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Abstract

Designing versatile soft actuators that achieve a satisfactory trade-off between robotic adaptability
and structural complexity is an exceedingly difficult task. Most predominantly, researchers have
used statistical and physics-based models to simulate the mechanical behavior of soft actuators.
Such computational representations can be used to identify optimal actuator designs that fulfill
user-specified robotic requirements. However, in trying to approach this actuator optimization
problem, designers are often forced to either employ simplifying modeling assumptions that reduce
predictive fidelity, or apply computationally expensive simulation frameworks that limit the extent
of design space exploration. Here, we propose a generalized Bayesian optimization methodology
for identifying designs of fiber-based biomimetic soft actuators that minimize the actuation energy
under arbitrary robotic control requirements. Our approach is computationally inexpensive, as it
quantifies the mechanics of the optimized fiber-based actuators by using the reduced-order active
filament model. We evaluated our Bayesian optimization procedure for a simple control objective
specification, in which the soft actuator’s end effector is to reach a specified target position. We
found that the proposed optimization methodology performs better than a random-search baseline,
since it identifies more desirable actuator designs faster and more frequently. Even though the
performance of our approach was evaluated for a single actuation paradigm and one set of design
requirements, the methodology can be readily applied to the design optimization of fiber-based
actuators under a large family of other robotic scenarios.
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1. Nomenclature

A = Fourier amplitude quantity in the active filament formulae for û
A = elastic part in the multiplicative decomposition of F
A = the general active filament model function taking Γ and P as input, and out-

putting ζ̂, û
a0, a1, b1 = first three Fourier coefficients of γ(θ)
B = domain B ⊂ R3 of the undeformed configuration of the filament (before dimen-

sional reduction)
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BA = reduced deformed configuration {r, {d1,d3,d3}} of the filament upon fiber ac-
tivation

C• = set of constraints imposed on object •
c• = an element of C•
D = director basis map {d1,d3,d3} : R→ {R3,R3,R3} of the filament
D = set of parameters defining the filament geometry
di = i-th vector in the director basis of the filament, i ∈ {1, 2, 3}, di ∈ R3

E = Young’s modulus of the filament
EG = energetic activation cost optimal under a control goal specification G
F = deformation gradient tensor field
F = set of parameters defining the fiber architecture embedded in the filament
f = objective function minimized via Bayesian optimization; an algorithmic augmen-

tation of EG

fbest = function of k returning the minimum value of f found after k iterations
fmin = minimum value of the objective function found so far in the Bayesian optimiza-

tion process
fth = objective value threshold for the computation of the Kmin metric
G = 3-dimensional tensor field of rank 2 defining the fibrillar activation along m

throughout B
G = definition of the control goal
G = complete specification of the control objective, with all auxiliary objects
GC = a boolean flag that is true whenever the actuator exhibits satisfactory control
GP = a Gaussian Process object
H = complete evaluation history of points (P, f) in the GP
Imp = improvement function used in the maximization of the expectation E[Imp]
JG = cost function associated with control goal G
K = number of iterations in the Bayesian optimization algorithm
Kd = number of iteration windows for which the distributions of function evaluations

are computed
Kmin = minimum iteration index k for which fbest(k) is smaller than some threshold fth
kGP = kernel function used in the GP
L = length of the actuator; the same for all rings
M = total number of rings in a multi-ring filament
ME = optimization scheme used for expected improvement maximization
MΓ = optimization scheme in the algorithm for activation optimization; default is

Nelder-Mead
m = 3-dimensional vector field defining the fiber directions throughout B
N = number of active angular sectors in the piecewise definition of γ(θ)
N = normal distribution; N (x |µ, σ2) is a normal PDF with mean µ and standard

deviation σ
Nres = maximum number of restarts of ME permitted for identifying a satisfactory

evaluation point
ncore = number of CPU cores available
nE = number of samples in the initial interior sampling plan used in the chosen scheme

forME
ninit = number of initial points (at each f evaluation) provided for the activation opti-

mization algorithm
nprior = number of prior data points after post-processing
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nrand = number of samples used for the random baseline in performance evaluation
ñprior = number of data points used to initialize the sampling plan for prior generation
O = set of auxiliary optimization hyperparameters
P = set of all parameters defining the active filament
Pnear

i = i-th closest point to some point P in L2-norm
R0 = outer radius of the entire filament
R1, R2 = inner and outer radii of the cylindrical filamentary tube defining a given ring
R = a tubular (ring) region in the simplified cylindrical geometry of the filament
r = filament centerline map (an R→ R3 space curve)
S = random seed used in the initialization ofMΓ

S = set of arc length values for a given target curve in G over which JG is defined
t = thickness of the annular cross-section of the filamentary tube
U = continuous uniform distribution; U(a, b), a, b ∈ Rn, corresponds to

∏n
i=1 U(ai, bi)

u = vector (u1, u2, u3), where ui is the curvature function of the filament around the
axis defined by di

û = intrinsic version of u
vij = weight in JG corresponding to dj , and the i-th element of Z and S
wi = weight in JG corresponding to r, and the i-th element of Z and S
X• = feasible set corresponding to the object •
Z = material parameter and the argument of BA
X prior = quasi-random sampling plan for prior generation
XGP = sampling plan for expected improvement maximization

Zmin/max = set of all minimum/maximum perturbation vectors z
(i)
min/max, i ∈ {1, . . . ,M}

Z = set of material parameters Z over which the cost function JG is defined
zmin/max = vector in RN of minimum/maximum perturbations of γ (for parallelized initial-

izations)
α2 = helical angle of the fiber field at R = R2 (the outer surface of the filamentary

tube)

Γ = vector of all γ(i), i ∈ {1, . . . ,M}
γ = piecewise function defining the cross-sectional activation distribution in a fiber

field of a single ring
γi = fiber activation parameter corresponding to the i-th annular sector in the piece-

wise definition of γ(θ)
γ0 = scalar factor in [0, 1] used in linear interpolation of the control path in the γ-space

Γ = vector of all γ(i), i ∈ {1, . . . ,M}
ΓG = optimal activation set Γ under a control objective specification G
ΓG
path = linearly interpolated control path in the γ-space, given an optimal activation set

ΓG

γ = (note the boldface) vector of all activation parameters γi, i ∈ {1, . . . , N}
δi = functions of R1, R2, α2, and ν appearing in the active filament formulae, i ∈

{0, 1, 2, 3}
ϵJ = positive hyperparameter defining the max. permissible value of JG at ΓG for a

sample to be valid
ϵf = positive hyperparameter defining the max. permissible value of f for a sample

to be valid
ζ = axial extension function for the filament

ζ̂ = intrinsic version of ζ
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Θ = angle interval of θ values in which the activation γ is non-zero
θ = polar angle in the annular cross section of the filament
θ0 = constant angular offset in the piecewise definition of γ(θ)
µ̂ = predicted mean function in the GP
ν = Poisson’s ratio of the filament
σ = angular width of an active annular sector in the piecewise definition of γ(θ)
σ̂ = standard deviation function for the prediction in the GP
φ = Fourier phase offset in the active filament formulae for û
χ = deformation map for the three-dimensional filament continuum

•(i) = object • for the i-th concentric tubular ring of the filament
•new = object • newly evaluated at a given iteration of the Bayesian optimization
•prior = object • corresponding to the set of priors for the Bayesian optimization
•∗ = object • resulting from the Bayesian optimization (P∗ = best filament design

found for a given G )
•0 = constant quantity • prescribed at the origin Z = 0
| • | = cardinality of a set •
⊗ = tensor product operation

2. Introduction

A significant challenge in the field of robotics is the optimal control and design of soft actuators.
While rigidly linked robotic arms are defined by a finite number of degrees of freedom, the motion
of soft actuators involves, in principle, an infinite number of degrees of freedom [1], since every
infinitesimal portion of the soft continuum can deform continuously in three-dimensional space. As
a result, the quantitative modeling of soft actuators requires advanced mathematical constructions
that are often computationally expensive. Currently, due to this great level of mechanical complex-
ity, there is no robust, physics-informed, and generalizable control law for infinite-degree-of-freedom
soft actuators [2]. Consequently, the challenges of soft actuator control, and the intricate mechanics
of these structures both render the design of soft-robotic arms highly difficult [3].

To tackle the formidable challenge of soft actuator design, some researchers have looked to nature
for inspiration in developing biomimetic designs of soft robotic arms [4]. This meta-level approach
led to numerous prototypes mimicking the structure and mechanical principles of slender biological
actuators such as the elephant trunk [5, 6, 7, 8], or the octopus arm [9, 10, 11, 12, 13, 14]. However,
these biomimetic designs are largely based on qualitative decisions when translating the features of
their biological counterparts into their respective engineering solutions. Further, past work relied
primarily on empirical observations to guide the choices of the various design parameters. While
this approach is interesting, it has not been an unmitigated success.

