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a b s t r a c t

We analyze and classify equilibrium solutions of the one-dimensional thin film equation with no-flux
boundary conditions and in the presence of a spatially dependent external forcing. We prove theorems
that shed light on the nature of these equilibrium solutions, guarantee their validity, and describe how
they depend on the properties of the external forcing. We then apply these results to the reverse draining
of a one-dimensional magnetic soap film subject to an external non-uniform magnetic field. Numerical
simulations illustrate the convergence of the solutions towards equilibrium configurations. We then
present bifurcation diagrams for steady state solutions.We find thatmultiple stable equilibrium solutions
exist for fixed parameters, and uncover a rich bifurcation structure to these solutions, demonstrating the
complexity hidden in a relatively simple looking evolution equation. Finally, we provide a simulation
describing how numerical solutions traverse the bifurcation diagram, as the amplitude of the forcing is
slowly increased and then decreased.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

As a vertical soap film drains under gravity, a growing region of
very thin film, termed black film, forms at the top. This process has
been studied by a number of authors, and for a variety of reasons,
including the capture of film properties, and the understanding of
foams [1,2]. Much of the interest, with contributions dating as far
back as Newton [3], seems to arise from the complexity underlying
the process. The physical mechanisms behind a draining film have
been analyzed and put in concrete mathematical terms in more
recent times, largely beginningwith thework ofMysels et al. in the
1950s [4]. In particular, they introduced the concept of marginal
regeneration to explain the formation of thin regions of film along
the film borders. Since then, multiple authors have added to the
topic (e.g, [5–7]), both experimentally and theoretically.
The process of marginal regeneration, in particular the mech-

anisms responsible for the creation of black film at the film bor-
ders and the forces that drive the motion of the thin film once it
is created, is still somewhat controversial. For instance, in [7] the
authors suggest that the formation of thin film is a surface tension
effect, contrary to the original explanation given by Mysels et al.
In [8] the commonly held understanding that the thin film’s sub-
sequent motion is solely due to gravity is called into question. The
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dynamics of a draining film come from the competition between
viscous, capillary, and gravitational forces, along with surface ten-
sion effects and potentially complex interactions with the film
boundary. That some controversy remains today confirms that
these systems which may at first appear relatively simple are ac-
tually quite complex.
One way to better understand a draining film and to capture

the effects of different parameters is to add a controllable compo-
nent to the system. In [9], Elias et al. explored the physical prop-
erties of soap films by adding an aqueous suspension of magnetic
nanoparticles to an ordinary soap solution, thus forming a mag-
netic soap solution. This added magnetic dimension was treated
as a macroscopic force which they could control by subjecting the
film to varying magnetic fields. By placing a vertical draining film
in a uniform magnetic field, they found that they could speed up
or slow down the draining process based on the orientation of the
magnetic field. More recently, Moulton and Pelesko [8] presented
a similar experimental setup with a magnetic soap film, but with
a key difference: they subjected a draining film to much stronger
and non-uniform magnetic fields, by placing strong bar magnets
above the vertical film. With this setup, they found that with a
strong enough magnet, the film would flow upwards against grav-
ity, with thin black film forming at the bottom, a process termed
reverse draining.
In [8], a first model is suggested for the draining film under

the presence of a non-uniform magnetic field. Numerical sim-
ulations demonstrate qualitative agreement with experimental
observation, but a rigorous analysis of the system is not given. We
provide such an analysis in this paper.

0167-2789/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
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Fig. 1. Setup for the draining magnetic film system on which the model is based.
See text for details.

The system we study is depicted in Fig. 1. The film is described
by the function y = h(x, t), which is the half-thickness of the
film, assuming a reflection symmetry about the center line. The
full film is envisioned by extending the profile in the transverse
z direction — that is, the film is a sheet independent of z and
with reflectional symmetry about y = 0. The film is assumed to
be tangentially immobile, meaning that there is a zero tangential
velocity along the free surface. Themagnet is modeled by a current
loop placed directly above the film, with the film sitting on the axis
of the loop. The radius of the current loop is assumed to be much
larger than the width of the film in the transverse z direction. This
results in a non-uniform magnetic force acting only in the vertical
x direction to first order, and models the effect that magnetic
particles are primarily being pulled upwards, and that particles
closer to the magnet will feel a stronger pull. To be physically
realistic, a magnetic force acting solely in the vertical direction to
first order is only compatible with the assumption that the film
is uniform in the transverse z direction if the width of the film is
small compared to the radius of the current loop, which may or
may not agree with experiment. However, such a magnetic field
is necessary in order to formulate a two-dimensional first model,
which is certainly desirable from an analytical perspective. The
model exploits several other simplifications, such as the absence of
surfactant transport, in order to focus on the basic mechanism and
effect of the magnetic field. Moreover, only macroscopic effects of
the magnetic field are taken into account, and magnetic particle
concentration is not considered. Nevertheless, we will see that
this model has a very rich set of solutions, and is also capable of
capturing the reverse draining effect observed in experiments.
An evolution equation for the film can be derived using

lubrication theory, under the assumption of small aspect ratio of
the thickness of the film to its length. A comprehensive review of
lubrication theory and its application to various thin film systems
is found in [10]. For the setup studied here, the fluid is assumed
incompressible, with constant density and viscosity. Symmetry
conditions are employed at the center line y = 0, while the
assumption of a tangentially immobile film provides the boundary
condition of zero velocity in the vertical x direction at the free
surface. The effects of gravity, viscosity, and surface tension are
included; a magnetic body force term also appears as described
by the theory of ferrohydrodynamics [11]. Starting from the
Navier–Stokes equations, and following the standard procedures,
the following evolution equation for the film is obtained:

∂h
∂t
+
∂

∂x

(
h3

3
[σhxxx + 1+ λf (x)]

)
= 0. (1)

There are two dimensionless parameters: σ is an inverse Capillary
number characterizing surface tension, while λ is a ratio of the

relative forces of the magnetic field and gravity. Gravity has been
scaled to be the factor of 1, and

f (x) =
−3η2x

(1+ η2x2)4
(2)

is the magnetic forcing function for the non-uniform magnetic
field, where η is the ratio of the radius of the current loop to
the length of the film. For a detailed derivation of Eq. (1) and the
magnetic term described by Eq. (2), see [8]. Note that if we remove
the term λf (x), the remaining equation describes the evolution
of a thin film under the external action of gravity only. This
reduced equation, or some close variant of it, appears in a number
of previous studies. For instance, in [12], this exact equation is
studied, albeit with different boundary conditions than we will
employ here. Similarmodels are also developed in [13,14]; in these
studies the analysis is complicated by the addition of an equation
for surfactant transport coupled to the evolution equation. In [15],
the effect of an electric field on a thin film is explored — the
evolution equation presented takes a similar form, and is coupled
to an equation for the electric potential in the region of space
outside the film.
Eq. (1) falls under the category of fourth order degenerate diffu-

sion equations,which arise through the lubrication approximation.
Several papers have analyzed these types of equations in a general
setting, examples include [16,17]. The issues addressed in these
papers appear in the present work as well. Note however, that
in these studies the evolution equation analyzed is autonomous.
The addition of the non-autonomous function f (x) to the thin film
equation greatly changes the film behavior and also complicates
some standard techniques of analysis; the effect of this added func-
tion is a key element of our analysis.
The domain of the film is 0 ≤ x ≤ 1, where x = 0 corresponds

to the top of the film and the location of the current loop, and x = 1
is the bottom of the film. Note that the term inside the x derivative
is the velocity flux Q (x, t) over a horizontal cross section; that is

Q (x, t) =
h3

3
[σhxxx + 1+ λf (x)] .

