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Abstract

Airway remodeling in patients with chronic asthma is characterized by a thick-
ening of the airway walls. It has been demonstrated in previous theoretical models
that this change in thickness can have an important mechanical effect on the prop-
erties of the wall, in particular on the phenomenon of mucosal folding induced by
smooth muscle contraction. In this paper, we present a model for mucosal fold-
ing of the airway in the context of growth. The airway is modeled as a bi-layered
cylindrical tube, with both geometric and material nonlinearities accounted for via
the theory of finite elasticity. Growth is incorporated into the model through the
theory of morphoelasticity. We explore a range of growth possibilities, allowing
for anisotropic growth as well as different growth rates in each layer. Such nonuni-
form growth, referred to as differential growth, can change the properties of the
material beyond geometrical changes through the generation of residual stresses.
We demonstrate that differential growth can have a dramatic impact on mucosal
folding, in particular on the critical pressure needed to induce folding, the buck-
ling pattern, as well as airway narrowing. We conclude that growth may be an
important component in airway remodeling.
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1 Introduction

Asthma is a disease characterized by a narrowing of the airway and reduced lung func-
tion. Chronic asthma is often accompanied by irreversible structural changes to the
airway wall, collectively referred to as airway remodeling [43]. Airway remodeling
is a complex process occurring at multiple time and length scales and involving many
different chemical, biochemical, and physical stimuli. Despite a wealth of research it
is still not clear how each of the different structural changes individually affects airway
function [51], nor is it known whether these different changes are beneficial or detri-
mental to asthmatic patients [32]. A well documented key feature of airway remodeling
is an increase in airway wall thickness, detected at all levels of the bronchial tree and
all layers of the airway wall [19, 22, 24, 36].

In this theoretical paper, we focus on the mechanics of airway wall thickening
and the mechanism of mucosal folding at a macroscopic level by building a model
based on the most sophisticated constitutive theory for elastic tissue available in the
bio-engineering literature. In response to certain stimuli, the smooth muscle surround-
ing the airway wall contracts, and the luminal boundary folds or buckles - this is the
phenomenon of mucosal folding. In “normal patients,” such an event is marked by
only modest narrowing of the airway [34]. In asthmatic patients, however, this airway
narrowing tends to occur for lower stimuli, and also leads to exaggerated narrowing
[23].

Mucosal folding is also observed in the esophagus [28, 57], blood vessels [27], and
gastrointestinal tract [30]. On a mechanical level, this folding indicates an instability of
the inner mucosal edge in response to an external pressure provided by the contraction
of smooth muscle. A number of models have looked at mechanical and geometrical
aspects of mucosal folding. Some of the key issues from a modeling perspective are:
determining the critical buckling pressure, critical buckling mode (i.e. the number of
folds in the buckled state), and the degree of airway narrowing; finding relationships
between these quantities; and determining the impact of airway wall thickness. Lam-
bert [25] modeled the basement membrane as a single layer elastic tube and showed that
the buckling mode can have a dramatic impact on airway narrowing; in particular that
an airway with fewer folds will have a greater degree of occlusion if the folds extend
until epithelial cells come into contact. This basic model was expanded upon in [26],
in which a geometric constraint was included as a mechanism for selecting the number
of folds, and was further expanded to include a thin layer of fluid on the inner edge
of the airway allowing for possible surface tension effects [15]. Other geometry based
models have been proposed, including [47], in which inextensibility of the basement
membrane was taken as a geometrical constraint, and the number of folds was directly
connected to tethers between the airway and smooth muscle; and [6], which studied
effective airway radius given fixed folding geometry. Wiggs et al. put the problem on a
more mechanical level in [54], in which the airway was modeled as a bilayered elastic
tube. Solving the buckling problem in a finite element analysis, they found wall thick-
ness to have a significant effect on the buckling mode and degree of narrowing. Similar
models, also solved with finite elements, were presented a few years later, also incor-
porating inertial effects of the basement membrane [3] and a comparison with buckling
experiments with rubber tubes [18].



There are two potential drawbacks to previous models which should be elucidated.
First, it is important to note that none of these models allowed for nonlinear material
responses to large deformations, which are common in airway narrowing [37]. Over
the past decade, it has become increasingly clear in studying the mechanical properties
of biological tissues that nonlinear tissue response, inhomogeneity, and remodeling
are important, if not crucial, features [8]. The importance of nonlinear elasticity in
biological systems is well documented and appreciated in the case of arteries [48, 9,
13, 17, 40], heart [29], muscles [49], brain tissue [55], and many other plants [50, 12]
and biological systems [48]. It is clear that in order to understand both the mechanical
response and remodeling processes in airways, a constitutive theory based on nonlinear
elasticity is required.

Secondly, a potentially important assumption in previous mechanical models is that
the mechanical properties of the airway wall do not vary during remodeling, despite
evidence that these properties might be altered [21]. That is, airway wall thickness is
explored by varying reference dimensions, without any account for how the dimensions
might have changed and whether mechanical properties might have varied in the pro-
cess. This is a key distinction, and underlies the primary question we seek to answer in
this paper: could growth significantly impact the mechanical response of the airway to
smooth muscle contraction beyond the change in geometry, and thus be an important
factor in airway remodeling ?

