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Abstract

The bladder is a complex organ that is highly adaptive to its mechanical en-
vironment. The umbrella cells in the bladder uroepithelium are of particular
interest: these cells actively change their surface area through exo- and en-
docytosis of cytoplasmic vesicles, and likely form a critical component in the
mechanosensing process that communicates the sense of ‘fullness’ to the ner-
vous system. In this paper we develop a first mechanical model for vesicle
trafficking in umbrella cells in response to membrane tension during bladder
filling. Recent experiments conducted on a disc of uroepithelial tissue motivate
our model development. These experiments subject bladder tissue to fixed pres-
sure differences and exhibit counterintuitive area changes. Through analysis of
the mathematical model and comparison with experimental data in this setup,
we gain an intuitive understanding of the biophysical processes involved and
calibrate the vesicle trafficking rate parameters in our model. We then adapt
the model to simulate in vivo bladder filling and investigate the potential effect
of abnormalities in the vesicle trafficking machinery on bladder pathologies.
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1. Introduction

Epithelial cells are continuously exposed to mechanical forces (e.g., stretch,
compression, and shear stress), which affect all aspects of their biology. For ex-
ample, inhaling air into the lungs stimulates surfactant release [1], shear stress
and increased wall tension cause endothelial cells to release endothelin [2], and
bladder filling stimulates the exocytosis of subapical Discoidal- and /or Fusiform-
shaped Vesicles (DFVs) in umbrella cells, dramatically increasing their apical
surface area [3, 4]. Despite our understanding of the importance and physio-
logical regulation of these events, we have limited insights into how mechanical
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forces affect these trafficking events. To gain insight into the complex interac-
tions between epithelial cells and mechanical forces, in this paper we develop a
mathematical model specifically aimed at understanding bladder epithelium.

The primary function of the mammalian bladder is the temporary storage of
urine collected from the kidneys. The bladder must accommodate large changes
in volume while maintaining strong impermeability. The bladder urothelium is
comprised of three layers: basal cells (~10 pm in diameter) form a single layer,
intermediate cells (10-25 pm in diameter) are from one to several cell layers
thick, and the large (25-250 pm in diameter) polyhedral umbrella cells form a
single layer on the lumen side of the bladder wall (see Fig. 1). While the basal
and intermediate cells may slide past one another during bladder filling, the
umbrella cells undergo key morphological changes [5] and form the focus of this
study.

The general understanding of the activities of the bladder urothelium dur-
ing filling and voiding has changed significantly over recent decades. In early
literature, the large changes in volume and pressure were thought to be accom-
modated solely by unfolding of the highly wrinkled apical membrane of umbrella
cells [5, 6]. There has since been mounting evidence that vesicle trafficking in the
umbrella cells plays a key role as well. Several experimental studies found that
exocytosis of cytoplasmic vesicles in the apical membrane occurs in response to
mechanical stimuli [7, 8]. In exocytosis, vesicles fuse with the membrane wall,
increasing the surface area and thus relieving mechanical stress and facilitating
an increase in bladder volume. This understanding has since been revised, as it
was found that both exocytosis and endocytosis in the apical membrane occur
simultaneously [4], with endocytosis ! thought to be modulating the change in
surface area.

Numerous in vitro experimental investigations have been performed to un-
derstand vesicle trafficking and mechanotransduction in umbrella cells [8, 4, 10,
7, 11, 12]. Of particular interest is the recent work of ref. [13], in which it was
demonstrated that stretch, and not pressure, is the mechanical stimulus that
induces exo- and endocytosis in umbrella cell tissues. Evidence was also found
suggesting a feedback relationship in vesicle traffic between the basal and apical
membranes of the umbrella cells and that tension in the basal membrane might
trigger endocytosis in the apical side. This work also demonstrated an intriguing
non-monotonic behaviour in the apical surface area during the so-called “early
stage” of bladder filling: when subjected to a pressure difference across the ep-
ithelial tissue, the apical membrane showed a rapid increase in surface area on
the time scale of the first minute, followed by a decrease in surface area over
the next several minutes, and finally a slow increase in surface area over the
course of an hour. While exo- and endocytosis are well confirmed on the apical
membrane of umbrella cells and clearly triggered by mechanical events [4], it is
less clear whether similar vesicle traffic occurs on the basal membrane. Though
mechanisms for vesicle insertion have been proposed for both membranes [14],

INB in this article endocytosis refers specifically to pinocytosis.



Figure 1: Bladder urothelium in voided and filled bladder. The basolateral surface of the
umbrella cells (UC) are marked by the yellow dashed line and the position of the tight junctions
are indicated with arrowheads. Intermediate cells are marked with yellow asterisks, and basal
cells with white asterisks. Reproduced with permission[9].

the basal membrane does not seem to undergo significant exo- and endocytosis,
at least on long time-scale filling events [4].

These experimental results highlight the importance of both mechanics and
geometry in the urothelium. As the bladder fills, mechanical stimuli trigger
unfolding and/or vesicle trafficking, each of which is effectively a change in ge-
ometry. This mechanically driven change can serve several important functions.
An increase in apical surface area enables the bladder to accommodate an in-
creasing volume; it also helps alleviate rising pressure, which may be needed
for surface cells to maintain their barrier function. Moreover, the change in
geometry feeds back to alter the stress levels in the bladder wall.

Along with volume accommodation and barrier function, of equal importance
in a healthy bladder is communication with the brain. As with the morpholog-
ical changes discussed above, the understanding of the urothelium’s role in this
process has changed over time. Initially thought of as a passive barrier, the
urothelium is now seen as an active sensory organ [15]. Urothelial cells sense
and transduce information about physical stimuli [16, 17], make intimate con-
nections with afferent nerves [18, 17], and can directly alter the activities of the
underlying detrusor muscle [19]. The bladder operates through a bidirectional
signalling process, whereby the bladder wall must communicate the sense of
“fullness” to the brain prior to the bladder reaching full volume, and the brain
sends signals for contraction of the detrusor muscle during micturition. Mal-
function in these signalling events may underlie various bladder disorders such
as Detrusor Overactivity and Overactive Bladder (OAB) [19]. The mechanisms
through which the urothelium senses and transduces information about physical
stimuli are not well understood. However, it is clear that mechanical stress in
urothelial cells plays a vital role; for instance, urothelial cells contain various re-
ceptors that respond to mechanical changes by the release of transmitters (such



as ATP) that influence afferent nerve activity [17, 19].

It is evident that the mechanical environment within the urothelium is crit-
ical to the proper functioning of the bladder, and that a balance must exist
between vesicle trafficking, geometry, stress levels, and signalling. There is a
delicate nature to this balance: exocytosis increases the surface area of the
apical membrane, thus decreasing the tension, while at the same time, the ap-
propriate amount of tension at the right bladder volume is needed to trigger
afferent nerve activity and properly communicate the sense of “fullness” to the
brain. To understand these relationships, how the system responds to abnormal
stimuli, and where the root problem might lie in urinary tract disorders, mathe-
matical modelling can have great value, both in providing qualitative insight and
in guiding experimental directions. Yet despite a large amount of experimental
and clinical research, there remains very little mathematical treatment of this
complex mechanical system. While there have been several models concerned
with different aspects of bladder mechanics [20, 21, 22, 23, 24] or neurological
signalling [25, 26, 27], no models to date have been developed to consider exo-,
endocytosis and the relationship between geometry, vesicle traffic, and cell level
morphology.

In this paper, we develop a first model of the bladder umbrella cells to in-
vestigate the relationship between the mechanical environment in the urothelial
tissue and vesicle trafficking within the umbrella cells. We derive a model specif-
ically motivated by the experiments of ref. [13]. In these experiments, a circular
section of rabbit urothelium, with outer layers removed, was mounted in an
Ussing chamber, and subjected to different mechanical forces. Tissue surface
area was inferred from electrophysiological parameters, measured on time scales
of less than a minute. This setup offers the distinct advantage of a closed in-
vitro system in which umbrella cell activities are isolated and surface areas are
quantified and monitored on short time scales. We focus on a particular exper-
iment of that paper, in which a higher pressure head is applied in the mucosal
hemichamber (the apical side), creating a fixed pressure difference across the
uroepithelial tissue (see Fig. 2).

Our initial objective in this paper is to develop a mathematical model of
vesicle trafficking and umbrella cell mechanics during bladder filling. We outline
more thoroughly the relevant experimental detail of ref. [13], as well as our
modelling approach, in Section 2. In Section 3, we first perform a quantitative
comparison of the model predictions with experimental data and approximate
unknown model parameters. We then provide a qualitative analysis of the vesicle
dynamics, through which we gain insight into the physical nature of vesicle
traffic and its relationship with membrane tension. The question then is how
the vesicle dynamics function in a physiological setting, and whether certain
pathologies might have as a root cause dysfunction at the level of vesicle traffic.
To explore such issues, in Section 4 we translate the calibrated model to a
spherical geometry to simulate in vivo bladder filling, and in this setting we
demonstrate the predictive potential of the model. Conclusions and extensions
are discussed in Section 5.
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Figure 2: Experimental setup (a) and results (b) adapted from [13]. (a) Experimental set-up:
the height of the apical column is varied from 1lcm to 16cm. The green line is the initial position
of the excised uroepithelium and the red line the position upon bowing. M denotes the mucosal
hemichamber (apical side) and S the serosal hemichamber (basal side). (b) Percentage change
capacitance C'r measured against time at different pressures; as capacitance is assumed to be
in one to one correspondence with surface area, this is a measure of evolving apical surface
area.

