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Abstract

Airway remodeling in patients with chronic asthma is characterized by a thick-
ening of the airway walls. As has been demonstrated in previous theoretical mod-
els, this change in thickness can have an important mechanical effect on the prop-
erties of the wall, in particular on the phenomenon of mucosal folding induced
by smooth muscle contraction. However, missing from previous models is an ac-
count of how the walls become thicker. In this paper, we present a model for
mucosal folding of the airway in the context of growth. The airway is modelled
as a bi-layered cylindrical tube, with both geometric and material nonlinearities
accounted for via the theory of finite elasticity. Growth is incorporated into the
model through the theory of morphoelasticity. We explore a range of growth pos-
sibilities, allowing for anisotropic growth as well as different growth rates in each
layer. Such nonuniform growth, referred to as differential growth, can change the
properties of the material beyond geometrical changes through the generation of
residual stresses. We demonstrate that differential growth can have a dramatic im-
pact on mucosal folding, in particular on the critical pressure needed to induce
mucosal folding, the buckling pattern, as well as airway narrowing. We conclude
that growth may be an important component in airway remodeling.
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1 Introduction
Asthma is a disease characterized by a narrowing of the airway and reduced lung func-
tion. Chronic asthma is often accompanied by irreversible structural changes to the
airway wall, collectively referred to as airway remodeling [32]. Airway remodeling
is a complex process occuring at multiple time and length scales and involving many
different chemical, biochemical, and physical stimuli. Despite a wealth of research it
is still not clear how each of the different structural changes individually affects airway
function [36], nor is it known whether these different changes are beneficial or detri-
mental to asthmatic patients [25]. A well documented key feature of airway remodeling
is an increase in airway wall thickness, detected at all levels of the bronchial tree and
all layers of the airway wall [13, 16, 18, 29].

In this theoretical paper, we focus on the mechanics of airway wall thickening
and the mechanism of mucosal folding at a macroscopic level by building a model
based on the most sophisticated constitutive theory for elastic tissue available in the
bio-engineering literature. In response to certain stimuli, the smooth muscle surround-
ing the airway wall contracts, and the luminal boundary folds or buckles - this is the
phenomenon of mucosal folding. In “normal patients”, such an event is marked by
only modest narrowing of the airway [26]. In asthmatic patients, however, this airway
narrowing tends to occur for lower stimuli, and also leads to exaggerated narrowing
[17].

Mucosal folding is also observed in the esophagus [22, 40], blood vessels [21], and
gastrointestinal tract [23]. On a mechanical level, this folding indicates an instability of
the inner mucosal edge in response to an external pressure provided by the contraction
of the smooth muscle. A number of studies have looked at mechanical and geometri-
cal aspects of mucosal folding [27, 19, 20, 38, 12, 40]. Models and simulations have
demonstrated that a thicker airway wall can affect buckling pressure (and correspond-
ingly the necessary contraction of the smooth muscle to induce airway narrowing);
the extent of the narrowing; as well as the critical buckling mode, i.e. the number of
folds in the buckled state. It has been shown geometrically that the buckling mode,
or the folding pattern, can have a significant effect on the degree of airway narrowing,
although another study [4] suggested that the number of folds may not play a role.

A potentially important assumption in all the above mentioned models is that the
mechanical properties of the airway wall do not vary during remodeling, despite ev-
idence that these properties might be altered [15]. Airway remodeling falls into the
large category of processes known in the bio-engineering literature as growth and re-
modeling of elastic tissues. Growth in biological systems can be the result of many
different processes. Continuum mechanics and the theory of elasticity have long been
used to study growth processes and the mechanical properties of growing tissues. Still,
it is only in the past couple decades that the complex behavior of biological soft tissues
has been fully recognized [6]. It is now understood that biological materials are gen-
erally highly nonlinear, anisotropic, and inhomogeneous in their mechanical response
and commonly exhibit differential growth, that is the tissue does not grow equally in
all directions and/or different parts of the tissue grow at different rates.