The structural changes involved in airway remodeling fall into the large category of
processes known in the bio-engineering literature as growth and remodeling of elastic
tissues. Growth in biological systems can be the result of many different processes.
Continuum mechanics and the theory of elasticity have long been used to study growth
processes and the mechanical properties of growing tissues. It is now understood that
biological materials commonly exhibit differential growth, that is the tissue does not
grow equally in all directions and/or different parts of the tissue grow at different rates.
Differential growth can profoundly alter the geometry and mechanical properties of a
material. Local changes of mass induce not only a change in the geometry but also
elastic stresses which cannot be eliminated geometrically, and thus generate so-called
residual stresses, which persist in the absence of external loads on the material. Resid-
ual stress is a hallmark of biological tissues, and plays a key role in the regulation of
many biological systems, including arteries [20, 13, 16], blood vessels [7], the human
aorta [17], and plant stems [50].

In this paper we model the airway as a two-layer cylindrical structure, and take into
account both geometrical and material nonlinearities by utilizing the theory of finite
elasticity [39]. The growth of the airway is described via the theory of morphoelas-
ticity, and the buckling of the airway is computed using an incremental deformation
stability analysis [2]. As mentioned, the model presented here combines both the non-
linear response of the tissues in large deformation and the effect of growth, features
which are absent from previous modeling attempts. (Note Yang et al. recently pre-
sented an interesting analysis using the same machinery of finite elasticity for a model
of the esophagus [57], but did not consider growth.) Using this model, we demon-
strate that differential growth, in particular anisotropic growth, can have a dramatic
impact on the critical pressure exerted by smooth muscles needed to trigger buckling,
the number of folds, the buckling pattern, and the degree of airway narrowing. Growth



can also alter stability properties and lead to seemingly counterintuitive results, for ex-
ample an airway wall may become thicker while losing stability. Our results highlight
the importance of mechanical effects due to growth and suggest a need for further ex-
perimental research along these lines. Indeed, our hypotheses may be tested by direct
measurement of residual stress as noted in [31].

2 Model and Methods

We model an airway segment as a bilayer cylindrical structure, considering only tissue
interior to the smooth muscle. Following the model given by Wiggs et al. [54], a
stiff and thin inner layer corresponds to the mucosal region, consisting of the basement
membrane, the lamina propria, and the epithelium [1]. Surrounding this is a portion of
the submucosa region, consisting of loose connective tissue. The inner layer is much
thinner and stiffer than the outer layer.

The airway smooth muscle (ASM) surrounds the outer layer, with ASM contraction
providing a force that deforms and eventually buckles the tube. ASM contraction is a
fairly complex process, and several models have been formulated to couple the under-
lying chemical processes to mechanics [5, 42, 53]. The net mechanical effect of ASM
contraction is a normal force applied at the airway wall - smooth muscle interface [42].
Since our purpose here is to focus on growth and buckling, ASM contraction is taken
into account as an applied normal pressure boundary condition at the outer edge. Also,
since mucosal folding occurs at the mucosal region while the smooth muscle remains
roughly circular [26], we impose the boundary condition that the outer edge remain
circular in the deformed, buckled state.

The setup is depicted in Figure 1. Material dimensions for the undeformed, ref-
erence airway are the inner radius A, the thickness of the inner layer, B — A, and the
thickness of the outer layer C — B. We assume an isotropic, incompressible hypere-
lastic material [4]. To characterize the difference in stiffness between the two layers,
the value of the shear modulus is assumed different in each layer, thus we have the
parameters (i and L.

The model is three dimensional but assumes only plane strain deformation, so that
the deformation is uniform along the tube axis. The basic idea behind the analysis is
that as the smooth muscle contracts, it creates a pressure normal to the circular cross
section and the tube deforms in a symmetric fashion, maintaining its circular shape,
until a bifurcation point is reached at a critical pressure, at which point the cylinder
“buckles” to an asymmetric state. The typical output of our mathematical model will
be the value of the critical pressure. Physiologically, this can be linked to the magni-
tude of contractile force of the ASM necessary to induce buckling of the airway. While
the precise relationship between normal pressure and contractile force is nontrivial and
would require knowing material properties of the smooth muscle, it is a monotonic
relationship. Thus, an increase in critical pressure corresponds to a greater contractile
force for buckling. In terms of airway hyper-reponsiveness, buckling pressure (or con-
tractile force of ASM for buckling) provides a good measure of the “strength” of an
airway. This issue is discussed more fully in Section 4.