There are several options for boundary conditions, depending on
the specifics of the experiment. In [8], experiments consist of a
film formed over an isolated rectangular frame. Hence, the natural
boundary conditions, which we use in this paper, are
h(0, t) = h(1, t) = 1, Q (0, t) = Q (1, t) = 0. (3)
Physically, the assumption is that the film is pinned to the frame
and there is no flux across the frame at either end. Note that the
no-flux condition implies a volume conservation.
Our objective in this paper is to analyze the system given by

Eq. (1) with boundary conditions (3). We begin in Section 2 with
a numerical investigation. A key characteristic that emerges is
that all solutions approach steady state equilibrium profiles. In
Section 3, we study analytically these equilibrium solutions. An
interesting aspect is that piecewise equilibrium solutions may be
constructed,which by their nature contain singularities in the third
derivative. We prove several theorems regarding the construction
and validity of equilibrium solutions, and how the shape of the
forcing function f (x) dictates the shape of equilibrium profiles.
This analysis is conducted for an arbitrary forcing function. In
Section 4, we numerically explore the convergence of different
solution profiles to a steady state profile as well as their stability.
Wealso illustrate the rich structure of the solution set, and consider
the evolution and bifurcation of solutions as the magnetic field
strength is altered.

2. Numerical solution

We begin with numerical simulations of the system (1)–(3),
using the method of lines. Motivated by the zero flux boundary
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Fig. 2. Evolution of the film startingwith a parabolic initial profile. In (a), λ = 1— a relativelyweakmagnetic field strength; in (b), λ = 1.9— amagnetic field of intermediate
strength; and in (c) λ = 5 — a relatively strong magnetic field. In each case, σ = 0.001, and η = 1.

conditions and volume conservation, we use a conservative
numerical scheme, second order in time and space, to solve the
evolution equation for the free surface. The interior of the domain
x between 0 and 1 is discretized as xi = id− d/2, i = 1, 2, . . . ,N ,
where d = 1/N is the step size for N the number of interior spatial
grid points. Eq. (1) can be written as

∂h
∂t
= −

∂Q
∂x
, (4)

with boundary conditions h = 1 and Q = 0 at x = 0, 1. Using
this representation, we determine ∂h

∂t at each interior point xi by
computing the flux Q one half step forward and one half step
backward, i.e.

dhi
dt
= −

Qi+1/2 − Qi−1/2
d

, Qi±1/2 = Q (xi±1/2) (5)

where hi = h(xi). Centered finite difference formulas are used
to compute Q at the half steps, with appropriate imbalanced
difference formulas at the ends. Observe that due to the grid
spacing, the flux one half step backward (forward) from x1 (xN ) is
automatically determined by the boundary conditions Q = 0 at
the ends. The resulting system of ordinary differential equations
for the hi at the grid points is then solved using ODE15s, which
is MATLAB’s stiff solver. Convergence tests, performed with grid
sizes from N = 100 to N = 800, produced consistent results with
different values ofN and different relative and absolute tolerances.
The simulations shown in this article use a relative tolerance of
10−5 and an absolute tolerance of 10−8, with N = 200 or N = 400.
The general effect of themagnetic field is demonstrated in Fig. 2,

which shows the evolution of the film profile in three different
regimes: a relatively weakmagnetic field (λ = 1), strongmagnetic
field (λ = 5), and a magnetic field of intermediate strength (λ =
1.9), with all other variables fixed. In each case, the film becomes
very thin in certain places, with h(x, t) getting very close (but not
equal) to zero (on the order of 10−3) — this corresponds to the
formation of black film.With aweakmagnetic field, the film drains
downwardswith the black film forming at the top. Just the opposite
occurs with the strong magnetic field, and the intermediate field
leads to black film forming in the middle. This trend corresponds
qualitatively with experimental observation [8].
The other observation from these simulations is that in each

case, the profile appears to be approaching a steady state shape. For
this reason, we develop a classification of all equilibrium solutions
in Section 3.

3. Equilibrium analysis

Motivated by the numerical results, in this section we study
equilibrium solutions of the system. Setting the time derivative to
zero in Eq. (1), we have

∂

∂x

(
h3

3
[σhxxx + 1+ λf (x)]

)
= 0. (6)

Integrating from 0 to x and using that Q (0) = 0, we obtain

h3 (σhxxx + 1+ λf (x)) = 0. (7)

This equation is to be solved with three constraints. Two are
provided by the fixed height boundary conditions, the third comes
from the condition Q (1) = 0 in the form of a volume conservation
condition. That is, we require

h(0) = h(1) = 1,
∫ 1

0
hdx = V . (8)

Eq. (7) suggests that we look for solutions of the ODE

σhxxx + 1+ λf (x) = 0. (9)

This equation may be solved exactly, with the constants of
integration determined by (8). However, in order to be physically
relevant, it must hold that h(x) ≥ 0 everywhere on 0 < x < 1;
a solution that does not satisfy this condition fails the symmetry
condition at the center line of the film. In light of this, wemake the
following definition:

Definition 1. A solution h(x) is invalid if h(x) < 0 at any point on
the interval x ∈ (0, 1).

Two sample plots of h(x), solutions of Eq. (9), subject to (8),
are provided in Fig. 3 for different parameter values. The curve in
Fig. 3(b) is invalid by Definition 1.What is the equilibrium solution
in this case? Returning to Eq. (7), observe that the system admits
piecewise equilibrium solutions, where h(x) is either identically
zero or solves (9). Hence,we consider the construction of piecewise
smooth equilibrium solutions.

3.1. Constructing equilibrium solutions

Due to the piecewise nature of possible solutions to Eq. (7),
there are many different types of equilibrium solutions which
can be constructed. It turns out that the family of equilibrium
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a b

Fig. 3. Fully continuous equilibrium solutions with σ = 0.004, η = 1, V = 0.5, and (a) λ = 1.8, (b) λ = 2.6. The solution in (b) is invalid because h < 0 on 0.52 < x < 0.85.

Fig. 4. Notation for equilibrium solution with a single zero-interval.

solutions possesses remarkable structure, which we uncover now
and further illustrate in Section 4. It will be useful to conduct
the present analysis in a more general setting. In the evolution
equation, the terms 1+λf (x) represent the sum of the scaled body
forces acting on the film, in this case gravity and magnetic forces.
More generally, we might consider a thin film being acted upon by
an arbitrary force function γ (x). Hence, in this sectionwe study the
following equation

h3 (hxxx − γ (x)) = 0. (10)

Solutions of (10) represent equilibrium solutions of a thin film
acted upon by an arbitrary function γ (x). Note also that we
have removed the parameter σ , which we may assume has been
absorbed into γ . Referring to Eq. (1), we would thus have γ (x) =
−(1+ λf (x))/σ . For convenience, define the operator

L[h] = hxxx − γ (x).

