (t, y) = EQ
M [

exp
(
−α(1− ρ2)nh(YT )

)∣∣Yt = y
]
, (101)

p(n)(t, y) = − 1
α(1− ρ2)n

logF (t, y). (102)

Proof. The Hamilton-Jacobi-Bellman (HJB) equation for the value function u is

ut + σ sup
π

(
λπux +

1
2
σπ2uxx + ρβπyuxy

)
+AY u = 0.

Performing the maximisation gives the optimal feedback control as Π∗(t, x, y), where the func-
tion Π∗ : [0, T ]× R× R+ is given by

Π∗(t, x, y) := −
(
λux + ρβyuxy

σuxx

)
.

The optimal trading strategy π∗ is then given by π∗t = Π∗(t,X∗t , Yt). Substituting the optimal
Markov control back into the Bellman equation gives the HJB PDE

ut +AY u− (λux + ρβyuxy)2

2uxx
= 0.

The function F (t, y) in (101) satisfies the linear PDE

Ft + β(θ − ρλ)Fy +
1
2
β2y2Fyy = 0, F (T, y) = exp(−α(1− ρ2)nh(y)),

by virtue of the Feynman-Kac theorem. It is then straightforward to verify that u as given in
the theorem solves the above HJB equation, and the definition of the indifference price gives
the formula (102).
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Theorem 12. The optimal hedging strategy for a position in n claims is to hold ∆I
t shares at

t ∈ [0, T ], given by

∆I
t = −nρβ

σ

Yt
St

∂p(n)

∂y
(t, Yt), 0 ≤ t ≤ T. (103)

Proof. From Theorem 11 the value function may be written in terms of the indifference price
as

u(n)(t, x, y) = − exp
(
−α(x+ np(n)(t, y))− 1

2
λ2(T − t)

)
.

Applying Definition 2 gives the result.

Notice that, given the PDE satisfied by F , the indifference pricing function p(t, y) ≡ p(n)(t, y)
satisfies

pt + β(θ − ρλ)ypy +
1
2
β2y2pyy −

1
2
β2y2αn(1− ρ2)(py)2 = 0.

Then, if ρ = 1, we recover the perfect delta hedge (98), and that the claim price then satisfies
the BS PDE.

In [22, 23] the hedging strategy in (103) is shown to be superior to the BS-style hedge
(99), in terms of the terminal hedging error distribution produced by selling the claim at the
appropriate price (the indifference price or the BS price) and investing the proceeds in the
corresponding hedging portfolio. But from (97) we see that the exponential hedge requires
knowledge of λ, θ, which are impossible to estimate accurately (see Rogers [31] or Monoyios
[23]). This can ruin the effectiveness of indifference hedging, as shown in [23]. It is therefore
dubious to draw any meaningful conclusions on the effectiveness of utility-based hedging in this
model without relaxing the assumption that the agent knows the true values of the drifts.

5.2 Partial information case

Now we assume the hedger does not know the values of the return parameters λ, θ, so these
are considered to be random variables. Equivalently, the agent cannot observe the Brownian
motions B,W driving the asset prices, so is required to use strategies adapted to the observation
filtration F̂ generated by asset returns.

5.2.1 Choice of prior

We take the the two-dimensional random variable

Ξ :=
(
λ

θ

)
to have a Gaussian distribution which will be updated as the agent attempts to filter the values
of the drifts from asset observations during the hedging interval [0, T ].

The choice of Gaussian prior is motivated by the idea that the agent has some past observa-
tions of S, Y before time 0, uses these to obtain classical point estimates of the drifts, and the
joint distribution of the estimators is used as the prior in a Bayesian framework. Ultimately, in
order to obtain explicit solutions, we shall assume that the agent uses observations before time
0 of equal length for both assets. In setting the prior this way, we make the approximation
that the asset price observations are continuous, so that σ, β, ρ are known from the quadratic
variation and co-variation of S, Y . This is because our goal here is to focus on the severest
problem of drift parameter uncertainty.

So, consider, for the moment, an observer with data for S over a time interval of length tS ,
and for Y over a window of length tY , who considers λ and θ as constants, and records the
returns dSt/St and dYt/Yt in order to estimate the values of the drifts. The best estimator of
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λ is λ̄(tS) given by

λ̄(tS) =
1
tS

∫ t0+tS

t0

dSu
σSu

= λ+
Bt0+tS

tS

∼ N
(
λ,

1
tS

)
.