The buckling analysis follows the incremental theory, as described in [52]. Math-
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Figure 1: Bilayer model of airway wall, consisting of a stiff and thin inner layer, the
mucosa, and a soft and thick outer layer, the submucosa. Surrounding the submucosa
is smooth muscle, which applies a normal pressure when it contracts.

ematically, it consists of a linear stability analysis for a solution of mechanical equi-
librium in finite elasticity. A nonsymmetric perturbation is added to a symmetric finite
deformation, and the equations of mechanical equilibrium are expanded in terms of
the perturbation parameter, resulting in a 4th order differential equation for the radial
displacement of the nonsymmetric deformation. A solution to the bifurcation equation
indicates buckling of the tube. In this formulation, the pressure due to ASM contrac-
tion appears as a boundary condition for the initial symmetric deformation while the
requirement that the outer edge always remains circular appears as a boundary condi-
tion when solving for the nonsymmetric deformation. Also, note the distinction that
large deformations and nonlinear tissue response are built into the model by the use
of the theory of finite elasticity, but the buckling parameters are determined via a lin-
ear stability analysis. This approach has the advantage that buckling properties can
be analyzed efficiently without the need for complex and expensive numerical tech-
niques. The drawback, which we return to in Section 4, is that the deformation cannot
be tracked beyond the instability. A full derivation of the growth and bifurcation equa-
tions, as well as our approach to solving the bifurcation equation, can be found in [35].

The buckling mode number, which is the number of folds in the buckled state,
enters as a parameter in the bifurcation equation. For each mode number, a critical
pressure is found. This critical pressure represents the pressure necessary to induce
buckling at that particular mode. The actual buckling pressure observed in an ideal
experiment is the smallest critical pressure over all modes, and the corresponding mode
defines the expected buckling pattern.



Growth is included in the analysis via the theory of morphoelasticity and multi-
plicative decomposition of the deformation tensor [46, 11]. The basic concept is that
the deformation of the body is due to a local change of mass and to an elastic defor-
mation. Since the change of mass is expressed locally, neighboring “cells” can grow
differentially. In the absence of elastic deformation, this can induce incompatibilities
such as overlapping cells or separation of tissue. The elastic deformation then brings
the material back to a compatible configuration; this step can be seen as an elastic
response to growth, and can induce residual stress in the material.

The effect of symmetric growth in each layer is captured by two parameters per
layer, instructing the gain or loss of mass in the radial and circumferential directions.
We denote these growth parameters }/,(’), g), yr(o), yg)). Here v, corresponds to radial
growth, with a gain or loss of mass in the radial direction if 7, is greater than or less
than 1. The addition or loss of mass in the circumferential direction is captured by
Yo, where Yg > 1 corresponds to circumferential growth and g < 1 to circumferential
resorption. Figure 2 gives a schematic of radial versus circumferential growth. The
superscript differentiates the inner and outer layers. In general, these parameters can
be functions of radius, which would signal the case of different “rings” of the airway
growing at different rates. Here we consider anisotropic but homogeneous growth in
each layer, thus the y’s are constant but not equal.

As our results are largely focused on varying these parameters, it is instructive to
further clarify their meaning via a simple example. Consider a single layer tube with
radii A = 1, B = 2, with no applied pressure and three different forms of growth:

1. % =2, 79 = 2. The parameter values imply that there is a doubling of mass in
both the radial and circumferential directions. Since growth is isotropic and no
other forces are applied to the system, the deformed grown tube has radii a = 2,
b =4, highlighting a doubling of all radial and circumferential lines. In this case,
no residual stress is generated.

2. ¥, =1, Y9 = 2. In this case, there is growth only in the circumferential direction.
To account for the anisotropic growth, the tube expands to a larger total radius,
while keeping nearly the same length of radial lines. A numerical computation
gives that the tube after growth has radii a = 2.48, b = 3.49. The growth induces
a slight tensile radial stress. There will also be circumferential stress, namely the
inner edge will be in tension and the outer edge in compression.

3. ¥, =2, Y9 = 1. Here, growth occurs only in the radial direction. A numerical
computation gives the radii after growth as a = 0.69, b = 2.54; in this case radial
lines want to double in length but are constrained, thus the anisotropic growth
induces a compressive radial stress.

To further understand the effect of growth, if we were to plot pressure-area curves
(pre-buckling), the area would decrease more rapidly with increased external pressure
in Case 2 than in Case 3. This can be understood in terms of the stress induced by the
growth. In Case 2, the inner edge is in tension, i.e. there is a positive circumferen-
tial stress, whereas the inner edge is in compression in Case 3, corresponding to the
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Figure 2: Transformation of an area element under circumferential versus radial
growth.

compressive radial stress. Thus, in Case 2 the inner edge tends to shrink to relieve the
tension, and the area will decrease more rapidly with applied pressure.

