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a b s t r a c t

A cylindrical elastic tube under uniform radial external pressure will buckle circumfer-

entially to a non-circular cross-section at a critical pressure. The buckling represents an

instability of the inner or outer edge of the tube. This is a common phenomenon in

biological tissues, where it is referred to as mucosal folding. Here, we investigate this

buckling instability in a growing elastic tube. A change in thickness due to growth can

have a dramatic impact on circumferential buckling, both in the critical pressure and

the buckling pattern. We consider both single- and bi-layer tubes and multiple

boundary conditions. We highlight the competition between geometric effects, i.e. the

change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due

to differential growth. This competition can lead to non-intuitive results, such as a tube

growing to be thinner and yet buckle at a higher pressure.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

When an elastic tube is under external radial pressure, a circumferential instability may develop at a critical pressure in
which the tube buckles to a non-circular cross-section. This instability is fundamentally different from the classical Euler’s
instability (Euler, 1759; Goriely et al., 2008) as it takes place in the cross-section of the tube rather than along its length.
Collapsible elastic tubes which rely on this instability have been used in drug delivery pumps (Renaudeaux and Dion,
1991), where the buckling of a highly compliant tube and hence the rate of drug delivery is controlled by external pressure.
Circumferential buckling is also a common phenomenon in a number of biological tissues, where it is referred to as
mucosal folding. Mucosal folding is observed in the airways (Lambert et al., 1994), esophagus (Liao et al., 2007; Yang et al.,
2007), blood vessels (Lee and Chien, 1978), and gastrointestinal tract (Lu et al., 2005).

A number of models have been developed in the literature to study the mechanical and geometrical aspects of
circumferential buckling (Tadjbakhsh and Odeh, 1967; Moreno et al., 1986; Lambert, 1991; Dion et al., 1995; Wiggs et al.,
1997; Hrousis et al., 2002; Yang et al., 2007). Important questions considered include: What is the preferred wave
instability? What is the critical pressure at which buckling occurs? A key feature of interest is the effect of wall thickness
on the buckling properties. This is of particular importance in airways: chronic asthma is characterized by structural
changes to the airway walls, in which all layers of the airway wall become thicker (Huber and Koessler, 1922; James et al.,
1989). These structural changes are referred to as airway remodelling (Redington and Howarth, 1997), a complex
phenomenon involving cellular, biochemical, and mechanical responses.

Missing from previous models, however, is the mechanical effect of growth. It is important to realize that in biological
structures a change in thickness is the result of a growth process. Differential growth has been shown to have a dramatic
impact on the mechanical response and stability of spherical shells (Amar and Goriely, 2005) as well as cylindrical tubes
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under axial loading (Vandiver, 2009). Previous studies have also found that growth can play an important role in the
opening and closing of tubes (Moulton and Goriely, 2011; Goriely et al., 2010), and swelling of anisotropic tubes can have
interesting mechanical consequences (Demirkoparan and Pence, 2007), although these studies did not consider buckling
instabilities. It is, therefore, important to fully characterize the role and impact of growth in the circumferential buckling of
elastic tubes; this is the primary aim of this paper.

Differential growth refers to the anisotropic or inhomogeneous addition of mass, and is a common feature in biological
tissues. Growth can play a key role in the stability of a biological structure, either through changes in geometry which
enable the structure to better endure pressure, or by creating so-called residual stresses. Local changes of mass induce
elastic stresses which cannot be eliminated by changes in geometry, and thus generate stresses which persist in the
absence of external loads on the material—these are residual stresses. They are a hallmark of biological systems, and play a
key role in the mechanical properties of numerous biological tissues, including blood vessels (Fung, 1991), arteries
(Humphrey, 2003), and plant stems (Vandiver and Goriely, 2008).

In a companion paper (Moulton and Goriely, in press), we specialize the analysis of differential growth and buckling
specifically to airways and show that differential growth may be a key component of airway remodelling. In this paper, we
study the generic problem of circumferential instability in a two-layer tube with differential growth; our goal is to
understand the role of external loads, tube geometry, and growth in the instability by identifying the critical buckling
pressure and the buckling mode (i.e. number of folds in buckled state). We begin in Section 2 by formulating the model
and the stability analysis, for hyperelastic, incompressible cylindrical materials. We formulate the buckling analysis using
the incremental theory in finite elasticity. Growth of the tube is described through the theory of morphoelasticity and the
decomposition of the deformation tensor (Rodriguez et al., 1994). In Section 3, we study a single layer tube, analyzing
anisotropic growth as well as isotropic growth in a constrained geometry. The incremental equations are solved
numerically and compared with an asymptotic analysis valid in the limit of thin tubes. In Section 4, we consider a bilayer
tube, with each layer having different stiffness properties and different growth rates. We demonstrate that growth rates
can be tuned to specify bifurcation properties.