Another approach is to apply automated, quantitative optimization methodologies to identify
most desirable soft-robotic designs [15] and state-of-the-art optimization methods have been im-
plemented to derive optimal soft actuator geometries [16, 17], or actuation designs [18, 19] under
various objective metrics. However, to date, soft-robotic actuator optimization lacks a formally
generalized framework for determining actuator designs that maximize robotic adaptability and
actuation versatility. This limitation exists partly because the most common methodologies for
the design optimization of soft actuators rely mainly on computationally expensive models of ac-
tuator mechanics that utilize high-fidelity simulations to compute the objective function values.
As a consequence, the high computational cost of most soft actuator models generally limits the
evaluation of the actuator design to a singular robotic behavior paradigm—such as a particular
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mode of deformation that the robotic arm should specialize in, or a desired target geometry of the
actuator.

To address these limitations, we seek to bridge the qualitative bio-inspired design approach
with a formalized, computationally efficient methodology for soft actuator design optimization
under generalized control conditions. In particular, we apply a surrogate Bayesian optimization
framework to optimize a biomimetic soft-robotic arm under a desired control objective. In principle,
the deformation of an arbitrary soft actuator can be approximated computationally via multi-
physics finite element analysis. However, a single execution of a finite-element simulation is a
highly expensive operation and, as such, it is not a good candidate for a model-based approach for
real-time soft actuator control. As such, we consider a special class of biomimetic actuator designs
with embedded fibers, and model the actuator by applying a reduced-order active filament model
[20], which ensures low computational cost for predicting the actuator deformation for a given
control input. Most importantly, our approach seeks to identify efficiently fiber-based actuator
designs that are optimal for arbitrary control objectives.

We proceed by first summarizing the active filament model [20] to quantify the physics of
an arbitrarily designed fiber-based actuator. Then, we describe the optimization approach [21] to
tackle the inverse problem of solving for the actuation needed to achieve a specific control objective,
for a given actuator design. Finally, we outline, evaluate, and discuss the Bayesian optimization
methodology to estimate optimal actuator designs under a specified control objective.

3. Active Filament Model

The active filament model uses the morphoelastic rod theory [22] to describe the mechanics of
filaments with embedded active fiber fields in a reduced-order fashion [20]. In the following section,
we briefly summarize the active filament theory as a prelude to the development of the optimization
approach for identifying optimal fiber-based actuator designs.

3.1. Generalized dimensional reduction

To reduce the computational cost of high-fidelity soft actuator modeling, we adopt a dimensional
reduction of the actuator’s three-dimensional filamentary continuum to a one-dimensional Kirchhoff
rod [20, 23, 24, 25]. The resulting one-dimensional structure is defined by its centerline function
r : R → R3, and the director basis function D = {d1,d2,d3}, where di : R → R3. If Z denotes
the material parameter of the filament, i.e., the arc length of the filament in the undeformed
configuration, and L is its total length, then the centerline r is a mapping from Z ∈ [0, L] to the
one-dimensional space-curve shape of the deformed filament. Similarly, D evaluated at Z defines
an orthonormal basis that characterizes the local orientation of the deformed cross section at Z.
By considering all Z ∈ [0, L], the functions r and D together make up the dimensionally-reduced
representation of the deformed filament.

The dimensional reduction results in a simplified form of the filament deformation χ which
maps the initial configuration B to the current configuration BA. In this reduced form, we write
the deformation map in terms of r and D as

χ(X) = r(Z) +

3∑
i=1

εai(εR,Θ, Z)di(Z) (1)

where ε is the small parameter of the thin rod geometry, ai are the reactive strains that define the
deformation of the cross section, X is a point in B, and {R,Θ, Z} are the cylindrical coordinates
of X.
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Remark. While we can equivalently express χ(X) in any other coordinate system, it is most
natural to write it in cylindrical coordinates due to the slender, tubular shape of the filamentary
structure in its reference configuration.

To ensure the validity of the applied reduction, we further require that the cross sections S (Z)
satisfy

∀Z :

∫
S (Z)

EX dXdY =

∫
S (Z)

EY dXdY =

∫
S (Z)

EXY dXdY = 0, (2)

where X and Y are the Cartesian coordinates in X = (X,Y, Z) ∈ B, and E is the Young’s modulus
of the filament material [20].

We express r and D most naturally in terms of the local (Darboux) curvature vector u =
{u1, u2, u3} and the stretch ζ, which are both functions of Z. The components u1 and u2 represent
the local bending of the filament about the directors d1 and d2, respectively, the component u3
corresponds to the local twist of the filament around d3, and ζ describes the local stretch of the
centerline r. These functions are governed by the following system of ordinary differential equations
that describes the kinematics of the filament:

r′(Z) = ζ(Z)d3(Z),

d′
i(Z) = ζ(Z)u(Z)× di(Z),

(3)

for i ∈ {1, 2, 3} [20]. For a given set of curvature and extension functions, we can compute the
deformed configuration of the filament {r,D} by integrating (3) numerically.

Remark. The system of differential equations in (3) only has a closed-form analytical solution
for special forms of the functions u(Z) and ζ(Z). However, a generalized design of a fiber-based
actuator does not produce these particular functions, so numerical integration of (3) is needed.

3.2. Special case of active filaments

The system of ordinary differential equations (3) is a geometric statement relating a filament
shape to its curvatures. To obtain these curvatures, we assume that the elastic structure of interest
is sufficiently slender. Then, the active filament theory [20] particularizes the filament geometry
and characterizes the deformation as a result of fibrillar activation, which defines the expressions
for the intrinsic curvature û and extension ζ̂ that are analytically tractable.

In the active filament model, we specify a fiber field m : B → R3 at all points of the undeformed
geometry B ⊂ R3. For a tubular filament, we can construct an arbitrary fiber field in a cylindrical
basis as

m = (sinα sinβ) eR + (sinα cosβ) eΘ + (cosα) eZ , (4)

where α and β are functions of the cylindrical coordinates {R,Θ, Z}, with associated orthonormal
basis vectors {eR, eΘ, eZ}. The deformation then results from the activation of the fiber field defined
by a tensor space G : B → R3 ⊗ R3, which is constructed such that one of its eigenvector fields is
m, and its two remaining eigenvector fields m⊥ and m′

⊥ are orthonormal to m. Assuming a small
deviation of G from 1, we define fibrillar activation such that the eigenvalues of G corresponding
to m, m⊥ and m′

⊥ are

δ = 1 + εg(R,Θ, Z), δ⊥ = δ′⊥ = 1− ενg(R,Θ, Z), (5)
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where ν is the Poisson’s ratio, and g is a scalar function of R, Θ, and Z [20]. As a result, the
activation tensor becomes

G = 1+ εg

 (1 + ν) sin2α sin2β − ν (1 + ν) sin2α sinβ cosβ (1 + ν) sinα cosα sinβ
(1 + ν) sin2α sinβ cosβ −(1 + ν) sin2α sin2β − ν (1 + ν) sinα cosα cosβ
(1 + ν) sinα cosα sinβ (1 + ν) sinα cosα cosβ 1

2(1− ν + (1 + ν) cos 2α)

 .

(6)

This definition of G explicitly defines the local contraction or extension of all fibers in the filament,
with the Poisson effects captured by the determinant of G [20]. To compute the deformation of
the complete three-dimensional body, we adopt a multiplicative decomposition of the deformation
gradient [23]:

F = Gradχ = A ·G, (7)

where χ is the deformation map, A is the elastic part of the deformation gradient, and G is the
activation tensor [22]. Given the form of χ in (1), we can write the deformation gradient as

F =

 a1R
1
Ra1Θ εζ (u2a3 − u3a2)

a2R
1
Ra2Θ εζ (u3a1 − u1a3)

a3R
1
Ra3Θ ζ (1 + ε(u1a2 − u2a1))

 , (8)

from which we can compute the elastic part A for any specific activation tensor G [20].
In general, from the deformation gradient F, we can compute the filament’s deformation upon

arbitrary fibrillar activation by using the finite element method. However, such an approach is too
computationally expensive for real-time filament control. Thus, we reduce the filament domain B
and its deformed configuration to their one-dimensional representations as described in Section 3.1,
and re-express all other objects in terms of reduced-order quantities. We then write the total energy
of the filament as

W = ε2
∫ L

0
dZ

∫
S (Z)

W (A)(detG)RdRdΘ, (9)

where W is the strain energy density function. Noting that A = F ·G−1, we expand the energy
W up to the second order in the small parameter ε, assuming a quadratic strain energy density

W =
1

2

[
µ
(
tr(H ·HT ) + tr(H2)

)
+ λ(tr(H))2

]
, (10)

where H = A − 1, and µ, λ are the Lamé parameters of the material [20]. Finally, we minimize
the resulting energy functional W up to O(ε4) over all admissible deformed configurations {r,D}.
We express the terms in the resulting minimal energy in the standard form for Kirchhoff rods [23],

W =
1

2

∫ L

0

[
K0(ζ − ζ̂)2 +K1(u1 − û1)

2 +K2(u2 − û2)
2 +K3(u3 − û3)

2
]
dZ, (11)

to extract the stiffness coefficients K0, K1, K2, K3, and the intrinsic curvature and extension
functions û1, û2, û3, and ζ̂. Extracting these quantities yields the following analytical expressions
[20]:

û1 =
H1

K1
, û2 = −

H2

K2
, û3 =

H3

K3
, ζ̂ = 1 +

H0

K0
, (12)
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where

H0 =
1

2

∫
S (Z)

E(1− ν + (1 + ν) cos 2α)g R dRdΘ,

H1 =
1

2

∫
S (Z)

ER2(1− ν + (1 + ν) cos 2α)g sinΘ dRdΘ,

H2 =
1

2

∫
S (Z)

ER2(1− ν + (1 + ν) cos 2α)g cosΘ dRdΘ,

H3 =
1

2

∫
S (Z)

E

ν + 1

(
g(ν + 1) sin(2α)

(
(R2 + ϕΘ) cosβ +RϕR sinβ

)
−

ωΘ

(
ϕΘ +R2

)
R

−RωRϕR

)
dRdΘ, (13)

K0 =

∫
S (Z)

ERdRdΘ,

K1 =

∫
S (Z)

ER3 sin2Θ dRdΘ,

K2 =

∫
S (Z)

ER3 cos2Θ dRdΘ,

K3 =

∫
S (Z)

µ

(
R3 + 2RϕΘ +

1

R
ϕ2
Θ +Rϕ2

R

)
dRdΘ,

where the functions ϕ and ω satisfy

∆ϕ = 0, X ∈ S ,

n ·Gradϕ = −Rn · eΘ, X ∈ ∂S ,

∆ω = −2R(1 + ν)[sinα cosα (RgR sinβ + gΘ cosβ)

+ g(−RαR sin2 α sinβ + αΘ cos(2α) cosβ

+RαR cos2 α sinβ − βΘ sinα cosα sinβ

+RβR sinα cosα cosβ + sinα cosα sinβ)], X ∈ S ,

n ·Gradω = 0, X ∈ ∂S ,

(14)

where n is the outward normal of ∂S , g = g(R,Θ, Z), and •x denotes a derivative with respect
to x. Most importantly, the primary result of the active filament model is the construction of an
explicit relationship between the fibrillar activation and the deformation of the fiber-based filament.

In the most general case, û and ζ̂ are functions of the fiber activation and the filament’s
geometry, despite being analytically explicit. Therefore, we adopt further simplifications of the
filamentary structure [20], in which the tubular geometry of the filament consists of M concentric

cylindrical rings R(1), . . . ,R(M). The inner and outer radii R
(i)
1 and R

(i)
2 , respectively, define the

geometry of the i-th ring, such that R
(i)
1 = R

(i−1)
2 to preserve domain continuity. Equivalently,

we can represent the geometry of all rings in terms of independent parameters only, i.e., the inner

radius R
(1)
1 of the first ring, followed by M ring thickness values t(1), . . . , t(M). The specific form

of the active filament theory considers a class of helical fiber fields embedded in each ring R(i) and

defined via a helical angle α
(i)
2 ∈ (−π/2, π/2) [20]. Here, α(i)

2 = 0 corresponds to longitudinal fibers

aligned with the long axis of the filament, while α
(i)
2 ̸= 0 represents a field of either right-handed
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or left-handed helical fibers with α
(i)
2 > 0 or α

(i)
2 < 0, respectively. With these assumptions, the

expressions for the stress-free curvature and extension functions simplify to [20, 21]:

û1 = −
4

3R4
0

M∑
i=1

A(i)δ
(i)
1 sin

(
φ(i) − Z

R
(i)
2

tanα
(i)
2

)
, û3 =

2

R4
0

M∑
i=1

δ
(i)
3 a

(i)
0 ,

û2 = −
4

3R4
0

M∑
i=1

A(i)δ
(i)
2 cos

(
φ(i) − Z

R
(i)
2

tanα
(i)
2

)
, ζ̂ = 1 +

1

2R2
0

M∑
i=1

a
(i)
0 δ

(i)
0 ,

(15)

where

a
(i)
0 =

1

π

∫ 2π

0
γ(i)(θ) dθ, a

(i)
1 =

1

π

∫ 2π

0
γ(i)(θ) cos θ dθ, b

(i)
1 =

1

π

∫ 2π

0
γ(i)(θ) sin θ dθ (16)

are the first three Fourier coefficients of a prescribed fiber activation distribution γ(i)(θ) of the i-th
ring, expressed in terms of the polar coordinate θ in the annular cross section of R(i). The set of
activation distributions Γ(θ) = {γ(1)(θ), . . . , γ(M)(θ)} fully defines the fibrillar activation—either
contraction or extension—of the helical fiber fields in all M rings of the filament. The remaining

quantities in (15) include the outer radius of the filament R0 = R
(M)
2 , the amplitude A(i) and phase

φ(i) related via a
(i)
1 = A(i) cos(φ(i)), b

(i)
1 = −A(i) sin(φ(i)), and the δ

(i)
j factors, j ∈ {0, 1, 2, 3}, that

are functions of R
(i)
1 , R

(i)
2 , α

(i)
2 , and the Poisson’s ratio ν(i).

Remark. The active filament model assumes that the activation results in changes of the purely
intrinsic properties of the structure. As such, (15) does not account for the effect of external forces
in predicting the resulting deformation. Nevertheless, if the filament is also subject to any external
loading, we can use the intrinsic û and ζ̂ in (15) to compute the curvatures u and extension ζ of
the loaded filament, based on the classical equations of Kirchhoff rod mechanics [23].

3.3. Piecewise constant activation distribution

The form of the activation distribution γ(i)(θ) can, in principle, be an arbitrary function of θ.
In the context of slender biological actuators and soft-robotic arms, the fibers are often discrete and
not distributed continuously. Thus, the form of γ(θ) is restricted to piecewise constant functions

[20, 21], in which annular sectors Θ(i)× [R(i)
1 , R

(i)
2 ], with non-zero values of γ(i) indicate the presence

of an activatable fiber over θ ∈ Θ(i), where Θ(i) ⊂ [0, 2π], while all remaining annular sectors in the
piecewise γ(θ) are passive. Formally, we assume that the piecewise form of γ(i)(θ) is parametrized in
terms of the number N (i) ∈ Z+ of active annular sectors with non-zero activation γ(i), the angular

width σ(i) of all active sectors, and the overall angular offset θ
(i)
0 of all active annular sectors. The

angular distances between subsequent active sectors are determined by further enforcing N (i)-fold
rotational symmetry on γ(i)(θ). Since the assumed form of γ(i)(θ) is piecewise constant, the value of
γ(i) remains constant within each individual active sector. As a result, it is natural to describe the
piecewise constant activation γ(i)(θ) as a vector γ(i) ∈ RN(i)

of activation values for the respective
N (i) active sectors of the i-th ring. The fibrillar activation in the entire filament then becomes the
vector Γ = [γ(1), . . . ,γ(M)] ∈ R

∑
i N

(i)
of activation values in all sectors across all M rings.

The curvature u and extension ζ are explicit functions of Γ, the filament geometry parameter

set D = {L,R(1)
1 , t}, the fiber architecture parameter set F = {α2,σ,N,θ0}, and the mechanical

properties of the filament {E,ν}, where any boldface quantity X denotes a vector [X(1), . . . , X(M)].
We summarize the geometry D, architecture F , and the material properties {E,ν} in the set
P = D ∪ F ∪ {E,ν} to represent the set of all parameters describing the filament design. Fig. 1
summarizes the generalized design of a multi-ring active filament.
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Ring 1 Ring 2 Ring All rings(a)

(b)

Figure 1: Generalized geometry of a multi-ring active filament with helical fibers and a piecewise uniform distribution
of fibrillar activation. (a) Tubular geometry of individual rings R(i) with the respective helical fiber angles α

(i)
2 ,

i = 1, . . . ,M . (b) Cross sections of each cylindrical ring at Z = 0.

Remark. The dimensionality of the fiber activation vector Γ depends on the set P, since all
γ(i) are functions of the respective numbers of active sectors N (i) in N. Similarly, the number of
independent parameters that control the deformation of the filament is also a function of N.

The theory of active filaments defines the mapping from the fibrillar activation Γ and the
filament design P to the curvature u and extension ζ. We denote this mapping with the shorthand
notation A(Γ,P). Passing the output {u, ζ} of A(Γ,P) to the system of differential equations
in (3) and integrating yields the deformed configuration of the active filament BA(Z;Γ,P) =
{r(Z;Γ,P),D(Z;Γ,P)}. The explicit relationship of BA as a function of the fibrillar activation
and the filament design is a starting point for the development of the optimization approach for
fiber-based actuator design.

4. Optimization Approach

4.1. Actuator control: activation optimization

In this section, we briefly describe our actuator control approach [21] that sets the basis for the
proposed filament design optimization method.

The active filament model A tackles the forward problem of predicting the deformation BA of an
actuator, given the fiber activation input Γ. Since the evaluation of A for a given Γ is inexpensive,
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it is meaningful to formulate the basis of our control approach as an inverse problem of solving
for the fiber activation Γ required to achieve a target actuator deformation. We seek to construct
an inverse mapping A−1

Γ that maps the desired properties of a given deformation BA to a fiber
activation Γ.