2. Ussing chamber experiment and model description

2.1. Ezperimental description

In the experiments of ref. [13], a circular disc of rabbit uroepithelial tissue,
with outer layers and smooth muscle removed so that only basal, intermediate
and umbrella cells remain, is pinned between two sides of an Ussing chamber
which is filled with a fluid (Krebs buffer solution). Each side connects to a ver-
tical column of the same fluid, the height of which is kept constant by including
an excess of fluid in a horizontal section of tubing (see Fig. 2(a)). By imposing
a height differential of the tubing, the membrane is subjected to a fixed hydro-
static pressure difference; in particular, raising the height of the tubing into the
mucosal hemichamber (i.e. the apical side) simulates filling of the bladder. We
are particularly interested in the experiment described in Fig. 1E of ref [13],
in which the height of the tubing into the mucosal hemichamber is successively
doubled from lecm to 16cm. Note that in these experiments, the free end of the
horizontal tubing is attached to a stopcock, which is removed at the start of the
experiment, enabling for an ‘instantaneous’ pressure difference.

2.2. Experimental Results

The experimental results given in Fig. 5A of ref. [13] are reproduced here
in Fig. 2(b), where the percentage increase in capacitance across the apical
membrane over the course of an hour is recorded. Capacitance is assumed to
be in one to one correspondence with surface area, with 1 uF of capacitance
approximately equal to 1 cm? of membrane surface area [7].

At all pressures, the membrane area changes in a non-monotonic manner.
In the first minute the area increases rapidly, approximately doubling. This is
followed by a decrease over the next several minutes to ~ 125% of the original



surface area. The rates of both the area increase and subsequent decrease are
higher with a larger imposed pressure difference. Following the decrease, the
area then settles to a near equilibrium state, with a very small rate of change,
such that over the course of an hour, there is a relatively small area increase, to
around 130 — 150% of the original area.

The non-monotonic change in surface area is non-intuitive, and reflects a
complex intracellular dynamic at play as the cells respond to the instantaneous
pressure difference. Surface area will change as a result of both vesicle traf-
ficking, i.e. an increase or decrease in the amount of membrane material, and
mechanical stretching of the tissue; measuring area (or capacitance) alone is not
enough to distinguish between the two effects. The explanation suggested by
the authors for the non-monotonic behaviour is that both exo- and endocytosis
occur in the apical membrane, with tension in the apical membrane causing ex-
ocytosis and tension in the basal membrane causing endocytosis. A key feature
in this process is the change in shape of the umbrella cells. Initially, the basal
side is curved, hence only the apical side is supporting tension. As the tissue
bows outward (or as the bladder fills), the cell changes to a squamous shape
(see Fig 3(c) and also compare the yellow dashed line in Fig. 1). Mechanically,
we can interpret this in the sense that the basal membrane must ‘unfold’, i.e.
there is a critical displacement required before the basal membrane begins to
support any tension.?

Varying the pressure does not significantly affect the magnitude of the max-
imum bowing, an experimental observation that has been used to suggest that
the maximal bowing is purely a property of the length of the basal membrane,
i.e. that the basal side of the umbrella cells do not experience any vesicle traf-
ficking and that the maximal bowing corresponds to the point of unfolding [13].

2.3. Model description

Our objective is to build a mathematical model that can discriminate be-
tween the hypotheses stated above and yield insight into the relationship be-
tween the mechanical environment of the umbrella cells and vesicle trafficking.

A schematic of our modelling approach is given in Fig. 3. A full derivation
is given in Appendix A; here we provide an outline. At the scale of the Ussing
chamber, Fig. 3(a), we use a Poiseulle flow description in the two cylindrical
tubes to determine the flow rates in and out of each chamber. The section of
horizontal tube ensures a fixed hydrostatic pressure at the top of each column
of water, and we assume that the pressures felt by the membranes on either side
of the chamber are equal to the pressure at the bottom of the tube.

At the tissue scale, Fig. 3(b), we model the uroepithelial tissue as a spher-
ical cap. The surface area, radius of curvature, and volume contained within
the bowed cap can all be written in terms of a single geometric variable, the

2There is also an unfolding process of much smaller folds on the apical membrane, though
these folds are less apparent in the mounted Ussing chamber tissue compared to in vivo and
will thus not be included in our modelling development.
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Figure 3: Model schematic. An imposed pressure difference is applied in an Ussing chamber
(a), causing the urothelial tissue, modelled as a spherical cap at the tissue level (b), to bow
outward. The umbrella cells undergo a morphological change from goblet to squamous as
the basal membrane unfolds (c); this is accompanied by insertion and removal of cytoplasmic
vesicles in the cell membranes (d). Vesicles from the intracellular population (iii) may fuse
with either the apical (i) or basal (ii) populations; after endocytosis vesicles are sent to a
“recycling” population (iv) before returning to the intracellular population.

maximum tissue deflection on the apical side, denoted h, = h,(t). The rate of
change of cap volume is equated to the flow rate from the Poiseulle description.
In this way, the deformation rate satisfies

d
dt
where AP is the fixed and imposed pressure difference, while Ap is the pressure
difference across the urothelial tissue.> The general idea of the model is as
follows: we relate the pressure difference Ap to the tension in each membrane;
the membrane tension drives vesicle traffic; the vesicle traffic serves to change
the reference areas of the membranes; the varying reference area affects the
degree of stretch, which then feeds back to change the tension and pressure.
On the cellular scale, Fig. 3(c), we consider the apical and basal sides of
the umbrella cell as two distinct tension supporting membranes. We assume
that at time ¢ = 0 the apical membrane is in an unfolded (flat) zero tension
state, while the basal membrane is curved and does not support any tension
until a geometric unfolding point is reached (see Appendix A). Starting from
energy considerations, we show in Appendix A that membrane stretching is dom-
inant to bending in this setup, and thus that the pressure difference across each
membrane is approximately balanced by the membrane tension via a Young-
Laplace-like relation. Applying this relation across both the apical and basal

ha(t) < (AP — Ap), (1)

3We remark that the intermediate and basal cell layers are also present in the experiments.
However, any membrane trafficking events that may occur in these cell layers do not con-
tribute to the surface area changes described for the umbrella cell layer, and their role in
area modulation is unclear. For simplicity they are excluded from our model, an assumption
further discussed in Sec. 5.



membranes, assuming a constant intracellular pressure, yields
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where 745 are the radii of curvature of the apical and basal membranes, and
T, the respective tensions. The geometry enables the radii of curvature to be
written in terms of h,. The tension in each membrane is a linear function of the
areal stretch: the area of the membrane divided by its reference (unstretched)
area. The former can be written as a function of h,, while the latter depends
on vesicle traffic, i.e. the amount of membrane material that has been added
or removed from the membrane. This requires a description of the insertion
(exocytosis) and/or removal (endocytosis) of cytoplasmic vesicles.

Hence, the final component of our model is a description of vesicle traffic
within the umbrella cells. Within the cell cytoplasm, there is an abundant pool
of vesicles, comprised of both newly synthesized vesicles that may be delivered
to either the apical or basal surface, and vesicles that are formed upon apical
or basolateral membrane endocytosis, and which may undergo another round of
exocytosis or may be delivered to lysosomes for degradation [3]. For simplicity,
we consider four distinct populations of vesicles, shown schematically in Fig.
3(d): vesicles that have fused with the apical (i) or basal (ii) membrane, intra-
cellular vesicles that are available for exocytosis (iii), and endocytosed vesicles
that are being “recycled” before further rounds of exocytosis (iv).

We assume that the total surface area of all vesicles combined remains at
a fixed value [4], and track the proportion of vesicles in each of the different
states. Note that these four states are not meant to represent a complete de-
scription of all possible vesicle activities and pathways, for instance we do not
explicitly account for transcytotic traffic (i.e., transport of endocytosed mem-
brane between surface domains), vesicle degradation/synthesis, or distinct apical
and basal vesicles. Such a description would introduce an excess of unknown
parameters. Rather, our approach is to form a lumped description of vesicle
traffic with minimal parameters that can capture the observed behaviour and
enable an understanding of the feedback between the mechanical environment
of the deforming cells and vesicle traffic. To this end, we propose a simple
model for exo- and endocytosis in which the rate of change of the proportion
of vesicles in any given state is a function of the tension within the membrane
walls. This general idea is well-supported across many cell types [28], and in
particular is motivated by experimental evidence that apical tension stimulates
apical exocytosis and basolateral tension stimulates apical endocytosis [13] in
umbrella cells. Here we extend this by hypothesising that basal tension could
also stimulate basal exocytosis and that apical tension could stimulate basolat-
eral endocytosis. While this idea is less intuitive, its feasibility may be inferred
from experimental evidence [13, 29], and from reports that mechanical forces are
communicated between the surfaces of epithelial cells [30, 31]. A key modelling
objective will be to determine whether this model component is necessary to
reproduce observed behaviour.



The description above is expressed by the system
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Here ¢q,,c,r represent the proportion of the total vesicle population in states
(i)-(iv), respectively. The constants kog characterise the rates of the different
trafficking events, in particular the rate of vesicle traffic on the « side due to
tension on the § side, with o = a,b;8 = a,b. The p,; are the membrane
stiffnesses; these constants are included so that the parameters kg have units
consistent with actual rates. The constant kr denotes the rate at which endocy-
tosed vesicle membrane is returned to the intracellular population for additional
rounds of exocytosis. The multiplying factors ¢, reflect the notion that vesicle
traffic occurs in rates in proportion to the amount of vesicle material available
in each of the different states, and ensures that each ¢, € [0,1]. Thus, the first
equation, for example, states that the apical vesicle pool will increase (apical
exocytosis) due to apical tension, but only if intracellular vesicles are available
(¢e > 0), and will decrease (apical endocytosis) due to basal tension, but only
if apical vesicle membrane is available to be endocytosed (¢, > 0).