2. Background, setup

We consider the growth and deformation of an incompressible hyperelastic cylindrical tube. Our interest is in the
circumferential buckling of a cross-section, and so we restrict to deformations uniform along the tube axis. To formulate
the stability analysis, we begin with the formulation of an initial radial deformation. We consider a tube of inner and outer
radii A and B. After deformation the function r(R) describes the radius of a circle initially at radius R with r(A)=a and r(B)=b.
The deformation gradient tensor is F¼ diagðruðRÞ,r=R,1Þ, expressed in cylindrical coordinates ðR,Y,ZÞ and ðr,y,zÞ. Following
previous work on morphoelastic materials (Goriely and Ben Amar, 2005; Vandiver and Goriely, 2009; Goriely and Moulton,
2010; Goriely and Vandiver, 2010), we decompose the deformation gradient into a growth part and elastic part F=AG. The
elastic strain tensor is A¼ diagða1,a2,1Þ, where index 1 refers to the radial direction and index 2 the circumferential
direction. Incompressibility implies det A=1 so we write A¼ diagða�1,a,1Þ, where a :¼ a2. The growth tensor for the
symmetric growth is G¼ diagðg1,g2,1Þ. Here g1 corresponds to radial growth, with each radial fiber gaining or losing mass
if g1 is greater than or less than 1, respectively, and g2 is circumferential growth. Isotropic growth occurs when g1 ¼ g2. If
the gi are functions of R, the growth is inhomogeneous. The decomposition F=AG implies ru¼ g1=a, r=R¼ ag2, from which
the deformation is given by

r2�a2 ¼ 2

Z R

A
g1g2R dR: ð1Þ

Once the value of the inner radius a is known, the deformation is completely determined. Let t1 and t2 be the radial and
circumferential (hoop) stresses of the Cauchy stress tensor. In the absence of body forces, the equilibrium linear
momentum equation is div T=0, and the only non-vanishing component is

@t1

@r
þ

1

r
ðt1�t2Þ ¼ 0: ð2Þ

Hyperelasticity implies that there exists a strain energy function W(A), from which the stress–strain constitutive relation is
T¼ Að@W=@AÞ�p1, where p is the hydrostatic pressure due to the incompressibility constraint. The components of the
stress–strain relation are

t1 ¼ a1W1�p, t2 ¼ a2W2�p, ð3Þ

where Wi ¼ @W=@ai. Eliminating p in (3) and defining the auxiliary function Ŵ ðaÞ ¼Wða�1,aÞ, (2) gives the following closed
equations for the stress:

t1ðrÞ ¼

Z r

a

aŴ uðaÞ
r

drþt1ðaÞ, t2 ¼ t1þaŴ uðaÞ: ð4Þ
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Defining �P=t1(b)�t1 (a), we have

�P¼

Z b

a

aŴ uðaÞ
r

dr¼

Z B

A

g1Ŵ uðaÞ
g2aR

dR: ð5Þ

Here P is the applied load on the cylindrical tube, such that P40 in the case of external pressure and Po0 for internal
pressure. For given growth gi and fixed pressure P, (5) is an equation for the unknown parameter a, since b is related to a

through (1).

2.1. Incremental deformation

The approach to stability is to add a perturbation to the finite deformation (1). The perturbation comes in the form of an
imposed incremental deformation from a wider class of deformation, i.e. without the symmetry of the finite deformation.
Briefly, let vð0Þ be a known finite deformation and T(0) the related Cauchy stress, also known. Introduce an incremental
deformation vð1Þ and consider

v¼ vð0Þ þevð1Þ, ð6Þ

where e is a small parameter characterizing the size of the imposed perturbation. The stability analysis proceeds by taking
expansions of the deformation gradient and the elastic strain tensor (the growth tensor remains constant). That is, we
write F¼Grad v¼ Fð0Þ þeFð1ÞFð0Þ, A¼Að0Þ þeAð1ÞAð0Þ. The relation F=AG implies F(0)=A(0)G and F(1)=A(1). Incompressibility
implies tr(F(1))=0. We also expand the Cauchy stress tensor as T¼ Tð0Þ þeTð1Þ þOðe2Þ and the hydrostatic pressure as
p¼ pð0Þ þepð1Þ. The stress–strain relation reads, to zeroth order,

Tð0Þ ¼Að0ÞðW ð0Þ
A �pð0Þ1Þ ð7Þ

and to first order

Tð1Þ ¼Að1ÞðTð0Þ þpð0ÞÞþL : Að1Þ�pð1Þ1, ð8Þ

where L : Að1Þ ¼ Að0ÞW ð0Þ
AA : Að1ÞAð0Þ. Here WA

(0)
, WAA

(0)
are the first and second derivatives of W with respect to A, evaluated at

A(0). The components of the fourth order tensor L are the instantaneous elastic moduli, these are functions of the strain
components ai and the derivatives of the strain energy Wða1,a2Þ (see Ogden, 1984 for a derivation and formulas).

Setting div T=0 gives at O(1) div(T(0))=0, which is already satisfied by the finite deformation. At OðeÞ, the incremental
equilibrium equation may be written as

Að1Þgrad pð0Þ þdivðL : Að1ÞÞ�grad pð1Þ ¼ 0: ð9Þ

Boundary conditions consist of prescribing either vð1Þ or n � Tð1Þ, that is either the deformation or the traction is prescribed
on the boundary.