However, the numerical integration step required to obtain BA with the specified properties
from the output of A renders the explicit derivation of the form of A−1

Γ intractable. Instead,
we approximate A−1

Γ with an optimization problem over Γ ∈ XΓ defined by a control objective
specification G . The specification G consists of a prescribed control goal G = G(BA), the cost
function JG(BA) associated with G, and the set of activation constraints CΓ. The control goal G
can be most naturally expressed as the target deformed configuration BGA of the activated filament.
In particular, let us define G as a discrete mapping BA(Z) → BGA(S), where Z is a chosen set
of material coordinates Zi ∈ [0, L] at which BA is to match BGA evaluated at Si ∈ S, for i ∈
{1, . . . , |Z| = |S|}. Further, we take the cost function JG(BA) to be a weighted sum of the squared
L2-norm distances between the corresponding elements of BA and BGA, such that any deviation
of the predicted configuration from the target configuration is penalized. Finally, the constraints
cΓ ∈ CΓ can be arbitrary functions of Γ. In summary, the generalized control objective optimization
problem under a specification G = {G, JG , CΓ} is

minimize
Γ

(
JG(BA(Z;Γ,P))

)
, subject to CΓ,

where G : BA(Zi)→ BGA(Si), ∀i ∈ {1, . . . , |Z| = |S|},

and JG(BA) =
|Z|∑
i=1

wi∥r(Zi)− rG(Si)∥22 +
3∑

j=1

vij∥dj(Zi)− dG
j (Si)∥22

,

(17)

with wi, vij ≥ 0 defining the cost weights of all terms in JG .
We denote the minimizer of the above problem as ΓG , under a specification G . Algorithm 1

shows a pseudocode description of the solution of (17), for some arbitrary optimization scheme
MΓ. The implementation utilized in this work uses the Nelder-Mead simplex algorithm for MΓ

by default, but it can readily employ other schemes as well. We emphasize that this optimization
problem assumes a constant parameter set P, which is not the case for the developments in
Sections 4.3 and 4.4.

Remark. Formally, the minimum of JG(BA) is 0 for a sufficiently versatile actuator design. How-
ever, most choices of the target configuration BGA require a highly complex design to achieve G
exactly. In practice, after solving (17), a given actuator design will often only reach a configuration
BA with some finite deviation from BGA, such that JG(BA) > 0. Thus, the choice of the weights
wi, vij has a considerable impact on both the minimum JG(BA) and the minimizer ΓG .

For the most general definition of G , no single optimization schemeMΓ utilized to solve (17)
reaches a global minimum of JG robustly. Nonetheless, in this work, we evaluate our proposed
filament design methodology under a relatively simplistic example of G , for which the Nelder-Mead
method proves to be a sufficiently effective choice forMΓ. Specifically, we consider a class of control
goals G that prescribe a target endpoint position of the actuator. That is, the corresponding control
objective specification is

Gend = {Gend, JG
end, CΓ}, (18)

where
Gend : r(L)→ rGend, and JG

end(BA) = ∥r(L)− rGend∥
2
2, (19)
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Algorithm 1 Quasi-static control objective optimization

Require: MΓ, ▷ Optimization scheme used in this algorithm; default = Nelder-Mead.
G = {G, CΓ, JG(BA),Z,S} ▷ Control objective specification
P = D ∪ F ∪ {E,ν}, ▷ P = all filament properties, D = filament geometry, F = fiber
architecture
where D = {L,R(1)

1 , t}, F = {α2,σ,N,θ0},
with X = {X(1), . . . , X(M)}, ∀X ∈ {t, α2, σ,N, θ0, E, ν},
and ∀i ∈ {1, . . . ,M} : R

(i)
1 ≥ 0, R

(i+1)
1 = R

(i)
1 + t(i), t(i) ≥ 0, α

(i)
2 ∈ (−π/2, π/2), σ(i) ∈

[0, 2π/N (i)], N (i) ∈ Z+, θ
(i)
0 ∈ [0, 2π), E(i) ≥ 0, ν(i) ∈ [0, 1/2], and L > 0

ζ̂(Z;Γ,P), û(Z;Γ,P)← A(Γ;P) ▷ Active filament model

ΓG ← argminΓ

(
JG(BA(Z;Γ,P)) s.t. CΓ, with schemeMΓ,

where BA(Z;Γ,P)← Solve(Eq. (3), r|Z=0 = r0,di|Z=0 = d0
i , i ∈ {1, 2, 3})

)
ΓG
path ← γ0Γ

G , γ0 ∈ [0, 1] ▷ Optional control path output

for a desired endpoint position rGend of the actuator and a prescribed set of activation constraints.
Examples of activation constraints include explicit restrictions on the activation parameters, i.e.,

cΓ = (γ
(i)
j ∈ [γmin, γmax], ∀i, j); maximum curvature magnitude constraints cΓ = (∥u(Γ,P)∥2 ≤

Umax, Umax > 0); or obstacle avoidance constraints cΓ = (r(Z;Γ,P) /∈ O, ∀Z ∈ [0, L]) for some
obstacle region O ⊂ R3.

An important assumption underlying the validity of applying the optimization-based form of
A−1
Γ to soft actuator control is that the motion of the actuator is quasi-static. In particular, we

assume that the time scale of transient effects due to fiber activation is long, i.e., no significant
accelerations are present in the time-dependent deformation of the actuator. A potential quasi-
static path of the actuator from its undeformed configuration to BGA can then be constructed via
linear interpolation of the optimal activation ΓG , i.e. ΓG

path = γ0Γ
G , for γ0 ∈ [0, 1].

4.2. Energy of activation

The quasi-static control approach relies on the optimization of a cost function JG based on a
specification G . To optimize the design of the geometry and fiber architecture of the actuator, we
require another metric to optimize for. Here, we seek to optimize the actuator design under the
control-optimal energetic cost of activation EG to identify the design that is the most energetically
efficient for a given control objective specification. The descriptor control-optimal refers to the fact
that EG is computed for the optimum ΓG obtained from the optimization problem in (17), and it
is not an optimum with respect to P.

The explicit form of the energetic cost of activation can take many forms, since activation itself
is an abstract, dimensionless quantity that corresponds to fibrillar strains in the filament’s fiber
field. For a general, not necessarily piecewise form ΓG (θ) of the activation distribution, we assume
the following definition of the control-optimal activation energy,

EG (ΓG ) =

∫
A
ΓG (θ)2 dA, (20)

where A is the annular region of the transverse cross section of the filament. By construction, Γ(θ)
is not a function of Z, since its rotation around d3 with respect to Z is implicitly captured in the A
formulae. As such, the integration over only the cross section provides a meaningful energy metric.
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Algorithm 2 Control-optimal energetic activation cost EG , under control goal specification G

Require: G = {G, CΓ, JG(BA),Z,S} ▷ Control objective specification
P = D ∪ F ∪ {E,ν}, ▷ All filament parameters

ΓG ← Algorithm 1(G ,P) ▷ Solve the activation optimization problem

EG ← 1
2π

∑M
i=1

(
(R

(i)
2 )2 − (R

(i)
1 )2

)
σ(i)
∥∥γG (i)

∥∥2
2

▷ Energetic cost of activation

Assuming the piecewise constant activation distribution Γ from Section 3.3, we can equivalently
write the energy in (20) as

EG (ΓG ) =
1

2π

M∑
i=1

(
(R

(i)
2 )2 − (R

(i)
1 )2

)
σ(i)
∥∥∥γG (i)

∥∥∥2
2
, (21)

which enables cheap computation of the control-optimal activation cost. Algorithm 2 provides a
schematic implementation of the chosen activation energy metric.

Remark. Since EG is a function of P and the minimizer of the optimization problem (17), it can
be equivalently expressed as a function of G and P as

EG = EG

(
argmin

Γ

(
JG(BA(Z;Γ,P)), s.t. CΓ

))
⇔ EG = EG (G ,P), (22)

which we adopt in our implementation.

4.3. Automated actuator design

The main goal of this work is to formulate a methodology for identifying optimal fiber-based
actuator designs under a prescribed control objective. Our hypothesis is that a potentially viable
approach for this optimization goal is to minimize the control-optimal energetic cost of activation
EG over the space XP of all feasible actuator designs P, for a specific control objective specification
G . In its most general form, this optimization problem becomes

minimize
P

(
EG (G ,P)

)
,

subject to P ∈ XP .
(23)

Importantly, (23) is a nested optimization problem, for which every evaluation of EG requires a
complete solution of the optimization problem in (17) for a given P, and the prescribed G . In the
following, we evaluate the validity of the approach defined by (23) and assume the simplified form
of G in (18), in which the control goal is for the actuator’s endpoint to reach a prescribed target
position. Algorithm 1 outlines the definition of the largest permissible feasible set XP in its input
requirements. In practice, we introduce further restrictions on P to improve the optimization
performance, and avoid regions of P that result in a significant increase in computational cost.

