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Abstract

Ammonites are a group of extinct cephalopods that garner tremendous interest
over a range of scientific fields and have been a paradigm for biochronology,
palaeobiology, and evolutionary theories. Their defining feature is the spiral ge-
ometry and ribbing pattern through which palaeontologists infer phylogenetic
relationships and evolutionary trends. Here, we develop a morpho-mechanical
model for ammonite morphogenesis. While a wealth of observations have been
compiled on ammonite form, and several functional interpretations may be
found, this study presents the first quantitative model to explain rib forma-
tion. Our approach, based on fundamental principles of growth and mechanics,
gives a natural explanation for the morphogenesis and diversity of ribs, uncovers
intrinsic laws linking ribbing and shell geometry, and provides new opportunities
to interpret ammonites’ and other mollusks’ evolution.

Keywords: morphogenesis, evolution, growth, mathematical model, mollusk

1. Introduction

Ammonites are an iconic group of extinct cephalopods. Characterized by a
nearly perfect logarithmic spiral shell with regular ribbing pattern, the math-
ematical beauty of their form has made them a centrepiece of artistic wonder
while their abundance, diversity, and high evolution rate make them a paradigm
for biochronology, palaeobiology, and evolutionary theories[1, 2, 3]. The two
fundamental morphological descriptors of ammonite shells are their coiling and
the ribbing pattern known as commarginal ornamentation. This pattern is al-
most universally present in ammonites and forms along the direction of the
accreted shell, appearing as an oscillation in the expansion of the shell cross-
section (Fig. 1(a)). However, few authors have considered shell morphogenesis,
and no previously proposed models for ammonite ribs[4, 5, 6] have produced
quantitative and verifiable predictions. The starting point of our study is the
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notion that mechanical forces generated during growth drive tissue-scale mor-
phogenesis and thus shape developing organisms[7, 8]. By focussing on the
mechanical structure of the shell secreting system, we propose a model for am-
monite morphogenesis that captures all basic features of morphological diversity
and phenomenological laws observed in ammonite shell form and uncovers an in-
trinsic link between the shell expansion and the ribbing pattern. Many authors
have argued about the functions of this ornamentation, as related to buoyancy
control, camouflage, hydrodynamic efficiency, or strengthening the shell against
predators[9, 10, 11, 12, 13]. While these functionalist interpretations have been
central within evolutionary theories, our theory provides the first predictive and
quantitative mechanistic explanation of their form and presents new opportuni-
ties for interpreting the evolution of their shell in an evolutionary developmental
biology perspective.

All modern mollusk shells are composed of an outer organic layer, called
periostracum, and underlying calcified layers, all being secreted by the mantle,
a thin elastic membrane lining the inner shell surface[14] (Fig. 1(b)). During
growth, the mantle moves forward slightly beyond the calcified shell edge whilst
secreting the periostracum, which isolates the extrapallial fluid from which the
calcified shell is precipitated[15]. The periostracum is secreted in the periostra-
cal groove, between the outer and middle mantle lobes, and is extruded between
the two mantle lobes, where a stiffening process of sclerotization takes place[16].
It is subsequently turned inside out around the outer mantle lobe, and reaches
its external position where no further thickening occurs. When calcification oc-
curs, the periostracum becomes fixed on the outer shell surface. The unfixed
periostracum surrounds the outer mantle lobe and is attached at both extremi-
ties along the calcified shell edge and inside the periostracal groove. The shape
of the generative zone, namely the stiff periostracum surrounding the softer
outer mantle lobe, is therefore incrementally recorded and fixed in the calcified
shell during growth. In turn, the calcified shell edge acts as a template for the
new growth increment. This basic structure of the mantle edge-periostracum
complex has been also described in Nautilus[17] and it is reasonable to assume
that the generative zone in ammonites functioned along the same principles.
The puzzle of commarginal ribs is to understand how mechanical forces in the
thin generative zone (of the order of a millimeter) could generate regular oscil-
lations themselves parallel to the shell edge and of a typical scale up to 50 times
larger.

2. Morpho-mechanical model

The fundamental question we ask is whether the morphogenesis and diversity
of ribbing patterns in ammonites can be accounted for by the natural physical
forces occurring at the tissue level during shell secretion. Our approach is to
model the growth process in the simplest possible form that nevertheless still
captures the essential mechanical features. The setup for the model is given
schematically in Fig. 1 (c) and (d). We work within a fixed circular geometry,
with the shell radius given by s(z), where z is the axial direction, i.e. the growth
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Figure 1: Ammonite ribs and model setup. (a) Commarginal ribs in Peltoceras schroederi.
(b) Schematic of mantle/periostracum anatomy and eversion of periostracum (ES: extrapal-
lial space; PG: periostracal groove). (c) The mantle and everted periostracum (M/EP) act
mechanically as a single elastic biring with radius R(z) when dissected from the shell. (d)
Primary variables for model. The shell has radius s and orientation angle φ with respect to
the growth axis z.
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axis, and suppose the shell makes angle φ(z) with the z axis. In this formulation,
the shell is akin to a growing cone, and we will add the effect of shell coiling
subsequently as a secondary effect. We model the mantle1 and periostracum
edges as circular elastic rings, each with reference stress-free radii dictated by
the growth of the mollusk. That is, if the mantle/periostracum were removed
from the shell, they would relax to a stress-free radius. The first key ingredient
is that this radius may not coincide with the radius of the calcified shell, so
that during growth the mantle and periostracum are potentially stretched or
compressed and can induce elastic forces.