2.1 On material properties

In this paper we will present results for a neo-Hookean strain energy function W, given
by W = 5(a >+ a®—2), where y > 0 is the shear modulus, and « is the circum-
ferential elastic stretch. Lacking data to classify the exact material properties of the
airway wall, it is worthwhile to check the implications of using a neo-Hookean strain
energy. Note that a neo-Hookean material exhibits strain-softening properties. A com-
mon strain-energy function for biological tissues which exhibits strain-stiffening is the
Fung model, given by W = % (exp{B (a?>+a?—2)} —1). The parameter 3 typ-
ically takes a value between 3 and 20 for soft tissues [10], and the Fung model ap-
proaches the neo-Hookean model in the limit of § — 0. In Figure 3, we plot pressure



2.6

Fung, =20
2.4
(<‘\
£
E 22
s Fung, =3
g RN
< 204 ~.e_

neo-Hookean

Linear

04 1.2 I 2|.0 I 2.8 3.6
Pressure (kPa)

Figure 3: A comparison of pressure vs area for the symmetric deformation of a bilay-
ered tube for 4 different forms of model. Parameters are A =098, B=1,C=1.5,
Hy = 40, and U = 4.

vs area for the symmetric deformation of a bilayered tube for the neo-Hookean model,
Fung model with both f = 3 and 8 = 20, and also for a linear elasticity model. Each
model gives qualitatively similar pressure area relationships as expected, but a sig-
nificant quantitative difference exists between each curve. Thus, the importance of
including nonlinearity should be clear; in particular there is a significant difference be-
tween the linear model and the Fung model at large pressure. As there is also a signif-
icant quantitative difference between the neo-Hookean and Fung curves, the question
remains how dependent our results are on the choice of strain-energy. Although the
results presented below are only for the neo-Hookean model, we have also explored
the same relationships for a Fung model, and have found the same qualitative results,
with the quantitative difference that effects are amplified, i.e. a more drastic change in
buckling pressure and mode occurs. Since our intent is to provide a general framework
for understanding the impact of growth on mucosal folding and asthma, and for a more
streamlined presentation, we omit results with the Fung model.

3 Results

The bilayer model described above, with 2 growth parameters for each layer, admits a



large parameter space. As our goal is to investigate the effect of growth on the buckling
of a normal versus a remodeled airway, we will primarily keep reference dimensions
of the airway fixed, and change the thickness of the airway by varying the growth
parameters. In this way the growth defines a deformation from the normal airway to the
remodeled airway. In prior studies, thicker airways have been studied by changing the
reference dimensions themselves, without any particular mechanism to account for the
change. By keeping the reference dimensions fixed and altering the growth parameters,
we can explore the effect of thickness on the buckling, but we are able to account for
the change of thickness as well as the changes in material properties resulting from
additional residual stresses. We use as reference “normal airway” dimensions the base
valuesA =0.98, B=1,C = 1.5, u; =40, and u, = 4, giving a stiffness ratio u; /Uy =
10. Here the radius values are in units of mm, and the shear moduli in units of kPA.
The critical pressures appearing in this paper are also measured in kPa. These values
are motivated by physiological measurements [22, 38] and would correspond roughly
to a medium sized cartilaginous airway with inner perimeter approximately 6.16 mm
and Youngs modulus of the inner layer of 120 kPa; this choice of base values has also
been used in previous airway models [54, 18]. It should be noted that obtaining precise
values for thickness and stiffness ratios is a challenging task and varies over generations
of the bronchial tree. Thus, we also explore the effect of changing reference dimensions
in Section 3.5.

3.1 Isotropic growth

The first effect we consider is isotropic growth, but with different growth rates in each
layer. That is, we assume 7%, = ¥y in each region but that y(0) £ 409) As an example, we
let ¥1?) = 1.2 and vary 7) > 1. We plot in Figure 4 the critical pressure (a) and critical
buckling mode (b) as a function of y(i) ranging from 0.9 to 1.4. In Figure 5 the same
plots are shown with y(i) = 1.2 fixed and y(”) ranging from 0.95 to 1.5. It should be
noted that the critical buckling pressure only depends on the ratio ¥ / y(©) . Different
values with the same ratio are equivalent up to an isotropic and equal growth multiple in
each layer, so that the critical pressure does not differ (note that the airway dimensions
will vary by the same scalar multiple). Thus, the critical pressure for y(i) =12 1in
Figure 4, and for y<”) = 1.2 in Figure 5, corresponds exactly to the critical pressure
in the absence of growth (as shown by the horizontal line on the figures). Comparing
the critical pressure to this reference case, it is interesting to note that when the ratio
y(i) / y(©) > 1, the airway is less stable, i.e. it buckles at a lower pressure. On the other
hand, a greater pressure is required when this ratio is less than one. In other words, the
airway is weaker with respect to buckling when the inner layer grows at greater rate
than the outer layer, and likewise stronger when the outer layer grows faster. Observe
that this effect is significant as the change in critical pressure increases by a factor of
about 8 as 7°) changes from 1 to 1.5.