4.4. Bayesian optimization

Since every evaluation of EG involves solving an entire optimization problem, function evalua-
tions in (23) are computationally expensive. Preliminary testing revealed that solving (23) directly
by using an optimization method such as the Nelder-Mead simplex method or population-based
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schemes results in either no significant improvement of the objective value over any feasible number
of function evaluations, or premature convergence to a local optimum. The elevated computational
cost motivates the construction of a surrogate model to estimate EG and compute an approximate
solution of (23) in a feasible time. In particular, we chose a Gaussian process as a probabilistic
surrogate model for the purposes of Bayesian optimization. The Gaussian process object is defined
as

GP = GP(m, kGP;H), (24)

where m is the mean function, kGP is the kernel, and H = {(x1, h(x1)), (x2, h(x2)), . . .} is the
function evaluation history for a function h : D → R approximated by the Gaussian process, for a
given design space D. The Gaussian process used in this work assumes a zero mean, m = 0, and a
Matérn kernel of the form

kGP(x, x
′) =

1

2ν̃−1Γ̃(ν̃)

(
2
√
ν̃

ϑ
∥x− x′∥2

)ν̃

Kν̃

(
2
√
ν̃

ϑ
∥x− x′∥2

)
, (25)

where Γ̃ is the Gamma function and Kν̃ is the modified Bessel function of the second kind [26]. We
selected the Matérn kernel over the classical squared exponential kernel, as it is more parametrically
flexible [27] and could capture more intricate features of EG . For machine learning applications,
Matérn kernels with ν̃ = 3/2 and ν̃ = 5/2 are most preferable [28]. Ultimately, the value ν̃ = 5/2
was ultimately selected, as it yielded better performance in preliminary testing.

Before we can use the surrogate Gaussian process for Bayesian optimization, we need to aug-
ment algorithmically the mathematical description of the control-optimal activation energy EG to
ensure meaningful optimization results. The primary reason for a more careful treatment of the
EG evaluation algorithm is that Algorithm 1 is not guaranteed to converge to a global minimum,
and, even if it does find a global minimizer ΓG , the value of JG at that global minimum could be
positive for some G and P. This occurs whenever a given actuator design P cannot achieve G for
any activation Γ ∈ XΓ). As a result, whenever ΓG results in a small EG and JG > 0, optimizing EG

according to (23) would yield misleading optimization results, because the small energetic activa-
tion cost would correspond to an actuator with poor control capabilities for the prescribed control
objective.

The described behavior leads to the first, simple augmentation of EG . We add a Boolean flag
output GC = (JG ≤ ϵJ) that is true if the computed optimal activation ΓG results in satisfactory
control, and false otherwise. We measure the quality of the control result by using a small hyper-
parameter threshold ϵJ > 0. This additional output enables more flexibility in the design of the
Bayesian optimization method, as it effectively allows monitoring the actuator control quality at
each step of the objective minimization.

The second modification of EG is meant purely to increase the computational robustness of
the Bayesian optimization process. In particular, for a machine with ncore cores, EG is evalu-
ated ncore times in parallel, with several randomized modifications applied to each evaluation to
increase the success rate of the optimization scheme MΓ in solving (17) globally. On all cores,
we initialize the seed in MΓ with a random value, assuming that MΓ incorporates stochastic-
ity. We determine the initial points passed to MΓ based on the set of available priors Hprior =
{(Pprior

1 , fprior
1 ), . . . , (Pprior

nprior , f
prior
nprior)}. Concretely, we first compute a set of ninit points Pprior in

Hprior closest to the current P in L2-norm, and denote it as {Pnear
1 , . . . ,Pnear

ninit
}. Then, on one of the

cores, we extract the set of all optimal ΓG
i corresponding to the respective Pnear

i , i ∈ {1, . . . , ninit}
and use it as the set of initial points forMΓ, e.g., for the initialization of the simplex if we choose
the Nelder-Mead simplex method forMΓ.
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Algorithm 3 Objective f , under control goal specification G

Require: G = {G, CΓ, JG(BA),Z,S} ▷ Control objective specification
P = D ∪ F ∪ {E,ν}, ▷ All filament parameters
O = {ϵJ , ninit,Zmin,Zmax}, ▷ Auxiliary optimization hyperparameters
is prior ▷ Flag indicating whether the input is a prior or not

if is prior then
ΓG , EG ← Algorithm 2(G ,P)

else
Require: {Pprior

1 , . . . ,Pprior
nprior} ▷ Prior design points

{Pnear
1 , . . . ,Pnear

ninit
} ← ninit design points in {Pprior

1 , . . . ,Pprior
nprior} closest to P in L2-norm

that satisfy the N (i) matching condition
{ΓG

1 , . . . ,Γ
G
ninit
} ← ΓG optimal activation points corresponding to the
{Pnear

1 , . . . ,Pnear
ninit
} priors

for i← 1 to ncore do ▷ Evaluate the for-loop body on each CPU core in parallel
S ← Randomized seed for activation optimization
if i ≥ 2 then

for j ← 1 to ninit do
Z ∼ U(Zmin,Zmax) ▷ Uniform sampling from [Zmin,Zmax],

Z = (z(1), . . . , z(M)), z(k) ∈ RN(k)

ΓG
j ← ΓG

j + Z
end for

end if
ΓG
[i], E

G
[i] ← Algorithm 2(G ,P), with seed S, and initial points {ΓG

1 , . . . ,Γ
G
ninit
}

end for
I ← argmini∈{1,...,ncore}

(
JG(BA(Z;ΓG

[i],P)
)

ΓG , EG ← ΓG
[I], E

G
[I]

end if
f ← EG

GC← (JG(BA(Z;ΓG ,P)) ≤ ϵJ) ▷ Flag indicating whether ΓG results in satisfactory control

Remark. Importantly, for a given input P, the L2-norm distances in P-space are only valid if
all N (i) in P match with all N (i) in the priors used for comparison, since the dimensionality of
the corresponding prior Γ vectors has to match the dimensionality of Γ defined by P. Priors for
which this matching condition is not met are not used in the search for closest points. If no priors
meet the condition, then we randomize the Γ initialization inMΓ.

Finally, on all remaining cores, we perturb the extracted initial point candidates ΓG
i by a

random perturbation Z sampled from a continuous uniform distribution U(Zmin,Zmax), where
Zmin and Zmax are the sets of minimum and maximum bounds on the admissible perturbations for
parameters in Γ. Introducing these parallelized modifications into EG increases the chance to find
a global optimum on at least one of the cores, while preserving computational performance.

We compile these augmentations of EG into a new objective function f(G ,P) implemented in
Algorithm 3. We optimize the function f using Bayesian optimization, according to the augmented
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optimization problem
Bayminimize

P
(f(G ,P)),

subject to P ∈ XP ,
(26)

where the prefix “Bay” emphasizes that the minimization of f occurs in a Bayesian sense, using
the Gaussian process in (24), (25).

The Bayesian optimization approach chooses the evaluation points P heuristically by maxi-
mizing the expected improvement of f according to the surrogate Gaussian process, based on the
current evaluation history H. Specifically, each step of the Bayesian optimization involves solving
the following maximization problem,

maximize
P

(E[Imp(f(G ,P))]), subject to P ∈ XP ,

where Imp(f(G ,P)) =

{
fmin − f(G ,P), for f < fmin,

0, otherwise,

(27)

and fmin is the minimum of f among the points {P, f} in the current evaluation history H. We
solve (27) using a chosen optimization schemeME.

Remark. We emphasize that the maximization in (27) does not involve any evaluations of f since
the expectation E[Imp(f)] is only a function of fmin, and the predicted mean µ̂ and standard
deviation σ̂ of the Gaussian process. This property of maximization problem is crucial since the
solution of (27) provides the next evaluation point for f , so it cannot involve the computation of f .

Evaluating the objective function at the maximizer Pnew of (27) produces the new evaluation
point {Pnew, f(G ,Pnew)}. If GC = true, i.e., the actuator exhibits satisfactory control, and if
f ≤ ϵf for some hyperparameter ϵf > 0, then we add the new evaluation point to the evaluation
history H. The f ≤ ϵf condition mitigates the erratic multi-branched functional characteristics of
EG , see Section 5.2. If any of these two conditions is not satisfied, we restart the maximization
in (27) with a randomized initialization for ME. We permit a maximum of Nres such restarts.
Subsequently, we re-train the parameters of the Gaussian process for the new evaluation history
H, and the Bayesian optimization continues until a maximum number of steps K is reached. We
train the Gaussian process by maximizing the likelihood of H with respect to the parameters of the
Gaussian process using the simulated annealing algorithm. Algorithm 4 summarizes the utilized
Bayesian optimization approach. Fig. 2 synthesizes the nested computational structure of the
methodology.

Remark. Even though the number of active sectors in the i-th ring of the filament, N (i) ∈P, is
only defined over positive integers, we generalize the input to the Gaussian process to any vectors
in R|P|M to improve robustness, as compared to using a Gaussian process with a mixed input type.
To accommodate the real-valued elements N (i) in the result P of maximizing the expectation in
(27), we round the values N (i) to the nearest integers for every evaluation of f .