We first consider families of solutions forwhich h = 0 over a single
interval, surrounded by two regionswhere h is non-zero. Following
the notation of Fig. 4, we assume that h(x) = 0 for x1 < x < x2,
which connects to the non-zero regions h = h1(x) and h = h2(x)
on 0 < x < x1 and x2 < x < 1, respectively. Each function hi(x)
independently satisfies L[hi] = 0.
Taking the xi to be unknown and counting three constants of

integration for each hi gives a total of 8 unknowns. Necessary
conditions to impose are

h1(0) = h2(1) = 1
hi(xi) = 0, i = 1, 2∫ 1

0
h(x)dx = V .

(11)

Three more conditions are needed. While there is no explicit
requirement that the first derivatives match at the points x1, x2,
our numerical simulations suggest that this degree of smoothness
is necessary for a stable solution, and it is intuitively necessary
to produce a physically realizable solution (we should not expect
kinks in the profile). Further, at least this degree of regularity is
typical in the literature (see [18], for instance), and so this is a
requirement we will use throughout this analysis. Thus, we gain
twomore conditions by imposing h′1(x1) = h

′

2(x2) = 0.We are left
one condition short. One possibility would be to require continuity

of h′′(x) at the xi, but note that we cannot impose this at both x1
and x2. Instead, we solve for the constants of integration using 6
of the conditions, saving the volume conservation condition. The
volume conservationmay thenbe treated as defining a relationship
between x1 and x2. Explicitly, we define

F(x1, x2) :=
∫ x1

0
h1(x)dx+

∫ 1

x2
h2(x)dx− V . (12)

Equilibrium solutions are found by locating values of x1, x2 for
which F(x1, x2) = 0. Any point on this curve above the line x1 =
x2 represents an equilibrium solution. Note that if either of the
functions h1(x) or h2(x) is concave down at the endpoints x1, x2,
then h(x) will be invalid by Definition 1. Hence, h′′i (xi) ≥ 0 is a
necessary condition for a valid solution.
The above described construction is summarized in the

following:

Hypothesis 1. Let h(x)be a piecewise smooth equilibriumsolution
satisfying

h(x) =

{h1(x) 0 ≤ x < x1
0 x1 ≤ x ≤ x2
h2(x) x2 < x ≤ 1

(13)

such that h1(0) = 1, h2(1) = 1, L[hi] = 0, and hi(xi) = h′i(xi) = 0
for i = 1, 2. By construction, x1, x2 will lie on the implicit curve
F(x1, x2) = 0.

Under this hypothesis, we have the following theorems:

Theorem 1. Let h(x) satisfy Hypothesis 1. If in addition (x1, x2)
corresponds to a point of horizontal tangency on the curve F(x1, x2) =
0, where F is defined in Eq. (12), then h1(x) will satisfy h′′1(x1) = 0.

The proofs for all theorems in this section are provided in
Appendix A.

Theorem 2. Let h(x) satisfy Hypothesis 1. If in addition (x1, x2)
corresponds to a point of vertical tangency on the curve F(x1, x2) = 0,
where F is defined in Eq. (12), then h2(x) will satisfy h′′2(x2) = 0.

Theorems 1 and 2 imply that the points on the curve F(x1, x2) =
0 of horizontal and vertical tangency correspond to special equi-
librium solutions for which h′′(x) is continuous at x1 or x2, respec-
tively. In the following theorem, we show that valid solutions may
only be located on portions of the curve with positive slope.

Theorem 3. Let h(x) satisfy Hypothesis 1 and F(x1, x2) be given by
Eq. (12). If dx2dx1 < 0 on the curve F = 0, then h(x) is invalid according

to Definition 1. Equivalently, dx2dx1 ≥ 0 is a necessary condition for h(x)
to be a valid solution.
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Fig. 5. Sample plot of the curve F(x1, x2) = 0 for the specific forcing function γ (x) = −(1 + λf (x))/σ . Also a schematic for the location and form of solutions satisfying
Hypothesis 1 under Theorems 1–3.

Fig. 6. Notation for equilibrium solution with two zero-intervals.

Using the above theorems,we can classify the solution structure
by examining the shape of the curve F(x1, x2) = 0. A sample plot of
F = 0 for our specific form of γ , γ (x) = −(1+λf (x))/σ , is shown
in Fig. 5. In general, there are three different types of solution:
there are solutions for which h′′ is continuous at either x1 or x2
(points A and B in Fig. 5), there is a family of solutions for which
h′′ is discontinuous at both xi (region C), and there are solutions
for which x1 = x2, which represent a profile with a single tangent
point – i.e. a point where the curve is tangent to the horizontal axis
– in the function h(x) (point D).
The above analysis only accounts for solutions with a single in-

terval where h = 0. We next consider the possibility of having
more than one zero-interval. Consider the construction of a solu-
tion with two zero-intervals. Following the notation of Fig. 6, we
suppose h = 0 on the intervals x1 < x < x2 and x3 < x < x4, and
that the functions hi(x), i = 1, 2, 3 connect to these zero regions,
where each hi(x) satisfies L[hi] = 0. Counting three constants of
integration for each hi and the four values xi gives a total of 13 un-
knowns. Setting h1(0) = h3(1) = 1, and hi = h′i = 0 at the xi’s
gives 10 conditions, with volume conservation providing an 11th.
There are thus two free variables. Solutions are constructed in two
steps as follows:
(1) We may solve for the middle solution h2(x) independently by
using the conditions h2(x2) = h2(x3) = h′2(x2) = 0 to solve for the
constants of integration. We then define

G(x2, x3) := h′2(x3), (14)

and determine x2 and x3 by plottingG = 0,which implicitly defines
a curve in the x2–x3 plane.
(2) Once x2 and x3 are determined, the procedure to find x1
and x4 is the same as in the single zero-interval case, with a
slightmodification. Here, the volume condition gives a relationship

between x1 and x4. Explicitly, we define

F̂(x1, x4) :=
∫ x1

0
h1dx+

∫ x3

x2
h2dx+

∫ 1

x4
h3dx− V (15)

and determine solutions as values of x1, x4 for which F̂ = 0, and
such that x1 < x2 and x4 > x3. To summarize, we now consider
solutions which satisfy the following:

Hypothesis 2. Let h(x)be a piecewise smooth equilibriumsolution
satisfying

h(x) =


h1(x) 0 ≤ x < x1
0 x1 ≤ x ≤ x2
h2(x) x2 < x < x3
0 x3 ≤ x ≤ x4
h3(x) x4 < x ≤ 1

(16)

such that h1(0) = 1, h3(1) = 1, L[hi] = 0 for i = 1, 2, 3,
h1(x1) = h′1(x1) = h3(x4) = h

′

3(x4) = 0, and h2(xi) = h
′

2(xi) = 0
for i = 2, 3. By construction, x2, x3 will lie on the implicit curve
G(x2, x3) = 0, and x1, x4will lie on the implicit curve F̂(x1, x4) = 0.