As described above, during growth the mantle moves slightly beyond the
shell edge and secretes the periostracum, which is then everted outside the
mantle and serves as a connection between the mantle and the already calcified
portion of the shell. This connecting region is the generative zone. This region
provides the second key component to the morpho-mechanical model: the gen-
erative zone is pliable as it is yet to be calcified, but also forms a continuum
with the rigid calcified portion of the shell, and thus acts somewhat like a torque
spring, resisting a change in angle. That is, in the absence of any forces in the
mantle/periostracum, the generative zone would maintain the same angle as the
previously calcified portion of the shell edge to which it is attached, and work
must be done to change the orientation.

The actual orientation of the generative zone and radius of the newly secreted
shell are thus determined by the balance of three forces: elastic forces in both
the mantle and periostracum, and a force in the generative zone. In a circular
geometry, all forces are in the radial direction. First, we postulate the generative
force

fGZ = kGZ

dφ

dz
, (1)

which characterises the resistance to change orientation, with kGZ a stiffness pa-
rameter. Next, we turn to the elastic forces in the mantle and periostracum. In
general, these would come from solving the equilibrium equations for two elas-
tica, coupled via contact forces, and completed with constitutive laws relating
stress to strain in each material. This computation is greatly simplified un-
der two assumptions. First is the planar circular geometry already mentioned,
in which case bending plays no role and the mechanics is purely governed by
stretching/compressing, and second is the assumption that the mantle and ev-
erted periostracum (hereafter denoted M/EP) are in perfect contact, a reason-
able assumption given that the outer mantle lobe is fixed between the secreted,
yet to be everted, and the already everted, portions of periostracum. Under the
latter assumption, the two elastic rings are mechanically equivalent to a single
elastic “bi-ring”, characterised by an effective reference stress-free radius R and
an effective stiffness K. These effective quantities are derived in Appendix G.
The function R = R(z) may be seen as a sort of average of the stress-free radii

1For modelling purposes we only consider the edge of the outer mantle lobe, which for
convenience we refer to as simply the mantle.
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of the growing mantle and periostracum, and is thus dictated by the growth of
the animal. For our purposes, we take the growth of the mollusc as given and
compute the resulting form of the shell, thus R(z) is taken as an input to the
model.

We now compute mechanical equilibrium. Letting r(z) be the radius of
the M/EP in the current state, i.e. attached to the shell at point z along the
growth axis, we define α = r/R as the stretch of the M/EP. Letting n denote the
resultant tangential force in the M/EP, the radial force balance in the circular
geometry gives [18]

n

R
+ fGZ = 0. (2)

This is combined with a constitutive law for the effective single ring, given by
n = K(α−1). As shown in Appendix G, a simple linear relation exists between
r and the shell radius s, that is r = s−β, where β is a typically small parameter
that depends on the thickness and radii of the mantle and periostracum. The
stretch is thus given by α = s−β

R and we obtain the following differential equation
for the angle φ(z):

dφ

dz
=

k

R(z)

(
1− s(z)− β

R(z)

)
, (3)

where k = K/kGZ characterises the relative stiffness of M/EP to generative zone.
The system is completed with the geometrical relation

ds

dz
= tanφ(z) (4)

and conditions for the shell radius s and angle φ at a starting location denoted
z = 0.

2.1. Summary
To summarise, we input to the model the mechanical properties of the mantle

and periostracum, the generative zone stiffness, and the growth of mantle and
periostracum, i.e. radius and thickness as a function of shell length. From these
we determine the single stiffness parameter k, the effective radius R(z), and the
parameter β. We then solve Equations (3) and (4), and output the shell radius
s(z) and orientation φ(z).

The function R(z) is derived from a non-linear elastic force balance and
is thus in general non-linear and the system must be solved by numerical
means. However, as we show in section 2.2, in many cases the system is well-
approximated by a linear function and analytical progress may be made.

Base values for parameters are given in Appendix F. Thickness and mechan-
ical parameters were estimated from the literature, under the assumption that
Young’s moduli and the relative thickness of mantle and periostracum do not
vary greatly among mollusc species. The remaining parameter is the expansion
rate of the mantle radius2, which in turns governs the gradient of the effective
radius R(z).

2The expansion rate of the periostracum is not independent of the mantle expansion.
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2.2. Linearised theory

In this section we develop a linearised theory that yields an analytical so-
lution to the system (3), (4). The complication in the system is the generally
nonlinear function R(z). However, if the mantle grows such that its stress-free
radius and thickness are linear functions of z, and the periostracum’s stress-free
state is dictated by that of the mantle (a natural assumption given that the pe-
riostracum is secreted in the mantle lobe), then R is itself well approximated by
a linear function R = R0 + γz where γ is a dimensionless parameter describing
the expansion rate of the stress-free periostracum radius and R0 is an initial
radius at starting point z = 0 (see Appendix G). The generative zone stiffness
kGZ is very difficult to access with no measured values in the literature. We
will make the assumption that the relative stiffness parameter k in (3) is ap-
proximately constant through development, which follows from the notion that
the material stiffness of the M/EP increases in proportion with the stiffness
of the generative zone. Finally, for material parameters typical of mantle and
periostracum, the parameter β in (3) is of negligible size, and so r ≈ s. Under
these assumptions, the system becomes analytically tractable. We first scale
the system by introducing the dimensionless parameters

z′ =
z

L
+
ξ

γ
, R′ =

R

R0
, s′ =

s

R0
, (5)

where L is a characteristic length for the shell and ξ = R0

L . With the added shift
in z′, we have the convenient form R′(z′) = γ

ξ z
′. The system in dimensionless

parameters is
ds′

dz′
=

1

ξ
tanφ,

dφ

dz′
=

k

ξR′

(
1− s′

R′

)
. (6)