The estimator of λ is normally distributed, with a similar computation for the estimator of θ.
The estimator, (λ̄, θ̄), of the (supposed constant) vector (λ, θ) is bivariate normal. Defining
v0 := 1/tS and w0 := 1/tY it is easily checked that(

λ̄

θ̄

)
∼ N(M,C0),

where the mean vector M and covariance matrix C0 are given by

M =
(
λ

θ

)
, C0 =

(
v0 ρmin(v0,w0)

ρmin(v0,w0) w0

)
. (104)

With this in mind, we shall suppose that (λ, θ), now considered as a random variable, is bivariate
normal according to

λ ∼ N(λ0, v0), θ ∼ N(θ0,w0), cov(λ, θ) = c0 := ρmin(v0,w0),

for some chosen values λ0, θ0, typically obtained from past data prior to time zero. This
distribution will be updated via subsequent observations of

ξt :=
1
σ

∫ t

0

dSu
Su

= λt+Bt, ζt :=
1
β

∫ t

0

dYu
Yu

= θt+Wt,

over the hedging interval [0, T ].

5.2.2 Two-dimensional Kalman-Bucy filter

We are firmly within the realm of a two-dimensional Kalman filtering problem, which we treat
as follows. Define the observation filtration by

F̂ := (F̂t)0≤t≤T , F̂t = σ(ξs, ζs; 0 ≤ s ≤ t).

The observation process, Λ, and unobservable signal process, Ξ, are defined by

Λ :=
(
ξt
ζt

)
0≤t≤T

, Ξ :=
(
λ

θ

)
,

satisfying the stochastic differential equations

dΛt = Ξdt+DdBt, dΞ =
(

0
0

)
,

where

D =
(

1 0
ρ
√

1− ρ2

)
, Bt =

(
Bt
B⊥t

)
.

The optimal filter is Ξ̂t := E[Ξ|F̂t], 0 ≤ t ≤ T , a two-dimensional process defining the best
estimates of λ and θ given observations up to time t ∈ [0, T ]:

Ξ̂t ≡
(
λ̂t

θ̂t

)
:=
(
E[λ|F̂t]
E[θ|F̂t]

)
,

(
λ̂0

θ̂0

)
=
(
λ0

θ0

)
. (105)
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The solution to this filtering problem converts the partial information model to a full information
model with random drifts, given in the following proposition. To avoid a proliferation of symbols,
we abuse notation and write λ̂t ≡ λ̂(t, St) and θ̂ ≡ θ̂(t, Yt) for processes λ̂, θ̂ that will turn out
to be functions of time and current asset price.

Proposition 2. The partial information model is equivalent to a full information model in
which the asset price dynamics in the observation filtration F̂ are

dSt = σSt(λ̂tdt+ dB̂t), (106)

dYt = βYt(θ̂tdt+ dŴt), (107)

where B̂, Ŵ are F̂-Brownian motions with correlation ρ, and the random drifts λ̂, θ̂ are F̂-adapted
processes.

If λ and θ have common initial variance v0, then λ̂, θ̂ are given by(
λ̂t

θ̂t

)
=
(
λ0

θ0

)
+
∫ t

0

vs

(
dB̂s

dŴs

)
, 0 ≤ t ≤ T, (108)

where (vt)0≤t≤T is the deterministic function

vt :=
v0

1 + v0t
.

Equivalently, λ̂, θ̂ are given as functions of time and current asset price by

λ̂t = λ̂(t, St) =
λ0 + v0ξt
1 + v0t

, θ̂t = θ̂(t, Yt) =
θ0 + v0ζt
1 + v0t

, (109)

with

ξt =
1
σ

log
(
St
S0

)
+

1
2
σt, ζt =

1
β

log
(
Yt
Y0

)
+

1
2
βt. (110)

Proof. By the Kalman-Bucy filter, Theorem 5, Ξ̂ satisfies the stochastic differential equation

dΞ̂t = Ct
(
DDT

)−1 (dΛt − Ξ̂tdt) =: Ct
(
DDT

)−1
dNt, (111)

where (Nt)0≤t≤T is the innovations process, defined by

Nt := Λt −
∫ t

0

Ξ̂sds

=
(
ξt −

∫ t
0
λ̂sds

ζt −
∫ t

0
θ̂sds

)

=:
(
B̂t

Ŵt

)
, (112)

and B̂, Ŵ are F̂-Brownian motions with correlation ρ. The deterministic matrix function Ct is
the conditional variance-covariance matrix defined by

Ct := E
[

(Ξ− Ξ̂t)(Ξ− Ξ̂t)T
∣∣∣ F̂t] = E

[
(Ξ− Ξ̂t)(Ξ− Ξ̂t)T

]
,

(T denoting transpose) where the last equality follows because the error Ξ− Ξ̂t is independent
of F̂t.