Since the evaluations of f are expensive, it is important that the sampling plan used for the prior
initialization of H exhibits low discrepancy. As such, we construct the sampling plan for Hprior

using a |P|-dimensional Sobol quasi-random sequence [29], with ñprior samples over the feasible

set XP . We initialize the prior evaluation history Hprior = {(Pprior
1 , fprior

1 ), . . . , (Pprior
ñprior

, fprior
ñprior

)}
according to the obtained low-discrepancy sampling plan. Before passing it as one of the inputs to
Algorithm 4, we further process it by discarding all points in Hprior for which f(G ,Pprior) > ϵf ,
with ϵf defined as in Algorithm 4, or for which the corresponding ΓG results in JG > ϵJ , with ϵJ
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Algorithm 4 Bayesian optimization of f (Baymin)

Require: ME, ▷ Optimization scheme for max. expected imp. maximization
f ▷ f defined by Algorithm 3
XP , ▷ XP = Feasible set of P
O = {ϵJ , ϵf , ninit,Zmin,Zmax}, ▷ Auxiliary optimization hyperparameters
G = {G, CΓ, JG(BA),Z,S} ▷ Control objective specification
Hprior ▷ Prior evaluation history
K ≥ 1 ▷ Number of iterations in Bayesian optimization
Nres ▷ Maximum permissible number of restarts forME

kGP(x, x
′)← 1

2ν̃−1Γ̃(ν̃)

(
2
√
ν̃

ϑ ∥x− x′∥2
)ν̃

Kν̃

(
2
√
ν̃

ϑ ∥x− x′∥2
)

GP← GP(0, kGP;H
prior) ▷ Initialize a 0-mean GP with kernel kGP, and the given priors

H ← Hprior ▷ Evaluation history
fmin ← minimum f in H
for k ← 1 to K do

for l← 1 to Nres do

Pnew ← argmaxP

(
E[Imp(Algorithm 3(G ,P;O))], with P ∈ XP ,

for fmin, and µ̂, σ̂ in GP, given H, with schemeME

)
▷ Maximize expected improvement

fnew,GC← Algorithm 3(G ,Pnew;O)
if GC and fnew ≤ ϵf then

break
else

Randomize the initialization ofME for next iteration
end if

end for
if fnew < fmin then fmin ← fnew end if
H ← H ∪ {(Pnew, fnew)}
GP ← Fit(GP(0, kGP;H)) ▷ Re-train the GP by maximizing the likelihood of the updated H

end for
P∗ ←P corresponding to minimum f from all (P, f) ∈ H

defined as in Algorithm 3. Similar to the approach within the Bayesian optimization itself, this prior
processing step removes all samples with significantly larger control-optimal energies EG , and all
samples for which the solution of the activation optimization problem (17) results in poor actuator
control. Finally, we select a prescribed number nprior < ñprior of samples from the post-processed
set Hprior to eliminate randomness from the number of priors provided to the Gaussian process.

Remark. Importantly, the original number of sampling plan sites ñprior needs to be sufficiently
large, so that the sample discarding process does not eliminate more than ñprior − nprior samples,
which would ultimately result in Hprior = ∅. At the same time, nprior should also be large enough,
so that the prior surrogate model of EG guides the optimization effectively.

Algorithm 5 describes the complete approach for Bayesian optimization of all parameters that
define the fiber-based actuator under a prescribed control objective specification.
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min
P

(f)





Solve (27)
withME

Evaluate f



Core 1:
Evaluate EG ←−

{
Solve (17)
withMΓ


JG ← BA ← Solve (3)← Evaluate A(Γ;P)

JG ← BA ← Solve (3)← Evaluate A(Γ;P)
...

Core 2:
Evaluate EG

with
perturbation ←−

{
Solve (17)
withMΓ


JG ← BA ← Solve (3)← Evaluate A(Γ;P)

JG ← BA ← Solve (3)← Evaluate A(Γ;P)
...

... (In parallel, on ncore cores)

Re-train GP

... (For K iterations)

Figure 2: The nested computational structure of the minimization methodology utilized to optimize the filament
design. Only the most major components of the implementation are depicted in the above schematic; refer to
Algorithms 1-6 for the details of the implementation.

Algorithm 5 Optimization of filament geometry and fiber architecture for a given control goal

Require: ME, ▷ Scheme for expected imp. maximization within Bayesian optimization
CP , ▷ CP = Constraints on P
ñprior, nprior, O = {ϵJ , ϵf ,Zmin,Zmax}, ▷ Auxiliary optimization hyperparameters
G = {G, CΓ, JG(BA),Z,S} ▷ Control objective specification

XP ← feasible set of P, as defined by CP
X ← Sobol quasi-random sampling plan over XP

Pprior
1 , . . . ,Pprior

ñprior
← ñprior samples from X

fprior
j ← f(G ,Pprior

j ;O), ∀j ∈ {1, . . . , nprior} ▷ Parallelized computation of priors

{(Pprior
j , fprior

j )} ← Discard {(Pprior
j , fprior

j )} with fprior
j > ϵf or JG(r(Z;ΓG ,Pprior

j )) > ϵJ ,

where ΓG = Algorithm 1(G ,Pprior
j ),∀j ∈ {1, . . . , ñprior}

Hprior ← First nprior samples from {(Pprior
1 , fprior

1 ), . . . , (Pprior
ñprior

, fprior
ñprior

)}

P∗ ← Bay argminP

(
f(G ,P;O), with P ∈ XP ,

and the priors Hprior, with schemeME for expected imp. maximization
)

▷ f = Algorithm 3, Baymin = Algorithm 4

4.5. Selection of the schemeME for maximization of the expected improvement

Prototypical investigation of the Bayesian optimization performance in solving (26) showed
that direct optimization methods—including the simulated annealing and Nelder-Mead simplex
algorithms—are not computationally viable for the ME scheme. Specifically, when either simu-
lated annealing or Nelder-Mead is used for constrained maximization of the expected improvement
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Algorithm 6 Maximization schemeME for the expected improvement in Bayesian optimization

Require: GP ▷ Current Gaussian process
fmin ▷ Minimum value of f identified so far
nE ▷ Number of samples in the interior sampling plan over XP

XGP ← |P|-dimensional Sobol quasi-random sampling plan over XP with nE samples
(∂XGP)i ← (|P| − 1)-dimensional Sobol quasi-random sampling plan over the i-th boundary

of XP with n
(|P|−1)/|P|
E samples (rounded to the nearest int.), ∀i ∈ {1, . . . , 2|P|}

▷ Re-seeded before every sampling plan construction

XGP ←XGP ∪
(⋃2|P|

i=1 (∂XGP)i

)
µ̂(P), σ̂(P)← Predicted mean and standard deviation functions of the GP
E[Imp(f(G ,P))]← E(P) = (fmin − µ̂(P))P (f ≤ fmin) + σ̂(P)2N (fmin | µ̂, σ̂2)

▷ adapted from [30], P (f ≤ fmin) = probability of improvement
{E(P1), . . . ,E(P|XGP|)} ← Evaluate E for all P ∈XGP, in parallel
Pnew ← argmaxP{E(P1), . . . ,E(P|XGP|)} ▷ Maximize expected improvement over the sam-

pling plan

with P ∈ XP , the associated computational overhead becomes too significant compared to the
cost of a single evaluation of f . Thus, choosing these methods would compromise the effective-
ness of Bayesian optimization. Even if ME is further augmented to allow for ncore randomized
and parallelized restarts—similar to the augmented approach taken in evaluating f—the solutions
computed by these schemes frequently violate the control quality condition JG ≤ ϵJ .

Remark. A potential justification for the poor performance of direct methods is that, since EG is
erratically multi-valued, as discussed in Section 5.2, and because it exhibits extreme non-convexity
within all of its branches and over a large range of length scales in P-space, the fitted Gaussian
process approximation of f also becomes highly sensitive to small changes in P. This renders the
constrained direct search for the maximizer computationally expensive.

Nevertheless, high-fidelity maximization of the expected improvement is not necessary for sat-
isfactory performance of Bayesian optimization. Further testing revealed that maximizing the ex-
pected improvement over a discrete set of samples XGP ⊂ XP provided maximizers that still aided
the progression of the Bayesian optimization process, while being less costly than direct methods
used with constrained optimization. In particular, we constructed a sampling plan XGP using a
|P|-dimensional Sobol quasi-random sequence. We further introduced additional Sobol sampling
plans on the (|P| − 1)-dimensional hyperplane boundaries of XP , so that the maximization occurs
over a low-discrepancy set with well-resolved expectation data on the boundaries. To preserve an
approximately constant sampling density over both the volume and boundaries of XP , we drew nE
samples in the interior of XP , and placed n

(|P|−1)/|P|
E sampling sites on each hyperplane boundary.

