
Passive control of viscous flow via elastic snap-through

Michael Gomez,1 Derek E. Moulton,1 and Dominic Vella1, ∗

1Mathematical Institute, Andrew Wiles Building,
University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

We demonstrate the passive control of viscous flow in a channel by using an elastic arch embedded
in the flow. Depending on the fluid flux, the arch may ‘snap’ between two states — constricting
and unconstricting — that differ in hydraulic conductivity by up to an order of magnitude. We
use a combination of experiments at a macroscopic scale and theory to study the constricting and
unconstricting states, and determine the critical flux required to transition between them. We show
that such a device may be precisely tuned for use in a range of applications, and in particular has
potential as a passive microfluidic fuse to prevent excessive fluxes in rigid-walled channels.

Elastic elements are finding increasing utility in engi-
neering design, from aeronautics to architecture [1]. The
potential for passive control offered by morphable com-
ponents holds particular promise in microfluidics where
a library of design considerations to control the flow of
fluid exists, including the geometrical, chemical and me-
chanical characteristics of the channel [2]. Of these, many
are fixed at the design stage (e.g. the network connectiv-
ity) and are difficult to change subsequently, while others
can be changed actively during operation. For example,
the Quake valve [3, 4] allows flow in a primary channel
to be blocked off by inflating control channels. Channel
flexibility has been exploited to control flows by bend-
ing the device [5], applying a varying potential difference
to create a microfluidic pump [6] or simply by turning
mechanical screws to constrict flow [7].

The above examples have two features in common:
they are actively controlled and generate a smoothly
transitioning fluid flow. However, this active control may
mean that miniaturization becomes difficult if, for exam-
ple, additional power sources are required. Passive con-
trol, the ability of a flow to self-regulate, is then desirable,
and has led to the development of passive pumps in mi-
crofluidic devices [8, 9]. In other circumstances, a rapid
and switch-like response may also be useful, for example
as a logic element in microfluidic circuits [10], in fluidic
gating [11], or as a fuse to limit the fluid flux within a
channel to some predetermined maximum.

Elastic ‘snap-through’, in which a system rapidly tran-
sitions from one state to another (just as an umbrella
rapidly inverts in high winds) is a natural candidate for
such a passive control mechanism: snap-through is gener-
ally fast, repeatable, and provides a large shape change.
Snap-through has been harnessed in biology and engi-
neering to generate fast motions between two states [12–
16]. Previous studies have focussed on snapping due to
dry, mechanical loads including indentation [17], end ro-
tation [18] and electrostatic forces [19], or capillary forces
in wet systems [20]. However, snap-through caused by
bulk fluid flow remains relatively unexplored. Similarly,
the use of elastic deformation to control fluid flows has
largely focussed on the development of fluidic diodes and
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FIG. 1: Viscous flow through a channel containing a flex-
ible wall. (A) A thin elastic strip, buckled into an arch,
initially constricts part of a channel (red shape). At higher
flow rates, the arch rapidly snaps through (blue shape); the
flow is then unconstricted and the channel’s conductivity in-
creases. (B) Three-dimensional view showing the finite chan-
nel depth. (C) Shapes of the arch during a snapping exper-
iment (h = 0.25 mm, w0 = 4.7 mm, η = 1.60 ± 0.10 Pa s),
together with the shapes predicted by our beam-lubrication
model (red dashed curves).

valves [4, 8].

To illustrate the mechanics of snap-through and its
possible use to control flow, we performed macroscopic
experiments. Flow occurs in a channel of rectangular
cross-section (width d = 6 mm, depth b = 23 mm) in
which one of the bounding walls is replaced by a flexi-
ble strip of bi-axially oriented polyethylene terephthalate
(PET) film (Young’s modulus E = 5.72±0.52 GPa). The
rigid portion of the channel was 3D printed, with one of
the walls fabricated from transparent acrylic to visual-
ize the flow-induced deformation of the flexible element.
The ends of the strip are clamped parallel to the flow di-
rection, a distance L = 50 mm apart, using thin notches
built into the surrounding channel walls (see fig. 1a). The
bending stiffness of the strip was varied by using different
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thicknesses h ∈ {0.1, 0.25} mm [31].
A controlled volumetric flux, qin, of glycerol (viscosity

range 1.10 Pa s ≤ η ≤ 1.80 Pa s) was introduced using
a syringe pump (Harvard Apparatus PHD Ultra Stan-
dard Infuse/Withdraw 70-3006). Next to the arch the
(reduced) Reynolds number is Re = O(10−2) so that
fluid inertia is negligible. We measured the fluid pres-
sure at the upstream end of the arch using a voltage-
output pressure transducer (OMEGA PX40-50BHG5V).
We were able to accurately measure pressures larger than
140 Pa with typical uncertainty ±20 Pa (due to uncer-
tainties in the voltage measurement).

