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Abstract

We study an elastic rod bent into an open trefoil knot and clamped at both ends. The
question we consider is whether there are stable configurations for which there are no points
of self-contact. This idea can be fairly easily replicated with a thin strip of paper, but is
more difficult or even impossible with a flexible wire. We search for such configurations
within the space of three tuning parameters related to the degrees of freedom in a simple
experiment. Mathematically, we show, both within standard Kirchhoff theory as well within
an elastic strip theory, that stable and contact-free knotted configurations can be found, and
we classify the corresponding parametric regions. Numerical results are complemented with
an asymptotic analysis that demonstrates the presence of knots near the doubly-covered ring.
In the case of the strip model, quantitative experiments of the region of good knots are also
provided to validate the theory.

1 Introduction

Knots are widely familiar structures, from shoelaces and other everyday use to art forms such as
Celtic decoration to the many variants employed by sailors. They are often simple to construct
and aesthetically appealing, yet remain topologically and mechanically quite complex. They are
also common in biology, appearing in coiled DNA, proteins, and even some species of fish and
worms [41, 8].

In polymer studies it has been shown that long enough chains are almost always knotted [37],
and DNA being a very long polymer various knots arise in linear or circular molecules. DNA
knots arise during replication and transcription of the genetic code and the role of enzymes such
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Figure 1: Strip of paper knotted in a trefoil with no selft-contact

as topoisomerases is precisely to remove these knots, as the presence of knots has a detrimental
effect in the cell and can lead to cell death. In viruses, Arsuaga et al have shown that most of
the molecules are knotted due to compaction in the capside [1]. Biological implications of knots
in DNA are numerous, e.g. the presence of knots in DNA molecules increases their mobility in
gel electrophoresis, the compaction of the chain in knotted regions can prevent transcription, and
knots can change the speed with which the virus is ejected from the capside [25]. In this last
example, DNA self-contact has been shown to play an important role in the ejection process.
In proteins, for many years knotted structures were not detected, but today over 750 knotted
configurations are reported in the Protein Data Base; that is more than 1 percent of the entries.
These knotted proteins have been shown to catalyse enzymatic reactions [22], play an important
role in RNA splicing or in the removing of calcium for the cell by membrane proteins [19], and
are also present in plant photoreceptors [40]. Simulations of folding and unfolding of proteins
showed that knotted structures have longer unfolding times than unknotted ones [36]. Knots in
proteins also have an important effect on their mechanical stability, making them more resistant
to degradation. Moreover, the presence of a knot in a structure brings together active-site residues
and may promote chemical interactions, drive conformational changes, and drive the spontaneous
folding of the structure [18]. The contact interaction in a knotted structure thus appears to be an
important feature of its stability and biological activity, and the question of the presence of such
contact points or regions in knots therefore emerges.

There are numerous types of questions when studying knots. From a purely mathematical
standpoint, in topology a knot is an infinitely thin closed loop, and fundamental issues include
knot classification and equivalence of different knot descriptions. A knot in reality obviously differs
in that the thickness is finite and the ends are often not closed. This has significant consequences
for the mechanician, who is typically interested in the strength, equilibrium shape and dynamic
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behaviour of a knotted filament. Such a description is naturally suited to the theory of elastic rods,
but finite thickness in knotted structures by necessity requires consideration of self-contact. Self-
contact poses a significant challenge within a rod theory, and it has been approached in different
ways computationally [7, 39, 34, 33, 16, 5].

While self-contact is an inherent and inevitable feature of tight knots [30], our aim here is
to go the other direction. Namely, we consider the question of whether a knotted filament with
zero points of self-contact may be realized physically. In particular, our focus is on the simple
lab experiment of an elastic rod bent into a trefoil knot, with the ends held clamped (and for
simplicity, in the absence of gravity). The shape of such a knot in mechanical equilibrium has
been considered before [6, 2]. It is characterized by 2 isolated points of self-contact surrounding
an interval of self-contact. When twist is increased by rotating one of the clamped ends, this
self-contacting solution becomes unstable and the rod jumps to a nearly planar configuration with
4 points of self-contact [6, 5]; see also [20]. The combination of these studies seems to suggest
that such an open trefoil will always have points of self-contact in stable equilibrium. Indeed,
such a conjecture has been made [21] in the context of a closed knotted elastic rod and extensive
numerical computations in the contact-free case have only found unstable knotted configurations
[11]. However, it is important to note that the ends of the open knot are taken to be perfectly
aligned in the above studies. Experimentally, one can show that if this assumption is removed,
then for certain materials and with a little finesse – the right combination of end-rotation and
end-displacement – all points of contact can be removed from the open trefoil. We have found
that for some materials it is difficult if not impossible to achieve, but the result is fairly easily
reproduced with a thin strip of paper or transparency. An example is pictured in Figure 1.