As stated, the linear stability analysis enables us to find critical buckling parame-
ters, but once buckling occurs we have no direct information on the magnitude of the
deformation. Thus, we cannot comment directly on the exact amount of narrowing of
the airway after buckling occurs. Nevertheless, we can make relative comparisons of
the size of the non-symmetric deformation for different parameters. In this way, we can



32 N
£ 24 °‘I\
< o,
=" 16 e
N
0.8 crit. pressure, no growth  Sa
o~ Il
...
0 1 l(% 1.4
1
(b) Y
30
o - =
28 e--o ’
,e--e',
=° 26 ,°/
lﬂl
a4l &
l,,
2 1.2 1.4
y(1)

Figure 4: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the inner layer, for fixed isotropic growth in the outer layer, ¥*) = 1.2.

10



32

’ -
2.4 IV ’0,
. {2
Q -,
1.6 e
crit. pressure, no growth _ -

0.8 o
m "
&

1 1.2 14

Y(O)

P_(kPa)

m—

(b)

28 o --q

27 Y -q

cr
.

26 o -

25 o,

T 12 13 17 15
’Y(O)

Figure 5: Critical buckling pressure (a) and buckling mode (b) as a functiqn of isotropic
growth of the outer layer, for fixed isotropic growth in the inner layer, y<’> =1.2.

11



Figure 6: Buckling patterns, or tube deformation, after bifurcation for the points
marked I-IV in Figures 4(a) and 5(a).

determine whether buckling at one set of parameters should result in more or less nar-
rowing (initially) than buckling at another set of parameter values. Buckling patterns
for the points marked I-IV in Figures 4(a) and 5(a) are shown in Figure 6. Comparing I
and II, in the case of %") = 1.2 fixed, each type of growth can be argued to have advan-
tageous and disadvantageous features. At the lower value of )/(i), the buckling pressure
is much higher but the airway narrows significantly more. If an airway were to grow
with the growth rates at point I, it would have a greater resistance to ASM contraction
but would have exaggerated narrowing when buckling occurs. At the higher value, it
is the opposite: the airway narrowing is reduced but the buckling pressure is much
lower. There is essentially a trade off between the two growth rates. This trade off does
not occur in the case of fixed ') (Figure 5). The larger value of ¥\?) (point IV) has
a higher resistance to buckling and comparable narrowing to the smaller value of (%)
(point III). Note that the growth ratio is nearly equal at points I and IV, but both values
of y are higher at IV, and the increased growth leads to a larger airway area. Between
the destabilizing growths, III is more detrimental to airway function as it has greater
airway narrowing.

Referring to Figures 4 - 5, it seems counterintuitive that more growth in the outer
layer is required to strengthen the airway wall, since the inner layer is stiffer. In fact,
a primary result of Wiggs et al. [54] was that increasing the thickness in the inner

12
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Figure 7: Critical pressure as a function of anisotropic growth of the inner layer. All
other growth parameters are set to unity.

layer has a greater impact on buckling than increasing the thickness of the outer layer.
The reasoning behind this is that differential growth creates residual stress, which in-
duces a competition between mechanics and geometry. In particular, when the inner
layer grows, it pushes against the outer layer, creating a compressive residual stress
in each layer. This mechanical effect is destabilizing against external pressure, so that
even though geometrically the tube may seem stronger, this is outweighed by the me-
chanical destabilization. (Conversely, when the outer layer grows faster, it pulls the
inner layer, creating a stabilizing tensile stress.) This seemingly counterintuitive re-
sult almost directly contradicts the findings of Wiggs et al. and hence highlights the
important mechanical role of differential growth.

3.2 Anisotropic growth

In this section we consider anisotropic growth. For simplicity, we assume that the outer
layer does not grow and explore buckling as a function of anisotropic growth in the in-

ner layer by varying the ratio %(i) / }/g). Thickening of the inner layer only occurs with
radial growth. In Figure 7, the critical pressure is plotted for yg) =1 fixed and yr(’)

varying from 1 to 2. As }/,m increases, the inner layer becomes thicker — it doubles in
size from YY) = 1 to 2. Correspondingly, the buckling pressure increases, in a linear
fashion. Again, there is a competition between mechanics and geometry: radial growth
causes the inner layer to be relatively thicker - this is a stabilizing geometric effect -
but at the same time creates a radial compressive stress, which is destabilizing mechan-
ically. In this case, since the inner layer was very thin to begin with, the geometric
effect is stronger, and the resultant airway is more stable than before growth.

In terms of the degree of narrowing, with increasing growth the buckling mode

13



decreases monotonically and significantly, from n = 27 at }/,m =lton=14at y,(i) =2.

Included in Figure 7 are the form of the deformation at the values yrw equals 1.2 and
2. Here the effect of buckling mode is apparent. In both cases, the inner radius at
the point of bifurcation is about 0.87, and both plots are produced using the same sized
perturbation in the incremental deformation, but the airway narrowing is exaggerated at

(i)

the point with the lower mode, yri = 2. Defining the effective lumen as the area inside
the innermost point of the folds (the shaded gray circles), we compute that this area is

(i)

18% greater in the case y,i = 1.2. Interestingly, if the anisotropic growth of the inner
layer is accompanied by an isotropic swelling of the outer layer, the critical pressure is
almost doubled, while the lumen area stays roughly the same (plot not shown).