Differential growth is a common feature in biological tissues and is known to alter
profoundly the geometry and mechanical properties of a material. Local changes of
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mass induce not only a change in the geometry but also elastic stresses which cannot be
eliminated geometrically, and thus generate so-called residual stresses, which persist in
the absence of external loads on the material. Residual stress is a hallmark of biological
tissues, and plays a key role in the regulation of many biological systems, including
arteries [14, 8, 9], blood vessels [5], the human aorta [10], and plant stems [35].

In this paper we study the possible role of differential growth (including the cre-
ation of stress) in airway remodeling. In particular, we study the effect of growth on
mucosal folding and show that growth can affect the mechanical response to smooth
muscle contraction of an airway beyond the change in geometry. We model the air-
way as a two-layer cylindrical structure, and take into account both geometrical and
material nonlinearities by utilizing the theory of finite elasticity [30]. The growth of
the airway is described via the theory of morphoelasticity, and the buckling of the air-
way is computed using an incremental deformation stability analysis [1]. The model
presented here is a radical improvement over previous mechanical investigations for
airways [27, 19, 20, 38, 12, 40] as it combines both the nonlinear response of the
tissues in large deformation and the effect of growth. (Note Yang et al. recently pre-
sented an interesting analysis in finite elasticity for the esophagus [40], but did not
consider growth.) Using this model, we demonstrate that differential growth, in par-
ticular anistropic growth, can have a dramatic effect on the critical pressure exerted by
smooth muscles needed to trigger buckling, the number of folds, the buckling pattern,
and the degree of airway narrowing. We demonstrate that differential growth can have
a strong impact on stability properties and give seemingly counterintuitive results, for
example an airway wall may become thicker while loosing stability. Our results high-
light the importance of mechanical effects due to growth and suggest a need for further
experimental research along these lines. Indeed, our hypotheses may be tested by direct
measurement of residual stress as noted in [24].

2 Model and Methods
We model an airway segment as a bilayer cylindrical structure, considering only tissue
interior to the smooth muscle. Following the model given by Wiggs et al. [38], a
stiff and thin inner layer corresponds to the mucosal region, consisting of the basement
membrane, the lamina propria, and the epithelium [2]. Surrounding this is a portion of
the submucosa region, consisting of loose connective tissue. The inner layer is much
thinner and stiffer than the outer layer.

The smooth muscle surrounds the outer layer, with contraction of the smooth mus-
cle taken into account as an applied normal pressure boundary condition at the outer
edge. Since mucosal folding occurs at the mucosal region while the smooth muscle
remains roughly circular [20], we impose the boundary condition that the outer edge
remain circular in the deformed, buckled state.

The setup is depicted in Figure 1. Material dimensions for the undeformed, ref-
erence airway are the inner radius A, the thickness of the inner layer, B−A, and the
thickness of the outer layer C−B. We use the isotropic neo-Hookean strain energy
function to characterize the nonlinear hyperelastic material [3]. To characterize the dif-
ference in stiffness between the two layers, the value of the shear modulus is assumed
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A
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Soft and thick outer layer,
shear modulus µ2

Stiff and thin inner layer,
shear modulus µ1

smooth muscle

Figure 1: Bilayer model of airway wall, consisting of a stiff and thin inner layer, the
mucosa, and a soft and thick outer layer, the submucosa. Surrounding the submucosa
is smooth muscle, which applies a normal pressure when it contracts.

different in each layer, thus we have the parameters µ1 and µ2. From a mechanical per-
spective, it can be shown that the stiffness ratio µ1/µ2 is the only important quantity
entering the problem.

The model is three dimensional but assumes only plane strain deformation, so that
the deformation is uniform along the tube axis. The basic idea behind the numerical
computation is that as the smooth muscle contracts, the tube deforms in a symmetric
fashion, maintaining its circular shape, until a bifurcation point is reached for a critical
pressure (the pressure acting on the inner edge of the cylinder is generated by smooth
muscle contraction), at which point the cylinder “buckles” to an asymmetric state. The
buckling analysis follows the incremental theory, as described in [37]. Mathematically,
it consists of a linear stability analysis for a solution of mechanical equilibrium in finite
elasticity. A nonsymmetric perturbation is added to a symmetric finite deformation,
and the equations of mechanical equilibrium are expanded in terms of the perturbation
parameter, resulting in a 4th order differential equation for the radial displacement
of the nonsymmetric deformation. A solution to the bifurcation equation indicates
buckling of the tube. A derivation of the growth and bifurcation equations, as well as
our approach to solving the bifurcation equation, can be found in [28].