A key geometric parameter is the relative height of the
arch in the absence of flow, w0, to the upstream channel
width d (fig. 1a). This arch height was varied within the
channel assembly by changing the length of the strip prior
to clamping. The difference between the natural length of
the strip, Lstrip, and the horizontal distance between the
two clamping points is referred to as the end–shortening
∆L = Lstrip − L � L; for shallow arches ∆L is related
to the arch amplitude by w0 ≈ 2(L∆L)1/2/π (using the
Euler-buckling mode w(x) = w0

[
1− cos(2πx/L)

]
/2 [5]).

At the start of each experiment, the arch was placed in
a constricting state with its midpoint directed into the
channel (fig. 1a). To determine the dependence of the
system on the fluid flux, qin, this flux was ramped from
zero at a rate q̇in = 2 mL min−2 (when h = 0.1 mm)
or q̇in = 70 mL min−2 (when h = 0.25 mm). In both
cases the ratio of the convective timescale (Lbd/qin) to
the ramping timescale (qin/q̇in) is O(0.1) at the point
of snap-through — ramping occurs approximately quasi-
statically. A digital camera mounted above the acrylic
wall recorded the shape of the arch and allowed the mid-
point height w0 to be measured to an accuracy ±0.2 mm.

Snapshots of the arch shape as qin changes are shown in
fig. 1c (for movies see [31]). As qin increases, the shape of
the arch changes only slightly at first, developing a small
asymmetry due to the pressure gradient that drives the
flow. However, at a critical value of qin the shape changes
dramatically: the arch suddenly adopts the opposite cur-
vature (last panel in fig. 1c) and, if the flux qin is sub-
sequently reduced, the arch remains in this ‘snapped’,
unconstricting configuration.

To quantify the behavior of this flexible channel, we
measure the pressure at the upstream end of the arch,
p(0), as a function of the imposed flux; results for differ-
ent initial arch heights are shown in fig. 2a. For small
arch heights, the pressure increases approximately lin-
early with qin before snap-through, as would be expected
for Poiseuille flow in a rigid channel. However, for larger
arch heights, w0/d ↗ 1, the contrast with Poiseuille
flow becomes apparent: the pressure changes nonlinearly
with qin and is even non-monotonic, reaching a maximum
prior to snapping (fig. 2a). Over a large range of fluxes,
the channel therefore has a softening property whereby
the effective hydraulic conductivity, which we define as

k = qin/p(0), increases smoothly with increasing flux
(fig. 2c).

Snap-through causes even more significant changes:
the pressure drops discontinuously, even though the flux
has increased, because the channel switches from a con-
stricted state to an unconstricted state. The contrast
between the channel conductivities in the two states is
large and grows as the arch height, w0, grows (fig. 2c).
The system exhibits hysteresis since the snapped config-
uration remains stable if qin is decreased (fig. 2b).

A key quantity of interest is the critical flux, qsnap, at
which snap-through occurs; fig. 3 (inset) shows that this
depends not only on the arch height, w0, but also on the
flexibility of the arch and the liquid’s properties. Surpris-
ingly, we find that the value of qsnap is a non-monotonic
function of arch height: for given material parameters, a
maximum value of qsnap is obtained at w0/d ≈ 0.5.

To gain theoretical insight we first note that the de-
flection δ of an elastic strip, of length L and bending
stiffness B, due to a force F (per unit length) scales as
δ ∼ FL3/B [21]. Here the typical force F ∼ pL, where
p is the fluid pressure, and hence the induced deforma-
tion δflow ∼ pL4/B. The Poiseuille law [22] for the pres-
sure drop along a slender channel of width d and depth
b, with an obstruction of maximum size wmax, suggests
that p ∼ ηLqin/[b(d − wmax)3]. This pressure estimate
then gives δflow ∼ ηL5qin/[Bb(d − wmax)3], which may
be compared with the initial arch height w0 to estimate
the threshold flux for snap-through (analogously to point
indentation [17]) as

qsnap ∼
Bb (d− wmax)

3

ηL5
w0. (1)

This may be written in terms of the channel blocking
parameter, W0 = w0/d, as

Qsnap ∼W0

(
1− wmax

d

)3

, (2)

where a dimensionless fluid flux is

Q =
ηL5

Bbd4
qin. (3)

This non-dimensionalization provides an excellent col-
lapse of the experimental data onto a single master curve
(fig. 3). Moreover, the non-monotonic behavior observed
in fig. 3 is qualitatively explained by (2): for small chan-
nel blocking parameter, W0 = w0/d � 1, the maximum
arch displacement wmax � d, and hence Qsnap ∼ W0.
However, when wmax becomes comparable to the chan-
nel width d (W0 ↗ 1), Qsnap decreases.