For a given finite deformation, all terms at order zero are known. Then Eq. (9) plus boundary conditions form the
system for the linear stability analysis. If a solution to the boundary value problem exists, a bifurcation from the set of
symmetric deformations is detected.

2.2. Bifurcation analysis

Since we only consider a cross-section, the deformation is independent of the axial variable z, so we work in polar
coordinates where the general form for the incremental deformation is vð1Þ ¼ ½uðr,yÞ,vðr,yÞ�. To first order, we have

Fð1Þ ¼Að1Þ ¼
ur

uy�v

r

vr
uþvy

r

2
664

3
775: ð10Þ

The incompressibility condition is

trðAð1ÞÞ ¼ urþðuþvyÞ=r¼ 0: ð11Þ

Inserting (10) into the incremental equilibrium equation (9) yields two differential equations involving the unknown
functions u, v, and p(1). To proceed, these functions are assumed to be of the form

uðr,yÞ ¼ f ðrÞsinðnyÞ,

vðr,yÞ ¼ gðrÞcosðnyÞ,

pð1Þðr,yÞ ¼ hðrÞsinðnyÞ: ð12Þ

The bifurcation is examined as a function of the buckling mode n, the number of folds in the buckled state. Making these
substitutions and using the incompressibility condition (11) to solve for g(r) in terms of f(r), the system can be simplified to
a single fourth order differential equation for f(r). We consider in this paper a neo-Hookean tube characterized by strain
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energy function W ¼ ðm=2Þða2
1þa2

2�2Þ, where m40 is the shear modulus. In this case, the governing equation is

B4f ð4ÞðrÞþB3f 000ðrÞþB2f 00ðrÞþB1f uðrÞþB0f ðrÞ ¼ 0, ð13Þ

where

B4 ¼ g2
2R2, B3 ¼

2g2ðg1g2R2þ2r2Þ

rg1

,

B2 ¼�
3g4

2R4g1�8g3
2R2r2þn2g4

2R4g1þr4n2g1

r2g2
2R2g1

,

B1 ¼
�3r4n2g1g2R2þ2r6n2þ3g5

2R6g1�4g4
2R4r2þn2g5

2R6g1�2g4
2R4n2r2

r3g1g3
2R4

,

B0 ¼
�3g4

2R4g1þ4g3
2R2r2þ3n2g4

2R4g1�4g3
2R2n2r2�r4n2g1þr4n4g1

r4g2
2R2g1

:

Note that R=R(r) is determined from the finite deformation via (1). The system is closed with boundary conditions at r=a

and b. For example, zero shear and normal stress are expressed, respectively, as

g1g4
2R4r3f 000ðrÞþð2g3

2R2r4þ2g1g4
2R4r2Þf 00ðrÞþð2g3

2R2r3�2g1g4
2n2R4r�g1g4

2R4r�g1n2r5Þf uðrÞ

þðg1g4
2R4�2g3

2R2r2�g1g4
2R4þ2g3

2n2R2r2Þf ðrÞ ¼ 0;

r2f 00ðrÞþrf uðrÞþðn2�1Þf ðrÞ ¼ 0: ð14Þ

Alternatively, if part of the tube is held fixed at one boundary, the normal stress condition is replaced by the
requirement that the perturbation vanish at that boundary. In this paper both types of conditions will be used.

With given boundary conditions, a solution to the boundary value problem (BVP) indicates the onset of instability. The
bifurcation analysis proceeds by leaving one parameter in the system free and searching for a critical value of that
parameter at which the BVP has a solution. This parameter might be the strain a at the inner boundary r=a, the applied
pressure P, or the rate of growth. To demonstrate, suppose the external pressure P is the bifurcation parameter. The system
(13) with the chosen boundary conditions is solved numerically as follows. The linear boundary value problem for a single
differential equation is transformed into an initial value problem for a system of two differential equations. That is, we
write f(r) as a linear combination of two functions

f ðrÞ ¼ a1x1ðrÞþa2x2ðrÞ ð15Þ

assuming that each function xi satisfies (13). This creates a system of two equations of fourth order for x1 and x2. We can
now treat this system as an initial value problem at r=a by choosing linearly independent initial conditions for the xiðrÞ,
such that both x1 and x2 satisfy the two given boundary conditions at r=a. The problem is now to find the constants a1 and
a2 such that the boundary conditions at r=b are also satisfied. We integrate both xi forward to r=b and form the
determinant of boundary values at r=b

DðPÞ ¼
c1ðx1ðbÞ;PÞ c1ðx2ðbÞ; PÞ

c2ðx1ðbÞ;PÞ c2ðx2ðbÞ; PÞ

�����
�����, ð16Þ

where c1(f(b))=0, c2(f(b))=0 are the boundary conditions at r=b. Due to linearity, if the determinant D(P)=0, then there
exist values a1 and a2 for which f(r) given by (15) solves the BVP. The solution of D(P)=0 can be found by using the
bisection method with an initial guess for P and iteration until the determinant vanishes. Further details and references on
various numerical methods to solve this problem can be found in Appendix D of Amar and Goriely (2005).