The bifurcation equation has as a parameter the buckling mode number, which is
the number of folds in the buckled state. For each mode number, a critical pressure is
found that represents the pressure necessary to induce buckling at that particular mode.
The actual buckling pressure observed in an ideal experiment is the smallest critical
pressure over all modes, and the corresponding mode defines the expected buckling
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pattern.
Growth is included in the analysis via the theory of morphoelasticity and decom-

position of the deformation tensor [34, 7]. The basic concept is that the deformation of
the body is due to a local change of mass and to an elastic deformation. That the change
of mass is expressed locally enables for neighboring “cells” to grow differentially; this
can induce incompatibilities such as overlapping cells. The elastic deformation then
brings the material back to a compatible configuration; this step can be seen as an
elastic response to the growth, and can induce residual stress in the material.

The effect of symmetric growth in each layer is captured by two parameters per
layer, instructing the gain or loss of mass in the radial and circumferential directions.
We denote these growth parameters γ

(i)
r , γ

(i)
θ

, γ
(o)
r , γ

(o)
θ

. Here γr corresponds to radial
growth, with each radial fiber gaining or losing mass if γr is greater than or less than 1.
The addition or loss of mass in the circumferential direction is captured by γθ , where
γθ > 1 corresponds to circumferential growth and γθ < 1 to circumferential resorption.
Figure 2 gives a schematic of radial vs circumferential growth. The superscript dif-
ferentiates the inner and outer layers. In general, these parameters can be functions
of radius, which would signal the case of different “rings” of the airway growing at
different rates. Here we consider anisotropic but homogeneous growth in each layer,
thus the γ’s are constant but not equal.

As our results are largely focused on varying these parameters, it is instructive to
further clarify their meaning via a simple example. Consider a single layer tube with
radii A = 1, B = 2, with no applied pressure and three different forms of growth:

1. γr = 2, γθ = 2. The parameter values imply that both radial and circumferential
“fibers” double in mass. Since the growth is isotropic and no other forces are ap-
plied to the system, the deformed grown tube has radii a = 2, b = 4, highlighting
a doubling of all radial and circumferential lines.

2. γr = 1, γθ = 2. In this case, circumferential “fibers” double in mass and radial
“fibers” do not grow. To account for the anisotropic growth, the tube expands
to a larger total radius, while keeping nearly the same length of radial lines.
A numerical computation gives that the tube after growth has radii a = 2.48,
b = 3.49. The growth induces a slight tensile radial stress; i.e. all radial “fibers”
are in tension.

3. γr = 2, γθ = 1. Here, radial “fibers” double in mass while circumferential “fibers”
do not grow. A numerical computation gives the radii after growth as a = 0.69,
b = 2.54; in this case radial lines want to double in length but are constrained,
thus the anisotropic growth induces a compressive radial stress.

3 Results
We investigate the effect of growth on the buckling of a normal versus a remodeled
airway. To do this, we keep reference dimensions of the airway fixed, and change the
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Figure 2: Transformation of an area element under circumferential versus radial
growth.
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thickness of the airway by varying the growth parameters. In this way the growth de-
fines a deformation from the normal airway to the remodeled airway. In the prior stud-
ies we have mentioned, thicker airways have been studied by changing the reference
dimensions themselves, without any particular mechanism to account for the change.
By keeping the reference dimensions fixed and altering the growth, we can explore the
effect of thickness on the buckling, but we are able to account for the change of thick-
ness as well as the changes in material properties resulting from additional residual
stresses. We use as reference “normal airway” dimensions A = 0.98, B = 1, C = 1.5,
and stiffness ratio µ1/µ2 = 10. The same values have been used in previous models
[38, 12].