For initial conditions, we take s(0) = R0 +µ, which in the scaled variables reads
s′(ξ/γ) = 1 + ε with ε = µ/R0 a small parameter. We also assume the initial
shell orientation corresponds with the expansion rate, so that tanφ(ξ/γ) = γ.
This choice is made for computational simplicity but a more generic choice has
no significant effect on the results.

We seek a solution close to the linearly expanding stress-free M/EP by ex-
panding as s′ = R′ + εx, φ = φ0 + εφ1, where φ0 satisfies tanφ0 = γ. The
problem at O(ε) reads

dx

dz′
=

1 + γ2

ξ
φ1,

dφ1
dz′

=
−kξ
γ2z′2

x. (7)

This system can be solved exactly, yielding

x(z′) = Az′1/2 cos (ω ln z′ − ν) (8)

with

ω =

√
4k(1 + γ2)− γ2

2γ
, A =

√
γ(1 + 4ω2)

4ω2ξ
,

ν = ω ln
ξ

γ
− arctan

1

2ω
.

(9)
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An exact form for φ1 can be determined from x via (7), but it is more useful to
focus on the function x(z′). In Fig 2 we present a comparison of the analytical
solution s′ = R′ + εx with x given by (8) with the full solution obtained by
numerical integration.

It is evident from (8) that ribbing naturally occurs in the system so long
as the stress-free state of the mantle/periostracum does not perfectly coincide
with the radius of the calcified shell, i.e. so long as ε 6= 0. Any mismatch
forces a change in orientation of the generative zone and creates an oscillatory
component to the shell radius. Moreover, this mismatch is naturally induced in
the system by the eversion of the periostracum (Appendix B).

In Fig 2, the straight dashed green line is the effective radius R(z). The shell
radius oscillates about this growing stress-free state, and the general mechanism
for rib formation can be summarised as follows:

1. Periostracum eversion creates a mismatch between the shell radius and
the stress-free radius of M/EP.

2. When the generative zone is orientated outward and the shell radius is
expanding, the M/EP will be subject to an increasing tension (point A in
Fig 2).

3. The build-up of tension eventually changes the orientation of generative
zone from φ > 0 (flaring outward, radius increasing) to φ < 0 (narrowing,
radius decreasing) (point B).

4. The tension is relieved but the orientation remains inward as compression
starts to build up in the M/EP (point C).

5. Once enough compressive stress builds up, the orientation is converted
back to outward (point D), and the cycle repeats.

We note that this general mechanism is consistent with the presence in inter-
costal valleys (i.e. toward points C and D) of compressive wrinkles seen on the
outer shell surface of well preserved ammonites and corresponding to imprints
in the calcified shell of wrinkling in the periostracum[4].

3. Results

We have shown that the morpho-mechanical model naturally produces an
oscillatory pattern in the shell radius. We now seek to quantify and validate the
predicted pattern against actual ammonite shells, and examine the diversity of
ribbing in light of the mechanical model for morphogenesis.

3.1. Rib count

In the linearised model, the characteristics of the ribbing pattern can be un-
derstood in terms of two free parameters: the species dependent elastic param-
eter k controlling the effective material response of the tissue, and the specimen
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Figure 2: Comparison of full numerical solution with the analytical solution. Inset: Illustration
of ribbing mechanism: shell radius oscillates about stress-free state of M/EP, passing from
increasing tension while flaring out (A), decreasing tension (B) to increasing compression (C)
during flaring inward, to decreasing compression (D) and back to increasing tension. Mantle
and periostracum stiffness parameters are as described in Appendix F, other parameters (see
Appendix G): kGZ = 0.03, µ = 0.05, M(0) = 1mm, δM(0) = 0.03mm, δP(0) = 0.001mm,
γ = 0.024.
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dependent expansion growth parameter γ characterising the linear expansion
rate of a given shell. Assuming that the elastic parameter is constant across
different specimens within a species, the ribbing pattern depends only on the
expansion rate. As a test of the model, and to understand the effect of the
expansion rate, we performed a detailed study of 17 specimens of Peltoceras
schroederi. This species is particularly attractive to test the model, as they are
well-approximated by a circular cross-section and also exhibit a strong intraspe-
cific variation in expansion rate. On each specimen, we determined γ by fitting
logarithmic spirals to high-resolution photographs of shells. We then manually
counted the number of ribs on the ventral and dorsal sides produced over a par-
ticular shell length (Appendix D). In this way, for each specimen we extracted
the number of ventral ribs, the number of dorsal ribs, and the expansion rate
as shown in Fig. 3(a).

On the theoretical side, for given values of γ and k, the output of the model
is the oscillating radius of a growing cone, and so to compare with the measured
shells, we must include the effect of shell coiling. Details are given in Appendix
A – the basic idea is to map the shell length variable z to the arclength of 3
separate logarithmic spirals, one for the centreline of the shell and one for each
of the ventral and dorsal sides. The difference between ventral and dorsal sides
is then interpreted as a difference in shell length in the mechanical model.