The system is such that %((ba + ¢p + ¢ + dr) = 0, and hence without loss
of generality ¢p =1 — (¢o + ¢ + @) can be eliminated. Letting .4 denote the
total vesicle area i.e. the area of all vesicles combined, the unstressed area of
the apical membrane satisfies

A, (t) = Aa(o) + ¢a A,

where A,(0) is the initial apical area, and the stretch is then the ratio of the
geometric area to this quantity. A similar relation holds for the basal membrane.
In this way, given a constitutive law relating the tensions 7, ; to membrane
stretch, we can express the tensions as functions of he(t), ¢4 (t), and ¢p(t).* We
thus have a closed system of 4 coupled ordinary differential equations for h,(¢),
Da(t), dp(t), dc(t). In solving the system, we assume that all vesicles initially
begin within the intracellular population, and A, is given a small but non-zero
initial value (non-zero to avoid an infinite radius of curvature at ¢ = 0).

4Note that as stated above, the basal tension only exists after the basal side has unfolded,
hence the constitutive form for the basal tension includes a geometric switch such that 73 = 0
until a critical displacement, h};, is reached.



3. Model behaviour

In this section we consider the general behaviour of the model and identify
those processes that are needed to reproduce the experimental observations. As
a starting point, we first perform a quantitative comparison with the varying
pressures experiment of Fig. 5A in ref. [13] to determine a base set of parameters.
We then analyse the qualitative behaviour of the model and the balance between
geometry, mechanics, and vesicle traffic.

3.1. Parameters and data fit

We begin by using a quantitative comparison with experiment to calibrate
the model. Most parameters are provided in the experiment or can be well ap-
proximated from the literature. The parameters about which we have the least
knowledge are the vesicle trafficking rate parameters, which were determined by
fitting the model output to the experimental data (see Appendix E for details
on fitting). The model output of area change against time is overlaid on the
data in Fig 4. The best fit parameter values form the base set for the remainder
of this paper. A full list of parameter values is provided in Appendix D. To
assess the sensitivity of the model to the base values, we have also performed a
detailed sensitivity analysis (Appendix F), from which we find that the output
is reasonably robust with respect to variation from the base parameters. To
better understand intuitively the impact of the different parameters and model
components, we now assess the qualitative behaviour of the model.

3.2. Qualitative behaviour

The dynamics consist of three distinct phases, marked in Fig 5(a) and dis-
cussed in detail below. In capturing each phase, we identify necessary compo-
nents of the model and features of the vesicle trafficking process that underlie
the observed behaviours.

3.2.1. Phase I — Exocytosis

The initial response to the imposed pressure difference is net exocytosis and
a rapid bowing of the tissue on a timescale of seconds. In the early part of
this stage (within the first second or two), only the apical side is active, while
the basal side is ‘unfolding’ due to the changing cell morphology. The apical
tension is correspondingly very high, but is tempered by apical exocytosis (¢,
increases). Once the basal side unfolds, the basal membrane supports some of
the pressure, thus the basal tension rises sharply and the apical tension drops,
as seen in Fig 5(b). With the basal side unfolded, there are two membranes
supporting tension, and the bowing rate is somewhat decreased (see inset in Fig
5(a)), though it continues to rise sharply. At this point, both membranes are
rapidly recruiting intracellular vesicles, hence ¢, and ¢, both increase while the
intracellular population ¢, decreases sharply (Fig 5(d)).

As seen in Eqn (1), the bowing phase is marked by AP > Ap, and the
criterion for bowing to stop is that the membrane pressure difference Ap must
‘catch up’ with the imposed pressure difference AP. While the tissue is bowing,
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Figure 4: Area change data vs output of model for varying pressures. Data reproduced from
[13] appear as closed circles, the solid lines represent the model output at corresponding values
of the imposed pressure difference across the Ussing chamber. Each model output is produced
using the single set of best fit parameters, as described in Appendix E.

the radii of curvature are decreasing.® If there were no exocytosis, the mem-
branes could only accommodate bowing by stretching. The tensions and hence
Ap would increase rapidly, and the tissue would stop bowing after only a small
increase in area. In fact, a simple calculation (Appendix G) shows that with no
exocytosis, the tissue would only increase its area by approximately 3%! Exo-
cytosis enables bowing to occur with only moderate tensions. This illustrates
clearly the role of exocytosis in allowing the tissue to accommodate a much
larger deformation.

The maximum bowing is coupled to the rates of exocytosis. In Fig 6(a),
we plot the apical area change — defined as (A4 (t) — A4(0))/A4(0) — using base
values for k., and kp, and with each rate doubled. Increased exocytosis rates
lead to approximately an extra 20% in the maximum area. We also show in
Fig 6(a) the effect of doubling the total vesicle pool: the maximum area also
doubles. This suggests that the maximum bowing is more strongly driven by
the total area of all vesicles. Rather than keeping the ‘extra vesicles’ stored
within the intracellular population, with more vesicles available, more vesicles
are used.

We can also see the necessity of basal exocytosis in reproducing the exper-

5This is particular to the spherical cap geometry. The tissue begins as a flat disc, with
‘infinite’ radius of curvature, and the radius of curvature continues to decrease until a hemi-
spherical state is reached.

11
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Figure 5: Qualitative behaviour of the model. (a) Percentage area change, with the different
phases separated by dashed vertical lines. The horizontal dashed line represents the area at
which the basal membrane is unfolded. The inset gives a close-up at early times. Apical and
basal tensions are plotted on the time scale of 100 s (b) and 1.0 s (c), with the point of basal
unfolding marked by a star. (d) The vesicle populations ¢a, ¢p, ¢ (the recycling population
¢r satisfies pp =1 — o — Pp — ¢c). Parameters are as in Table 3 in Appendix D.
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imental behaviour. Observe that the maximum area increase is around 100%
for the base parameter set, after which the area drops back to around a 30%
increase. From cell geometry considerations (Appendix C), we compute that
the basal side begins supporting tension when the area has increased by ap-
proximately 20%. In order to increase by 100%, if there were no basal traffic,
the extra 80% would have to be accommodated by stretching of the basal mem-
brane. A simple calculation gives that this would require a stretch of around
60%, which is far past the threshold for tearing.

However, it might be that we have underestimated the unfolding point. This
would be in line with the suggestion in ref. [13] that the maximum area, which is
roughly independent of the imposed pressure, is determined purely by geometry
and corresponds with the unfolding point of the basal membrane. In that case,
however, while there would be no issue with the tissue bowing to an area increase
of 100%, the subsequent drop to 30% area increase would not occur, because as
soon as any decrease in area occurred, the basal side would cross back below the
unfolding threshold, basal tension would vanish, and hence apical endocytosis
would cease. A sample simulation with basal exo-, endocytosis turned off (kp, =
kpa = 0)% is given in Fig 6(b), showing a nearly monotonic behaviour.

3.2.2. Phase II — Endocytosis

Once Ap = AP, the tissue stops bowing (dh,/dt = 0). However, as seen in
Fig. 2(b), it does not reach this point asymptotically, but rather as a turning
point, with the tissue switching from an increase to a decrease in area, on a
timescale of minutes. From a physiological standpoint, such non-monotonic
behaviour seems non-intuitive. Why does the tissue not attain an equilibrium
when the pressures are in balance?

First, it is worth noting that at the turning point, de¢,/dt ~ d¢y/dt =~ 0 (see
Fig 5(d)), thus the apical and basal membranes are approximately in equilib-
rium as well, meaning the rates of exo- and endocytosis are in balance. How-
ever, as the tensions are non-zero, each side continues to recruit vesicles and so
d¢./dt < 0. Hence the system is not in equilibrium. Rather, the scales become
tipped in favour of endocytosis and the area starts to decrease. Note that this
would not be the case if endocytosed vesicles were immediately available for
re-use. That is, if there were no ‘recycling’ population, the geometric balance,
combined with zero net traffic in the apical and basal membranes, would imply
an intracellular balance as well (d¢./dt = 0), and the system would be in equi-
librium. Concurrent with this, simulations with state (iv) removed are marked
by a monotonic increase in area.

Secondly, that the endocytosis phase is observed experimentally is strongly
suggestive of mechanical coupling between the apical and basal membranes.
That is, we find the important result that non-monotonic behaviour is not pos-
sible if basal tension only affects basal traffic and apical tension only affects

6 Actually, it is sufficient to set ky, = 0. Without exocytosis, the basal membrane never
adds any vesicles and thus has zero endocytosis as well.
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and doubled vesicle pool A (black dashed); (b) an increased unfolding point and zero basal
traffic gives a nearly monotonic behaviour; (c) the effect of varying endocytosis rates kq,p and
kpg: doubled (red dotted) rates and zero endocytosis (black dashed); (d) the effect of vesicle
recycling rate kr: a 10 fold increase (black dashed) and 100 fold decrease (red dotted). The
dashed horizontal line marks the area change at the basal unfolding point. Base parameters
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apical traffic, i.e. if the cross terms in Equation (2) vanish (kqp = kpe = 0).
These terms link apical endocytosis to the basal membrane, and vice versa.
Moreover, the rate of area decrease is primarily determined by these values,
such that an increase in these values causes a sharper drop in area (see Fig

6(c)).

3.2.3. Phase III — Levelling and Equilibrium

As well as having do¢./dt < 0, the decrease in tissue area during Phase II
is characterised by a decrease in basal tension and increase in apical tension.
As seen in Fig 5(b), during Phase II tension rises on the apical side, as the net
loss of membrane material due to endocytosis outpaces the decrease in area.
By contrast, on the basal side, the area decrease dominates and the tension
decreases. Eventually, the intracellular population stops decreasing and plateaus
(see Fig 5(d)), meaning that the number of vesicles being returned from recycling
approximately matches the number being exocytosed. Beyond this point, all
quantities evolve monotonically, and the system settles to an equilibrium over a
timescale of tens of minutes. This equilibrium state represents a simultaneous
balance of the imposed pressure with the membrane pressure difference, and the
gain and loss of vesicles in each population. In terms of rate parameters, the
tissue area at equilibrium is most strongly influenced by the recycling rate kg,
which provides a time delay for the return of vesicles to the pool. An example
is given in Fig 6(d), where area change is plotted for increased and decreased
values of kg. As kg — 0, the rate of return of vesicles to the intracellular
population vanishes; hence there is no replenishing of vesicles, the second turning
point does not occur, and the equilibrium state is close to the unfolding point.
On the other hand, with immediate recycling (equivalent to kg — o0), the
behaviour is monotonic; accordingly, for large kr the area decrease is small and
the equilibrium balance occurs at a large area increase.