3.3 Fixed outer radius

The model as we have presented it does not restrict outward growth. For instance in
Case IV of Figure 6, notice that the outer edge is well beyond the location of the smooth
muscle cells boundary before deformation (the outer radius of the reference state, equal
to 1.5). This may not be realistic. It is likely that ASM, even before contracting, places
a geometric constriction on the growth of the outer layer, so that the airway is restricted
to grow radially outward, and must otherwise grow radially inward. The exact form
of this constraint is complicated by the fact that the smooth muscle also grows during
remodeling [23] and would require a detailed understanding of the growth relationships
between the various layers of the airway. Nevertheless, some insight on the effect of
a geometric constraint can be obtained if we fix the size of the outer radius during
deformation. Mathematically, this changes the structure of the problem through the
boundary condition since growth and pressure become inter-dependent. Fixing growth
parameters automatically sets the pressure — a given growth creates pressure at the outer
wall since the outer edge pushes against the smooth muscle. In this case, pressure is
not a control parameter but is slaved to the growth parameters.

In Figure 8(a), we plot the bifurcation relationship between y\®) and Y for fixed
outer radius. A given value of ) and the corresponding Y\°) represent a form of
growth which induces buckling. For each growth pair, the corresponding pressure is
plotted in Figure 8(b).

There are different ways to view these plots and this version of the model. If we
assume that the ASM interface is rigid and does not allow any outward growth, then
Figure 8(a) shows the critical growth which induces buckling and Figure 8(b) is the
pressure induced at the ASM interface due to the growth. In this sense growth itself is
inducing buckling without any required contraction of the ASM. Alternatively, if the
ASM layer is compliant, then some outward growth can occur, and when the ASM
contracts the fixed outer radius requirement pushes the outer edge back to its original
position. The biggest effect of the fixed outer radius condition is that the amount of
growth is greatly restricted. Only the lower-left triangular region in Figure 8(a) con-
stitutes valid growth. Viewing Figure 8(b), growth can be stabilizing or destabilizing.
Buckling patterns are included at the select points, indicating again a trade off whereby
the stronger airway is also narrower.

14



Figure 8: Critical outer growth 1) (a) or alternatively critical pressure (b) as a function
of inner growth 79, for the model with fixed outer radius. The buckling mode at each
point is marked in (a). Buckling patterns at the end points are provided in (b).
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3.4 Inverse problem

It is clearly very difficult to determine experimentally the growth rates in the different
layers. However, some geometric parameters, such as the thicknesses of normal airway
and asthmatic airways are accessible. This raises the question: if we knew exactly
how much thicker each layer of the airway wall became during remodeling and the
pressure applied by the smooth muscle, could we determine the growth parameters
and the amount of differential growth which occurred? We refer to this as the inverse
problem: given the details of the deformation and the buckling, can we determine the
type of growth which induced the deformation? Surprisingly, this can be done. A
detailed analysis of this idea is given in a companion paper [35]. Mathematically, the
argument can roughly be made by counting equations - there are 4 equations involved
in determining the bifurcation of a bilayered cylinder. Since there are also 4 growth
parameters, the inverse problem is well formulated, and a solution can in principle be
found. A mathematical proof of this is lacking, but in all of the simulations we have
attempted, a solution has been found.

We demonstrate here with a suggestive example. We start with a reference system
in the absence of growth where the critical pressure is P* = 0.2492, the buckling mode
is n = 27, and the radii at the point of buckling are a = 0.8750, b = 0.8974, and ¢ =
1.4336. We now ask whether a growth could occur such that each layer is twice the
thickness at the point of buckling and the buckling pressure is halved. We keep the
same value of b and double the relative thickness of each layer by taking a = 0.8526
and ¢ = 1.9698. Then setting P = P* /2 = 0.1246, we find that the inverse problem has

the solution %) = 1.92, 7§ = 1.03, %) = 2.35, and 7} = 1.05. Notice that the ratio
¥/ 7Ye is greater than one in each layer. The interpretation is that if growth is faster in
the radial direction in each layer at these particular values, the walls would grow such
that the thickness at the point of buckling is doubled while at the same time buckling
occurs at half the critical pressure as compared to the case with no growth. (Conversely,
a solution could also be found with half the thickness and double the pressure.)

Again, the rationale for the existence of these solutions relates to the competing
effects of residual stress and geometric effects. Given the large range of possibilities
with anisotropic growth in two layers, there is sufficient flexibility in the growth vari-
ables that residual stress effects can be made dominant. For the example given, the
growth causes a large compressive radial stress which dominates the geometric effect
of the thicker inner layer. To further illustrate this effect, in Figure 9 we plot the radial
stress profile in the tube. The dashed line is the stress due to growth alone, i.e. with no
pressure applied, and the solid line is the stress at the point of bifurcation. We see that
growth creates a strong compressive stress, so that only a small amount of additional
pressure is required to induce buckling.