Using the linearised theory, we can determine the number of oscillations
over a given shell length via the argument in the cosine in Equation (8) (see
Appendix C). Hence, for a given value of k, we can plot the predicted number of
ribs over a particular length of shell as a function of the expansion rate γ. Since
the length differential between the dorsal and ventral sides can be determined
from the expansion rate, the theory can produce both a ventral and dorsal rib
count as functions of γ, with only a single unknown parameter in the process,
the relative stiffness parameter k. We then fit the two theoretical curves to the
measured data from the 17 shells, with a least squares approximation used to
determine the best fit value of k. The result appears in Fig. 3(a), where the
solid curves are the predicted ventral (upper blue curve) and dorsal (lower green
curve) rib counts.

That the model captures well the difference in rib count between the dorsal
and ventral sides suggests that rib-splitting or intercalated ribs may be a simple
consequence of the length differential between the ventral and dorsal sides of
the shell. We note, however, that our model is not well suited to describe the
actual splitting point of the ribs, as this by necessity requires a deviation from
a circular cross-section. It seems likely that this can be understood within the
same basic mechanical framework, but we leave this point as an interesting
question for a future study.

To visually compare the predictions of the model, in Fig. 3(b) we have taken
the theoretical output for the ventral ribbing profile using the least squares value
of k and a value of γ corresponding to the shell with the indicated data point in
(a), and overlaid the ribbing pattern on the shell, demonstrating a remarkable
agreement with the pattern predicted by the mechanical model.
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Figure 3: Quantitative analysis of rib count and form. (a) Rib count data for ventral (blue) and
dorsal (green) sides of 17 specimens of Peltoceras schroederi. The solid curves are the predicted
rib counts from the theory, using a least-squares fitting for the single elastic parameter. (b)
Theoretical rib profile overlaid on a shell, corresponding to the indicated data point.

3.2. Ribbing profile

We next examine the form of the ribbing profile. Some shells display a nearly
sinusoidal profile, which can be understood as a consequence of a symmetric
elastic response of the mantle/periostracum to tension versus compression. This
is the shape predicted by Equation (8), and as indicated in Fig. 3(b), produces
a reasonable fit in some cases. However, many shells have a marked asymmetry
in their profile, exhibiting a ribbing pattern with wide valleys and sharp ridges.
A comprehensive review of the literature as well as a consultation with the two
main collections of France (Paris museum, and Lyon university) reveals that
some asymmetry is quite generic in the sense that in a direct examination of
1100 out of about 1500 known Jurassic and Cretaceous genera, at least 800
genera present a definite asymmetry where ridges have greater curvature than
valleys.

This asymmetry can be understood mechanically as an asymmetric response
to tension version compression, which is a common feature in thin biological
materials [19, 20]. Such asymmetry can be easily incorporated in the mechanical
model by utilising a bimodular elastic response, that is we define a different
elastic parameter for compression than for tension, so that in Equation (3) we
write

k =

{
kc, if α < 1 (compression)

kt, if α > 1 (tension).
(10)

With asymmetry introduced, the ribbing profile is also strongly affected by the
degree of initial mismatch, i.e. the value ε = µ/R0 in the initial condition
R = R0 + µ. In Fig. 4, we plot ribbing profiles over a short length of shell for
different values of kt and kc and varying ε, obtained by numerically integrating
the system (3), (4) with linear function R = R0 + γz and piecewise constant k
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Figure 4: Asymmetric ribbing profiles. Shells are (a) Promicroceras, (b) Protohoplites (c)
Stephanoceras, (d) Xipheroceras. Asymmetry arises in model from bimodular elastic response
to tension/compression. Stiffness parameters and initial mismatch ε in simulated profiles: (i)
kt = 900, kc = 60, ε = 0.018, (ii) kt = 900, kc = 30, ε = 0.032, (iii) kt = 1300, kc = 90,
ε = 0.024, (vi) kt = 950, kc = 30, ε = 0.046; Other parameters are same for all cases: γ = 0.04,
R0 = 14.

given by (10). We observe a diversity of profiles, qualitatively representative of
the morphological diversity in ammonites.

3.3. Ribbing wavelength and amplitude

We next examine trends in the amplitude and wavelength of ribbing. More
than a century ago, Buckman[21] noted in a Jurassic species displaying high
variability that inclusion and compression of whorls correlate with the degree
of ornamentation, an observation since then made in many distantly related
species[22, 23, 24, 25, 26], and during the evolution of lineages as well[27]. In
our terminology, this so-called Buckman’s law of covariation states that the mag-
nitude of ribbing is positively correlated with the shell cross-sectional curvature.
A covariation between curvature and ribbing pattern is also evident as a general
trend that can be seen in the classic Raup morphospace[28], Fig. 5(a), in which
shell forms are characterised by an expansion rate parameter W and a param-
eter D related to the tightness of coiling. In the upper right of the diagram
are shells with low expansion rate and thus a small rate of decrease of curva-
ture of shell cross-section – these shells typically have dense ornamentation. In
the lower left of the diagram are shells with high expansion rate (large rate of
decrease of curvature) – these shells have almost no ornamentation, appearing
smooth or almost smooth. Between these extremes are shells with moderate
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expansion rate and a coarse ornamentation. Ammonoid and Nautiloid distribu-
tions in the morphospace are indicated by the blue and red regions, respectively;
evolutionary trends are indicated by the blue arrows, showing a general trend
toward smoother shells; and the brown, blue, and green lines correspond to pub-
lished examples of Buckman’s law of covariation, displaying the wide spectrum
of coiling variability[23, 24, 25, 26].