Using (112), and writing dSt in terms of dξt, as in (95), gives the dynamics (106) of S in
the observation filtration; (107) is established similarly.

33



The matrix C = (Ct)0≤t≤T satisfies the Riccati equation

dCt
dt

= −Ct
(
DDT

)−1
Ct,

with C0 given in (104). Then Rt := C−1
t satisfies the Lyapunov equation

dRt
dt

=
(
DDT

)−1
.

Define the elements of the conditional covariance matrix by

Ct =:
(

vt ct
ct wt

)
.

Then the filtering equation (111) is a pair of coupled stochastic differential equations:(
dλ̂t

dθ̂t

)
=

1
1− ρ2

(
vt − ρct ct − ρvt
ct − ρwt wt − ρct

)(
dξt − λ̂tdt
dζt − θ̂tdt

)
=

1
1− ρ2

(
vt − ρct ct − ρvt
ct − ρwt wt − ρct

)(
dB̂t

dŴt

)
.

Solving the Lyapunov equation yields 3 equations for vt,wt, ct:

vt
vtwt − c2

t

− v0

v0w0 − c2
0

=
t

1− ρ2
,

wt
vtwt − c2

t

− w0

v0w0 − c2
0

=
t

1− ρ2
, (113)

ct
vtwt − c2

t

− c0

v0w0 − c2
0

=
ρt

1− ρ2
,

where we have written c0 ≡ ρmin(v0,w0) for brevity.
Now make the simplification w0 = v0. From the discussion in Section 5.2.1, we see that this

corresponds to using past observations over the same length of time, tS = tY , for both S and
Y in fixing the prior. Then c0 = ρv0, and the solution to the system of equations (113) gives
the entries of the matrix Ct as

vt =
v0

1 + v0t
, wt = vt, ct = ρvt.

With this simplification, the equation for the optimal filter simplifies to(
dλ̂t

dθ̂t

)
= vt

(
dξt − λ̂tdt
dζt − θ̂tdt

)
= vt

(
dB̂t

dŴt

)
,

which, along with the initial condition in (105), yields (108) and (109).
Finally, the expressions in (110) for ξt, ζt follow directly from the solutions of (95) and (96)

for S and Y .

Armed with Proposition 2 we may now treat the model as a full information model with
random drift parameters (λ̂t, θ̂t), and this is done in the next section.

5.2.3 Optimal hedging with random drifts

On the stochastic basis (Ω, F̂ , F̂, P ), the wealth process associated with trading strategy π :=
(πt)0≤t≤T , an F̂-adapted process satisfying the integrability condition

∫ T
0
π2
t dt < ∞ a.s., is

X = (Xt)0≤t≤T , satisfying
dXt = σπt(λ̂tdt+ dB̂t). (114)
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The classM of local martingale measures for this model consists of measures Q with density
processes defined by

Zt :=
dQ

dP

∣∣∣∣ bFt

= E(−λ̂ · B̂ − ψ · B̂⊥)t, 0 ≤ t ≤ T, (115)

for integrands ψ satisfying
∫ t

0
ψ2
sds < ∞ a.s., for all t ∈ [0, T ] (it is not hard to show that∫ t

0
λ̂2
sds <∞, 0 ≤ t ≤ T ). For ψ = 0 we obtain the minimal martingale measure QM .
Under Q ∈M, (B̂Q, B̂⊥,Q) is two-dimensional Brownian motion, where