Note that having found and chosen values for x2 and x3, the
curve F̂ = 0 is identical to the curve F = 0, but with the volume
decreased to account for the added mass of the solution h2. Hence,
Theorems 1–3 apply for this case as well.
There are several different types of solution satisfying Hypoth-

esis 2. Taking all xi to be distinct values yields a solution with
two separate zero-intervals. From the results of Theorems 1 and
2, these solutions may or may not have continuity of h′′ at x1 and
x4, based on the location of x1, x4 on the curve F̂ = 0. If x1 = x2 or if
x4 = x3, the resulting solution will have a single tangent point and
a single zero-interval, and if both x1 = x2 and x4 = x3, the solution
will have two tangent points. Taking x3 → x2 reduces the solution
back to a single zero-interval, and equality of all four xi gives a solu-
tionwith a single tangent point. In general, solutionswhich contain
an interval really consist of a family of such solutions, since they
will lie on the continuum of a curve. So, for instance, the boundary
of the family of curves with two zero-intervals is typically a solu-
tion with an interval and a tangent point. Hence, we should expect
to see a coherent structure and relationship between the different
solutions. We return to this idea in Section 4.
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Next, we consider the middle section h = h2(x), and the curve
G(x2, x3) = 0. Due to the symmetric nature of x2 and x3, the
curve is symmetric about the line x2 = x3. Similar to results for
the curve F(x1, x2) = 0, Theorem 4 below tells us that points
of vertical and horizontal tangency mark special solutions, and
provide boundaries for where valid solutions satisfying h′′(xi) ≥
0, i = 2, 3 may be found.

Theorem 4. Let h(x) satisfy Hypothesis 2. At a point of vertical
tangency of the curve G(x2, x3) = 0, where G is defined by Eq. (14),
h2(x)will satisfy h′′2(x3) = 0. At a point of horizontal tangency, it will
hold that h′′2(x2) = 0.

We now turn to the question of how the form of γ (x) dictates
the form of the curve G = 0 and validity of solutions. First, note
that G(x, x) = 0 for all x; that is, the diagonal x2 = x3 is always
part of the curve G = 0, representing a trivial solution.

Theorem 5. Assuming that γ ∈ C2(R) and that γ ′(x∗) 6= 0, a non-
trivial branch of the curve G = 0, defined in Eq. (14), intersects the
diagonal x2 = x3 at x∗, if and only if γ (x∗) = 0.

As the above theorem indicates, each root x∗ of γ (x) corre-
sponds to a branch of G = 0 that intersects the line x2 = x3
at x∗. The following result shows that those branches for which
γ ′(x∗) > 0 represent valid solutions, while branches for which
γ ′(x∗) < 0 represent invalid solutions.

Theorem 6. Let x∗ be a root of γ (x), and let h(x) be a solution
satisfying Hypothesis 2 that corresponds to a point (x2, x3) on the
branch of the curve G = 0 connecting to the point (x∗, x∗). Then,
when the hypotheses of Theorem 5 are satisfied, h(x) is valid (at least
on the portion (x2, x3)) if γ ′(x∗) > 0, and invalid if γ ′(x∗) < 0.

3.2. Specific form of γ (x)

The theorems of Section 3.1 provide information on the stru-
cture of equilibrium solutions for an arbitrary forcing function γ (x)
based on the shape of γ and the implicit curves F = 0, F̂ = 0,
and G = 0. We now return to the specific evolution Eq. (1) where
γ (x) = −(1 + λf (x))/σ . A simple corollary of Theorem 5 is that
if γ (x) does not have any roots, then there can be no solutions
to G(x2, x3) = 0, i.e. it is impossible to construct an equilibrium
solution with a ‘‘middle region’’. In the case

γ (x) = −
1+ λf (x)

σ
=

3λη2x
σ(1+ η2x2)4

−
1
σ
, (17)

γ (x) only has a single extremum, and one can show that γ (x) ≤ 0
on 0 < x < 1, and thus no ‘‘middle region’’ is possible, if

λ ≤ λ∗ =
84

3η77/2
. (18)

When λ > λ∗, γ (x) has two roots. The slope is positive at the
smaller root and negative at the larger value; hence by Theorem 6,
the lower branch of the curve G = 0 gives valid solutions
and the upper branch leads to invalid solutions. This is depicted
schematically with a sample plot of G = 0 in Fig. 7.
The final aspect we consider is how many ‘‘middle regions’’ are

possible. When γ (x) takes the form (17), we have the following.

Theorem 7. For the specific form of γ (x) given by Eq. (17), it is
impossible to have more than one middle region. Put differently, at
most two zero-intervals may exist.

4. Structure of equilibrium solutions

In the previous section, we analyzed the construction of equi-
librium solutions. In particular, we found that there are poten-
tiallymultiple (and even infinitelymany) equilibrium solutions for

a

b

Fig. 7. (a) Sample plot of γ (x) = −(1 + λf (x))/σ for λ = 1.7, η = 1, σ = 1, and
(b) the corresponding curve G(x2, x3) = 0. Theorems 4–6 are seen schematically by
the relationship between γ (x) and G = 0 and the location of valid solutions.

a fixed parameter set. The analysis of the previous sectionwas con-
ducted for a general forcing function. For the remainder of the pa-
per, we restrict our attention to the specific system with forcing
function given by Eq. (17).
It is important to note that any piecewise equilibrium solution

is singular, since there is at least one discontinuity in the second
derivative h′′(x). Also, these solutions are physically unrealizable,
in that h = 0 represents self-intersection of the film. We con-
jecture, however, that singular equilibrium solutions are attainable
as time goes to infinity. This claim likely requires a weak for-
mulation in order to prove — this type of approach is presented
for similar but autonomous systems in [19,17,20]. Such an analysis
goes beyond the scope of this manuscript, but Section 4.1 provides
numerical evidence to support this claim.
Our simulations have indeed demonstrated that these equilib-

rium solutions appear to be locally stable, in the sense that an ini-
tial profile ‘‘close’’ to an equilibrium solution will return to that
equilibrium solution as t → ∞. Stability of equilibrium solutions
is somewhat difficult to study due to their piecewise nature and
the physical requirement that h ≥ 0. Even choosing a perturbation
is not trivial since it must be volume preserving, without causing
the function to be negative anywhere. It does seem, however, that
every equilibrium solution is stable, and has a unique zone of at-
traction.
As shown in Section 3,multiple (and even infinitelymany) equi-

librium solutions potentially exist for a given set of parameters,
with varying degrees of regularity. Onemight intuitively think that
the most regular solution should be the only stable solution, but
this is evidently not the case. A quick example is provided in Fig. 8,
which shows the initial and final profiles for a fixed set of param-
eters. We used perturbations from a piecewise equilibrium solu-
tion as initial profiles, and integrated the system forward to a large
time. For the parameters used, a fully continuous non-piecewise
equilibrium solution exists, whereas the equilibrium solution per-
turbed from has two discontinuities in the second derivative. In
the first plot, the perturbation is relatively small, and the profile
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Fig. 8. Plot of initial (solid line) and final (dotted line) profiles for varying initial profiles. Parameters are λ = 1, σ = 0.01, η = 1.

returns to the piecewise solution. In the second plot, the pertur-
bation is fairly significant, so that the initial profile looks no more
like the piecewise solution than the non-piecewise solution. Still,
the profile returns to the piecewise solution. In the third plot, a
very large perturbation is used, and finally the profile is attracted
to the continuous non-piecewise solution. Again, we leave a formal
analysis of stability for future work.