The point of this example is not to suggest that this exact value of growth may
be occurring in airways, but rather to demonstrate the very significant impact that dif-
ferential growth can have. If residual stress is generated, simply measuring airway
dimensions and changes in dimensions could potentially be misleading as far as under-
standing mechanical stability.
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Figure 9: Radial stress as a function of position after unconstricted growth, i.e. with
no applied pressure, (dashed line), and at the point of buckling. The compressive stress
generated by the growth accounts for the decrease in stability even though the walls are
thicker.
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3.5 Airway size

In order to focus on the effect of growth, we have thus far kept fixed the reference di-
mensions and stiffness ratio. Our choice of reference parameters was motivated by the
general observation that the mucosa is significantly stiffer and thinner than the submu-
cosa. However, one set of parameters certainly does not characterize all generations of
the bronchial tree [22], and is also dependent on where you define the submucosa layer
as ending. In this section, we briefly explore the impact of varying those parameters.

To do this, we fix the growth parameters at y\¥) = 1.4, ¥1°) = 1.2, and vary the in-
ner layer thickness, outer layer thickness, and stiffness ratio. The result is plotted in
Figure 10. As the inner layer thickness is increased (Figure 10(a)), the critical pres-
sure increases and the buckling mode decreases. Observe that both critical pressure
and buckling mode vary quite significantly; for instance starting from the base value
A = 0.98, if the thickness of the inner layer is doubled to A = 0.96, the critical pres-
sure increases by more than a factor of 2, while the critical mode decreases from 29
to 14. There is a key distinction between this result and those of Section 3.1: here we
have increased the inner layer thickness in the reference dimensions, which is mechan-
ically stabilizing, whereas in 3.1 it was shown that increasing the inner layer thickness
through differential growth can have the opposite effect and be destabilizing. Interest-
ingly, an increase in thickness of the outer layer (Figure 10(b)) leads to a decrease in
the critical pressure. The explanation for this is that, as explained in Section 3.1, the
given growth parameters are destabilizing because the inner layer pushes against the
outer layer and creates a destabilizing compressive stress. Increasing the outer layer
thickness results in a harder body for the inner layer to push against, and thus leads
to further destabilization. Nevertheless, we observe that the change in magnitude in
critical pressure is quite small, and the buckling mode is essentially unaffected. This
suggests that buckling behavior is not strongly dependent on small changes of submu-
cosa thickness. Finally, as seen in Figure 10(c), varying the relative stiffness of the
layers does not have a dramatic impact either, except in the limit when the stiffness
ratio approaches unity.

4 Discussion

Similar to previous modeling attempts, in this paper we have studied the mechanical
effect of airway wall thickness on mucosal folding and airway narrowing. The major
addition in the present work which has not been included in any prior studies is that
airway thickening occurs as a consequence of differential growth. Doing so, we have
been able to study changes in material properties, in particular stability properties, due
to the generation of residual stress.

Generally speaking, we have shown that differential growth can have a significant
effect on airway buckling and therefore may be an important contributing factor in un-
derstanding the mechanical behavior of airways which have undergone airway remod-
eling. Note that only differential growth was considered, because it is the competition
between geometry and mechanics that occurs as a result of the locally incompatible na-
ture of differential growth that leads to interesting and counterintuitive behavior. Still,
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there are many ways in which differential growth could occur, and we have explored
only a few possibilities here. Isotropic growth with differing rates in each layer led
to the somewhat surprising conclusion that if the stiff mucosa grows at a faster rate
than the soft submucosa, the airway actually becomes less stable. Anisotropic growth
of the inner layer led to a strengthened airway but significantly decreased the buckling
mode. Fixing the outer radius so as to account for the growth constriction of the smooth
muscle greatly limited the amount of growth.

Our analysis provides a general framework to understand the mechanical effect of
growth and remodeling, and our approach gives the ability to test hypotheses regarding
growth and changes in airway stability. However, many open questions remain be-
fore anything definitive may be said. Differential growth provides a mechanism to ex-
plain otherwise contradictory structural changes, for instance an airway wall becoming
thicker and at the same time less stable. But airway remodeling involves more complex
changes than just an increase of the mucosal and submucosal layers. The ASM layer
also gains mass, and there is uncertainty as to whether the contractile potential changes
[41]. Thus, whether the airways are actually less stable after remodeling is not yet
established.

An obvious question is whether any direct evidence exists of differential growth in
airway remodeling. We contend that more information is needed to conclude whether
individual airway layers grow anisotropically, although anisotropic growth is known to
occur in arteries [20, 33]. On the other hand, it seems quite likely that different layers
of the airway grow at different rates, since the material composition varies drastically,
and there is good evidence to suggest that this form of differential growth is present
in airway remodeling [44]. It should be noted, however, that in actuality growth is
complex and cannot be fully captured by constant parameters 7; as utilized here, since
the mass that is added may be of a different density or type than the normally present
material [45].