2.3. Two-layer model

The derivation and procedure outlined above is for a single layer tube. Extending the model to a tube of two connected
layers with different material properties and growth rates in each layer is straightforward. We first consider the initial
configuration, that is the stress-free reference configuration before growth. In this configuration, the inner region is given
by ArRrB and the outer region by BrRrC. Similarly, the two layers have radii arrrb and brrrc in the current
configuration (obtained after both growth and elastic deformations). Further, let mðiÞ, gðiÞ1 , and gðiÞ2 be, respectively, the elastic
modulus, radial growth, and circumferential growth in the inner region, and mðoÞ, gðoÞ1 , and gðoÞ2 the same in the outer region.
The initial deformations for the inner and outer regions are given by

r2�a2 ¼ gðiÞ1 g
ðiÞ
2 ðR

2�A2Þ, r2�b2 ¼ gðoÞ1 gðoÞ2 ðR
2�B2Þ: ð17Þ
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Defining P=t1(a)�t1 (c) as the applied load, by continuity of radial stress at the interface R=B we have

�P¼

Z B

A
gðiÞ1

ðŴ
ðiÞ
ÞuðaÞ

gðiÞ2 aR
dRþ

Z C

B
gðoÞ1

ðŴ
ðoÞ
ÞuðaÞ

gðoÞ2 aR
dR: ð18Þ

The stability analysis follows the same steps as the one layer model. Let f1(r), f2(r) be the radial perturbations for the inner
and outer regions, respectively. The boundary conditions zero tangential stress and either zero normal stress or zero
perturbation are applied at r=a and c. The four additional conditions needed at the interface r=b are continuity of the
perturbation,

f1 ¼ f2, f u1 ¼ f u2 at r¼ b ð19Þ

and continuity of the stresses. Numerically, the approach is the same: we write f1 ¼ a1x1ðrÞþa2x2ðrÞ, f2 ¼ a1x3ðrÞþa2x4ðrÞ

and integrate two copies of the system forward from r=a. The end conditions at r=b are used to determine initial
conditions for x3 and x4, which are integrated to r=c. A determinant of boundary conditions at r=c is formed, and
bifurcation is detected when the determinant vanishes. The two-layer model is analyzed in Section 4.

3. One-layer model

The main issues we consider are how the buckling phenomenon is affected by imposed growth, both in the critical
bifurcation values as well as the shape and mode of the buckled tube. First, it is useful to establish the case of no growth,
that is the buckling of a tube under external pressure only.

3.1. Buckling without growth

We first consider incremental boundary conditions of zero normal and shear stress on both edges. As pressure is
applied to the tube, the inner radius decreases until buckling occurs. Fig. 1 shows the critical strain at the inner radius,
aa :¼ a=A, plotted as a function of tube thickness for various modes. Since aa ¼ 1 for an unstrained tube, the critical strain
for a fixed thickness is the first curve reached when moving down from aa ¼ 1, and the critical buckling mode is the
corresponding mode. Over nearly the entire range of thicknesses, the critical mode is 2, although a crossover to mode 6
occurs for very thick tubes (A=B� 0:1 and smaller). The shape of the curves is qualitatively similar to the buckling of a
spherical shell under compression (see Fig. 9 in Amar and Goriely, 2005), but with the marked difference that sequentially
higher modes can be excited in the spherical shell case as A=B increases, whereas most modes are not excitable in the
cylindrical tube case presently under consideration.

3.2. Effect of growth on stability

We consider in this section homogeneous anisotropic growth. Again, the incremental boundary conditions are zero
shear and normal stress at both r=a and b. The growth functions gi are constant, with the circumferential growth g2 ¼ 1,
and we vary the radial growth g1. In Fig. 2, the bifurcation pressure Pcr is plotted as a function of the radial growth g1, for

Fig. 1. Critical strain of a tube as a function of thickness, in the absence of growth.
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various modes n and for fixed tube thickness A/B=0.5. For a given g1, the smallest value of Pcr over all modes is the critical
external pressure, denoted Pcr

n
, at which the tube becomes unstable and buckles, and the corresponding mode ncr is the

critical buckling mode. For PoP�cr , the tube remains circular.
The value of Pcr

n
for g1 ¼ 1 is the critical pressure without growth, which occurs for mode ncr=2. Growth can have both

stabilizing and destabilizing effects. For this thickness, radial resorption ðg1o1Þ is destabilizing: Pcr
n

is smaller for all values
of g1o1 than for g1 ¼ 1. On the other hand, radial growth ðg141Þ has a stabilizing effect initially but is destabilizing for
large g1. Observe that the ‘‘strongest’’ tube possible, i.e. maximal value of Pcr

n
, is for g1 � 1:72, the point marked II in Fig. 2.

Notice also the bifurcation in critical buckling mode that occurs at g1 � 1:95. Interestingly, as g1 crosses this value, the
buckling mode jumps from ncr=2 to 9.

Along with the change in critical pressure, growth has a dramatic effect on the shape after buckling as well. Samples of
the tube after deformation are provided in Fig. 3 for the three points marked I, II, III in Fig. 2. Note that point III corresponds
to buckling due solely to differential growth (since Pcr

n
=0). It is interesting that with increased radial growth, the buckling

deformation moves from being mostly focused on the inner edge to being focused almost entirely on the outer edge, so
that at point III the inner edge remains nearly circular.