To see whether this trend can be understood in the framework of our model,
we simulated three shells with different expansion and coiling parameters that
can be mapped to exact points in each of the regions of Raup’s morphospace, and
with all other parameters equal, to see how the location in Raup’s morphospace
affects the emergent ribbing pattern. We solve the mechanical model using the
best-fit stiffness parameter k as determined in Section 3.1, and with fixed initial
conditions, while varying only the expansion rate γ. We then superpose the
ribbing pattern on a parameterised planispiral shell that expands with rate γ. To
create the shell, we take a logarithmic spiral as a centreline curve, i.e. the polar
equation ρ = aebθ, where the exponent b dictates the tightness of the spiral. At
each point on the centreline curve, we construct the shell by attaching a circle
in the plane normal to the tangent direction, whose radius is the solution of
the mechanical model. The two independent coiling and expansion parameters
can be mapped directly to Raup’s D and W parameters (Appendix E), so
that each simulated shell can be placed exactly on Raup’s diagram but are
otherwise identically produced with equivalent initial conditions and mechanical
properties.

The result is illustrated in Fig. 5(b)-(d); the model precisely predicts the
observed trend from dense to coarse to smooth shell. While it is likely that
“initial conditions” and other mechanical parameters are not exactly equal be-
tween the Ammonoids in the upper right of the diagram and the Nautiloids in
the lower left, we note that the trend is captured nonetheless and thus might be
understood fully in mechanical terms. Effectively, the high expansion rate of the
simulated nautiloid serves to damp out the oscillations that remain prominent
in the shell with low expansion rate.

To investigate this relationship further, we can use the linearised theory to
obtain explicit mathematical relationships. In particular, several scaling rela-
tions may be inferred from the form of the exact solution (8) of the linearised
system. Within the development of an individual shell, the parameters γ and
k are fixed, and hence the amplitude of the ribbing pattern increases through
development at a rate of shell length to the one half power, while the frequency
of ribbing decreases logarithmically due to the ln z′ term inside the cosine.

The decrease in frequency directly governs the number of ribs over a given
length of shell (Fig. 3(a)). The increase in amplitude over the development of
a given shell is more difficult to verify, since the absolute change in amplitude
is small, and ribbing amplitude is less straightforward to measure and more
prone to noise due to degradation of ribs. In Fig. 6, we have taken a Peltoceras
schroederi specimen with particularly well-preserved ribs, measured the ampli-
tude of the ribs on the outside whorl, and plotted the amplitude against the
scaled length z′ on a log-log plot. The straight line is the predicted scaling law,
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Figure 5: Ribbing pattern and evolutionary trends in morphospace. (a) Ammonoid (blue
zone) and Nautiloid (red zone) distribution in the Raup morphospace[28, 29]. Dashed blue
line: distribution of highly ornamented ammonites[28]. Blue arrows: evolutionary trends from
strongly ornamented to smooth shells in Jurassic lineages[27]. The brown, blue and green lines
represent the spectrum of shell coiling variability in not closely related Triassic, Jurassic and
Cretaceous species displaying the Buckman’s law of covariation (data from: [23, 24, 25, 26]).(b)
- (d) Simulated shells at values (b): D = 0.65,W = 1.5, (c): D = 0.42,W = 2.4, (d):
D = 0.13,W = 4.5. All other parameters are equivalent in each shell, and are provided in
Appendix F.
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Figure 6: Amplitude scaling law. (a) The amplitude is computed by the difference in distance
between the shell centreline and the peaks and troughs of each rib, as a function of arclength
of centreline form starting point z′ = ξ/γ. (b) Amplitude plotted against shell arclength on a
log-log scale. Solid line has slope 1/2 predicted by the theory.

with slope 1/2.
To compare ribbing pattern between individuals, we examine the form of

the prefactor terms A and ω, for the amplitude and frequency, respectively.
In particular, we consider the dependence of these terms on the most easily
identifiable and comparable variable between shells, the expansion rate γ. For
a typical shell, γ � 1, and even in the rapidly expanding shell of Fig. 5(d),
γ ≈ 0.18. For small γ, A and ω scale as A ∼ γ1/2, ω ∼ γ−1. Rather than
frequency and absolute amplitude, better indicators of ribbing form are the
relative ribbing amplitude, i.e. ribbing amplitude divided by shell radius, and
ribbing wavelength. The relative ribbing amplitude a is determined by taking
the absolute amplitude divided by radius R′ = γz′, and the wavelength λ scales
as 1/ω. We thus obtain the scaling laws

a ∼ κ1/2, λ ∼ κ−1. (11)

This general relationship between ribbing pattern and curvature suggests that
both the intraspecific variation in Buckman’s law as well as the general evo-
lutionary trend evident in Raup’s diagram can be seen as the expression of
a simple morphogenetic rule linked to constraints of curvature on growth me-
chanics that can be generalised to the case of non-circular cross-sections. Note
also that some shells undergo allometric variation and their opening becomes
more elliptical during development, marked by a nonlinear decrease in lateral
curvature. This trend is associated with a nonlinear expansion rate within our
modelling framework.