Remark. While each single evaluation of f involves parallelized computations that cannot be
nested, a single evaluation of the Gaussian process is serial. We thus generate the sample population
over XGP by performing all relevant Gaussian process evaluations in parallel. This permits denser
sampling plans for approximate maximization of the expected improvement. Algorithm 6 outlines
the algorithmic description of the chosen method forME.
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4.6. Performance evaluation

Preliminary analysis lead to the observation that, due to the erratic functional behavior of
EG , large amounts of noise are present in the data set formed by all evaluations of the objective
f during Bayesian optimization. Thus, a plot of the function evaluation history would enable
only qualitative conclusions based on the graphical spread of the data along the f axis. To facili-
tate quantitative evaluation, we introduce two additional metrics to assess the performance of the
Bayesian optimization approach compared to a random search baseline.

Our first performance evaluation metric considers the distribution of the objective function
values within several windows of the optimization process, given that the objective evaluations
within Bayesian minimization can generally exhibit a high degree of randomness. Specifically, we
fit a set of Kd distributions to a set of Kd iteration partitions of the Bayesian optimization to
observe the distribution-wise progression of the objective function evaluations. We compare the
set of distributions against the distribution of a random search baseline, for which we compute a
large number ñrand of evaluation points using a Sobol sequence-based sampling plan over XP . The
random samples undergo post-processing akin to the set of priors in Algorithm 5 to preserve a total
of nrand samples with f ≤ ϵf and JG ≤ ϵJ .

The second metric is inspired by the acceleration factor benchmarking approaches [31]. It is the
lowest iteration index at which the minimum objective value found by the algorithm so far is no
larger than a given threshold fth. In other words, the minimum of f found so far is first computed
as a function of the iteration index k,

fbest(k) = min{f[1], . . . , f[k]}, k ∈ {1, . . . ,K}, (28)

where f[k] is the value of the objective function at the k-th iteration. Then, we define the second
performance metric as

Kmin(fth) = argmin
k∈{1,...,K}

(fbest(k), s.t. fbest(k) ≤ fth). (29)

The metric in (29) is a function of fth both for the Bayesian optimization algorithm and for a
random search baseline. Kmin(fth) constitutes a rough estimate of the convergence capabilities of
the Bayesian optimization method when applied to (26), with lower values of Kmin indicating better
convergence properties at a given fth.

5. Results and Discussion

Our proposed optimization methodology is general, and applies to arbitrary fiber-based slender
actuators and control objective specifications. Since benchmarking our approach for all possible
actuation paradigms is a complex task, here, we focus on evaluating the methodology for a single
target endpoint position, as in (18). Notably, our analysis generalizes to any other actuation
requirements, beyond any simplifying assumptions that we make in this evaluation.

5.1. Optimization of two-ring actuator geometry and fiber architecture

For better interpretability of the results, we restrict the following analysis to a two-ring, M = 2,
actuator with fixed mechanical properties E = (1, 1) and ν = (1/2, 1/2), and a constant length
L = 10. The choice of a fixed ring count M is necessary since the dimensionality of P depends
on M and our implementation assumes a constant dimensionality of P. The specific value of the
filament length L is insignificant, since the filament geometry can be expressed in terms of the

dimensionless groups involving L, R
(1)
1 and t(i). As a result, the design space consists of all points
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Figure 3: Bayesian design optimization for the prescribed control problem and the chosen feasible set of potential
actuator designs. (a) Convergence plots of the control objective cost function JG for prior sample generation (top) and
the Bayesian optimization (bottom). Every evaluation of the objective function f involves solving an optimization
problem. The top plot visualizes nprior = 100 convergence data sets for the prior sample generation; the bottom plot
shows 200 convergence data sets for the K = 200 iterations of the Bayesian optimization. (b) Evaluation history for
the objective function f for both the prior samples (left), and the Bayesian optimization (right). The colors of the
individual data points correspond to the data sets in the JG convergence plots in (a).

P = D ∪ F = {R(1)
1 , t,α2,σ,N ,θ2}, and we seek to optimize the geometry and fiber architecture

of the two-ring actuator over all feasible P. We define the feasible set through the element-
wise inequality Pmin ≤ P ≤ Pmax, where Pmin = {0.2, (0.02, 0.02), (0, 0), 1

12(π, π), (1, 1), (0, 0)}
and Pmax = {0.5, (0.2, 0.2), 14(π, π),

1
4(π, π), (4, 4), (0, 2π − π/64)}. The Z = 0 endpoint of the

actuator is clamped at the origin, with boundary conditions r0 = (0, 0, 0), and D0 = {eX , eY , eZ}.
To ensure that the fixed orientation of the cross section at the Z = 0 boundary is meaningful,

the design variable θ
(1)
0 is set to vanish, since permitting arbitrary values of both θ

(1)
0 and θ

(2)
0

is equivalent to removing the D0 boundary condition. The actuator seeks to fulfill a control
objective specification G as defined in (18) by reaching a target endpoint position rGend = 1

3(L,L,L).
The constraint set CΓ is empty, i.e., no constraints are imposed on Γ beyond the ones implicitly
affecting the ultimate values of ΓG through the JG ≤ ϵJ and f ≤ ϵf conditions. We set the
threshold defining satisfactory control to ϵJ = 10−3, and the maximum permissible objective value
to ϵf = 1. We evaluate a total of nprior = 100 priors and the Bayesian optimization is performed for
K = 200 iterations. The remaining hyperparameters are chosen as ninit = 2, nE = 400, Nres = 20,
and Zmin/max = ∓[3, . . . , 3] ∈ R

∑
i N

(i)
. Due to the computational cost of the entire Bayesian

optimization process, we hand-tune all hyperparameters, including MΓ, for smaller values of K
until robust optimization performance is achieved. We select the Nelder-Mead simplex method as
the optimization schemeMΓ in Algorithm 1.

Fig. 3 summarizes the results of Bayesian optimization of the actuator’s geometry and fiber
architecture under the prescribed control objective specification. Fig. 3a shows the convergence
plots of the Nelder-Mead simplex method in Algorithm 1 for all prior samples and all evaluations
of f throughout Bayesian optimization, which corresponds to nprior = 100 convergence curves
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Target endpoint position

Ring 1 Ring 2

(a) (b) (c)

Fiber activation

Figure 4: The most optimal actuator design identified during the Bayesian optimization procedure, under the imposed
control objective specification. (a) Visualization of the rings comprising the two-ring actuator, together with the
parameters defining the geometries and fiber architectures of the two rings. (b) The complete two-ring actuator with
a schematic of the control objective specification. (c) The deformed configuration of the most energetically optimal
actuator that successfully matches the prescribed control objective. The translucent filamentary outlines depict a
control path (linearly interpolated in Γ-space) that could be taken by the actuator to reach the target position.

for the priors, and K = 200 convergence curves for the evaluations during Bayesian optimization.
Acceptable convergence in the Γ-space is observed for all prior samples after roughly 100 iterations,
and for almost all evaluations of f after approximately 150 iterations ofMΓ. We emphasize that
the plots only depict the convergence curves for which the condition JG ≤ ϵJ is met at the last
iteration ofMΓ, since the sample is discarded otherwise both in the prior set and during Bayesian
optimization. Most of theMΓ executions exhibit fast convergence of JG close to the last iteration
and slower convergence in earlier iterations, as the hyperparameters of the Nelder-Mead method
are set to promote exploration of the functional landscape to more robustly identify the global
minima.

Fig. 3b visualizes the progression of the objective values f evaluated throughout the Bayesian
optimization process as a function of the Bayesian iteration k, together with the f values computed
for the set of priors. As expected, the evaluations during Bayesian optimization are scattered
along the f -axis and no clear convergence pattern is present throughout the entire sequence of
K iterations. Nonetheless, it is evident that the Bayesian optimization identifies smaller values
of f more effectively than the randomized sampling in the set of priors. Fig. 4 demonstrates the
actuator design associated with the smallest identified value of the objective function f , along with
the actuator’s deformed configuration that achieves the specified control objective. The actuator
design P that achieves this minimal energetic cost of activation f is defined by the parameters

R
(1)
1 ≈ 0.2130, t ≈ (0.0412, 0.0329), α2 ≈ (0.6092, 0.0951), σ ≈ (0.2647, 0.6819), N ≈ (3, 4), and

θ0 ≈ (0, 3.1733). Since Fig. 3b does not demonstrate a clear convergence trend, the actuator in
Fig. 4 merely corresponds to the smallest identified value of f throughout K iterations of the
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Figure 5: Performance of the proposed Bayesian optimization method. (a) Truncated smooth kernel distributions
of the objective function evaluations for a random baseline with nrand = 1000 samples, and for Kd = 8 iteration
partitions. The Bayesian optimization identifies design points with smaller objective function values f more frequently
than the random baseline method. (b) Top: minimum objective function value fbest as a function of the Bayesian
iteration k and the index of the random sample in each of the 32 randomized runs with nrand = 200 samples. Bottom:
Kmin metric as a function of the normalized energetic threshold fth/ϵf for both the random baseline and the Bayesian
optimization method. The curves for the Bayesian optimization method never exceed the averaged random baseline
curves, which indicates that the utilized method finds design points with smaller f in a fewer number of iterations.
(c) Mean cross-entropy loss as a function of the Bayesian iteration index k. The Gaussian process fits the evaluation
history better and with higher confidence at later iterations. The plot is cropped along the vertical axis to more
clearly visualize smaller values of the mean cross-entropy loss.