Finally, recall that the experiments also display a final phase, involving a
very slow and mild increase in surface area over a time scale on the order of an
hour. As this is likely connected to the synthesis of new vesicles [4], which we do
not explicitly include, this final phase is not predicted by the model. Although
new vesicle production could easily be incorporated into our framework, it would
have little effect on the early time dynamics and would require the introduction
of an additional parameter, hence we have chosen to neglect this phase.

4. Physiological simulations

Having established a qualitative understanding of the interactions between
geometry and mechanics in vesicle trafficking, and reasonable estimates for the
rates of exo- and endocytosis, we now show how the model can be adapted to
simulate a more physiological bladder filling process.

4.1. Spherical model
To simulate filling, we model the bladder as a full sphere. While this is an
idealisation, a spherical geometry has been utilised in previous models [23] and

15



has been shown to be a reasonable approximation [20] in fitting pressure-volume
changes during late stage, quasistatic filling. The basic structure of the model
is the same, with details provided in Appendix A.1. There are, however, two
key conceptual differences in moving from bladder tissue in an Ussing chamber
to an in wvivo scenario. Firstly, there is a critical geometric difference in the
nature of the spherical symmetry: bowing of the spherical cap in the Ussing
chamber causes a decrease in the radius of curvature, while bowing of the full
bladder sphere during filling increases the radius of curvature. This difference
can be appreciated by considering bowing due to a constant pressure and in the
absence of exocytosis. If a sphere expands due to a constant applied internal
pressure, the tension increases, since it is proportional to pressure times radius
of curvature and the radius of curvature increases. By contrast, an expanding
spherical cap will experience a decrease in tension due to the decreasing radius
of curvature”. Hence the relationship between curvature and tension, following
the Young-Laplace relation, is inverted. To see the impact of these differences,
we simulate a sphere expanding due to an imposed pressure and an expanding
cap under an equivalent pressure. While a direct comparison is difficult due to
the differing geometries, we fix the initial radius of the sphere equal to the disc
radius, keep all rate parameters the same, and set the basal unfolding point in
the sphere such that it occurs at the same relative area increase as in the cap
model. The results are presented in Fig 7, where we plot the apical tension at
early and long times, as well as the percent area change. We note that while
the tension curves are dissimilar, and have opposing gradients over much of
the dynamics (Fig 7(a)-(b)), the geometric behaviour is almost identical (Fig
7(c)-(d)).

A fixed imposed pressure was used in Fig 7 to enable a direct comparison
between the cap and sphere models. However, this highlights the second key
difference: while the Ussing chamber experiments may be thought of as pressure
driven, due to the fixed column of fluid, this is not the case for a filling bladder.
The bladder fills due to urine being delivered from the kidneys via the ureters,
tubes of smooth muscle fibres that propel the urine along. This is quite different
from a column of fluid entering a chamber due to gravitational forces. Rather,
the filling of the bladder is better understood as a volume driven process. Hence,
in simulating physiological bladder filling, it is more appropriate to take as
input a given ‘filling curve’, i.e. the bladder volume as a function of time. This
change simplifies the model in that the geometry is no longer determined as the
solution of a differential equation, as in the Ussing chamber description, but
rather follows a prescribed functional form. For simplicity, in all simulations
below we assume a linear increase in volume with time, such that the bladder
increases from 113 mL to 339 mL.%

"Note this statement only holds for a cap deforming from a disc up to the point of a
hemisphere, beyond which point the radius of curvature increases. However, the experiments
suggest that the tissue does not deform beyond the hemispherical point.

8Equivalent to an initial radius of 3 cm and a tripling in volume.
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4.2. Bladder filling and innervation

Critical to proper functioning of the bladder is communicating the sense of
‘fullness’ to the nervous system. The signalling mechanisms by which informa-
tion about the mechanical environment within the bladder are communicated
to the brain are complex and poorly understood [17]. Of particular relevance
is the presence of receptors and afferent nerve fibers in the urothelium, whose
activity is strongly driven by mechanical changes and likely connected to ATP
release [3, 19].

Our objective is not to explicitly model the mechanotransductive pathways
and signalling events. Rather, we take a phenomenological approach: by moni-
toring membrane tension and positing a causal relationship between tension and
signalling, we aim to investigate the effect of changes in the vesicle trafficking
machinery on the signalling mechanism. For simplicity, in what follows we as-
sume that innervation occurs when the tension increases past a threshold value
— here we use a threshold value of 1 mN/m, which is a typical tension at which
activation of mechanosensitive channels occurs in non-specialised cells [32, 28].
The basic simulation is as follows: we prescribe a volumetric filling rate, solve
the governing equations, and plot the tension.? By noting when the signalling
threshold is crossed for different parameter regimes, we can infer consequences
of changes in the vesicle machinery on the communication of fullness.

4.2.1. Filling rate

We first consider the effect of the volumetric filling rate. We consider three
different filling rates, shown in Fig 8(a), and the time evolution of the corre-
sponding tensions in Fig 8(b). The dashed horizontal line is the tension thresh-
old at which we posit a signalling event would occur. For discussion purposes,
we treat the green solid curve as the base case, and suppose this corresponds
to a ‘healthy’ bladder. Here, the volume increase takes place over the course of
two hours, and the signalling threshold is crossed when the bladder is 93% full.
With an increased filling rate — the same total volume change over only an hour
— the maximum stress is much higher, and the signalling threshold is crossed
much earlier, when the bladder is only 70% full. Hence a stronger sense of urge
would be felt and for a longer period of time, even with the bladder far from
being full. If the filling rate is decreased, on the other hand, the peak tension
never crosses the threshold and the signal of a full bladder is never sent, even
though the bladder reaches the same total volume.

4.2.2. Exocytosis rate

The rate of exo-, endocytosis directly impacts the vesicle dynamics, and
thus can have a strong effect on the tension levels during filling. An example
is shown in Fig 9(a), where we plot the time evolution of apical tension for
three different apical exocytosis rates, each with the same volumetric filling
rate, corresponding to the base solid green curve in Fig. 8. The baseline rate

9Here we restrict to the apical tension; the basal tension follows a similar form.
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Figure 8: The effect of volumetric filling rate on tension. (a) Linear filling with three different
rates: 0.02, 0.03, 0.06 mL/s for blue-dotted, green, red-dashed, respectively, and (b) corre-
sponding tensions plotted against time. The horizontal line represents a signalling threshold,
and the dots indicate the point at which the threshold is crossed in each case. (The apparent
discontinuity in the curves toward the left side corresponds to the basal unfolding point, and
only appears discontinuous at the scale presented.) Parameters are as in Tables 2 and 3 in

Appendix D.

was doubled and halved, with all other parameters held fixed. As might be
expected, a higher exocytosis rate leads to lower tension, and vice versa for a
lower rate. The relationship between exocytosis rate and peak tension is shown
as the inset in Fig 9(a): this seems to indicate a saturation in decreasing tension
with respect to increased exocytosis.

4.2.3. Vesicle population

Equally important in the uroepithelium’s response to the filling bladder is
having the necessary vesicle resources. If there are not enough intracellular
vesicles present, the rising volume cannot be properly accommodated. In Fig
9(b), we plot the tension during a filling cycle for three different total vesicle
areas, each following the volumetric filling rate corresponding to the base solid
green curve in Fig. 8. Here again we find that either too few or too many
vesicles could be detrimental. With an excess of vesicles, the system is too
quick in responding to the volume change and the tension never crosses the
threshold, thus a signal is never sent. With a shortage of vesicles, the system
cannot keep up with the vesicle demand, and the tension rises to several times
the baseline value.

5. Discussion

In this paper we have developed a mathematical model for vesicle trafficking
in the umbrella cells that comprise the outermost layer in the bladder uroep-
ithelium. Our primary objective has been to elucidate the relationship between
mechanics, geometry, and exo- and endocytosis of intracellular vesicles during
bladder filling. More generally, this analysis attempts to develop a biophysical
understanding of how mechanical forces influence cell level activity.
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Figure 9: Effect of apical exocytosis rate and total vesicle area on tension during simulated
spherical bladder filling. (a) Varying exocytosis rates: kqq = 15,30, 60 for blue-dotted, green,
red-dashed, respectively. Inset: peak tension as a function of kqq. (b) Varying total vesicle
area: A = 318,356,452 cm? for for blue-dotted, green, red-dashed, respectively. Inset: peak
tension as a function of total vesicle area. (The apparent discontinuity in the curves toward
the left side corresponds to the basal unfolding point, and only appears discontinuous at the
scale presented.) Volumetric fill rate 0.03 mL/s in all cases, other parameters are as in Tables
2 and 3 in Appendix D.

The motivation for our model development was the Ussing chamber exper-
iments of ref. [13]. These experiments, conducted on a disc of rabbit urothep-
ithelium tissue, showed the intriguing and non-intuitive behaviour of a non-
monotonic area change in response to an imposed pressure difference across the
two chambers of the Ussing apparatus. We first used the in vitro experiments
to establish a minimal set of biophysical mechanisms and to estimate vesicle
trafficking rate parameters via a quantitative fit with the data. In analysing the
qualitative behaviour, we uncovered several features that the model predicts
need be present in the vesicle trafficking mechanism. First, we have verified
the coupling between tension in one membrane and vesicle traffic in the other
membrane that was hypothesised in part by Yu et. al. [13]. Further, we found
that significant basal exo- and endocytosis is required, a feature that had not
been previously reported. We have also demonstrated the necessity of vesicle
recycling in capturing the non-monotonic behaviour — as opposed to either im-
mediate re-use of vesicles or vanishing vesicles upon endocytosis. Such findings
may be of interest from the general viewpoint of understanding vesicle traffick-
ing in epithelial cells, though in this regard a valuable next step would be to
model more explicitly distinct vesicle populations, transcytosis events, and to
include vesicle degradation and synthesis.