dB̂Qt := dB̂Qt + λ̂tdt, dB̂⊥,Qt := dB̂⊥t + ψtdt,

and the asset prices and random drifts satisfy

dSt = σStdB̂
Q
t ,

dYt = βYt[(θ̂t − ρλ̂t −
√

1− ρ2ψt)dt+ dŴQ
t ],

dλ̂t = vt[−λ̂tdt+ dB̂Qt ],

dθ̂t = vt[−(ρλ̂t +
√

1− ρ2ψt)dt+ dŴQ
t ],

where ŴQ = ρB̂Q +
√

1− ρ2B̂⊥,Q.
The relative entropy between Q ∈M and P is defined by

H(Q,P ) := E

[
dQ

dP
log

dQ

dP

]
= EQ

[
−
∫ T

0

λ̂tdB̂
Q
t −

∫ T

0

ψtdB̂
⊥,Q
t +

1
2

∫ T

0

(
λ̂2
t + ψ2

t

)
dt

]
.

Using the Q-dynamics of λ̂t it is straightforward to establish that EQ
∫ t

0
λ̂2
sds < ∞ for all

t ∈ [0, T ]. If, in addition, we have the integrability condition

EQ
∫ t

0

ψ2
sds <∞, 0 ≤ t ≤ T, (116)

then

H(Q,P ) = EQ

[
1
2

∫ T

0

(
λ̂2
t + ψ2

t

)
dt

]
<∞. (117)

In this case we write Q ∈Mf , whereMf denotes the set of martingale measures Q with finite
relative entropy with respect to P , and we define H(Q,P ) :=∞ otherwise. From (117) we note
that the minimal entropy measure QE is given by

H(QE , P ) = EQ

[
1
2

∫ T

0

λ̂2
tdt

]
,

corresponding to ψ ≡ 0 in (117). This means that the minimal martingale measure and the
minimal entropy measure in this model coincide: QE = QM .

For an initial time t ∈ [0, T ], we define the conditional entropy between Q ∈M and P by

Ht(Q,P ) := E

[
ZT
Zt

log
(
ZT
Zt

)∣∣∣∣ F̂t] , 0 ≤ t ≤ T, (118)

satisfying H0(Q,P ) ≡ H(Q,P ). Provided the integrability condition (116) is satisfied, then

Ht(Q,P ) = EQ

[
1
2

∫ T

t

(
λ̂2
u + ψ2

u

)
du

∣∣∣∣∣ F̂t
]
,
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and we define Ht(Q,P ) := ∞ otherwise. In particular, therefore, recalling that λ̂t ≡ λ̂(t, St)
is a smooth and Lipschitz function of time and current stock price, and that the Q-dynamics
of λ̂t do not depend on ψt for any Q ∈M, the minimal conditional entropy (Ht(QE , P ))0≤t≤T
will be a deterministic function of time and stock price, given by Ht(QE , P ) ≡ HE(t, St) for a
C1,2([0, T ]× R+) function HE defined by

HE(t, s) := EQ
E

[
1
2

∫ T

t

λ̂2(u, Su)du

∣∣∣∣∣St = s

]
. (119)

5.2.4 The primal problem

We use an exponential utility function, U(x) = − exp(−αx), x ∈ R, α > 0. The primal value
function u ≡ u(n) is defined as the maximum expected utility of wealth at T from trading S
and receiving n units of the claim on Y , when starting at time t ∈ [0, T ]:

u(n)(t, x, s, y) := sup
π∈A

E[U(XT + nh(YT ))|Xt = x, St = s, Yt = y], (120)

where A denotes the set of admissible trading strategies. The dynamics of the state variables
X,S, Y are given by (114) and (106,107). For starting time 0 we write u(n)(x) ≡ u(n)(0, x, ·, ·).

The set of admissible strategies is defined as follows. Denote by ∆ := π/S be the adapted
S-integrable process for the number of shares held. The space of permitted strategies is

A = {∆ : (∆ · S) is a (Q, F̂)-martingale for all Q ∈Mf},

where (∆ · S)t =
∫ t

0
∆udSu is the gain from trading over [0, t], t ∈ [0, T ].

Denote the optimal trading strategy by π∗ ≡ π∗,n, and the optimal wealth process by
X∗ ≡ X∗,n. The utility-based price p(n) and optimal hedge for a position in n claims are
defined along the lines of Definitions 1 and 2. The indifference price per claim at t ∈ [0, T ],
given Xt = x, St = s, Yt = y, is p(n) given by

u(n)(t, x− np(n)(t, x, s, y), s, y) = u(0)(t, x, s).