To go beyond these scaling arguments, we formulate
a model coupling the shape of the arch with the fluid
pressure by exploiting the thin-film geometry and the
shallow slope of the arch. This allows us to use the one-
dimensional linear beam equation [23]

B
d4w

dx4
+ T

d2w

dx2
+ p(x) = 0, 0 < x < L, (4)
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FIG. 2: Pressure-flux relations for a flexible channel (h = 0.25 mm, η = 1.60±0.10 Pa s). (A) Evolution of the upstream pressure,
p(0), for different channel blocking parameters W0 = w0/d (indicated by the colorbar). For each W0, three data sets through
the snapping transition are shown, together with a fourth in which the beam remains in the snapped configuration throughout
(symbols). Predictions from the beam-lubrication model, (6), are also shown (solid curves). (The snapping transition appears
continuous in experiments because the arch motion is overdamped.) (B) The hysteresis loop highlighted for intermediate W0.
(C) The effective hydraulic conductivity k = qin/p(0) is plotted for the same data (with p(0) > 140 Pa, to avoid noise due to
inaccurate readings at low pressure.)
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FIG. 3: Critical flux for snap-through. Inset: Experimentally
measured snap-through flux, qsnap (averaged over three runs),
as a function of the initial midpoint height, w0. Data is shown
for h = 0.25 mm with η = 1.38 ± 0.17 Pa s (blue circles) and
η = 1.61 ± 0.18 Pa s (red squares); and for h = 0.1 mm with
η = 1.20±0.10 Pa s (green diamonds) and η = 1.33±0.08 Pa s
(magenta triangles; increasing qin in steps of 0.25 mL min−1

every minute rather than ramping). Horizontal error bars
correspond to the ±0.2 mm uncertainty in w0; vertical er-
ror bars give the standard deviation of the measured val-
ues. Main plot: Rescaling to plot the dimensionless flux
Qsnap = ηL5qsnap/(Bbd

4) in terms of the channel blocking
parameter W0 = w0/d, the data collapse onto the prediction
of our numerical analysis (solid black curve). Vertical error
bars here also account for uncertainties in the bending stiff-
ness B and viscosity η. Also plotted is the asymptotic result
Qsnap ≈ 16W0 valid for W0 � 1 [31] (black dotted line).

to describe the transverse displacement, w(x), of the
arch, with T the compressive force in the arch, and p(x)
the hydrodynamic pressure. (An analysis of the shear
stress exerted on the arch by the fluid shows [24] that the
compressive force T is spatially uniform provided that
|dw/dx| � 1, as already assumed in using the linear
beam equation.) Assuming that the strip is inextensible
[17], the imposed end-shortening ∆L leads to the con-
straint ∫ L

0

(
dw

dx

)2

dx = 2∆L. (5)

The ends of the arch, at x = 0 and x = L, are clamped
i.e. w(0) = w′(0) = w(L) = w′(L) = 0 (with primes
denoting differentiation with respect to x).

To determine the pressure within the liquid, p(x), we
use lubrication theory [25], consistent with our assump-
tion of small slopes, |dw/dx| � 1. Using standard meth-
ods, the pressure may be expressed [31] as

p(x) = p(L) +
12ηqin

b

∫ L

x

K(w(ξ))

[d− w(ξ)]
3 dξ, (6)

where we use a geometric correction factor [2, 22]

K(w) =

[
1− 6

(
2

π

)5
d− w
b

]−1

,

to account for the finite depth of the channel. The pres-
sure at the downstream end of the arch depends on the
downstream geometry of the channel (denoted with sub-
script d, as in fig. 1a) and is given by

p(L) =
12ηqinLd

bdd3
d

[
1− 6

(
2

π

)5
dd

bd

]−1

,
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measured relative to the ambient pressure (which is im-
posed at the end of the channel, x = L+ Ld).

We introduce the dimensionless variables X = x/L,
W = w/d, and P = p/p∗ where p∗ = Bd/L4 is the pres-
sure scale introduced by the beam equation (4). With
this non-dimensionalization, there are two key govern-
ing parameters: the dimensionless flux Q, defined in
(3), and the channel blocking parameter W0 = w0/d ≈
2(L∆L)1/2/(πd).

The dimensionless versions of equations (4)–(6) may
be solved for given values of W0 and Q to determine
both the arch shape and the dimensionless pressure field,
P (X). Predicted arch shapes are shown in fig. 1c, su-
perimposed on the experimentally observed shapes; the
agreement between theory and experiment is very good
for all values of Q investigated, including beyond the
snap-through transition. The discrepancy is largest close
to snap-through (third panel of fig. 1c), since the sensi-
tivity to the precise value of Q is largest here. The pre-
dicted (dimensional) upstream pressure p(0) is shown in
fig. 2a,b, with corresponding conductivities k = qin/p(0)
plotted in fig. 2c; both generally agree well with exper-
iment (errors in the conductivity at low fluxes are due
to uncertainties in the measurement of low pressures).
Close to total blocking, W0 ≈ 1, there is a systematic
error in the model, which we attribute to the relatively
large arch slopes at the midpoint that are not captured
by our use of lubrication and linear beam theories. Nev-
ertheless, the model captures the qualitative behavior of
the pressure throughout, including the non-monotonicity
of p(0) as a function of qin.