Having calibrated our biophysical description with the Ussing chamber ex-
periments, we then adapted the model to physiological in vivo bladder filling
to study the impact of imbalances and disruptions in the processes involved.
We have noted two important physical differences between a full bladder and a
disc of bladder tissue in an Ussing chamber. An expanding sphere increases its
radius of curvature, while a disc expanding to a hemisphere decreases the radius
of curvature. This change creates an inverted trend in the relationship between
curvature and tension following the Young-Laplace law for the membrane, and
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thus can change significantly the dynamic tension levels during an area change.
Nevertheless, it is noteworthy that in simulating a full sphere version of the
Ussing chamber, this difference had little effect on the geometrical behaviour.
Thus, in observing just the geometry, one could be misled to believe that the
systems were behaving equivalently.

The other difference we noted was that while the Ussing chamber exper-
iments we have analysed are driven by a fixed pressure difference across the
chambers, the physiological filling of a bladder is more appropriately described
as a volume driven process. Thus, in Sec. 4 we adapted the model to simulate a
filling spherical bladder driven by an imposed linear volumetric filling rate, and
considered the effect of variations in the vesicle trafficking machinery. In par-
ticular, we focussed on changes in the volumetric filling rate, the rate of apical
exocytosis, and the total pool of available vesicles. The question of interest is
how these changes might show their effect at the system level, in particular on
the process of communicating the sense of ‘fullness’ to the brain. To do this, we
posited a threshold tension at which signalling is triggered. Then, by tracking
the tension during filling we can infer the likelihood of signalling events. While
we have only considered the link between tension and innervation, of equal im-
portance is the bladder’s barrier function; here it is to be noted that the tension
is in a one-to-one relationship with stretch, thus a large tension is not only
indicative of excessive signalling but also will be linked to a decreased barrier
function.

In the simulations presented in Figs 9, similar qualitative behaviour was ob-
served with each parameter change: if the exocytosis rate or vesicle populations
are at abnormal levels, the membrane tension can be significantly impacted,
with important consequences for the functionality of the bladder. In each case,
we find that signalling may occur well before the bladder is full. These symp-
toms are typical of those associated with Overactive Bladder (OAB), which
suggests the hypothesis that dysfunction at the level of vesicle traffic might be
at the core of OAB.

While the level of modelling presented in this paper is certainly idealistic, it
has strong potential to be of clinical value. For instance, the sensation of urge
is the key feature of OAB, but remains a phenomenon that is difficult to even
define [33]. It is suspected that urge is connected to afferent nerve activity, and
might be understood in terms of malfunctioning vesicle dynamics. If this is the
case, natural questions are how would one determine where ezactly the problem
lies and how should one address it. To this end, we consider two hypothetical
patients with OAB, one due to diminished exocytosis rates and the other with
a depleted vesicle pool. Can our model distinguish between the pathologies?
Following the clinical methods in ref. [34], we could ask the patients to record
urge scores while measuring volumetric fill rates during filling cystometry. Each
patient records urge scores during slower bladder filling, and again during rapid
filling. The model simulations for these scenarios are shown in Fig. 10. We
have chosen the parameters (i.e. degree of abnormality) such that the peak
tension levels match in the slower filling. With the slow fill, the patient with
the diminished exocytosis rate feels an initial urge about 30 minutes earlier
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Figure 10: Theoretical simulation for pathology discrimination. Tensions plotted for slow (0.03
mL/s) and rapid (0.06 mL/s) filling rates for two different pathologies: a depleted vesicle
pool and a diminished (apical) exocytosis rate. The horizontal line represents a signalling
threshold. The time at which the signalling threshold is crossed is indicated with the solid
dots. Parameters are as in Tables 2 and 3 in Appendix D, with A changed to 311 cm? to
model the depleted vesicle pool and kqq changed to 12.5 for the diminished exocytosis.

than the patient with the depleted pool. As would be expected, the tension
rises to higher values with the rapid filling rate, so that both patients would
record higher urge scores in that round. Here, the patient with the depleted
pool experiences a higher peak tension. However, it is the early time tensions at
which we find a key difference: the patient with diminished exocytosis crosses the
urge threshold almost immediately, within the first minute, while the patient
with a depleted vesicle pool does not cross the threshold for close to half an
hour. Mechanically, this relates the fact that the diminished exocytosis cannot
keep up with the increased filling and thus the tension is high from the onset,
while with the depleted vesicle pool the early filling can be accommodated and
the detrimental effect is not felt until later times when the vesicle reserves get
low. In this simple example, we conclude that the different parameter regimes
do indeed have different signatures, that could in theory be distinguished with
standard clinical techniques.

Limitations and extensions. The above example demonstrates the potential
of mechanistic modelling, while the examples considered in Section 4 are illus-
trative of the possible problems underlying bladder disorders and the sorts of
avenues that could be explored within the mechanical framework. However, the
model here presents just a first step in describing mathematically the complex
environment within the bladder epithelium, and needs further development to
be of practical clinical value. The focus in this study was entirely on the um-
brella cell layer, though the epithelium also consists of basal and intermediate
cell layers. These cell layers are not exposed to the lumen, and because of their
limited number of intracellular vesicles their contribution to area modulation is
likely to be negligible. Moreover, in terms of the capacitance measurements in
refs. [13, 4], these cell layers lack tight junctions, do not separate charge (during
the transepithelial application of current), and as such they do not contribute to
the changes in umbrella cell capacitance measured in the Ussing chamber. For
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these reasons, we opted to exclude them from our model. Nevertheless, these
layers do affect the wall thickness and could alter the mechanical properties in
a way that could modulate the responses of the epithelium to filling/stretch.
However, this contribution is difficult to tease out as the umbrella cells cannot
be studied experimentally in their absence. Incorporating a mechanical descrip-
tion of these layers and devising experimental approaches to isolate their effects
remain as challenges for a future study.

There are a number of other interesting future directions, including incor-
porating more explicitly mechanosensing and the physical process of exo- and
endocytosis. Due to the experimental accessibility of bladder epithelium, the
former is particularly appealing, with a strong potential to better comprehend
generic mechanostransduction pathways across molecular, cellular, and tissue
levels. Finally, we have focussed on bladder filling in this paper, as this was the
most relevant part of the bladder cycle that we could link with the experimen-
tal data. Equally important is to model voiding, at the cellular or vesicle level.
However, this is not simply a reversal of the filling process. Rather, it requires
a description of contraction of the surrounding detrusor muscle and endocytosis
on a short time scale, which raises the issue of mechanical instability at the cell
membrane and bladder tissue levels.
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Appendix A. Model derivation

The mathematical model has four components: the fluid flow and pressure
on both sides of the Ussing chamber, the geometry of the deforming disc of
uroepithelial tissue, the mechanics of the apical and basal membranes of the
umbrella cells, and the vesicle traffic that serves to dynamically change the
reference membrane area. The equations governing each component are derived
in turn below.

Poiseulle flow. We begin on the largest scale with a description of fluid flow in
the Ussing chamber. Each hemichamber is connected to a cylindrical column
of fluid with horizontal reserve, which feeds into the chamber. This geometry
is depicted in Fig A.11(a). Let @, be the apical flow rate, so that @, > 0 if
fluid is entering the mucosal hemichamber, and equivalently define @} to be the
basal flow rate corresponding to the serosal hemichamber. The pressure at the
top of the water columns remains fixed, due to the horizontal fluid reserve, at
the values

P, =pgL,, Py, = pgLy, (A1)
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Figure A.11: (a) Ussing chamber geometry. (b) Cap geometry.

where p is the fluid density, g the gravitational constant, and L,; are the
vertical lengths of the columns of fluid. We assume that each hemichamber is
at homogeneous pressure, which we denote p,(t) and py(t) for the apical and
basal sides, respectively. For each hemichamber, taking a Poiseulle flow through
the two cylindrical tubes and enforcing constant flux, we obtain the relations

Qa = Aa(lja _pa)7 Qb = )\b(Pb _pb)a (AQ)
where
)\ ﬂ-Ri,b
a,b — 8#La,b .

Here R, ; are the radii of tubing for each chamber, as shown in Fig A.11a, and
w is the dynamic viscosity.
Mass conservation for an incompressible fluid implies that

d
=—-Qp=—=V A3
Qa Qb dt ( )
where V is the volume contained within the deforming spherical cap separating
the two hemichambers. In other words, the change in volume in the spherical
cap indicates how much fluid has entered the mucosal chamber, or equivalently
has left the serosal hemichamber.

Cap geometry. We assume that at all times the bowed tissue may be approxi-
mated as a spherical cap'?. Considering first the apical membrane, and following
the notation shown in Figure A.11(b), the radius of curvature r,, surface area A,
and volume V. depend on the midpoint deflection h, and fixed radius d, via the

10]nitially the tissue is in a flat disc shape, which corresponds to a cap with infinite radius
of curvature; however, for computational reasons we give a small non-zero radius at time zero.
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following relations:

d? + h?
p— 7a A-4
e = Top, (A-da)
A, = m(h? 4+ d?) = 271rgha, (A.4b)
vf::ﬁga(h§4-3d2y (A.dc)

The basal membrane is also assumed to be in a spherical cap geometry,
with radius of curvature r, = r, + J, where J is the (time varying) depth
of the umbrella cells. The basal description also must take into account the
morphological “unfolding” of the cells. That is, initially the basal side is curved
and not supporting tension. As the tissue bows out, once a critical apical
displacement h is reached, the cells have assumed a squamous shape and the
basal membrane begins to support tension (see Fig A.12). The critical value h};
is computed in Appendix B. We denote the radius of curvature of the apical
membrane at this point by ), and equivalently r; for the basal membrane.
Letting 0* denote the cell depth at this point, we have rj = r + 0*. As the
tissue continues to bow outward, the two membranes form concentric spherical
shells such that the intracellular volume, which we denote V., should remain
approximately constant [4]. Computing V. as the volume between two concentric
spherical caps, and expanding in §*, we have

V. = 2nrihi6* + O(6*7) (A.5)

where V, is a fixed quantity determined by the cell geometry and tissue radius
in the experimental setup. Beyond the unfolding point, we define the basal
midpoint deflection and radius of curvature as hy, r, respectively, with h, =
hoe + 6, 1y = rq + §; we can then approximate

2nrohed = 21 b 6%, (A.6)

and thus v

—  hy=he+ —. A7
27T7"aha b + 27rraha ( )
Using (A.4b), along with (A.7), we note the basal surface area A, = 27ryhy
can be expressed in terms of h,. In this way, h, = ho(t) serves as the single

geometric variable.