4. Discussion

The state of knowledge with ammonite shell form is one of many facts but
few explanations. Over the last 2 centuries paleontologists have amassed a huge
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body of descriptive literature on ammonites and inferred their evolutionary his-
tory. Yet, the generative processes underlying their form and morphological
diversity remained unknown. The morpho-mechanical model developed here
provides the first quantitative explanation and theoretical framework through
which these facts and observations may begin to be weaved into a consistent
story. It also provides a new organising framework to study morphogenesis and
evolutionary trends of the shells of other mollusks. As an immediate and sig-
nificant instance of this, our approach sheds light on a long-standing puzzle of
cephalopod evolution. Nautilus has long fascinated biologists and palaeontolo-
gists due to its morphological conservatism for which it has been called a “living
fossil”. This concept is misleading, however, as it has often been interpreted
to imply a lack of evolutionary change, though recent molecular phylogeny sug-
gests that the living Nautilus lineage is currently undergoing a period of evo-
lutionary radiation masked by cryptic speciation[22]. Unlike ammonites, which
display great variation in shell coiling and ornamental patterns, nautilids have
been restricted to a rapidly expanding shell coiling morphology since at least
the early Jurassic[23] (Fig. 5(a)) and, consistent with our model, their shells
have remained essentially smooth. Also consistent is the presence of strongly
ornamented Palaeozoic and Triassic nautilids genera (e.g. Tylonautilus, Pleu-
ronautilus, Tainionautilus) in regions of the Raup’s morphospace occupied by
strongly ornamented Jurassic and Cretaceous ammonites, but unoccupied by
post-Triassic nautilids. These observations are all consistent with the simple
explanation that since at least the early Jurassic, nautilids shells have had a
very high expansion rate and thus, for purely mechanical reasons, have lacked
the distinctive ornamental patterns that palaeontologists use to reconstruct phy-
logeny and to infer the evolution of diversity.

Appendix A. Coiling geometry

The mechanical model we have developed treats the shell as a growing cone.
To make comparisons with shells, and to determine coiling and expansion prop-
erties, we now include shell coiling. The starting point is to assume that the
centreline of the shell follows a logarithmic spiral. That is, we describe the
centreline in polar coordinates by ρ = aebθ, where ρ is the radius as measured
from the centre of the shell, θ is the polar angle, and a and b are constants.
The dorsal and ventral sides also follow logarithmic spirals ρd and ρv, given by
ρd = (a − R0)ebθ, ρv = (a + R0)ebθ, where R0 is the initial shell radius, and
θ = 0 is defined by the starting location on the shell. As before, we scale the
radii by R0 and introduce the dimensionless parameter η = a/R0 so that the
dimensionless centre, dorsal, and ventral spirals satisfy

ρ′ = ηebθ, ρ′d = (η − 1)ebθ, ρ′v = (η + 1)ebθ. (A.1)
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Next, we identify the parameter z in the mechanics model with the arc length
of the centreline, that is

z(θ) =

∫ θ

0

√
ρ2 +

dρ

dθ

2

dθ,

from which we obtain the dimensionless length

z′(θ) = ξ
η
√

1 + b2

b

(
ebθ − 1

)
+
ξ

γ
. (A.2)

The dorsal and ventral lengths have the similar expressions, but with η replaced
by η− 1 in the dorsal case and η+ 1 in the ventral case. From (A.2), the stress-
free shell radius is given as a function of θ by R′(θ) = γ

ξ z
′(θ). The ventral and

dorsal spirals are related through the tightness of the coiling. This is imposed
through the relation ρ′v(θ) = τρ′d(θ + 2π), where the parameter τ describes the
amount of gap or overlap between whorls. Specifically, τ = 1 corresponds to
perfect contact, τ > 1 implies an overlap, while τ < 1 implies a gap between
the ventral side of the shell and the dorsal side of the preceding whorl (Fig.
A.7(a),(b)). We assume that τ is a fixed parameter for a given shell, and thus
find

e2πb =
η + 1

τ(η − 1)
. (A.3)

It remains to relate the ventral and centre spirals through the expansion of the
shell. Setting ρv(θ) = ρ(θ) +R′(z′(θ)), we obtain

γη
√

1 + b2

b
= 1. (A.4)

Equations (A.3) and (A.4) may be thought of as setting two of the shell geometry
parameters {a,R0, b, τ}.

Appendix B. On periostracum eversion

Note that in the model formulation, a solution exists for which no oscillations
occur. Namely, if the initial radius exactly matches the shell radius and the
initial orientation matches the gradient caused by the expansion rate, then the
solution to the linearised problem is x ≡ 0, i.e. no ribbing forms. However, due
to the eversion of the periostracum, such initial conditions will not occur. In
particular, consider the situation where at a given starting point the mantle is
completely stress-free and the shell orientation exactly matches the expansion
gradient. This situation is not mechanically stable, as the periostracum will
also be stress-free before eversion, but both mantle and periostracum cannot
be stress-free after eversion. Thus, the stress-free state of the M/EP will not
exactly coincide with the shell radius, and thus the starting conditions will
induce oscillations.
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(a) (b) (c)

Figure A.7: Logarithmic spirals and Raup’s parameters. (a) The logarithmic spirals repre-
sentative of the shell centreline ρ, dorsal side ρd and ventral side ρv in the case of perfect
contact between whorls, τ = 1. (b) Raup’s parameters labelled on a shell with overlap, τ > 1.
Note that the parameter c requires the geometry of the transverse direction, as this is the
intersection point between whorls. (c) Parameters for Raup’s morphospace, a Reproduction
of Fig. 1 from [28], with permission.