3.1 Isotropic growth
The first effect we consider is isotropic growth, but with different growth rates in each
layer. That is, we assume γr = γθ in each region but that γ(i) 6= γ(o). As an example,
we let γ(o) = 1.2 and vary γ(i) > 1. We plot in Figure 3 the critical pressure (a) and
critical buckling mode (b) as a function of γ(i) ranging from 0.9 to 1.4. In Figure 4
the same plots are shown with γ(i) = 1.2 fixed and γ(o) ranging from 0.95 to 1.5. It
should be noted that the critical buckling pressure only depends on the ratio γ(i)/γ(o).
Different values with the same ratio are equivalent up to an isotropic and equal growth
multiple in each layer, so that the critical pressure does not differ (note that the airway
dimensions will vary by the same scalar multiple). For instance, since γ(o) = 1.2 the
critical pressure for γ(i) = 1.2 in Figure 3 or γ(o) = 1.2 in Figure 4, corresponds exactly
to the critical pressure in the absence of growth (as shown by the horizontal line on
the figures). Comparing the critical pressure to this reference case, it is interesting to
note that when the ratio γ(i)/γ(o) > 1, the airway is less stable, i.e. it buckles at a lower
pressure. On the other hand, a greater pressure is required when this ratio is less than
one. In other words, the airway is stronger with respect to buckling when the outer
layer grows at greater rate than the inner layer. Observe that this effect is significant as
the change in critical pressure increases by a factor of about 8 as γ(o) changes from 1
to 1.5.

The buckling pressure relates the amount of smooth muscle contraction necessary
to induce airway narrowing. The other important factor is the amount or degree of
airway narrowing. The buckling analysis we present here is a linear stability analysis.
It enables us to find critical buckling parameters, but once the buckling occurs we have
no direct information on the magnitude of the deformation. Thus, we cannot com-
ment directly on the exact amount of narrowing of the airway once buckling occurs.
Nevertheless, we can make relative comparisons of the size of the non-symmetric de-
formation for different parameters. In this way, we can determine whether buckling at
one set of parameters should result in more or less narrowing than buckling at another
set of parameter values. Buckling patterns for the points marked I-IV in Figures 3(a)
and 4(a) are shown in Figure 5. Comparing I and II, in the case of γ(o) = 1.2 fixed,
each type of growth can be argued to have advantageous and disadvantageous features.
At the lower value of γ(i), the buckling pressure is much higher but the airway narrows
significantly more. If an airway were to grow with the growth rates at point I, it would
have a greater resistance to smooth muscle contraction but would have exaggerated
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Figure 3: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the inner layer, for fixed isotropic growth in the outer layer, γ(o) = 1.2
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Figure 4: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the outer layer, for fixed isotropic growth in the inner layer, γ(i) = 1.2
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Figure 5: Buckling patterns, or tube deformation, after bifurcation for the points
marked I-IV in Figures 3(a) and 4(a).

narrowing when buckling occurs. At the higher value, it is the opposite: the airway
narrowing is reduced but the buckling pressure is much lower. There is essentially a
trade off between the two growth rates. This trade off does not occur in the case of
fixed γ(i) (Figure 4). The larger value of γ(o) (point IV) has a higher resistance to buck-
ling and comparable narrowing to the smaller value of γ(o) (point III). Between the two
stabilizing growths (I and IV), IV might be said to be the “preferable” airway because
of the combination of reduced narrowing and increased resistance to buckling. Note
that the growth ratio is nearly equal at points I and IV, but both values of γ are higher
at IV, and the increased growth leads to a larger airway area. Between the destabilizing
growths, III is more detrimental to airway function as it has greater airway narrowing.

Referring to Figures 3 - 4, it seems paradoxical that more growth in the outer layer is
required to strengthen the airway wall, since the inner layer is stiffer and intuitively, one
would expect that thickening the stiffest layer would have a greater impact in strength-
ening the wall. Wiggs et al. [38] found that increasing the thickness in the inner layer
has a greater impact on the buckling than increasing the thickness of the outer layer.
It should be noted, though, that even when the inner layer had a larger growth rate,
the actual thickness of the inner layer did not increase much - at point II of Figure 3,
the largest value of γ(i), the inner layer only increased in thickness by approximately
50%. This is an important consideration as it does not match laboratory studies, in
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Figure 6: Critical pressure as a function of anisotropic growth of the inner layer. All
other growth parameters are set to unity.

which asthmatic patients are found to have a basement membrane roughly doubled in
thickness compared to a normal airway [33, 11]. This suggests that isotropic growth is
not a suitable mechanism to enlarge the inner layer. Therefore, we now focus on the
mechanical effect of anisotropic growth for the inner layer.