Ty =Tg +

Membrane mechanics. In order to distinguish between activities at the basal
versus the apical side of the umbrella cells, we consider each membrane me-
chanically as a thin elastic sheet that resists bending and stretching. However,
as we now show, the bending energy in this setup is negligible compared to
stretching energy. To see this, we assume a typical quadratic energy, so that
the stretching energy of a piece of membrane with reference area Ay that is
stretched to area A is given by (see, e.g. [? ])
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1 (A :
Es==-p|——-1] . A8
S ( m ) (A.8)
where p is the stretching modulus. The bending energy (per area) of an elastic
sheet with radius of curvature R is

1
R?
where k is the bending modulus, which scales as

Ko~ pg?,

where ¢ is the thickness of the membrane [? ]. To compare the relative size of
the energies requires an estimation of the degree of stretching versus bending.
We note that at its largest deflection, the area of the tissue in the experiments
of [13] is double the initial area, i.e. A =2A, (the flat disc of tissue has bowed
to a hemisphere). A stretch of 100% would far exceed the threshold for tissue
rupture, hence the majority of this area increase must be accounted for by
exocytosis, which will be described in the final component of the model. Taking
as a modest value that only 1% is due to membrane stretching, we have

Es ~ 10_4u.

As for bending, the thickness of a bilayer membrane is on the order of 10 nm [3],
but here there are two radii of curvature to consider. The radius of curvature
of the bowed tissue (which starts out flat) during the Ussing experiments is
bounded below by about 1 cm (the radius of the hemisphere), which yields

& ~ 107124,

This suggests that in the apical membrane, bending energy is around 8 orders
of magnitude smaller than stretching energy. The same will be true of the basal
membrane beyond the unfolding point. Before the unfolding point, the basal
membrane has a radius of curvature on the order of 10 pm, yielding a bending
energy &, ~ 1075, still 2 orders of magnitude smaller than stretching.!?

The above scaling arguments suggest that stretching effects dominate bend-
ing. With bending energy neglected, the membrane seeks to minimize surface
area, subject to the imposed pressure difference across the two sides of the Uss-
ing chamber. The pressure difference across each membrane is thus related to
the in-plane membrane tension by a Young-Laplace-like law [? ]

11 Alternatively, we note the typical cited values for stretching modulus g ~ 250mN/m [?
] and bending modulus k &~ 20kgT [? ]. Then, at a 1% area stretch, stretching effects will
dominate bending at a radius of curvature at or above 1pm.
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where Ap is the pressure difference across the membrane, T is the tension, and
R is the radius of curvature. We denote the apical and basal tension by T, and
Ty, respectively. Recalling that p, and p;, are the pressures in each hemichamber
(see Fig A.11), and letting p. be the intracellular pressure, we thus have

2, 213,
Pa — Pc = y DPe—DPb= —-
Ta Ty

(A.10)

Note that in the second equation, T, = 0 in the folded state, i.e. when
he < R}, and thus p. = pp and the pressure difference is fully supported by the
apical tension. Taking the sum of the two equations, we have

oT, 2Ty
Pa —Pb = + —.

(A.11)

Ta Ty

We can now combine the Young-Laplace relation and the flow rate to obtain
an equation for the evolution of h,. Combining Equations (A.2) and using
Equation (A.3), we have

1 1\ dV
4+ | =(P. —P)— — ). A.12
(5t 5) % = (PP~ a0 (A12)
Writing dV/dt = V'(h,) %, and using (A.4c), (A.11), we then obtain
J 2N (AP =2 (L + 1))
L hat) = : (A.13)
dt 7(Aa + Ap) (B2 + d?)

where we denote AP := P, — P, as the imposed pressure difference.

Vesicle dynamics. As stated above, the roughly 100% increase in area requires
significant exocytosis, i.e. membrane material must be added during the bowing
to achieve such a large bowing without rupture. To model vesicle traffic, we
assume that there is a fixed population of vesicles, with total combined surface
area A, and suppose that each vesicle will be in one of 4 states: (i) fused with
apical wall, (ii) fused with basal wall, (iii) intracellular, (iv) being recycled. We
define the proportion of the total vesicle population for each of the states as
oq (State (1)), ¢p (State (ii)), ¢. (State (iii)), and ¢r (State (iv)), noting that
each is a function of time and is restricted to lie between 0 and 1. The primary
hypothesis we investigate in this study is that tension in the cell membranes
drives exo- and endocytosis, in particular we propose that one or more of the
following holds:

1. Tension in the apical membrane causes apical exocytosis;
2. Tension in the basal membrane causes basal exocytosis;
3. Tension in the apical membrane causes basal endocytosis;

4. Tension in the basal membrane causes apical endocytosis.
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basal membrane folded basal unfolding point

Figure A.12: Geometry of basal membrane and basal unfolding point.

Moreover, we assume that vesicles fuse with either membrane from the intra-
cellular population, and that endocytosed vesicles are not immediately available
for exocytosis again, but rather undergo “recycling” and are only available for
re-exocytosis after they have been reintroduced to the intracellular population.
In particular, we propose that the vesicle dynamics can be described by

d Kaa ka
7¢a = ¢6Ta - b¢aTba
dt Ha Mo

d k kba
by = LTy — “2 T,
dt Ho Ha

(A.14)

d kaa k

%q&c = kR¢R - (rbc <Ta + bbTb> )
Ho

a

d ko kba
—br = -2 6Ty + 2Ty — kror.
dt Mo Mo

Here, the non-negative constants ks characterise the feedback between ten-
sion and vesicle traffic, and kg is the rate at which vesicles are returned to the
intracellular population. The constants (i, characterize the membrane stiff-
nesses; these are included so that the kg have units of rates. The inclusion of
the fi,,5 could be interpreted to mean that exo-, endocytosis are in fact being
driven by stretch and not tension; however, as tension and stretch are linearly
related such a distinction is not of consequence. The multiplying factors ¢,
reflect the notion that exo- and endocytosis occur in rates in proportion to the
amount of vesicle material, and ensures that each ¢, € [0,1]. Conservation of
vesicles, i.e. ¢, + ¢dg + ¢p + dr = 1, follows automatically from Eqn (A.14),
which we can use to solve for ¢ g and remove the final equation.

Membrane tension. The system (A.14) governs the time dynamics during de-
formation of the epithelial tissue. For given rate constants k.g, it remains to
obtain expressions for the tensions T, and 7T} in terms of the vesicle populations
and midpoint displacement h,. To do so, we require a constitutive law relating
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the membrane stretch to tension. The quadratic stretching energy (A.8) yields
a linear relation between the membrane tension and the areal stretch. Denoting
0,p as the membrane stretch, we have

Ty = pa(ag — 1), Tp = pp(ap — 1)H(he — hY). (A.15)

The Heaviside function H (h, —h’) accounts for the basal membrane supporting
zero tension before the unfolding point. For each membrane, the stretch is the
ratio of geometric to reference (unstretched) area. As described above, the
geometric area for both membranes can be written as a function only of h,.
The reference areas, which we denote A, (t), Ay(t), will increase/decrease based
on the amount of exo-, endocytosis, and will satisfy the following:

Aa (t) = Aa(o) + ¢a~f47

N (A.16)

Ap(t) = A} + dpA.
That is, the area of reference apical membrane at any time is equal to the initial
amount plus whatever fraction ¢, of the total vesicle population A is fused with
the apical membrane, and similarly for the basal side. Here, A; is the basal
area at the point of basal unfolding, i.e. A} = 2mrfh}, which is fixed by (A.7)
once h} is known. The stretches are then given by

271 hg 2rryhy
aa = S 5 ab = A
b

Aa

and we note that a, = ag(ha, a), b = ap(ha, Pp).
Combining (A.13) and (A.14), and using (A.15)-(A.17), we obtain a closed
system of 4 first order time-dependent ODEs for the variables {hq, ¢a, b, ¢c}-

: (A.17)

Appendiz A.1. Full sphere model

We now adapt the model geometry from a spherical cap to a full sphere.
In the case of a full sphere, the geometrical relations become simplified. The
sphere radius (on the apical side) r,(t) forms the single geometric parameter,
and the volume and area follow the familiar relations V = 4713 /3, A, = 47r2.
Assuming again that the intracellular volume remains constant, and expanding
the volume between two concentric spheres in powers of the cell depth §, we
obtain

*2 ok
Ta 0"

2
Ta

0= , (A.18)
where 0* and r) are the depth and radius at the point of basal unfolding, as
before. We can then write the basal radius r, = r, + d in terms of r,, and simi-
larly for the basal geometric area A,. We note that as well as basal unfolding, in
vivo filling is first characterised by unfolding of the highly wrinkled apical mem-
brane. In our model, we assume that the apical membrane is unfolded with zero
tension at time ¢ = 0, i.e. we neglect any such small wavelength apical folds,
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which assumes that the majority of small folds are removed through mounting
the tissue in a flat ring in the Ussing chamber, and is tantamount to considering
the filling process starting at the unfolding point of the apical membrane.