The amplitude of oscillations, i.e. magnitude of ribs, is closely linked to this
mismatch in M/EP. That is, the constant µ in the condition s(0) = R0 + µ is
linked to the mismatch, and is in turn linked to the thickness of mantle and
periostracum. Thus if, for instance, the thickness of outer mantle lobe is very
small, the value of µ would be smaller and we would expect a smaller ribbing
amplitude. Since initial mismatches and initial orientations are very difficult to
gauge from one shell to another, we have kept a constant value for ε = µ/R0.

Appendix C. Rib count

The number of ribs in a given segment of shell predicted by the model is
determined by the number of oscillations of cos(ω ln z′ − ν) for z′ ∈ [ ξγ , 1 + ξ

γ ].

This count is made more convenient by defining ẑ = z′ − ξ/γ. Then, defining
the function f(ẑ, γ; ξ) = ω ln(ẑ + ξ/γ)− ν, the number of ribs (as a continuous
value, not integer) predicted along the centreline spiral is

n(γ) =
f(1, γ; ξ)

2π
. (C.1)

To compute the number of ribs on the ventral and dorsal sides, we only apply
the same formula, but with a different total length. As ẑ runs from 0 to 1,
the lengths along the ventral and dorsal sides are, respectively, lv = (η + 1)/η,
ld = (η − 1)/η, and thus the rib count on ventral and dorsal sides are

nv(γ) =
f(lv, γ; ξ)

2π
, nd(γ) =

f(ld, γ; ξ)

2π
. (C.2)
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Appendix D. Shell fitting

In order to compare the model predictions of ribbing pattern with shell
specimens, we first loaded an image of each shell into MathematicaTM. In view
of Equations (A.3) and (A.4), which give the parameters b and γ in terms of η,
the three spirals depend on three parameters: a, R0, and the overlap parameter
τ (which for the Peltoceras schroederi specimens was approximately one). We
thus varied the two parameters a and R0 until the centre and dorsal spirals
reached a visual best overlay.

In the simplified linear model, the ribbing pattern depends on three dimen-
sionless parameters. One is ξ = R0/L, the initial radius to length ratio. For
all specimens, we fixed ξ = 0.02, which may be thought of as setting the length
of shell to be considered as a function of its starting radius R0. The second is
the expansion rate γ, which is determined for each specimen as outlined above.
The third is the mechanical parameter k. This parameter cannot be measured
from the images, and although the material stiffness of mantle and periostracum
can be inferred from the literature, the amount of variation between species is
uncertain; moreover, no data exists on the generative zone stiffness kGZ. Thus,
our approach is to assume that for a given species, the effective mechanical pa-
rameter k is approximately constant, and we determine this single parameter
by fitting the model predictions of rib count to the shell data.

For each shell, once the best fit spirals have been determined, the fixed value
of ξ determines the length of the shell segment. Over that length of shell, we
counted manually the number of ribs on the ventral and dorsal sides (Fig. E.8).
For each shell we measured an expansion rate γ, a dorsal rib count, and a ventral
rib count. In Fig 2(a) of main text these data are compared against the model
predictions as given by formulas (C.2). We determined k to be the value for
which the model prediction best fit the data curves, through a least squares
analysis, obtaining k = 154.75. We then directly compared the ribbing pattern
prediction by adding the oscillations predicted by the model with k = 154.75 to
the logarithmic spirals, and overlaying the curve on the image of the shell (Fig.
2(b)) .

Appendix E. Raup’s morphospace

Numerous evolutionary trends can be observed in terms of shell variation
in the classic Raup morphospace[28]. To test our hypothesis that variations in
ribbing pattern seen in different regions of the morphospace can be understood
as mechanical effects of expansion rate, we need to map our coiling parameters
to the two morphospace parameters, D and W . The conversion is illustrated
in Fig. A.7: Raup’s diagram is reproduced in Fig. A.7(c), with the equivalent
parameters labelled on our logarithmic spirals in Fig. A.7(b). Specifically, we
find

W =

(
d

e

)2

=

(
ρd(θ)

ρd(θ − π)

)2

. (E.1)
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Figure E.8: Example of best fit spirals to shell image and rib counting. Yellow dots mark
each 10th ventral rib; white dots mark each 10th dorsal rib.

The computation for Raup’s D is slightly more complex, since c = c′ only if
there is perfect overlap, i.e. τ = 1. If τ = 1, c = ρd and we obtain the simple
formula

D =
c

d
=
ρd(θ)

ρv(θ)
. (E.2)

When overlap is included, a straightforward geometrical calculation gives

c = ρ(θ − 2π) +
1

2

(
B − a2 − a′2

B

)
where B = ρ(θ)− ρ(θ − 2π), a = R(θ), a′ = R(θ − 2π).

In creating the 3D simulated shells in Fig. 4, we have used the coiling
parameters (b) a = 40, R0 = 8.3, τ = 1.03 (c) a = 26, R0 = 10.6, τ = 1 (d)
a = 16.87, R0 = 13.2, τ = 1.74, which translates to Raup’s parameters (b)
D = 0.65, W = 1.5, (c) D = 0.42, W = 2.4, (d) D = 0.13, W = 4.5. Ribbing
parameters were the same in all cases: ξ = 0.02, k = 155, ε = 0.1.