3.2 Anisotropic growth
Here we only consider the growth of the inner layer. That is we assume that the outer
layer does not grow and explore possible buckling as a function of anisotropic growth
in the inner layer by varying the ratio γ

(i)
r /γ

(i)
θ

. Thickening of the inner layer only

occurs with radial growth. In Figure 6, the critical pressure is plotted for γ
(i)
θ

= 1 fixed

and γ
(i)
r varying from 1 to 2. As γ

(i)
r increases, the inner layer becomes thicker – it

doubles in size from γ(i) = 1 to 2. Correspondingly, the buckling pressure increases,
in a linear fashion. The thickness of the inner layer does not tell the whole story as
far as stability, though. There are two opposing effects that occur and factor into the
strength of the airway. Radial growth creates a radial compressive stress, which further
destabilizes the layer [1]. There is also a geometric effect - radial growth causes the
inner layer to be thicker, which has a stabilizing effect. Since the inner layer was very
thin to begin with, the geometric effect is stronger, and the resultant airway is more
stable than before growth.

In terms of the degree of narrowing, with increasing growth the buckling mode
decreases monotonically and significantly, from n = 27 at γ

(i)
r = 1 to n = 14 at γ

(i)
r = 2.

Included in Figure 6 are the form of the deformation at the values γ
(i)
r equals 1.2 and

2. Here the effect of buckling mode is apparent. In both cases, the inner radius at the
point of bifurcation is about 0.87, and both plots are produced using the same sized
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perturbation in the incremental deformation, but the airway narrowing is exaggerated
at the point with the lower mode, γ

(i)
r = 2. Defining the inner airway as the shaded gray

circles, this area is 18% greater in the case γ
(i)
r = 1.2. Increased narrowing with lower

buckling mode is essentially a geometric effect, as discussed in [19]. Interestingly, if
the anisotropic growth of the inner layer is accompanied by an isotropic swelling of the
outer layer, the critical pressure is almost doubled, while the lumen area stays roughly
the same.

3.3 Fixed outer radius
Note that the model as we have presented it does not restrict outward growth. For
instance in Case IV of Figure 5 we see that the outer edge is well beyond the location
of the smooth muscle before deformation (the outer radius of the reference state, equal
to 1.5). This may not be realistic. It is likely that the smooth muscle, even before
contracting, places a geometric constriction on the growth of the outer layer, so that the
airway is restricted to grow radially outward, and must otherwise grow radially inward.
The exact form of this constraint is complicated by the fact that the smooth muscle also
grows during remodeling [17] and would require a detailed understanding of the growth
relationships between the various layers of the airway. Nevertheless, some insight on
the effect of a geometric constraint can be obtained if we fix the size of the outer radius
during deformation. Mathematically, this changes the structure of the problem through
the boundary condition since growth and pressure become inter-dependent. Fixing
growth parameters automatically sets the pressure – a given growth creates pressure
at the outer wall since the outer edge pushes against the smooth muscle. In this case,
pressure is not a control parameter but is slaved to the growth parameters.

In Figure 7(a), we plot the bifurcation relationship between γ(o) and γ(i) for fixed
outer radius. A given value of γ(i) and the corresponding γ(o) represent a form of
growth which induces buckling. For each growth pair, the corresponding pressure is
plotted in Figure 7(b).