The optimal hedging strategy is to hold (∆H
t )0≤t≤T shares of stock at time t, where ∆H

t St =:
πHt St, and πH :=

(
πHt
)

0≤t≤T , is defined by

πHt := π∗,nt − π∗,0t , 0 ≤ t ≤ T. (121)

It is well known that with exponential utility the indifference price is independent of the initial
cash wealth x, so we shall write p(n)(t, x, s, y) ≡ p(n)(t, s, y) from now on.

For small positions in the claim (or, equivalently, for small risk aversion), we shall later
approximate the indifference price by the marginal utility-based price introduced by Davis [4].
This is the indifference price for infinitesimal diversions of funds into the purchase or sale of
claims, and is equivalent (as is well-known, see for example Monoyios [25]) to the limit of the
indifference price as n→ 0.

Definition 3 (Marginal price). The marginal utility-based price of the claim at t ∈ [0, T ] is
p̂(t, s, y) defined by

p̂(t, s, y) := lim
n→0

p(n)(t, s, y).

It is well known that with exponential utility the marginal price is also equivalent to the limit
of the indifference price as risk aversion goes to zero. Under appropriate conditions (satisfied
in this model) it is given by the expectation of the payoff under the optimal measure of the
dual problem without the claim. For exponential utility this measure is the minimal entropy
measure QE and, as we have already seen, in our model QE = QM , giving the representation
p̂(t, s, y) = EQ

M

[h(YT )|St = s, Yt = y], as we shall see in the next section.
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5.2.5 Dual problem and optimal hedge

We attack the primal utility maximisation problem (120) using classical duality results. For a
problem with the random terminal endowment of a European claim, and with exponential utility,
as in this paper, Delbaen et al [6] establish the required duality relations between the primal
and dual problems in a semimartingale setting. We shall use these results below to establish
a simple algebraic relation (Lemma 3) between the primal value function and the indifference
price, which we shall then exploit to derive the representation for the optimal hedging strategy.

The dual problem with starting time 0 has value function defined by

ũ(n)(η) := inf
Q∈M

E
[
Ũ(ηZT ) + ηZTnh(YT )

]
,

where Z is the density process in (115) and Ũ is the convex conjugate of the utility function.
For exponential utility Ũ is given by

Ũ(η) =
η

α

[
log
( η
α

)
− 1
]
.

Hence the dual value function has the well-known entropic representation

ũ(n)(η) = Ũ(η) +
η

α
inf
Q∈M

[
H(Q,P ) + αnEQh(YT )

]
.

Denoting the dual minimiser that attains the above infimum by Q∗,n, we observe that Q∗,n ∈
Mf .

For a starting time t ∈ [0, T ] the dual value function is defined by

ũ(n)(t, η, s, y) := inf
Q∈M

E

[
Ũ

(
η
ZT
Zt

)
+ η

ZT
Zt
nh(YT )

∣∣∣∣St = s, Yt = y

]
, (122)

and we write ũ(n)(η) ≡ ũ(n)(0, η, ·, ·).

Lemma 3. The primal value function and indifference price are related by

u(n)(t, x, s, y) = u(0)(t, x, s) exp
(
−αnp(n)(t, s, y)

)
, (123)

where the value function without the claim is given by

u(0)(t, x, s) = − exp
(
−αx−HE(t, s)

)
, (124)

and HE(t, s) is the conditional minimal entropy function defined in (119).

Proof. For brevity, we give the proof for t = 0. The proof for a general starting time follows
similar lines, and we make some comments on how to adapt the following argument for that
case at the end of the proof.

The fundamental duality linking the primal and dual problems in Delbaen et al [6] implies
that the value functions u(n)(x) and ũ(n)(η) are conjugate:

ũ(n)(η) = sup
x∈R

[u(n)(x)− xη], u(n)(x) = inf
η>0

[ũ(n)(η) + xη].

The value of η attaining the above infimum is η∗, given by ũ(n)
η (η∗) = −x, so that

u(n)(x) = ũ(n)(η∗) + xη∗,

which translates to

u(n)(x) = − exp
(
−αx− inf

Q∈M

[
H(Q,P ) + αnEQh(YT )

])
. (125)
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So, in particular,
u(0)(x) = − exp

[
−αx−H(QE , P )

]
, (126)

where QE is the minimal entropy measure: QE = Q∗,0

Combining the dual representations (125) and (126) for the primal problems with and with-
out the claim, with the definition of the indifference price, gives the dual representation for the
utility-based price in the form

p(n) =
1
αn

[
inf
Q∈M

[
H(Q,P ) + αnEQh(YT )

]
−H(QE , P )

]
, (127)

which is the representation found in Delbaen et al [6], modified slightly as we have a random
endowment of n claims ([6] considered the case n = −1).