Altering the thickness A/B has several consequences. An equivalent diagram for a thick shell, A/B=0.1, is given in Fig. 4.
Note that the peaks of the curves have shifted to lower values of g1. In this case, radial growth is always destabilizing,
whereas circumferential growth is initially stabilizing but then destabilizing. Hence, at this thickness, the ‘‘strongest’’ tube
is obtained by radial resorption. This is somewhat counterintuitive. It is generally the case that without growth, a thicker

Fig. 2. Critical buckling pressure as a function of radial growth g1 for modes n=2,3,4,6,7,9. Other modes are not included because they do not appear as

buckling modes. Thickness A/B=0.5.

 0.5

 1

1.5

0.5 0.5

1

1.5 1.5

1

I IIIII

Fig. 3. Tube deformation after bifurcation corresponding to the points marked in Fig. 2. Note that the amplitude (given by the choice of e has been chosen

to illustrate the structure—it has no physical significance due to the nature of the linear stability analysis.
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tube is more stable, i.e. the critical pressure increases monotonically with the thickness. Yet in this case the critical
pressure is maximized by radial resorption, a growth which serves to decrease the thickness. This behavior can be
understood in terms of residual stress. Radial resorption creates a tensile residual stress, i.e. t1ðrÞ40, which makes the
tube more stable mechanically. This combined effect highlights the interplay between mechanical and geometrical effects.
For a thick tube, the mechanical benefit of radial resorption outweighs the geometric detriment of decreased thickness. For
a thin tube, the situation is the opposite. An interesting consequence of this transition based on tube thickness is that there
is a thickness, found to be A/B=0.26, for which the ‘‘strongest’’ tube occurs when g1 ¼ 1. At this thickness, the peak of the
curve n=2 is at g1 ¼ 1, and any growth serves to destabilize the tube.

As might be expected, growth can have a much greater stabilizing effect on a thin shell than a thick one. To quantify the
stabilization effect, define Pr as the ratio of the maximal Pcr

n
and the value of Pcr

n
when g1 ¼ 1. Note that by this definition, Pr=1

when A/B=0.26, the smallest value it can take. The dramatic effect of thickness is clear when comparing Pr for thick versus
thin tubes: for A/B=0.1, Pr=1.39; for A/B=0.5, Pr=2.06; and for A/B=0.9, Pr=312! Note that for A/B=0.9, P�cr � 0:37, a relatively
small value, but still over 300 times greater than the extremely small pressure needed to buckle a thin tube.

Also, it is interesting to note that buckling due to pressure alone occurs at mode 2 for almost all thicknesses, while
buckling due to growth alone is always at higher modes (greater than 6) and never occurs at mode 2.

3.3. Buckling in a constrained tube

We have shown that anisotropic growth can cause buckling in the absence of external loads. If the geometry is
constrained, so that the outer boundary is held fixed, then isotropic growth, or volumetric swelling, can also induce
buckling. This is illustrated in Fig. 5, which plots the critical growth g1 ¼ g2 ¼: gcr at which buckling is induced by isotropic

Fig. 4. Critical buckling pressure as a function of radial growth g1 for a thick tube, A/B=0.1. At this thickness, three modes are excitable. Modes 7 and 8

are almost identical, but a crossover does occur in the relevant region. With no growth, ncr=7, but as g1 is increased the mode 8 curve just crosses below

mode 7, so that ncr=8 when P=0.

Fig. 5. Buckling induced by isotropic growth. Critical growth parameter g is plotted as a function of thickness for modes n=2,3,7,8,10,12,15,20. The form

of the deformation appears for A/B=0.5 (mode 7) and A/B=0.9 (mode 20).
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growth. Note that in this constrained geometry, growth induces pressure as the material pushes against the rigid outer
boundary. Whereas mode 2 was most common in the unconstrained buckling considered in the previous subsections, a
fixed circular outer boundary favors higher modes. Though many modes are almost indistinguishable over a large range of
thickness, a crossover does occur, so that all modes greater than or equal to 7 may incrementally be excited as A/B is
increased. Interestingly, if the setup is inverted so that the inner radius is held fixed and circular, no amount of isotropic
growth can induce buckling, at any mode. The difference with the fixed outer radius is that there is also a fixed and finite
amount of area. From Fig. 5, we see that gcr is always greater than one, so that the buckling is due to a combination of
induced pressure on the outer boundary and expansion into a finite area.

3.4. Thin tube analysis

In the case of a thin tube, an asymptotic analysis can be carried out and explicit formulas established. The approach is
outlined in Appendix A. The result is that if the tube thickness is small, i.e. d :¼ B�A is a small parameter, then the critical
strain at the inner edge, aa ¼ a=A, can be obtained in an asymptotic expansion for each mode n as

aðnÞa ¼ a0þa1dþa2d
2
þOðd3

Þ, ð20Þ

where the formulas for the ai are provided in Appendix A. Once aa is known for a given mode, the critical pressure
necessary to excite that mode can be computed via (5). The validity of the asymptotic approach is demonstrated in Fig. 6,
where numerical and asymptotic curves of the critical strains are plotted against the thickness A=B for several modes and
for growth ratio g1=g2 ¼ 1:5. The incremental boundary conditions of zero normal and shear stress were utilized. The first
curve that is encountered moving downward from aa ¼ 1 represents the critical mode and the critical buckling strain. In
this thin shell regime, the critical mode is 2. We see that the asymptotic curves match well; the critical strain mode 2 is
well approximated even at the thickness A/B=0.7.