4.1. Convergence to equilibrium solutions

We now turn to the convergence of numerical solutions to
singular equilibrium solutions. Convergence is rather slow and
appears to be algebraic in time (i.e. ‖h(x, t) − hexact(x)‖ ∼ 1/tp,
although the exponent p seems to vary with the parameter λ). We
studied convergence in the L2,H1, andH2 norms by approximating
the relevant integrals with second order discretizations, using
either the midpoint or the trapezoidal rule. More precisely, given a
function u(x, t) defined for x ∈ [0, 1] and t ≥ 0, we introduce the
following norms:

L2 norm:
[∫ 1−d

d
u(x, t)2dx

]1/2
,

H1 norm:

[∫ 1−d

d

(
u(x, t)2 +

(
∂u
∂x
(x, t)

)2)
dx

]1/2
,

H2 norm:

[∫ 1−d

d

(
u(x, t)2 +

(
∂u
∂x
(x, t)

)2

+

(
∂2u
∂x2

(x, t)
)2)

dx

]1/2
.

Here, d = 1/N is a small parameter and the function u(x, t) or its
derivatives are known at a finite number of equally spaced values
of x ∈ [0, 1], given by ui = u(xi, t)with

(P1)
{
xi =

d
2
+ (i− 1)d, i = 1, 2, . . . ,N

}
,

or (P2) {xi = i d, i = 1, 2, . . . ,N − 1} .

Each term in the above integrals is approximated numerically to
order d2, eitherwith themidpoint rule (if xi = d/2+(i−1)d) or the
trapezoid rule (if xi = i d). Note that the function h(x, t) is known
at points of type (P1) and its spatial partial derivatives are defined

at points of type (P2). This, togetherwith the requirement of having
second order approximations of the norms, constrains the choice
of the limits of integration. The values d and 1−d (instead of 0 and
1) were selected in order to have the same limits of integration
for all of the norms defined above. The left panel of Fig. 9 shows
the behavior of the norms of the difference between the numerical
solution h(x, t) and an exact stationary solution hexact(x) for λ = 3,
η = 1, σ = 0.004, and V = 0.5, where V is the volume of the film.
In this case, the exact solution has only one point of discontinuity
in the second derivative, and the positions of x1 ' 0.5222 and
x2 ' 0.5812 are dictated by the parameters. The convergence
in the H2 norm is not very good because the second derivative
of hexact has a jump of size about 45.0 at x = x1. The numerical
solution tries to interpolate between each side of the jump, thereby
introducing local errors of order one. However, we have checked
that at longer times (and with an increased number of points to
reduce numerical errors), theH2 normalso decreases algebraically.
Moreover, Fig. 10 shows the numerical and the exact solutions,
as well as their first and second derivatives, at different times
throughout the simulation of Fig. 9. It is clear from this figure that
even though the H2 norm of the difference between the numerical
and exact solutions is still of order one, the graphs of these two
solutions are already reasonably close to one another at t = 3 ·106.
The right panel of Fig. 9 shows convergence of the numerical

solution to an exact solution for which x1 = x2. In this case, the
jump in the second derivative of h is smaller and the convergence
in the H2 norm is therefore better. The parameters are the same as
above, except that λ = 1.3. The singular solution has x1 = x2 = xd,
with xd ' 0.37448, and the second derivative of hexact has a small
jump (of size approximately equal to 11.2) at x = xd.
Movies showing the time evolution (from t = 0 to t = 3·106) of

the numerical solution and its first three derivatives are provided
in the supplemental material, for the two values of λ mentioned
above, as well as for λ = 0.4. For λ = 1 and λ = 2.8, a figure
similar to Fig. 9 illustrates the fact that the exponent p varies with
λ.

4.2. Bifurcation diagrams

Having established their construction and convergence proper-
ties, we now consider how the structure of equilibrium solutions
is altered as we vary the parameter λ. One might ask similar ques-
tions for the other parameters; however, from a physical stand-
point, it seems most reasonable to study the effect of λ, as the
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Fig. 9. Convergence of the numerical solution towards an exact solution, for λ = 3 (left panel) and λ = 1.3 (right panel). The log–log plots show the behavior of the L2 , H1 ,
and H2 norms of the difference ‖h(x, t)− hexact(x, t)‖ as functions of time. Other parameters are η = 1, σ = 0.004, V = 0.5, N = 400, and the forcing is given by Eq. (17).
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magnetic field strength is the most tunable parameter. As we have
seen, the solution set is completely determined by the shape of the
curves G = 0, F̂ = 0, and F = 0, as described in Section 3. One way
to see the evolution, then, is to follow how these curves change
as λ is varied. This is not an appealing option, though, because it
does not provide a very compact description of the structure. As

an alternative, we may track the location of the endpoints of the
zero-intervals. That is, we can consider bifurcation diagramswhich
plot the location of the zeros xi as a function of λ. The difficulty
here is that, as we have seen, many of the solutions lie on a curve,
and so the zeros actually form a continuum for a fixed λ. Rather
than try to include the entire continuum, which would clutter up a
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Fig. 11. Bifurcation diagram of the structure of piecewise smooth equilibrium
solutions, for the parameters σ = 0.004, η = 1, and V = 0.5, and λ ∈ (0.4, 3.1).
The curves follow the locations of the zeros xi , which provide boundaries for the
regions of valid solutions, depicted by the shaded areas. The insets show the shape of
solution profiles for different regions. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

bifurcation diagram, we follow the boundaries of the regions of
valid solutions.
Such a bifurcation diagram is provided in Fig. 11, for the para-

meters σ = 0.004, η = 1, and V = 0.5, and λ ∈ (0.4, 3.1).
Following the notation of Fig. 4, the red line is the location of x2,
the blue line the location of x1, and the green line follows the
tangent solutions where x2 = x1. Note that the red and blue
lines are linked — each value of x1 on the red line is paired with
a value of x2 on the blue line for a given value of λ; the pair (x1, x2)
defines the end points of the zero-intervals of a specific solution
for which h′′(x) is continuous at one of the xi. As stated, these
curves are the boundaries for valid solution regions. Values of x1, x2
corresponding to the interior of the continuum (for which h′′(x) is
discontinuous at both x1 and x2) are found in the shaded regions.
Also included in the plot are solution profiles corresponding to the
different regions of the diagram.
Viewed in this format, an interesting structure emerges. Near