If airway walls grow differentially and induce residual stress, as we have postulated
here, this can be detected by opening-angle experiments, in which a ring of airway wall
is cut radially. Any residual stress is relieved by the cut and the ring opens up. Such
experiments are difficult, and have been carried out in only one study [31], where
they reached the conclusion that human airways are essentially free of residual stress.
However, it is important to note that none of the human lungs in that experimental study
came from humans with asthma. This is a critical distinction, because our hypothesis
is that normal airways are in a zero stress state, and that stress might be introduced
through airway remodeling, in which case only asthmatic lungs would show an opening
angle. Hence, opening angle experiments would need to be carried out on normal and
asthmatic airways to confirm or deny the possibility of differential growth.

We now turn to the shortcomings of an idealized model. The airway is a complex
structure, composed of multiple layers, which we have modeled as a bilayer cylindrical
tube. This is certainly a simplification, although the purpose is to provide insight into
the effect of growth in mucosal folding and an idealized model is sufficient to investi-
gate these generic effects. The two dimensional nature of the model and the plane strain
assumption are supported by the fact that folds in airways are observed as longitudinal
ridges [56]. The linear stability analysis has the drawback that it only provides infor-
mation on the deformation up to the point of the buckling. Nevertheless, knowledge
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of the buckling pressure is a good measure of the “strength” of an airway, and previ-
ous studies have shown that a tube becomes much more compliant after buckling [54],
suggesting that narrowing occurs more rapidly after buckling. This is also apparent by
an increased negative slope in pressure-area curves after buckling [54]. Thus, given
two airways with different buckling pressures and all other characteristics equal, the
airway with lower buckling pressure would be prone to greater hyper-responsiveness.
Buckling pressure would hence seem to be a valid measure for investigating the me-
chanical impact of growth on airway narrowing. Moreover, the conclusion from prior
models that buckling mode may be a significant indicator of airway narrowing seems
to be supported by our analysis as well. Still, a proper analysis of occlusion and the
change in cross sectional area would necessitate continuing the deformation beyond
the point of buckling, which would require a much more computationally heavy nu-
merical approach such as finite elements. Such an analysis coupled with growth would
be an interesting direction for future modeling attempts. One should also keep in mind
that while our focus has been on stability in terms of buckling pressure, physiologi-
cally this pressure is generated by smooth muscle contraction, thus any conclusions
regarding growth and changes in airway response must take into account the exact re-
lationship between ASM contraction and induced pressure at the airway wall as well
as any possible changes in contractile potential of the ASM.

The study we have presented is a preliminary examination of growth and mechanics
in airways, and is largely qualitative. While we have attempted to use physiologically
reasonable parameter values, exact values, in particular of the growth parameters, are
unknown to us. Regarding the buckling pressure, which relates the normal force in-
duced at the interface due to smooth muscle contraction, experiments have found that
canine airways can generate pressures around 3 kPA [14]. This seems to be in line
with our findings, as the critical pressure in our simulations ranged from about 0.7
kPa to 3.2 kPa. Note that these values corresponded to a neo-Hookean material; the
strain-stiffening Fung model leads to an increase in the critical stress.

Finally, the results presented here might also suggest a future direction of research.
The structural changes associated with airway remodeling are generally considered
uncontrollable and detrimental. However, if airways can be stimulated to grow in a
particular way, growth can potentially both strengthen the airways against narrowing
and reduce the degree of narrowing. In this sense, an analysis such as the one presented
here could serve as a guideline for the type of growth necessary to achieve this.
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Figure Legends
Figure 1: Bilayer model of airway wall, consisting of a stiff and thin inner layer, the

mucosa, and a soft and thick outer layer, the submucosa. Surrounding the submucosa
is smooth muscle, which applies a normal pressure when it contracts.
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Figure 2: Transformation of an area element under circumferential versus radial growth.

Figure 3: A comparison of pressure vs area for the symmetric deformation of a bi-
layered tube for 4 different forms of model. Parameters are A =098, B=1,C = 1.5,
up =40, and up, =4.

Figure 4: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the inner layer, for fixed isotropic growth in the outer layer, y(°) = 1.2.

Figure 5: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the outer layer, for fixed isotropic growth in the inner layer, Y} = 1.2.

Figure 6: Buckling patterns, or tube deformation, after bifurcation for the points marked
I-IV in Figures 4(a) and 5(a).

Figure 7: Critical pressure as a function of anisotropic growth of the inner layer. All
other growth parameters are set to unity.

Figure 8: Critical outer growth %“> (a) or alternatively critical pressure (b) as a function
of inner growth y(’) , for the model with fixed outer radius. The buckling mode at each
point is marked in (a). Buckling patterns at the end points are provided in (b).

Figure 9: Radial stress as a function of position after unconstricted growth, i.e. with
no applied pressure, (dashed line), and at the point of buckling. The compressive stress
generated by the growth accounts for the decrease in stability even though the walls are
thicker.

Figure 10: The buckling pressure for fixed growth parameters Y0 = 1.4, y(©) = 1.2,
as the inner layer thickness (a), outer layer thickness (b), and stiffness (c), are varied.
The buckling mode is labelled at each point. Length variables are measured in mm.
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