4. Two-layer model

Many biological cylindrical structures are composed of two, or more, cylindrical layers bound together. Each layer may
have different mechanical properties and be subject to anisotropic differential growth. Here we consider a two-layer tube.
Rather than trying to fully explore the large parameter space, we focus on a range of parameter space relevant to biological
applications, and demonstrate the effect of growth in this regime. Tissues such as the esophagus or airways are composed
of a stiff inner layer, the mucosa, and a soft outer layer, the submucosa. Recalling that the inner region is described by
ArRrB and the outer region by BrRrC in the initial configuration, in this section we will fix A=1, C=1.5, and either
B=1.1 or 1.2. We also fix the elastic moduli of the inner and outer layers to be m1 ¼ 10, m2 ¼ 1. Under this fixed geometry,
we will investigate buckling as a function of the four growth parameters gðiÞ1 , gðiÞ2 , gðoÞ1 , and gðoÞ2 , the radial and circumferential
growth in the inner and outer layers.

We first consider isotropic growth, but with different growth rates in each layer, and the incremental boundary
conditions of zero normal and shear stress on the inner and outer edges. The critical pressure (smallest value over all

Fig. 6. Comparison of asymptotic (dotted) and numerical (solid) curves for the critical strain at the inner boundary, aa , versus thickness A/B for modes

n=2,3,4,6; g1=g2 ¼ 1:5.
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modes) is plotted as a function of the ratio of growth rates gðiÞ=gðoÞ in Fig. 7. The critical pressure only depends on the ratio;
the deformation with different values of the growth parameters but with the same ratio is equivalent up to an isotropic
and equal growth of both layers. Thus the point with gðiÞ=gðoÞ ¼ 1 is equivalent to the case of no growth. Hence, it is
destabilizing for the inner layer to grow at a faster rate than the outer layer, and stabilizing for the inner layer to grow at a
slower rate. This is somewhat interesting considering that the inner layer is much stiffer. Note also that the critical mode is
ncr=2 for every value of the growth ratio. The boundary conditions imply that both edges are unconstrained in the buckling
deformation. This is not necessarily the case in biological tissues, however, where the outer edge is sometimes
geometrically constrained. For instance, in the airways and esophagus a third layer of smooth muscle surrounds the
submucosa and enforces the outer edge to maintain a circular shape (Lambert et al., 1994; Yang et al., 2007). This
geometrical constraint has a dramatic effect on the buckling. In Fig. 8(a), the same graph is plotted as in Fig. 7 but with the
vanishing normal stress condition at r=c replaced by the requirement that the perturbation vanish at the outer boundary.
The critical mode is labeled at each point. There are several key differences that appear with this circular outer boundary
condition. Most noticeably, the critical mode is never equal to 2, but rather increases incrementally from ncr=3 to 9 as the
growth ratio increases. Also, the buckling pressure is significantly higher, so that the tube is essentially stronger when the
outer edge is kept circular. Buckling deformation shapes are included at the smallest and largest values of gðiÞ=gðoÞFnotice
that in the case gðiÞ=gðoÞ ¼ 0:2, the area inside the tube is much smaller, and the outer layer is proportionally much larger
than the case gðiÞ=gðoÞ ¼ 1:8.

In Fig. 8(b), the same graph is produced, but starting with a thicker initial inner layer, here A=1, B=1.2, C=1.5, and again
m1 ¼ 10, m2 ¼ 1. As would be expected, increasing the thickness of the stiffer inner layer results in an overall increase in the
buckling pressure. It also has the effect of reducing the buckling mode. The other interesting thing to note regards growth

Fig. 7. Critical pressure as a function of growth rate ratio between inner and outer layers for isotropic growth in each layer. The incremental boundary

conditions are zero traction on both surfaces. The critical mode is ncr=2 at each point. Parameters are A=1, B=1.1, C=1.5, m1 ¼ 10, m2 ¼ 1.

Fig. 8. Critical pressure as a function of growth rate ratio between inner and outer layers for isotropic growth in each layer, for a thinner inner layer

B=1.1 (a) versus a thicker inner layer B=1.2 (b). In both cases, A=1, C=1.5, m1 ¼ 10, m2 ¼ 1. The circular outer boundary condition is used, so that the

perturbation vanishes at the outer edge. The critical mode is labeled at each point, and select deformation patterns are included.
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and stabilization. With the thicker inner layer, all isotropic growth serves to destabilize the tube, since the buckling
pressure takes a minimum at the ratio gðiÞ=gðoÞ ¼ 1. Although it is difficult to see, the curve in Fig. 8(a) takes a minimum
value at a ratio greater than one. If the inner layer is further thickened, the minimum value occurs at a ratio less than one
(not plotted). On the other hand, if the inner layer becomes thinner, the critical mode increases and the critical pressure
decreases to the point where the minimum value of the pressure curve touches the axis. At this thickness, there exists a
growth ratio such that isotropic growth in each layer induces buckling without any external pressure.