the left edge of the diagram, when λ is smaller, the bulk of the film
has drained to the bottom, and a solution satisfying h′′(x1) = 0
exists (branch A in Fig. 11). For this portion of the diagram, phys-
ically gravity is dominating the magnetic force. As λ is increased,
the x1 and x2 values for this solution coalesce to a tangent solution
(branch B). This tangent solution eventually disappears, the tan-
gent point going to x1 = x2 = 0. Then, for 1.78 < λ < 1.98, there
are no piecewise equilibrium solutions. The only solution present
in this interval is the fully continuous solution, seen in region C.
At λ = 1.98, a bifurcation occurs whereby two tangent solutions
appear. The upper branch bifurcates again, with x2 splitting away
from x1 — this branch of solutions then disappears when x2 hits
the boundary x2 = 1 (branch D). Due to the linked nature of the
curves, at this point the red line must also disappear. The lower
branch of tangent solutions bifurcates at λ ≈ 2.68, into a solution
with h′′(x2) = 0 (branch E). For this branch of solutions, the bulk of
the film has nowdrained upwards— for this portion of the diagram
the magnetic force is dominating gravity. If we were to extend the
diagram for larger λ, this branch of solutions would remain, with
x1 and x2 spreading further apart as the thin region got larger and
larger with more and more film draining upwards.
For the parameters above, no solutions with two zero-intervals

exist. However, by decreasing the value of σ from σ = 0.004 to
σ = 0.001, the structure of solutions changes rather dramatically.
In particular, following the notation of Section 3, when σ = 0.004,

there are no valid solutions to the equation F̂(x1, x4) = 0, defined
in Eq. (15) for any (x2, x3) on the curve G = 0 (see Eq. (14)); hence
the absence of solutions with two zero-intervals. With σ = 0.001
however, solutions with two zero-intervals do appear for certain
values of λ. The bifurcation diagram for this case is given in Fig. 12.
Fig. 12(a) shows only the solutions with a single interval, and the
structure is similar to that of Fig. 11. Fig. 12(b) shows the full
diagram — as there are two zero-intervals in this case, we track
the location of xi, i = 1, . . . , 4, following the notation of Fig. 6.
The details of this diagram are far more complicated in terms of

how solution types are structured. For instance, the two branches
marked A, where x1 = x2 and x3 = x4, represent solutions with
two tangent points. The branches marked B represent a boundary
for solutions with a single tangent point, with x3 = x4, and an
interval. The branch marked C provides the boundary for solutions
with two zero-intervals, because on this curve the middle region
collapses to a point with x2 = x3. As solutions are defined by
separate continuous curves, G = 0 and F̂ = 0, locating regions of
valid solutions is very complicated. Nevertheless, while individual
solutions are difficult to decipher from this diagram, the coherent
structure and connection of the equilibrium solutions is more than
apparent.
Finally, given that multiple stable equilibria are possible, and

having seen the intricate structure of the bifurcation diagrams,
we consider how the film profile might traverse this diagram.
Envision the following experiment: allow the film to drain until
it is reasonably close to a steady state. Then, change the strength of
the magnetic field by altering the current in the current loop. The
film is no longer in equilibrium and the profile will move towards
a new equilibrium. If we continue to gradually change the strength
of the field, howwill the steady state filmprofile transition through
the landscape of possible equilibrium solutions?
To explore this, we can conduct the equivalent numerical

experiment. Starting from a parabolic profile, we integrate forward
to some large time T . We then change λ by a small amount, use the
ending profile as an initial profile for the new λ, integrate forward
to T again, and repeat this process over some range ofλ. By plotting
the locations of the discontinuities of the second derivative of the
numerical solution at each λ, we can infer the values of the xi’s,
and thus how the profile is traversing the bifurcation diagram of
equilibrium solutions. We performed this numerical experiment
for the bifurcation diagram of Fig. 11. We used 30 equally spaced
values of λ over the range [0.49, 2.9]. The result appears in Fig. 13.
Fig. 13(a) plots the location of the xi’s asλ is increased starting from
λ = 0.49; Fig. 13(b) plots the xi’s as λ is decreased starting from
λ = 2.9. Some interesting behavior can be seen. First, note that
the most regular piecewise solutions are the ones directly on the
solid lines, because for these solutions h′′(x) is only discontinuous
at a single point, whereas the solutions which lie in the interior of
the continuum of solutions will have two points of discontinuity
of h′′(x). Nevertheless, following Fig. 13 from left to right, the
profile leaves the solid line by the second point, meaning that
the profile is being attracted to a solution with two points of
discontinuity in h′′(x) instead of the solution with only a single
point of discontinuity. Continuing, the xi’s come together as a
tangent solution (the green point on the left half), after which the
profile transitions to the fully continuous profile, not visible on
the diagram. When the solution touches back down on the right
half of the diagram, it then follows the most regular curve until
the end. We might surmise, then, that the solid line solutions on
the right half of the diagram are stronger attractors than on the
left half. Considering Fig. 13(b), this is clearly not the case. When
decreasing λ, i.e. following Fig. 13(b) from right to left, the same
type of behavior occurs, in reverse. The solution jumps off the solid
line initially, but then follows themost regular curve after touching
back down on the left side.
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(a) The family of single interval solutions. (b) The full diagram, including double interval solutions.

Fig. 12. Bifurcation diagram of the structure of piecewise smooth equilibrium solutions, for the parameters σ = 0.001, η = 1, and V = 0.5, and λ ∈ (1, 2). The curves plot
the locations of the zeros xi . (a) shows only solutions with a single zero-interval, (b) also includes solutions with two zero-intervals.

(a) Increasing λ. (b) Decreasing λ.

Fig. 13. Results of the numerical experiment showing how the film profile traverses the field of equilibrium solutions. Parameter values used were σ = 0.004, η = 1, and
V = 0.5. In (a), λ is increased incrementally from 0.49 to 2.9, with the location of the equilibrium solution plotted at each step. In (b), the same is done for λ decreasing from
2.9 to 0.49. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The simulation may also be described as follows: on the left
side of the diagram, where the magnetic force is generally weaker
than gravity, an increase in the magnetic force causes the profile
to leave the most regular solution, thereby increasing the size
of the black film (the distance between x1 and x2 is smallest on
the solid lines), while with a decrease in the magnetic force the
profile remains on themost regular solution, keeping the black film
as small as possible. On the right side of the diagram where the
magnetic force is stronger than gravity, just the opposite occurs: an
increase (decrease) in magnetic force causes the profile to remain
on (leave) the most regular solution. The other interesting aspect,
alluded to in this discussion, is the hysteresis effect. This simulation
suggests that the film’s history becomes important when altering
the magnetic force.