There are different ways to view these plots and this version of the model. If we
assume that the smooth muscle is rigid and does not allow any outward growth, then
Figure 7(a) shows the critical growth which induces buckling. Then Figure 7(b) is the
pressure induced at the smooth muscle due to the growth. In this sense the growth itself
is inducing buckling without any required contraction of the smooth muscle. Alterna-
tively, if the smooth muscle is compliant, then some outward growth can occur, and
when the smooth muscle contracts the fixed outer radius requirement pushes the outer
edge back to its original position. The biggest effect of the fixed outer radius condition
is that the amount of growth is greatly restricted. Only the lower-left triangular region
in Figure 7(a) constitutes valid growth. Viewing Figure 7(b), growth can be stabilizing
or destabilizing. Buckling patterns are included at the select points, indicating again a
trade off whereby the stronger airway is also narrower.
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Figure 7: Critical outer growth γ(o) (a) or alternatively critical pressure (b) as a function
of inner growth γ(i), for the model with fixed outer radius. The buckling mode at each
point is marked in (a). Buckling patterns at the end points are provided in (b).
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3.4 Inverse problem
It is clearly very difficult to determine experimentally the growth rates in the different
layers. However, some geometric parameters, such as the thicknesses of normal airway
and asthmatic airways are accessible This raises the question: if we knew exactly how
much thicker each layer of the airway wall became during remodeling and the pressure
applied by the smooth muscle, could we determine the growth parameters and the
amount of differential growth which occurred? We refer to this as the inverse problem:
given the details of the deformation and the buckling, can we determine the type of
growth which induced the deformation? Surprisingly, this can be done. A detailed
analysis of this idea is given in our other paper [28]. Mathematically, the argument
can be made by counting equations - there are 4 equations involved in determining
the bifurcation of a bilayered cylinder. Since there are also 4 growth parameters, the
inverse problem is well formulated, and a solution can be found.

We demonstrate here with two suggestive examples. We start with a reference
system in the absence of growth where the critical pressure is P∗= 0.2492, the buckling
mode is n = 27, and the radii at the point of buckling are a = 0.8750, b = 0.8974, and
c = 1.4336.
Case I. Doubled thickness of inner layer, half the buckling pressure. Keeping the same
values of a and c, but with b = 0.9197 and P = P∗/2 = 0.1246, we find that the inverse
problem has the solution γ

(i)
r = 1.9261, γ

(i)
θ

= 1.0514, γ
(o)
r = 1.1357, and γ

(o)
θ

= 0.8519.
Case II. Half thickness of inner layer, double the buckling pressure. Again, we keep
the same values of a and c, but let b = 0.8862 and P = 2P∗ = 0.4985. Here, the inverse
problem has the solution γ

(i)
r = 0.4853, γ

(i)
θ

= 1.0239, γ
(o)
r = 0.8862, and γ

(o)
θ

= 1.1464.
Physically, the rationale for the existence of these solutions relates to the competing

effects of residual stress and geometric effects discussed in Section 3.2. Given the large
range of possibilities with anisotropic growth in two layers, there is sufficient flexibility
in the growth variables that residual stress effects can be made dominant. In Case I, the
growth causes a large compressive radial stress which dominates the geometric effect
of the thicker inner layer. In Case II, it is the opposite: the growth creates a large tensile
stress, which stabilizes the airway even though the airway is geometrically weaker due
to the thinner inner layer.

These results illustrate the powerful effect that differential growth can have in air-
way remodeling. If one measured the airway dimensions in these examples without
knowledge of the growth process, incorrect conclusions on the effect of (and potential
reasons for) the structural changes would likely be reached. That different forms of
differential growth can produce exact opposite (and seemingly counterintuitive) results
gives strong support to the idea that the growth processes may play an important role
in airway remodeling and should not be neglected.

4 Conclusion
We have investigated in this paper the possible role of differential growth in airway
remodeling and the mechanism of mucosal folding. Similar to previous modeling at-
tempts, we have tried to classify the mechanical effect of airway wall thickness on
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mucosal folding and airway narrowing. The major addition in the present work which
has not been included in any prior studies is that we increase wall thickness through
a growth mechanism, thus accounting for the means by which the structural changes
during remodeling might occur. More importantly, studying increased thickness via
differential growth enables us to study changes in material properties, in particular
changes in stability properties due to residual stress.