As we have demonstrated in the case of a single layer, anisotropic growth can have a strong impact on the buckling
properties of a tube. To briefly explore this effect in the case of a bilayer tube, we allow for anisotropic growth in the inner
layer, and impose no growth in the outer layer. Again, only the ratio of radial to circumferential growth, gðiÞ1 =g

ðiÞ
2 , factors into

the buckling pressure. Fig. 9 displays the critical pressure as a function of this ratio, ranging from 0.2 to 1.8. A ratio greater
than one corresponds to radial growth while a ratio less than one corresponds to circumferential growth or radial
resorption of the inner layer. Radial growth has a two part effect: the inner layer becomes thicker, which for this thickness
causes the tube to become more stable; at the same time the buckling mode decreases. Going the other direction,
circumferential growth causes the inner layer to become thinner, the tube becomes less stable, and the buckling mode
increases. The change in buckling mode is dramatic, from ncr=5 at gðiÞ1 =g

ðiÞ
2 ¼ 1:8 to ncr=28 at gðiÞ1 =g

ðiÞ
2 ¼ 0:2.

4.1. Inverse problem

The presence of four growth parameters in the two-layer model has an interesting mathematical consequence that does
not hold in the single layer model. For the two-layer model, there are four equations that determine the bifurcation point
and deformation: the two equations (17) for the finite deformation in each layer, the pressure condition (18) for the finite
deformation, and the bifurcation ODE (13) for the incremental deformation. This suggests that an inverse problem can be
defined in which the bifurcation mode and critical pressure are given and the growth parameters which lead to that
deformation are solved for. In other words, the typical ‘‘forward’’ approach we have used thus far is to take the growth
parameters as input, use the pressure as a parameter in the bifurcation ODE, and find the critical value, from which
the dimensions in the deformed state, i.e. a, b, c, can be determined. The ‘‘inverse’’ problem, on the other hand, is to take
the values of a, b, c and the critical pressure P as input, use Eqs. (17) and (18) to relate the growth parameters, then the
bifurcation ODE (13) can be written in terms of a single growth parameter. If a value is found that solves the bifurcation
boundary value problem, then a form of growth is found that leads to the deformation specified by the input.

Note that this inverse problem cannot be formulated in a single layer model. With one layer, there are only two growth
parameters but three equations describing the bifurcation and deformation: Eq. (1) for the finite deformation, the pressure
condition (5) for the finite deformation, and again the buckling ODE (13).

Due to the complexity of the equations, there is little hope for an analytical proof of the existence of a solution to the
inverse problem. However, our simulations have suggested that a solution can be generally found. We demonstrate here
with a rather dramatic example for the two-layer model with A=1, B=1.2, C=1.5, m1 ¼ 10, m2 ¼ 1 and the circular outer
boundary condition. Referring to Fig. 9, without growth the critical pressure is approximately Pcr � 0:671, the critical mode
is 7, and the dimensions at the point of buckling are a=0.8794, b=0.9917, c=1.4225. Suppose we seek a bifurcation such
that the tube ends up significantly stronger and at the same time significantly thinner. We set a=0.8794, b=0.9356, and

Fig. 9. Critical pressure as a function of ratio between radial and circumferential growth in inner layer, with no growth in outer layer. The circular outer

boundary condition is used. The critical mode is labeled at each point, and select deformation patterns are included. A=1, B=1.1, C=1.5, m1 ¼ 10, m2 ¼ 1.
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c=1.1510, so that both layers are half as thick at the point of buckling, and increase the critical pressure 10-fold, to
Pcr=6.71. We find that the inverse problem has the solution gðiÞ1 ¼ 0:2266, gðiÞ2 ¼ 2:1410, gðoÞ1 ¼ 0:1410, gðoÞ2 ¼ 3:0650.

An understanding of how growth is able to create a tube with the thickness of each layer cut in half and 10 times more
resistant to buckling can be gained by considering the stress fields and the growth without pressure. Fig. 10 illustrates the
idea. The initial configuration is shown at point I. Under the given growth, if no external pressure is applied the tube
deforms to point II—a much larger radius with thinner layers. Since in each layer g24g1, the growth is circumferential,
which produces a tensile residual radial stress. The tensile stress serves to counteract the applied pressure, so that a large
amount of pressure is required in deforming to the bifurcation point III. At the point of bifurcation, the radial stress is
entirely transformed to a compressive stress.

It must be pointed out that the critical buckling mode cannot be selected with this inverse analysis. That is, for fixed
values of a, b, c and P and a chosen mode, growth parameters can be found such that particular mode is excited at that
deformation. For those growth parameters though, there is no guarantee that a different mode is not excited at lower
pressure. Presumably, a third layer would give one more free growth parameter, and mathematically the critical mode
could also be selected. We leave such an analysis, as well as analytical treatment of the inverse problem, for future work.