5. Conclusion

In this paper, we presented a rigorous analysis of equilibrium
solutions of the systemof Eqs. (1), (3), derived in [8] as a firstmodel

for a drainingmagnetic soap filmunder the action of a non-uniform
magnetic field. In studying this system, we first implemented a nu-
merical scheme to solve the evolution equation of the thin film
profile. Simulations demonstrated the qualitative effect of the
magnetic field, and captured the reverse draining effect observed
experimentally for strong magnets. While the model may be miss-
ing some important components, this qualitative agreement is
promising and lends credence to conclusions derived from analyz-
ing this first model.
The phenomenon of reverse draining observed in [8], and repro-

duced analytically here, is intriguing from a purely physical stand-
point, and adds an interesting piece to the well-studied puzzle of a
draining soap film.More generally, our analysismay provide a step
in the direction of thin film fluid control, particularly with respect
to ferrofluids. The results of Section 3 suggests that fine control of
film flow and equilibrium solutions may be possible. As our anal-
ysis was conducted for an arbitrary forcing function, this point is
worth further discussion. We found that the structure of equilib-
rium solutions relates directly to the complexity and number of
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Fig. 14. Evolution of film profile using (a) — fixed height and zero flux at top and bottom and (b), (c) — fixed height and zero flux at top, but Eq. (19) at the bottom. (b) shows
the first phase of the evolution, and (c) the second phase. Parameters used are λ = 10, σ = 0.001, η = 1, and δ = 1.

roots of the forcing function. Physically, this is reasonable. A root
of the forcing function corresponds to a point of balance of com-
peting forces. The more roots, the more places where the sum of
the body forces changes direction.
For instance, in our particular system, regions with γ (x) < 0

correspond to spatial regions where the gravitational force down-
wards is stronger than themagnetic force upwards, while themag-
netic force is stronger in a region where γ > 0. Generally, if γ has
no roots, then the force in one direction is dominant over the en-
tire spatial region, and it is no curiosity that complex equilibrium
solutions with ‘‘middle regions’’ are not possible. For instance, set-
ting γ = 1 represents the case of gravity acting as the only body
force. On the other hand, a forcing function γ which has multiple
roots represents body forces forwhich the dominant directionmay
changemultiple times over the spatial region. In such a system, we
should not be surprised to find equilibriumprofileswith a complex
structure and even multiple ‘‘middle regions.’’ This analysis also
suggests an interesting direction for future experiments. By creat-
ingmore complexmagnetic fields, one could feasibly construct a γ
with any shape and number of roots desired, and thus awide range
of equilibrium profiles and flow control becomes open for explo-
ration. Due to the generality of our arguments, this exploration is
not limited to magnetic fields and soap films, but could potentially
be applied to any thin film system.
Itmust be noted, however, that the no-flux boundary conditions

and volume conservation were a necessary component for many
of our results. Much of our analysis was based on the construction
of piecewise equilibrium solutions satisfying the general equation
h3(hxxx − γ (x)) = 0. With different boundary conditions, equilib-
rium solutions would instead satisfy h3(hxxx − γ (x)) = C , C 6= 0 a
constant, which does not permit piecewise solutions consisting of
intervals where h is identically zero. The importance of boundary
conditions is briefly illustrated in Fig. 14. Fig. 14(a) shows the evo-
lution of a film under the boundary conditions of fixed height and
zero flux that we have employed throughout this paper. In (b) and
(c), we used boundary conditions of zero flux and fixed height at
the top, but

hxx = δ, hx = 0 (19)

at the bottom of the film. These boundary conditions are suggested
in [12] to simulate a film draining into a bath; here δ captures the
size of themeniscus the filmmakeswith the bath. Parameters used
are λ = 10, σ = 0.001, η = 1, and δ = 1. Fig. 14(b) shows the

initial phase of the film evolution, and is qualitatively similar to
that in (a). In the second phase of the evolution, however, (shown
in (c)), the film cannot sustain the bulk flow upwards, and the film
flows back down into the bath.
Further work with the system studied here could proceed in

numerous directions. On the analytical end, a weak formulation
may provide the means to offer analytical proof for the numeri-
cal results regarding convergence to a singular steady state solu-
tions. Aside from the potential experiments mentioned above, the
numerical experiment of Section 4.2 and the hysteresis observed
might be easily explored in the laboratory with an electromagnet.
Finally, multiple effects could be included in a future model, in-
cluding surfactant transport and magnetic particle concentration.

Appendix A. Proofs of the theorems of Section 3

A.1. Proof of Theorem 1

On a point of horizontal tangency, dx2dx1 = 0, which implies
Fx1 = 0. From Eq. (12) and using Leibniz rule, we have

Fx1 =
d
dx1

∫ x1

0
h1(x)dx = h1(x1)+

∫ x1

0

∂h1
∂x1
dx

=

∫ x1

0

∂h1
∂x1
dx. (20)

Define g1(x; x1) =
∂h1
∂x1
, and consider the form of g1. Solving L[h1] =

0, we may write

h1(x) = Γ (x)+ c1x2 + c2x+ c3,

where Γ ′′′(x) = γ (x). The boundary conditions h1(0) = 1,
h1(x1) = h′1(x1) = 0 imply that c3 = 1 − Γ (0) does not depend
on x1, and that

c1 =
Γ (x1)− Γ (0)+ 1− x1Γ ′(x1)

x21

c2 =
−2Γ (x1)+ 2Γ (0)− 2+ x1Γ ′(x1)

x1
.

(21)

Note that since x1 > 0, c1, c2 are at least as smooth as Γ ′. We may
write

g1 = c ′1(x1)x
2
+ c ′2(x1)x. (22)
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As a function of x, g1 is quadratic. It is easily verified that g1 = 0
at x = 0 and x = x1, implying that g1 takes only one sign on
0 < x < x1. Since Fx1 = 0,

∫ x1
0 g1dx = 0. Thus, g1 is identically

zero, which implies that c ′1(x1) = c
′

2(x1) = 0. Next, the condition
h′1(x1) = 0 may be written

Γ ′(x1)+ 2c1x1 + c2 = 0. (23)

Taking a derivativewith respect to x1 across Eq. (23) and using that
h′′1(x1) = Γ

′′(x1)+ 2c1, we obtain

h′′1(x1)+ 2c
′

1(x1)x1 + c
′

2(x1) = 0,

and the result that h′′1(x1) = 0 follows.

A.2. Proof of Theorem 2

This may be proven in a similar manner as Theorem 1. Briefly,
dx2
dx1
= ∞ ⇒ Fx2 = 0, which implies that

∫ 1
x2
g2dx = 0, where

g2 =
∂h2
∂x2
. Writing

h2(x) = Γ (x)+ b1x2 + b2x+ b3,

in this case the boundary conditions at x = x2 and x = 1 imply
that each bi = bi(x2), and so

g2 = b′1(x2)x
2
+ b′2(x2)x+ b

′

3(x2).

It is easy to show that g2(x2) = g2(1) = 0, and thus
∫ 1
x2
g2dx = 0

implies b′i(x2) = 0, i = 1, 2, 3. Using the condition h
′

2(x2) = 0
and taking a derivative with respect to x2, we may write h′′2(x2) +
2b′1(x2)x2 + b

′

2(x2) = 0, and thus h
′′

2(x2) = 0.