We have explored several growth forms and the resulting impact on airway buck-
ling. Isotropic growth with differing rates in each layer showed the surprising result
that a more stable airway is achieved when growth of the soft outer layer exceeds that of
the stiff but thin inner layer. Anisotropic growth of the inner layer led to a strengthened
airway but significantly decreased the buckling mode. Fixing the outer radius so as to
account for the growth constriction of the smooth muscle greatly limited the amount of
growth.

Our analysis provides a general framework to understand the mechanical effect of
growth and remodeling. It can also be used to gain insight. For instance, isotropic
growth with different rates in each layer seems unlikely to be occurring in airways as
it does not lead to the substantial increase in thickness of the mucosal layer as ob-
served in experiments. Similarly, it is not clear that thicker airways are more stable ,
as stability depends on the contractile potential of the smooth muscle [31]. We have
shown that particular forms of growth can lead to a thicker and less stable airway wall.
Solutions to the inverse problem show that it is possible for a structural change to be
doubly detrimental by decreasing the strength and exaggerating the narrowing. It is
also possible that the structural changes may be increasing the stability at the cost of
increased narrowing. Underlying these possibilities is a need to understand the growth
processes.

If airway walls grow differentially and induce residual stress, as we have postulated
here, this can be detected by opening-angle experiments, in which a ring of airway wall
is cut radially. Any residual stress is relieved by the cut and the ring opens up. Such
experiments have been carried out in only one study [24], with the result that human
airways are essentially free of residual stress. However, it is important to note that
none of the human lungs in that experimental study came from humans with asthma.
This is a critical distinction, because our hypothesis is that normal airways are in a
zero stress state, and that stress might be introduced through airway remodeling, in
which case only asthmatic lungs would show an opening angle. Hence, opening angle
experiments would need to be carried out on normal and asthmatic airways to confirm
or deny the possibility of differential growth.

We now turn to the obvious shortcomings of an idealized model. The airway is a
complex structure, composed of multiple layers, which we have modeled as a bilayer
cylindrical tube. This is certainly a simplification, although the purpose is to provide
insight into the role of growth in mucosal folding and an idealized model is sufficient to
investigate these generic effects. Though we have allowed for material nonlinearities
in the airway layers, the specific choice of neo-Hookean hyperelastic strain energy
may have some effect on results. The two dimensional nature of the model and the
plane strain assumption are supported by the fact that folds in airways are observed
as longitudinal ridges [39]. The linear stability analysis has the drawback that it only
provides information up to the point of the buckling; any further deformation would
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require a much more computationally heavy numerical approach.
The results presented here might also suggest a future direction of research. The

structural changes associated with airway remodeling are generally considered uncon-
trollable and detrimental. However, if airways can be stimulated to grow in a particular
way, growth can potentially both strengthen the airways against narrowing and reduce
the degree of narrowing.

Figure Legends

Figure 1: Bilayer model of airway wall, consisting of a stiff and thin inner layer, the
mucosa, and a soft and thick outer layer, the submucosa. Surrounding the submucosa
is smooth muscle, which applies a normal pressure when it contracts.

Figure 2: Transformation of an area element under circumferential versus radial growth.

Figure 3: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the inner layer, for fixed isotropic growth in the outer layer, γ(o) = 1.2

Figure 4: Critical buckling pressure (a) and buckling mode (b) as a function of isotropic
growth of the outer layer, for fixed isotropic growth in the inner layer, γ(i) = 1.2

Figure 5: Buckling patterns, or tube deformation, after bifurcation for the points marked
I-IV in Figures 3(a) and 4(a).

Figure 6: Critical pressure as a function of anisotropic growth of the inner layer. All
other growth parameters are set to unity.

Figure 7: Critical outer growth γ(o) (a) or alternatively critical pressure (b) as a function
of inner growth γ(i), for the model with fixed outer radius. The buckling mode at each
point is marked in (a). Buckling patterns at the end points are provided in (b).
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Shape and position of the complete dose-response curve for inhaled methacholine
in normal subjects. Am. J. Respir. Crit. Care. Med., 154:642–648, 1996.

[27] Moreno, R. H., J. C. Hogg, and P. D. Paré. Mechanics of airway narrowing. Am.
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