Bayesian optimization process, and it is neither a global nor a local minimum of f .
To evaluate whether the Bayesian optimization is more effective at minimizing f than ran-

domized sampling, we visualize the distribution of the optimization data set f over Kd = 8 con-
tiguous partitions of equal length, and compare the result to a quasi-random baseline generated
for nrand = 1000 post-processed evaluations. For each partition, Fig. 5a shows the probability
density functions of smooth kernel distributions truncated to f ∈ [0, ϵf ] together with the trun-
cated smooth kernel distribution of the random baseline. Based on the computed distributions,
the Bayesian optimization identifies designs with smaller objective function values much more fre-
quently than the random baseline approach. Interestingly, the distributions of f in the Bayesian
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optimization have multi-modal characteristics, which might be related to the multiple branches of
the energetic activation cost function EG .

To further support the advantages of the proposed optimization method, we compute the per-
formance metric Kmin(fth) for both the Bayesian optimization results and the random baseline.
In particular, Fig. 5b (top) shows the minimum function value fbest up until iteration k for the
Bayesian optimization, and for a set of 32 randomized sampling runs with nrand = 200 samples
each. Based on the computed fbest(k) curves, we generate the curves of the Kmin(fth) metric, and
plot them in Fig. 5b (bottom) with fth ∈ [0.005ϵf , 0.5ϵf ], for both the Bayesian optimization and
randomized cases. Since Kmin(fth) ∈ Z+, we compute the averaged Kmin curves with a ceiling
operation to consider the conservative case of the Kmin(fth) metric. The random baseline curves
fbest(k) and Kmin(fth) averaged over the 32 randomized runs both lie consistently above the respec-
tive fbest(k) and Kmin(fth) curves obtained for the Bayesian optimization process, which suggests
that Bayesian optimization identifies optimal actuator designs faster than a randomized sampling,
in addition to doing so more frequently.

Last, we evaluate the quality of the Gaussian process fit throughout the Bayesian optimization
in the investigated scenario by considering the mean cross-entropy loss of the Gaussian process
training as a function of the optimization iteration k ∈ {1, . . . ,K}. Fig. 5c shows the plot of the
mean cross-entropy loss of the Gaussian process, where each error bar corresponds to the standard
deviation of the cross-entropy loss at iteration k. If we neglect the outliers, based on the mean
cross-entropy loss data, the Gaussian process surrogate model fits the evaluation history better at
later iterations k in the Bayesian optimization, and is more confident in the quality of the fit at
later iterations as well. This behavior is consistent with the expectation that the chaotic functional
nature of f is approximated more accurately as more data are added to the evaluation history.

5.2. Non-invertibility of the mapping A
The existence of the inverse A−1

Γ of the mapping A with respect to Γ is governed by a highly
complex function of both G and CΓ. In almost all cases, the mapping A is not invertible with
respect to Γ. There generally exists an infinite number of activation parameter sets Γ that produce
the same configuration BA, so there also exists an infinite number of parameter sets Γ that globally
minimize the control cost function JG(BA). As such, a hypothetical, infinitely robust global opti-
mization method that always converges to a global minimum of JG can still yield different optimal
activation sets ΓG under different initializations or due to algorithmic stochasticity. Regardless of
the robustness of the schemesMΓ andME, this behavior has a negative effect on the optimization
of f , because different ΓG generally result in different energetic costs EG for the same filament
definition P. In fact, the same specification G and filament definition P can yield optimal EG of
vastly differing magnitudes, depending on the optimum computed by Algorithm 1. Consequently,
EG is generally highly multi-valued over any feasible set of P, with the range of EG spanning all
of R+.

To illustrate the multi-valued nature of the optimal energetic cost EG , we consider a simple

single-ring filament geometry with a variable inner radius R
(1)
1 , for six uniformly spaced helical

fiber angles α
(1)
2 ∈ [π/12, π/4], and all other parameters in P held fixed. The values of EG are then

computed for the G specification in Section 5.1, for a large number of random R
(1)
1 /L ∈ [0.02, 0.05],

with multiple randomized initializations inMΓ. Fig. 6 shows the resulting plots of EG as a function

of R
(1)
1 for each of the six helical fiber angles, with EG plotted on a logarithmic scale. The plots

highlight numerous branches of the multi-valued EG for all evaluated helical angles and, to add to
the complexity of the functional nature of EG , solution branches can intersect one another arbitrarily
without any clear patterns. It is worth noting that, in the case of a 1-dimensional design space,
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Figure 6: Multi-valued energetic cost EG as a function of the normalized inner radius R
(1)
1 of a single-ring filament,

for six different helical angle values. Multiple solution branches exist for a single design point, which introduces
computational challenges in the Bayesian optimization process. We define the actuator with the fixed properties
t/L = 0.01, σ = π/4, N = 3, θ0 = 0, E = 1, and ν = 0.5 in its single ring. The energetic cost was computed under
the control objective specification used in Section 5.1.

each branch is represented by a curve. In the general case, however, the range of the multi-valued
EG can be represented by an infinite number of |P|-dimensional manifolds over XP .

The multi-valuedness of EG introduces undesirable noise into the Gaussian process, since subse-
quent evaluations might switch between branches of EG in an uncontrollable manner. As a result,
the Gaussian process might make predictions based on a chaotic mixture of the various branches
of EG , which can significantly reduce its performance in Bayesian optimization, as manifested in
the scattered distribution of f values throughout the optimization process in Fig. 3b. At the
same time, the multi-valued nature of EG also supports the choice of Bayesian minimization as
the primary method in our approach, because it is known to be a suitable method for optimizing
non-deterministic functions. The large range of values that EG can take at a single design P and
specification G is also the reason for filtering out any outliers f > ϵf in both the construction of
the prior evaluation history Hprior, and during Bayesian optimization. It is currently unclear how
we could robustly mitigate this overall challenge, and any potential computational remedies will
need further investigation.

6. Conclusions

The development of a robust design approach for soft actuators remains a formidable engineering
challenge. So far, most studies have considered quantitative methodologies for identifying optimal
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soft-robotic designs, but these approaches are computationally expensive or consider a limited
family of design objectives motivated by the actuation goals of specific engineering prototypes.

As an alternative, we formulated a automated method for the design optimization of fiber-based
soft actuators that can be easily generalized. In our method, we minimize the energetic actuation
cost under arbitrary control objectives based on a desired robotic functionality. To address the
excessive computational cost associated with the objective function and its multi-valued nature, we
applied Bayesian minimization as the method of choice to construct the optimization procedure.
Notably, even though the computational cost for the evaluation of the objective function warranted
using a surrogate optimization approach, our optimization methodology is computationally inex-
pensive compared to other common design optimization approaches. We evaluated systematically
our proposed optimization method for the specific control objective of reaching a target endpoint
position, and determined the most favorable actuator design for that objective. Our methodology
performed better than a random baseline method for this investigated scenario. More importantly,
our approach is formulated in a way that can be easily extended to search for soft actuator designs
that maximize robotic adaptability and actuation versatility under a large set of control objectives,
while maintaining computational feasibility.

Our study of Bayesian optimization, as applied to soft actuator design, exhibits some note-
worthy limitations. First, our activation optimization method for actuator control relies on the
assumption of quasi-static motion. The quasi-static assumption renders our approach applicable
only to actuator deformations where inertial forces can be neglected. To address this limitation,
we could incorporate filament dynamics into the model mapping A, and develop a model-based
framework for feedback control of active filaments. Second, our approach is primarily heuristic
in identifying the most desirable branch of the multi-valued energy function. To make Bayesian
minimization of the energy more robust, we could develop a less generic optimization schemeMΓ

directly informed by the physics embedded in the active filament model. Third, the rate of con-
vergence of our Bayesian optimization method is sensitive to the choice of hyperparameters. To
address this effect, we could conduct a sensitivity study to isolate the hyperparameters with the
highest impact on convergence, or reformulate the post-processing steps of our methodology to
reduce the number of hyperparameters, which is a challenging task.

To further reinforce the validity of our results, several independent data sets could be obtained
for the Bayesian optimization process, so that curves averaged over multiple optimization runs can
be compared against the random baseline method. Moreover, to assess the performance of our
optimization methodology in identifying designs that ensure a high degree of robotic adaptability,
we could adopt a more involved control objective specification G . Specifically, we could incorporate
a weighted multi-objective formulation with several specifications Gi, so that the energy-optimized
actuator performs well under multiple actuation paradigms. Finally, implementing the additional
capability of optimizing with respect to the number of actuator rings M would enlarge the design
space to encompass significantly more complex structures.

The universal nature of the active filament model not only enables more exhaustive optimization
of fiber-based soft actuators, but also provides insight into the mechanical principles that govern
optimal soft actuation. In combination with the state-of-the-art approaches in soft robotics, our
generalized framework can serve as a powerful tool for the prototyping, design, fabrication, and
operation of soft devices.
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