5. Conclusion

We have investigated the mechanical effect of growth and residual stress on the circumferential buckling of a
cylindrical elastic tube. Material and geometric non-linearities as well as differential growth were taken into account by
formulating the problem within the theory of morphoelasticity. We studied the role of growth in buckling in a broad
mechanical sense and have shown that growth can have a substantial impact on the buckling pressure and mode, and in
fact that growth alone can induce buckling, either through residual stress generated by anisotropic growth, through
isotropic growth in a constrained geometry, or by isotropic growth with different growth rates in a bilayer tube.

The model presented here represents a simplified and idealized structure, assuming axial uniformity and the buckling
of circular cross-sections to non-circular shapes with n symmetry axes. The only source of anisotropy in this system comes
from the growth tensor. Many biological materials also exhibit elastic anisotropy, typically generated by fibers embedded
in an elastic matrix. In this case, the same analysis can still be carried out with a major difference: the instantaneous elastic
moduli L is not given by the classical relationships in Ogden (1984). Nevertheless, as shown in Goriely and Vandiver
(2010) in the case of the axial instability of a growing two-layer anisotropic tube, the elastic moduli can be obtained using
the method described in Prikazchikov and Rogerson (2004).

A potentially important drawback of the incremental theory to study buckling is that no information can be extracted about
the deformation beyond the point of bifurcation—only the critical pressure and mode can be found, information about the size
of the perturbation or any further deformation requires a different approach. Nevertheless, our analysis demonstrates an
intimate relationship between anisotropic growth rates, the buckling properties of pressure and mode, and constrained versus
unconstrained outer boundaries. In particular, we have shown that stability depends on both mechanical and geometrical
factors, so that in determining the strength of a thicker versus a thinner tube, for instance, residual stress must also be
considered. The effect of residual stress has potentially profound consequences, in particular in the case of a two-layer tube,
where four growth parameters enables for the design of a tube with chosen bifurcation properties.

Fig. 10. Schematic of how differential growth can lead to a tube with thinner layers but that is 10 times stronger, i.e. buckles at a pressure greater by a

factor of 10 than the buckling pressure with no growth. The growth without pressure produces a tensile residual stress, which opposes the external

pressure. The plots of the annular regions are to scale and correspond to the parameter values in the text.
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Appendix A. Thin shell analysis

Here we outline the asymptotic analysis in the case of a thin shell. The idea, implemented previously for spherical shells
(Fu, 1998; Amar and Goriely, 2005), is to introduce the small parameter e :¼ b�a and the stretched variable

x¼
r�a

e : ð21Þ

Letting u(x)= f(r), we can recast the bifurcation ODE (13) and the boundary conditions (14) in terms of x and u(x). The same
as in the numerical procedure, we treat the boundary value problem as an initial value problem and solve two copies of the
system, but here the two copies are solved in an asymptotic expansion in e. That is, we let uðxÞ ¼ b1f1ðxÞþb2f2ðxÞ, where
each

fi ¼
XN

j ¼ 0

ejfij: ð22Þ

Making these substitutions and expanding the system in e, the fijðxÞ can be solved exactly, and the initial conditions at x=0
are chosen, so that the vectors ½f1ð0Þ,fu1ð0Þ,f001ð0Þ,f0001 ð0Þ�, ½f2ð0Þ,fu2ð0Þ,f002ð0Þ,f0002 ð0Þ� are linearly independent.

Once the fij are known, the determinant of boundary conditions at x=1 is formed,

Dða; eÞ ¼
c1ðf1ð1ÞÞ c1ðf2ð1ÞÞ

c2ðf1ð1ÞÞ c2ðf2ð1ÞÞ

�����
�����: ð23Þ

Writing a¼ a0þea1þea2þ � � � and expanding Dða; eÞ ¼ 0 in powers of e enables us to solve for ai at each order. Dividing by
A to put the formula in terms of the critical strains, the solution aa ¼ a=A reads to third order,

aa ¼ a0þ ~a1eþ ~a2e2þOðe3Þ, ð24Þ

where a0 solves

a8
0þ2g4

2a
4
0�3g8

2 ¼ 0, ð25Þ

~a1 ¼�
3g9

2g1�2a6
0g4

2�3g9
2Aa0g1þ2a5

0Ag5
2g1þa9

0Ag2g1�2a10
0 þa8

0g2g1

2Ag2g1ð3a8
0þ4a4

0g4
2�3g8

2Þ
, ð26Þ

and

~a2 ¼ ½816a22
0 g7

2g1þ1284a18
0 g11

2 g1þ625g20
2 g2

1a
8
0�864a7
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�1440a23
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In terms of the reference variables, we define d :¼ B�A. Then, from the relationship (1) we have b2�a2 ¼ g1g2ðB
2�A2Þ,

which expanded to second order reads

e¼ g1g2

a0
d ð28Þ

and the critical strain can be written as

aa ¼ a0þa1dþa2d
2
þOðd3

Þ, ð29Þ

where ai ¼ ðg1g2=a0Þ
i ~ai .
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