As in the cap case, we posit 4 populations of vesicles, governed by (A.14).
The tensions satisfy the constitutive relations

Ty = pa(aqg—1), Tp=pp(lay—1V)H(re — 1) (A.19)
where a, are the areal stretches, that is
47rr§ b

Qg p = ———, A.20
"= T, (A.20)

and the unstressed areas Aa,b follow (A.16). Since the geometric areas are both
functions of r,, the tensions are functions of {r,, ¢q, P}

In completing the system, there are two distinct cases of interest: a pressure
driven and volume driven system.

Pressure driven. To model pressure driven filling of a bladder, we suppose that
a column of fluid of height L and radius R feeds into the bladder, thus creating
an imposed pressure P = pgL. Taking Poiseulle flow into the bladder, the flux
() satisfies
TR*
=—(P—p, A.21
Q= (P-n) (A21)
where p,, is the intrabladder pressure, assumed uniform and equal to the pressure
at the apical membrane. As before, we we can equate the flux to the rate of
change of bladder volume, which can in turn be expressed in terms of the radius,
giving
d d
= —V =Anr2—r,(t). A.22
Q= SV =dm2 St (4.22)
The Young-Laplace relation applied across both the apical and basal mem-
branes, and then combined, gives

2T, 2Ty
+=.
Ta b

Pa = (A23)

Combining (A.21) - (A.23) gives

d R4 2Ta 2Tb
—ry(t) = — | P — — . A.24
dt’ ®) 32uLr? ( Ta * Tp ) ( )
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Volume driven. In the case of an imposed bladder volume, the system is sim-
plified in that the geometry is predetermined and the pressure does not enter
into the governing equations. We prescribe the bladder volume V (¢), in which

case the radius is given by
3v\ "/
o(t) = | — .
ni = (3

Hence in this case the system consists of only three differential equations,
for {¢a7 ¢b7 (ZSC}

Note that the difference between fixed volume and fixed pressure has a strong
impact on the magnitude of the membrane tensions. In a pressure driven sim-
ulation, the apical membrane feels an ‘instantaneous’ imposed pressure, which
creates a correspondingly large tension at ¢ = 0 following the Young-Laplace
relation. Since the pressure difference is constant, the tension also stays at a
relatively high value. In a volume driven simulation, on the other hand, it is
natural to use initial conditions such that the membrane is at a baseline state
(which for simplicity we assume is zero tension), after which the tension will
increase in proportion with the rate of volume increase. With no fixed pressure,
it is possible for the volume to be completely accommodated and the tension
to return to its baseline state. Hence in the volume driven case we observe
significantly lower magnitudes of tension.

Appendix B. Folding geometry

In the spherical cap geometry, r, decreases as the apical chamber fills and
the basal membrane unfolds. Here we use a geometric analysis to estimate the
radius ) at which the basal membrane becomes unfolded.

The geometry is illustrated in Fig. B.13. Taking a cross section of the spher-
ical cap model the basal membrane with a cosine curve, with each complete
oscillation corresponding to a cell. Thus, with w cells in the membrane, the

frequency of the wave is
wm

=5 (B.1)

where p
O = arcsin (r) (B.2)

is the sector angle. Then, with amplitude ¢, the radius of the basal side is
r=rp+ecos(wh), 6¢€[-0,0]. (B.3)

We assume that the length [, of the basal membrane is constant prior to
unfolding, since neither stretching nor vesicle trafficking occurs in the basal
membrane while unfolding. We also assume, for simplicity, that the total area M
between the apical and basal membranes remains fixed. In order to find 7}, the
apical radius at the point of unfolding, we first need to find I, and M, then let
e — 0 to simulate unfolding; r* = r,(e = 0).
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r =1y + €cos(wh)

/

Figure B.13: Schematic for cell geometry and basal unfolding.

Initial cell dimensions were estimated from transmission and scanning elec-
tron micrographs of rabbit uroepithelia [3].

’ Dimension \ Value ‘
€(0) 5 pm
0(0) 40 pm
7(0) 35 pm

Table B.1: Estimates of initial cell dimesions.

Here (0) is the average initial width of a cell. Using these three values
and taking a small non-zero initial value for h (to avoid an infinite radius of
curvature), we can estimate the unfolding radius analytically. First, we use
(A.4) and (B.2) respectively to find r4(0) and ©. Then /,(0) and r,(0) are given
by

1o(0) = 20(0)r4(0),

r6(0) = 74(0) 4 6(0),
Finally, the number of cells w is simply the initial apical length, {,(0), divided by

~(0). We are now in a position to find the basal arclength and the intracellular
area.

(B.4)

Arclength and area. Writing the basal curve in parametric form

(x,y) = r(cos(wh), sin(wh))
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where r is given by (B.3), the arclength is

e
Iy :/ Va2 +y'2do (B.5)
-0

where ’ denotes differentiation with respect to §. Expanding for small € we have

RN
0
VI 152 = 1y + ecos(@b) + 6%251“2& +0(e%),
Ty

where & is given by (B.1), and so

2~2 2~

) + 2% sin(wO) — % sin(200) + O(e%). (B.6)

I, =0 (27“1, + ¢
27"1,

Thus we then find I, a constant, by plugging in the values 6, r,(0), €(0) and @
found above.
The total intracellular area M is given by

] rp+€cos(wl)
M :/ / rdrdf (B.7)
-0 Jr,
s € 2 1. . €2 R
=0 (r+ 5 Ta + i sin(wO) | 2rpe + ) cos(wO) | . (B.8)

which again can be found by inserting the appropriate initial values.

Unfolding radius. In the spherical cap geometry, as € decreases, 7, and r, both
decrease. Let € — 0, then (B.6) becomes

d
lpy = 2r;©" = 2r] arcsin <*> ,
a

and so (B.8) becomes

M=0" (r;;2 - 7"22)

2
lb *2

. d
= arcsin | — —_— T,
Ta 4 arcsin® ( d )

pore
TG.

(B.9)

We solve (B.9) numerically, to find r’ given M and lp; there are multiple
solutions, but we choose the solution that is greater than d, noting that r, = d
is a hemisphere. The range in values of €(0), from 3um to 5um, gives a range
in values of r? from 1.36cm to 0.94cm. We have used a value of 1.11cm in our
simulations.
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Appendix C. Necessity of basal exocytosis

If no exocytosis occurs in the basal side, then ¢, = 0 and the unstressed
area Ay is fixed, with Ay = A} = 27r}hj. Now stretch in the basal membrane is

given by ap = 2%2'“’. From experimental data we see that the highest increase
b

in capacitance is 112%, corresponding to the same percentage increase in the
apical surface area. Thus

max(27rahe) = 1.12 % (271,(0) R, (0)),
and with no exocytosis in the basal side we would have

max(27ryhy) S max (277, he)
Ay Ay '

max(ayp) =

With the parameters given in Appendix Appendix D, this gives at least a 61%
stretch. However, it is known that uroepithelial cell membranes can only with-
stand 5-6% stretch, so basal exocytosis is clearly necessary to avoid rupture.

Appendix D. Model Parameters

Model parameters for the spherical cap geometry are listed in Table D.3,
including a reference to how each parameter was determined. Most parameters
can be estimated from the literature. Others require more consideration and
are discussed further below.

Membrane stiffness. We first consider an estimation for the membrane stiffness
Hq,p in the constitutive relation

Ta,b = ,Ua,b(au,b - 1),

where gy is the areal stretch. Areal stiffness estimates for red blood cell mem-
branes can be found in the literature, but with a range of values that vary across
several orders of magnitude [35]. Here, we use the turning point (the peak in
the graphs of Figure 1(b) in the main text) to estimate y, 5. Geometrically, at
this point the area has roughly doubled, meaning the cap should be close to a
hemisphere, for which r, =~ r, = d ~ 1 cm. At this point AP — Ap = 0, which
means that the imposed pressure difference AP is balanced by the tension in the
membranes. Supposing that the tension in each membrane is of similar magni-
tude, T,, ~ Tp, we have from the Young-Laplace relation that Ap ~ 4T, /r,. At
the largest pressure difference, AP = 15,680 g-cm™!-s~2, which gives a tension
T, =~ 4000 g-s~2. Noting that the membrane will rupture at a stretch larger
than about 6%, we have

4000 ~ T, = pra(a — 1) < 0.064,,

from which we can estimate the stiffness p, ~ 6-10* g-s~2, a value that is in the

range cited for red blood cells. This value is an order of magnitude higher than
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values measured for phospholipid membranes via micropipette experiments [?
]. However, it is worth noting that our value is expected to be an overestimate,
as the other cell layers in urothelial tissue (intermediate cells, e.g.) may be
present in the experiments and will also support some of the tension, but are
not explicitly included in the model. Also, since the apical membrane has a
distinctly different makeup from the basal, there is no reason to assume that
they should have the same mechanical properties. Our approach is to treat

La, iy as fitting parameters, both constrained to lie in the range [103,2 - 10]
2

g™,
Further notes.
e To find the total vesicle area A, we use the result from [4] that for rab-

bit uroepithelia there is 8500pm? of vesicle surface area for 2700pum? of
unstretched apical surface area. Hence

8500
2700

* (2714 (0)ha(0)), (D.1)

where 277,(0)h,(0) & wd? is the initial apical surface area.

e The fluid used in the Ussing chamber is Krebs buffer solution, whose
density p and viscosity ;1 we assume to be the same as water (i.e. the
solution is sufficiently dilute).

Sphere model. For the full sphere model, vesicle trafficking rates and membrane
stiffness are taken to be the same as in the cap model. Some geometrical pa-
rameters differ, and are listed in Table D.2. In these values we have used the
following calculations:

o A=5004mr2

2700
/ N 2
.7‘;: 1—|—<h7“> *Tag
’ Parameter \ Description \ Value ‘
Tag Initial radius 3 mm
A Population of vesicles | 356 cm?

<

Q %

Unfolding radius 3.2 mm

Table D.2: Sphere parameters.