In particular, for n→ 0 or α→ 0, we obtain the marginal price of Davis [4]:

p̂ := lim
n→0

p(n) = EQ
E

h(YT ) = EQ
M

h(YT ), (128)

the last inequality following from the equality of QM and QE , as implied by (117).
From (125)–(127), the relation between the primal value functions and indifference price

then follows immediately, as

u(n)(x) = − exp
(
−αx−H(QE , P )− αnp(n)

)
= u(0)(x) exp

(
−αnp(n)

)
.

Similarly, a corresponding relation for a starting time t ∈ [0, T ] may also be derived. This
is achieved using the definition (122) of the dual value function for an initial time t ∈ [0, T ],
the conjugacy of u(n)(t, x, s, y) and ũ(n)(t, η, s, y) and the definitions (118) and (119) of the
conditional entropy and conditional minimal entropy.

Using Lemma 3 we obtain the following representation for the optimal hedging strategy
associated with the indifference price. In what follows we assume that the indifference price is a
suitably smooth function of (t, s, y), so that (given Lemma 3) we may assume the primal value
function is smooth enough to be a classical solution of the associated Hamilton-Jacobi-Bellman
(HJB) equation. This smoothness property is confirmed in [24].

Theorem 13. The optimal hedge for a position in n claims is to hold ∆H
t units of S at t ∈ [0, T ],

where

∆H
t = −n

(
p(n)
s (t, St, Yt) + ρ

β

σ

Yt
St
p(n)
y (t, St, Yt)

)
.

Remark 3. We note the extra term in the hedging formula compared with the corresponding full
information result (103). The drift parameter uncertainty results in additional risk, manifested
as dependence of the indifference price on the stock price, and hence the derivative with respect
to the stock price appears in the theorem.

Proof. The HJB equation associated with the primal the value function is

u
(n)
t + max

π
AX,S,Y u(n) = 0,

where AX,S,Y is the generator of (X,S, Y ) under P . Performing the maximisation over π yields
the optimal Markov control as π∗,nt = π∗,n(t,X∗,nt , St, Yt), where

π∗,n(t, x, s, y) = −

(
λ̂u

(n)
x + σsu

(n)
xs + ρβyu

(n)
xy

σu
(n)
xx

)
,
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and where the arguments of the functions on the right-hand-side are omitted for brevity. For
the case n = 0 there is no dependence on y in the value function u(0), and we have π∗,0t =
π∗,0(t,X∗,0t , St), where

π∗,0(t, x, s) = −

(
λ̂u

(0)
x + σsu

(0)
xs

σu
(0)
xx

)
.

Applying the definition (121) of the optimal hedging strategy along with the representations
(123) and (124) from Lemma 3 for the value functions, gives the result.

5.2.6 Stochastic control representation of the indifference price

The dual representation (127) of p(n) gives the price of the claim at time 0 as the value function
of a control problem:

p(n) = inf
ψ
EQ

[
1

2αn

∫ T

0

ψ2
t dt+ h(YT )

]
,

to be minimised over control processes (ψt)0≤t≤T , such that Q ∈ Mf , and with dynamics for
S, Y given by

dSt = σStdB̂
Q
t ,

dYt = βYt[(θ̂(t, Yt)− ρλ̂(t, St)−
√

1− ρ2ψt)dt+ dŴQ
t ].

For a starting time t ∈ [0, T ] we have

p(n)(t, s, y) = inf
ψ
EQ

[
1

2αn

∫ T

t

ψ2
udu+ h(YT )

∣∣∣∣∣St = s, Yt = y

]
.

The HJB dynamic programming PDE associated with p(n)(t, s, y) is

p
(n)
t +AQ

M

S,Y p
(n) + inf

ψ

[
1

2αn
ψ2 − β

√
1− ρ2ψyp(n)

y

]
= 0, p(T, s, y) = h(y),

where AQ
M

S,Y is generator of (S, Y ) under minimal measure:

AQ
M

S,Y f(t, s, y) = β(θ̂(t, y)− ρλ̂(t, s))yfy +
1
2
ssfss +

1
2
β2y2fyy + ρσβsyfsy.