Appendix F. Parameters

We have used the following parameters as base values for mechanical prop-
erties and dimensions. We use for the mantle Young’s modulus EM = 0.8MPa,
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based on measurements of squid mantles[30]. The periostracum is significantly
stiffer, with a Young’s modulus on the order of EP = 100MPa, based on measure-
ments of mussels[31]. We infer base values for mantle and periostracum thickness
based on measurements of Nautilus. From images of embryonic Nautilus[32], the
outer mantle lobe is approximately 150µm thick, while the periostracum has
thickness on the order of 1µm. From images by Westermann et al [17] on juve-
nile Nautilus, the outer mantle is between 400-700µm thick, with periostracum
thickness 3-5µm. Shell radii can vary dramatically between species and over
the development of the shell. We use as base values approximate measurements
from images of Peltoceras schroederi, in which the shell radius increases from
around 1mm to 3-5mm over a length of shell between 40-100mm.

Finally, note that we have formulated a continuous, quasistatic growth pro-
cess. The quasistatic assumption follows naturally from the fact that growth
occurs on a much slower time scale than the elastic time scale, so the system is
always assumed to be in mechanical equilibrium. Regarding the assumption on
continuous growth: while it is commonly understood that shell growth occurs
in discrete steps of secretions, these steps are so small that they can naturally
be described as a continuous process.

Appendix G. Mantle/everted periostracum elastic ring

Here we characterise the mechanical properties of the mantle/everted pe-
riostracum. Let M = M(z) be the stress-free mantle radius3, and δ(z) the
combined half-thickness of mantle and periostracum. Then the periostracum,
secreted inside the periostracal groove, has stress-free radius P = M − δ. In the
deformed state, i.e. attached to the shell edge, let m(z) and p(z) be the radii of
mantle and periostracum, respectively, and note the relation p = m+ δ, which
reflects the eversion of the periostracum.

Assuming perfect contact between mantle and everted periostracum, me-
chanically the mantle/everted periostracum (M/EP) acts as a single circular
elastic rod, whose properties derive from the mantle and periostracum. Once
we have characterised the mechanical properties of the M/EP, the problem is
equivalent to the deformation of an elastic ring under a radial force, here the
generative zone force.

Mechanical equilibrium for an elastic ring is determined through the stan-
dard Kirchhoff equations for an elastic rod, here within a fixed circular geome-
try. The balance of linear momentum for an elastic rod reads[33] n′(S) + f = 0,
where n is the resultant force attained by averaging the stresses over a cross-
section, S is the reference arclength, and f is an external body force per unit
reference length. For a fixed circular geometry, the mechanics is fully gov-
erned by stretching; that is when a ring deforms to a ring of a different size,
there is no change in the bending energy, only the stretching energy. Hence
the only non-vanishing component of n is along the tangent direction, i.e. the

3We assume radius is measured to the centreline of the ring.

20



stretching/compression force. Thus we can write n = neθ, where eθ is the cir-
cumferential unit vector. We assume f acts in the radial direction and has the
general form f = f(r, dr/dz, . . . )er, where r is the radius in the deformed state
and er is the radial unit vector. Using

deθ
dS

=
er
R
,

where R is the reference radius of the elastic ring, the balance of linear momen-
tum in the radial direction then takes the simple form

n

R
+ f = 0. (G.1)

The system is completed by a constitutive law relating the force n to the elastic
stretch

α =
r

R
.

Here we consider a linear relation,

n = K(α− 1), (G.2)

where K is the elastic (stretching) stiffness. Substituting (G.2) into (G.1) gives
a single equation for mechanical equilibrium:

K

R

( r
R
− 1
)

+ f = 0. (G.3)

Equation (G.3) fully describes the mechanics of a deformed elastic ring.
For the M/EP system, f = fGZ (Methods Equation (1)), and we just need to
characterise the radii r and R and the stiffness coefficient K in terms of the
growing mantle and periostracum. Let nM, nP be the tangential resultant forces
for mantle and periostracum, respectively, satisfying linear constitutive laws:

nM = KM(αM − 1)

nP = KP(αP − 1),
(G.4)

where αM,P are the elastic stretch of mantle and periostracum, given by

αM =
m

M
, αP =

p

P
,

and the elastic stiffnesses satisfy

KM = EMδMw, KP = EPδPw.

Here EM,P are the respective Youngs moduli, δM and δP are the half-thicknesses of
mantle and periostracum, respectively (so δ = δM + δP), and w is the transverse
width of the mantle edge/periostracum. Extending work on growing elastic
rings[18] to a pair of rings, the elastic stiffness of the M/EP birod is given by
the relation

K = KM +KP,
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and the reference radius satisfies

R = P · g(1 + κ)

κ+ g
, (G.5)

where g = M/P and κ = KM/KP. If the mantle and periostracum thicknesses
increase in proportion with their radii, then the term multiplying P in (G.5) is
constant, close to unity. Since the periostracum is much stiffer than the mantle,
κ is a small parameter.

Finally, we have the following relation between the radius r of the M/EP
and the radius p of the everted periostracum:

r = p− δκ

g + κ
, (G.6)

In the current state, since shell secretion occurs at the periostracum, we set the
shell radius equal to the everted periostracum, i.e. s = p, and note that (G.6)
defines the parameter β as

β :=
δκ

g + κ
. (G.7)

For typical parameters β is of order 10−2 and the M/EP radius approximately
equals that of the everted periostracum.
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