Appendix E. Data Fitting and Parameter Estimation

The rate parameters k,g and membrane stiffnesses 1,5 were determined by
fitting the model output to the ‘varying pressures’ experiment results in Fig. 5A
of [13]. This represents a quantitative comparison with 5 different experimental
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Parameter \ Description Value Reference
L, Apical column height 1-16 cm [13]
Ly Basal column height 0 cm Authors’ interpretation of [13]
R, Apical column radius 0.2 cm [13]
Ry Basal column radius 0.2 cm [13]
d Opening radius 0.8 cm [8]
p Fluid density 1 g/cm? Density of water
g Gravitational acceleration 980 cm/s? Known value
I Fluid dynamic viscosity | 8.9-1073 g/cm/s Viscosity of water
hag Initial deflection 0.001 cm Arbitrary small, non-zero value
A Population of vesicles 6.3 cm? [4]
o Unfolding cell thickness 0.001 cm Order of magnitude estimate
koo Apical exocytosis rate 30 s~ 1 Fit to data
Ko Basal exocytosis rate 25 71 Fit to data
kap Apical endocytosis rate 30 st Fit to data
kpa Basal endocytosis rate 2.6 571 Fit to data
kr Recycling rate 0.0038 s—! Fit to data
h Unfolding deflection 0.34 cm Determined geometrically
Iha Apical areal stiffness 140000 g/s? Fit to data
723 Basal areal stiffness 70000 g/s? Fit to data

Table D.3: Model parameters for spherical cap.

runs, each with a different imposed pressure difference. For any given pressure,
rate parameters can be chosen to match the data very well; here we use the
values that minimise the total error over all 5 runs. As the model does not
account for the slow and mild rise in surface area after reaching a plateau in
Phase 3, the fit was made using data covering only the first five minutes.

Due to the multiple data sets and multiple parameters being fit simultane-
ously, the error function in a standard least squares approach contains many
local minima. Hence it was necessary to obtain a good first guess for the initial
parameters; this was done by creating a Graphical User Interface allowing us to
first fit the parameters by eye before performing a standard least squares curve
fit.

We note also that the data for the initial increase in surface area, before the
maximum is attained, is erratic: the lower pressure curves display an initial very
small decrease in surface area; such a transient effect is not incorporated into
our model, and created a mismatch at lower pressures that negatively affected
the fit if considered. Hence only the points at and after the maximum were
used for fitting, by artificially setting the noisy data for the initial rise and the
corresponding outputs of the numerical solution to be zero.
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Appendix F. Parameter sensitivity analysis

To investigate the robustness of the fit, as well as the effect of varying pa-
rameters on some important measures in the model, we performed a parameter
sensitivity analysis of the fitted rate parameters (kqq, kb, kab, kbe and kgr) and
the vesicle pool size A one at a time. We increased and decreased each param-
eter individually by 10% and 50%, and measured the effect (percentage change
from value with base parameters) on:

e The value of the maximum percentage increase in apical surface area.

e The time at which this maximum is reached.

The equilibrium area percentage, approximated by the percentage increase
in apical surface area after 5 minutes.

e The maximum basal tension.

The apical tension when the basal tension is at a maximum.

We investigated the effect of changing each parameter individually on each
of these measures for the 5 pressure differences in [13], with L, = 1,2,4,8 and
16 cm. The output for L, = 2 cm is provided in Fig. F.14. The only feature
for which the percent change in output is larger than the percent change in
parameter input is the time at which maximum bowing occurs; however this
largely reflects the fact that the maximum bowing occurs at a very short time.

Appendix G. Maximum bowing if no exocytosis

In this appendix we compute the maximum bowing that would occur in the
spherical cap in the absence of exocytosis. We recall the relation

d

dt
which implies that bowing stops when AP = Ap. We assume that in this case,
the maximum bowing occurs before basal unfolding, an assumption that can
be justified a posteriori. Before unfolding, the basal tension 7 = 0, and hence
Ap = 2T, /r,. By combining the geometrical relation

ha(t) < (AP — Ap),

_d+h

= Nl
Ta 2hy (G )
with the constitutive relation (noting that with no exocytosis the unstressed
area is fixed at A,(0))
2mrgh
To= o | -t —1 G.2
8 ( 4,(0) ) (2
we obtain the following equation
0 1
dpghg — — AP =0, G.3
e (55~ 7 47) (¢
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Figure F.14: Parameter sensitivity. Percent change in 5 model outputs for varying model
parameters by 50% decrease (blue), 10% decrease (cyan), 10% increase (green), 50% increase
(yellow). Model outputs: (i) maximum percentage increase in apical surface area (ii) time at
which maximum area occurs (iii) equilibrium area percentage (iv) maximum basal tension,
(v) apical tension when the basal tension is at a maximum. Model inputs: kaa, kbb, Kabs Kba,
kg, and the vesicle pool area A. Base parameters as in Table 2.
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to be solved for the deflection h, at the point of maximum bowing. This cubic
equation has a solution that for all pressures imposed is less than the unfolding
deflection h};. For example, with L, = 4 cm, the maximum deflection occurs at
he =~ 0.14 ¢cm, which corresponds to an area increase of only 3%. Similar values
are found for other pressures.

[1]

[11]

[12]

[13]

[14]
[15]

[16]

J. Hildebran, J. Goerke and J. Clements, Journal of Applied Physiology,
1981, 51, 905-910.

G. BURNSTOCK, Journal of anatomy, 1999, 194, 335-342.

G. Apodaca, Traffic, 2003, 5, 117-128.

S. T. Truschel, E. Wang, W. G. Ruiz, S. M. Leung, R. Rojas, J. Lavelle,
M. Zeidel, D. Stoffer and G. Apodaca, Molecular biology of the cell, 2002,
13, 830-846.

S. A. Lewis, American Journal of Physiology-Renal Physiology, 2000, 278,
F867-F874.

L. A. Staehelin, F. J. Chlapowski and M. A. Bonneville, The Journal of

cell biology, 1972, 53, 73-91.

S. A. Lewis and J. L. de Moura, 1982.
E. Wang, S. Truschel and G. Apodaca, Methods, 2003, 30, 207-217.

M. D. Carattino, H. S. Prakasam, W. G. Ruiz, D. R. Clayton, M. McGuire,
L. I. Gallo and G. Apodaca, AJP: Renal Physiology, 2013, 305, F1158-
F1168.

T. Soldati and M. Schliwa, Nature Reviews Molecular Cell Biology, 2006,
7, 897-908.

S. A. Lewis and J. De Moura, The Journal of membrane biology, 1984, 82,
123-136.

G. Apodaca, American Journal of Physiology-Renal Physiology, 2002, 282,
F179-F190.

W. Yu, P. Khandelwal and G. Apodaca, Molecular biology of the cell, 2009,
20, 282-295.

J. Alroy and R. S. Weinstein, The Anatomical Record, 1980, 197, 75-83.

L. A. Birder, A. J. Kanai, F. Cruz, K. Moore and C. H. Fry, Neurourology
and urodynamics, 2010, 29, 598-602.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney and J. Southgate,
Tissue Engineering, 2006, 12, 635-644.

39



[17] L. Birder, W. De Groat, 1. Mills, J. Morrison, K. Thor and M. Drake,
Neurourology and urodynamics, 2009, 29, 128-139.

[18] A. Iggo, The Journal of physiology, 1955, 128, 593.

[19] L. A. Birder, M. Ruggieri, M. Takeda, G. van Koeveringe, S. Veltkamp,
C. Korstanje, B. Parsons and C. H. Fry, Neurourology and urodynamics,
2012.

[20] M. S. Damaser and S. L. Lehman, Journal of biomechanics, 1995, 28, 725—
732.

[21] S. Korossis, F. Bolland, J. Southgate, E. Ingham and J. Fisher,
Biomaterials, 2009, 30, 266-275.

[22] M. Colding-Jgrgensen and K. Steven, Neurourology and urodynamics,
1993, 12, 59-79.

[23] M. S. Damaser, Scandinavian Journal of Urology and Nephrology, 1999,
33, 51-58.

[24] M. S. Damaser and S. L. Lehman, Journal of biomechanics, 1996, 29, 1615
1619.

[25] E. H. C. Bastiaanssen, J. L. Van Leeuwen, J. Vanderschoot and P. A.
Redert, Journal of theoretical biology, 1996, 178, 113-133.

[26] C. H. Fry, P. Sadananda, D. N. Wood, N. Thiruchelvam, R. I. Jabr and
R. Clayton, Neurourology and urodynamics, 2011, 30, 692-699.

[27] A. A. Bykova and S. A. Regirer, Fluid Dynamics, 2005, 40, 1-19.

[28] C. E. Morris and U. Homann, Journal of Membrane Biology, 2001, 179,
79-102.

[29] P. Khandelwal, W. G. Ruiz, E. Balestreire-Hawryluk, O. A. Weisz, J. R.
Goldenring and G. Apodaca, Proceedings of the National Academy of
Sciences of the United States of America, 2008, 105, 15773-15778.

[30] D. E. Ingber, Proceedings of the National Academy of Science, 2003.

[31] N. Wang, K. Naruse, D. Stamenovic, J. J. Fredberg, S. M. Mijailovich,
I. M. Toric-Norrelykke, T. Polte, R. Mannix and D. E. Ingber, Proceedings
of the National Academy of Sciences of the United States of America, 2001,
98, 7765-7770.

[32] F. Sachs and C. Morris, Mechanosensitive ion channels in non specialized cells,
Springer, Berlin, 2015.

[33] L. Brubaker, Urology, 2004, 64, 12-16.

40



[34] S. Oliver, C. Fowler, A. Mundy and M. Craggs, Neurourology and

urodynamics, 2002, 22, 7-16.

[35] R. Skalak, A. Tozeren, R. P. Zarda and S. Chien, Biophysical journal, 1973,
13, 245-280.

41