The optimal Markov control is ψ∗,nt ≡ ψ∗,n(t, St, Yt), where

ψ∗,n(t, s, y) = αn
√

1− ρ2βyp(n)
y (t, s, y),

and note that ψ∗,0 = 0. Substituting back into the HJB equation, we find that p(n) solves the
semi-linear PDE

p
(n)
t +AQ

M

S,Y p
(n) − 1

2
αn(1− ρ2)β2y2

(
p(n)
y

)2

= 0, p(n)(T, s, y) = h(y).

We note that for n = 0 this becomes a linear PDE for the marginal price p̂, so that by the
Feynman-Kac Theorem we have

p̂(t, s, y) = EQ
M

t,s,yh(YT ), (129)

consistent with the general result (128). We shall see that in this case the marginal price is
given by a BS-type formula.
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5.2.7 Analytic approximation for the indifference price

To obtain analytic results we approximate the indifference price by the marginal price in (129).
The marginal price (and hence the associated trading strategy) can be computed in analytic
form since, under QM , log YT is Gaussian. We have the following result.

Proposition 3. Under QM , conditional on St = s, Yt = y, log YT ∼ N(m,Σ2), where m ≡
m(t, s, y) and Σ2 ≡ Σ2(t) are given by

m(t, s, y) = log y + β

(
θ̂(t, y)− ρλ̂(t, s)− 1

2
β

)
(T − t)

Σ2(t) =
[
1 + (1− ρ2)vt(T − t)

]
β2(T − t)

Proof. This is established by computing the SDEs for Y and for θ̂t − ρλ̂t under QM . Indeed,
applying the Itô formula to log Yt under QM , we obtain, for t < T ,

log YT = log Yt + β

∫ T

t

(
θ̂u − ρλ̂u

)
du− 1

2
β2(T − t) + β

∫ T

t

dŴQM

u , (130)

where ŴQM

is a Brownian motion under QM . The dynamics of θ̂t − ρλ̂t under QM are

d(θ̂t − ρλ̂t) =
√

1− ρ2vtdB̂
⊥,QM

t ,

where B̂⊥,Q
M

is a QM -Brownian motion perpendicular to that driving the stock, related to
ŴQM

by ŴQM

= ρB̂Q
M

+
√

1− ρ2B̂⊥,Q
M

, and where B̂Q
M

is the Brownian motion driving S.
Hence, for u > t, after changing the order of integration in a double integral, we obtain∫ T

t

(
θ̂u − ρλ̂u

)
du =

(
θ̂t − ρλ̂t

)
(T − t) +

√
1− ρ2

∫ T

t

vu(T − u)dB̂⊥,Q
M

u .

This can be inserted into (130) to yield the desired result.

We are thus able to obtain BS-style formulae for the price and hedge. For a put option of
strike K we easily obtain the following explicit formulae for the marginal price and the associ-
ated optimal hedging strategy, where Φ denotes the standard cumulative normal distribution
function.

Corollary 1. With m and Σ as in Proposition 3, define b ≡ b(t, s, y) by

m = log y + b− 1
2

Σ2.

Then the marginal price at time t ∈ [0, T ] of a put option with payoff (K − YT )+ is p̂(t, St, Yt),
where

p̂(t, s, y) = KΦ(−d1 + Σ)− yebΦ(−d1),

d1 =
1
Σ

[
log
( y
K

)
+ b+

1
2

Σ2

]
.

The optimal hedging strategy given by Theorem 13 with p̂ as an approximation to the indifference
price is ∆̂t ≡ ∆̂(t, St, Yt), where

∆̂(t, s, y) = nρ
β

σ

y

s
ebΦ(−d1).

In [24] these results are used to conduct a simulation study of the effectiveness of the optimal
hedge under partial information (that is, with Bayesian learning about the drift parameters
of the assets), compared with the BS-style hedge and the optimal hedge without learning.
The results show that optimal hedging combined with a filtering algorithm to deal with drift
parameter uncertainty can indeed give improved hedging performance over methods which take
S as a perfect proxy for Y , and over methods which do not incorporate learning via filtering.
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