A.3. Proof of Theorem 3

The first step is to note the relationships

h′′1(x1) = −g
′

1(x1)

h′′2(x2) = −g
′

2(x2),
(24)

which follow from the arguments used in the previous theorems.
We know that g1(x) has a constant sign on x ∈ (0, x1). Since

Fx1 =
∫ x1

0
g1dx,

it holds that Fx1 has the same sign as g1(x) has on x ∈ (0, x1).
Therefore,

Fx1 > 0⇔ g1(x) > 0 on (0, x1)⇔ g
′

1(x1) < 0⇔ h
′′

1(x1) > 0. (25)

In similar fashion, we obtain

Fx2 > 0⇔ g2(x) > 0 on (x2, 1)⇔ g
′

2(x2) > 0⇔ h
′′

2(x2) < 0. (26)

To prove the theorem, then, we need merely note that if

dx2
dx1
= −

Fx1
Fx2

< 0

then Fx1 , Fx2 must have the same sign, which implies that one of
h′′1(x1) or h

′′

2(x2)will be negative.

A.4. Proof of Theorem 4

First, we write

h2(x) = Γ (x)+ c1x2 + c2x+ c3. (27)

Imposing h2(x2) = h2(x3) = h′2(x2) = 0, we may solve for c1 and
c2 to obtain

c1 = −
1

x2 − x3

(
Γ ′(x2)−

Γ (x2)− Γ (x3)
x2 − x3

)
c2 = −

1
(x2 − x3)2

(
2x2Γ (x2)− 2x2Γ (x3)− (x22 − x

2
3)Γ

′(x2)
)
.

(28)

Now, G = 0 is defined as h′2(x3) = 0, i.e. Γ
′(x3)+ 2c1x3 + c2 = 0.

Using the above expressions for c1 and c2, we obtain after some
manipulation that G = 0 is equivalent to

Γ ′(x2)+ Γ ′(x3)− 2
Γ (x2)− Γ (x3)
x2 − x3

= 0. (29)

We now compute

∂G
∂x2
= Γ ′′(x2)− 2

Γ ′(x2)
x2 − x3

+ 2
Γ (x2)− Γ (x3)
(x2 − x3)2

∂G
∂x3
= Γ ′′(x3)+ 2

Γ ′(x3)
x2 − x3

− 2
Γ (x2)− Γ (x3)
(x2 − x3)2

.

(30)

Substituting c1 from Eq. (28) into h′′2(x2) = Γ ′′(x2) + 2c1 and
h′′2(x3) = Γ

′′(x3)+ 2c1, we find that

h′′2(x2) =
∂G
∂x2

, h′′2(x3) =
∂G
∂x3

, (31)

from which the theorem immediately follows.

A.5. Proof of Theorem 5

We start with the expression of G = 0 given in Eq. (29),

Γ ′(x2)+ Γ ′(x3)− 2
Γ (x2)− Γ (x3)
x2 − x3

= 0. (32)

Define

g(x3) = (x2 − x3)
[
Γ ′(x2)+ Γ ′(x3)

]
− 2 [Γ (x2)− Γ (x3)] (33)

so that for a fixed x2 and x3 6= x2, G = 0⇔ g(x3) = 0. Expanding
g(x3) for x3 near x2, and using that Γ ′′′(x) = γ (x), we obtain

g(x3) = −γ (x2)
ε3

3!
− 2γ ′(x2)

ε4

4!
+ O(ε5), (34)

where ε = x3 − x2. Solving g(x3) = 0 for ε gives, at lowest order,

ε =
−2γ (x2)
γ ′(x2)

. (35)

Therefore, if a non-trivial (i.e. for which x2 6= x3) branch of G = 0
exists and crosses the diagonal x2 = x3 at x2 = x3 = x∗, as
the point (x2, x3) moves along G = 0 towards (x∗, x∗), we have
ε → 0, γ (x2) → γ (x∗), and γ ′(x2) → γ ′(x∗) 6= 0. As a
consequence, γ (x∗) = 0. Conversely, if γ (x∗) = 0, then by writing
γ (x2) = γ ′(x∗)(x2 − x∗) + O

(
(x2 − x∗)2

)
, and γ ′(x2) = γ ′(x∗) +

O
(
(x2 − x∗)2

)
, Eq. (35) becomes

x3 − x2 = ε = −2(x2 − x∗)+ O
(
(x2 − x∗)2

)
.

In other words, there will be a root x3 > x2 when x2 is slightly
smaller than x∗ and a root x3 < x2 when x2 is slightly larger than
x∗. This implies the existence of a non-trivial branch of G = 0
intersecting the diagonal at x∗.
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Fig. 15. Schematic proof of Theorem 7. Two middle regions are not possible, because in finding x2 < x3 < x4 < x5 , x4, x5 will end up on the invalid branch, meaning that
h = h3(x)will be negative at some point.

A.6. Proof of Theorem 6

For a given point (x2, x3) on G = 0, we have h2(x) = Γ (x) +
c1x2 + c2x + c3, with c1 and c2 given by Eq. (28). Using Eq. (29),
these coefficients may be rewritten as

c1 = −
1
2
Γ ′(x3)− Γ ′(x2)

x3 − x2
, c2 =

x3Γ ′(x2)− x2Γ ′(x3)
x2 − x3

. (36)

A similar calculation for c3 gives

c3 = −
1
2
(Γ (x2)+ Γ (x3))+

1
4

(
Γ ′(x2)+ Γ ′(x3)

)
(x2 + x3)

−
1
2
x2x3

Γ ′(x3)− Γ ′(x2)
x3 − x2

.

As x2, x3 → x∗,

c1 →−
Γ ′′(x∗)
2

, c2 → x∗Γ ′′(x∗)− Γ ′(x∗),

c3 →−Γ (x∗)+ x∗Γ ′(x∗)−
x∗2

2
Γ ′′(x∗),

and as a consequence,

h2(x) = Γ (x)−
(
Γ (x∗)+ Γ ′(x∗)(x− x∗)+

Γ ′′(x∗)
2

(x− x∗)2
)
.

With γ (x∗) = 0 and γ ′(x∗) 6= 0, a Taylor expansion of Γ (x) near
x = x∗ in the above equation gives, at lowest order,

h2(x) ≈
γ ′(x∗)
4!

(x− x∗)4. (37)

Since h2(x) > 0 is the requirement for validity on (x2, x3), h(x) is a
valid solution on (x2, x3) if and only if γ ′(x∗) > 0.

A.7. Proof of Theorem 7

The proof follows quickly from the shape of γ (x), and is de-
picted in Fig. 15. Since γ will have atmost two roots in the interval,
the curve G = 0 will have the shape depicted in Fig. 15. As stated,
the lower branch is valid and the upper branch invalid. Eachmiddle
region can be constructed in the same way — constructing two
ormore middle regions comes down to whether points x2 < x3 <
x4 < x5 may be chosen, all to lie on a valid branch of the curve. By
inspection, this is not possible for γ given by Eq. (17).

Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.physd.2009.08.014.
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