A numerical analysis of the problem shows [31] that
the snap-through transition is a saddle-node bifurcation:
the constricting state ceases to exist at a critical value
Q = Qsnap without first becoming unstable [17]. The
numerically determined value of Qsnap(W0) reproduces
the experimentally determined master curve; see fig. 3.
For W0 � 1, an asymptotic analysis shows that Qsnap ≈
16W0, reproducing the linear scaling of (2). For 0.1 .
W0 ≤ 1, we find that Qsnap varies by less than a factor
of 2, with 2 . Qsnap . 4.

The system we have presented is irreversible — post
snapping the strip cannot return to the constricting state
without direct intervention. However, this is not a fun-
damental feature: reversibility may be accomplished by
introducing flow in an access channel to the region below
the arch, to snap the arch back to its original position (see
e.g. [11]). Alternatively, an automatic reset, which may
be desirable in some applications, may be easily achieved
by clamping one end of the arch at an angle to the hor-
izontal [18, 26] so that the snapped configuration is not
in equilibrium in the absence of flow. In this case, the
system exhibits a hysteresis loop with an increase in the
input flux generating a snap in one direction, and a sub-
sequent (further) decrease in flux causing a snap back
(see fig. S6 of [31]).
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FIG. 4: Flow limiting using snap-through. Inset: A channel
with a flexible wall is connected in parallel to a rigid channel of
constant conductivity (schematics not drawn to scale). Main
figure: For low total fluxes Qtotal = ηL5qtotal/(Bbd

4) with
the flexible channel constricting (red curves), almost all of the
flow is directed through the rigid channel, i.e. qr/qtotal ≈ 1.
This is diverted through the flexible channel as soon as the
arch snaps (blue curves). Here W0 = 0.99 and numerical
results are shown for different conductivity ratios λ between
the channels: λ = 10−2 (solid curves), λ = 10−1 (dashed
curves) and λ = 1 (dotted curves).

In both the irreversible and reversible scenarios, the
quantitative features of the mechanism (e.g. the critical
snapping fluxes and the corresponding change in conduc-
tivity) may be precisely tuned. Therefore, with an arch
element coupled to other components, a range of design
possibilities opens up. For example, in fig. 4 we demon-
strate the potential for a passive fluid ‘fuse’. Here we have
placed an arch element in parallel with another, entirely
rigid, channel (fig. 4a inset). Denoting the (constant) ef-
fective hydraulic conductivity of the rigid channel by kr,
and the (variable) conductivity of the flexible channel by
kf (qf ), the ratio of the fluxes through each of the two
channels is qr/qf = kr/kf by the Poiseuille law.

Denoting the total flux qtotal = qf + qr and calculat-
ing qr/qtotal, the fraction of the total flux that passes
through the rigid channel, we find a switch-like response
(fig. 4): while the arch is in a constricting shape, most
of the fluid passes through the rigid channel, but once
the arch snaps, much of the fluid is diverted to the now
unconstricted flexible channel. The rigid channel is effec-
tively ‘short-circuited’. The efficiency of the fuse, defined
as the decrease in qr caused by snap-through divided by
its value prior to snap-through, may be tuned by varying
the geometric parameters of each channel [31].

We have shown at a laboratory scale that the pres-
sure gradient associated with a viscous flow can be used
to cause snap-through of an embedded elastic element.
The system considered has a number of novel flow prop-
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erties including a highly nonlinear pressure-flux relation-
ship, discontinuous conductivity and history dependence.
These properties may find application in microfluidic sys-
tems such as cell-sorting or, as we have shown, provide a
means to protect microfluidic systems from high fluxes.
Similarly, the discontinuous transition we observe is sim-
ilar to that seen in capillary burst valves [27] and gas re-
lease valves [28]. A simple analysis [31] shows that when
scaling down to the microscale, the expected range of
snap-through fluxes are well within experimentally ob-
tainable values. For such applications our study thus
provides a first analysis of flow-induced snapping and
guidance for choosing material parameters to tune the
critical flux. While viscous flow control is readily ap-
plicable to microfluidics, the passive control and rapid
transition capabilities of elastic materials is increasingly
being exploited more broadly, e.g. in soft robotics and
morphing skins [29, 30]. Developing theoretical models
that provide intuition and facilitate device optimization
will be critical in these burgeoning fields of technology.
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