Our objective in this paper is to investigate theoretically such configurations, that is stable
equilibrium knots with no points of self-contact. We work within the standard framework of Kirch-
hoff equations for inextensible, unshearable elastic rods, and determine stability of an equilibrium
state via linear stability analysis. To mimic the lab experiment, we model an open rod of finite
length clamped with the tangent direction aligned at the ends. The setup for the model is fully
outlined in Sec 2. Within this setup, there are three tuning parameters: an end-rotation (related
to the linking number), the end-to-end-displacement, and a transverse end-displacement, i.e. an
end-shift. The goal is to characterize the structure of the bifurcation space and the possibility
for stable contact-free open trefoil knots in terms of these three parameters. To do so, we take
two distinct approaches. One is to mimic the paper-strip-in-hands experiment by beginning from
a configuration in which the rod is in self-contact, with a fixed end-shift and end-displacement,
and then rotating the ends until self-contact is lost and the solution moves to a contact-free state.
Varying the end-displacement then enables us to construct an ‘island’ in parameter space of ‘good
knots’. This approach forms the subject of Sec 3. The material description of an inextensible rod
with diagonal quadratic bending energy can be characterised by two bending parameters. Since
our objective is to explore the solution space in terms of the three tuning parameters, in Sec 3 and
6 we restrict to a fixed choice of these two material parameters. However, in modelling a ribbon,
for instance a strip of paper as in Fig 1, the standard constitutive equations in a Kirchhoff theory
form at best a rough approximation. Hence, in Sec 4 we take an alternative constitutive descrip-
tion, and using the elastic strip model described in [9] we find similar qualitative behaviour, but
a larger overall region of ‘good knots’. The predictions within the elastic strip theory are tested
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Figure 2: Knotted configuration with end-shift δ and end-rotation ϕ. The director d1 is materi-
alized through a yellow strip along the rod.

experimentally in Sec. 5, in which thin strips of PVC are clamped to translational and rotational
elements in order to quantitatively determine the region of ‘good knots’.

As an alternative theoretical approach, we show that knotted structures may be found as
perturbations from a doubly covered ring. The stability of such a double ring (ignoring the
unphysicality of the continuous self-overlap of the centerline) has been established as a criterion
on material parameters [24]. Hence in Sec. 6 we seek knotted configurations in the neighbourhood
of the stable double ring, and use the simple analytical form and asymptotic theory to obtain
analytical approximations to the region of knots local to the double ring. As well as building an
intuitive understanding of the structure of knotted solutions, this analytical approach provides
further evidence of the necessity of an end-shift.

Aside from the specialized objective of finding stable knot configurations, in the approaches
outlined above we face several computational issues that are more generically applicable, both in
terms of numerical computation and asymptotic analysis. Hence, where appropriate, we give a
‘recipe’ for computation. Finally, conclusions and extensions are discussed in Sec. 7.

2 Model

2.1 Kirchhoff equations

In this section we outline the governing equations for equilibrium configurations and stability of
a Kirchhoff rod. We consider an inextensible, unshearable elastic rod that is naturally straight.
We introduce a fixed frame, denoted (e1, e2, e3), and a continuous family (d1(s),d2(s),d3(s)) of
material frames attached to the cross-sections of the rod, where s is the arc-length along the rod.
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The centerline writes r(s, t) = (x, y, z)ei , with 0 ≤ s ≤ L and L the length of the rod. We take
the vector d3(s) to be aligned with the tangent direction, r′(s) = d3(s), where prime denotes
differentiation with respect to s. The stresses acting at r(s, t) yield a resultant force n(s, t) and
resultant moment m(s, t). Note that these quantities can be expressed in either the laboratory
frame or the material frame, i.e. we can write n = (nx, ny, nz)ei = (n1, n2, n3)di

. Assuming no
rotational inertia, the balance of forces and moments reads:

Balance of forces: n′ + f = ρA r̈

Balance of moments: m′ + d3 × n = 0,
(2.1)

where f(s) is a distributed force acting from outside (gravity, contact, etc.), ρ is the density of the
material, A the area of the cross-section, and an overdot represents a derivative with respect to
time t. The material frames being a family of orthonormal frames, their evolution with arc-length
s is written with the help of a Darboux vector u

d1
′ = u× d1 , d2

′ = u× d2 , d3
′ = u× d3, (2.2)

which can be interpreted as the strain vector in the rod. We close the set of equations with a
constitutive relation between the moment and the strain

mi =
3∑
j=1

Bij uj for i = 1, 2, 3 (2.3)

where B is the rigidities matrix. In this paper, we shall restrict to rods with a diagonal rigidities
matrix, for which

m = B11 u1 d1 +B22 u2 d2 +B33 u3 d3. (2.4)

Dynamics: equations for components in the material frame

We write (2.1) using components of n and m in the material frames (d1(s),d2(s),d3(s)). Using
(2.2), we have for example n′i = (n · di)

′ = (n′ + n × u) · di for i = 1, 2, 3. The dynamics of the
rod then consists of (2.1), (2.2), as well as r′ = d3, which forms a set of 18 equations for the 18
variables (x, y, z, n1, n2, n3, m1, m2, m3, d1x, d1y, d1z, d2x, d2y, d2z, d3x, d3y, d3z), noting that
ui = mi/Bii for i = 1, 2, 3 via (2.3). These equations are provided in component form in Appendix
A.

Non-dimensionalization

We non-dimensionalize the variables as follows:

nnew =
nold L

2

B11

, mnew =
mold L

B11

, rnew =
rold
L
,

snew =
sold
L
, unew = uold L, tnew =

told
L2

√
B11

ρA
.

(2.5)
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In this way, the material properties of the rod are described by two non-dimensional parameters,

K2 =
B22

B11

, K3 =
B33

B11

. (2.6)

Here, K2 is the ratio of bending stiffnesses about d2 and d1, while K3 is the ratio of torsional
stiffness to bending stiffness about d1. Unless otherwise stated, we will use the fixed values
K = K2 = K3 = 3 throughout this paper. This choice is motivated by the result in [24] that the
double ring is stable if and only if √

K2 − 1

K2

· K3 − 1

K3

≥ 1

2
, (2.7)

which in the case K2 = K3 = K reads K ≥ 2. The choice K = 3 ensures that the double ring, and
at least some neighbourhood around it, is stable. Though we note that these values are already
at the limit of being physically attainable in simple cross-sectional geometries (convex, simply
connected), as such a rod should satisfy K ≤ 3 for the Poisson ratio to stay above −1/2 [23]. For
instance, for an elliptical cross-section with major axis a aligned with d1 and minor axis b aligned
with d2, one computes [14]

B11 =
Eπab3

12
, B22 =

Eπa3b

12
, B33 =

Eπa3b3

2(1 + σ)(a2 + b2)
, (2.8)

where E is the Young’s modulus and σ the Poisson ratio. The choice K2 = K3 = 3 is attained if
a/b =

√
3 and σ = −1/2 (auxetic material).

Boundary conditions

In accordance with the experiment shown in Fig 1, we utilize boundary conditions where the rod
is clamped at both ends. We take the s = 0 end of the rod to be aligned with the fixed frame at
all times:

r(0, t) = (0, 0, 0)T ∀t (2.9a)

d1(0, t) = (1, 0, 0)T ∀t (2.9b)

d2(0, t) = (0, 1, 0)T ∀t (2.9c)

d3(0, t) = (0, 0, 1)T ∀t. (2.9d)

while at the s = 1 end, the rod is held at position (x∗, y∗, z∗) with its tangent aligned with the z
direction

r(1, t) = (x∗, y∗, z∗)T ∀t (2.10a)

d3(1, t) = (0, 0, 1)T ∀t. (2.10b)

The final condition is an imposed end-rotation ϕ

d1(1, t) = (cosϕ, sinϕ, 0)T ∀t (2.11a)

d2(1, t) = (− sinϕ, cosϕ, 0)T ∀t. (2.11b)
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That is, the material vectors d1 and d2 lie in the x-y plane at s = 1, with d1 making an angle
ϕ with the x-axis, with ϕ ∈ (0, 2π). In a numerical shooting approach, we thus have 6 equations
(2.10a), d3x(1, t) = 0, d3y(1, t) = 0, and arg (d1x(1, t) + ı d1y(1, t)) = ϕ for the 6 unknowns (n1(0),
n2(0), n3(0), m1(0), m2(0), m3(0)).

Equilibrium

Setting time derivatives to zero gives an 18D system to solve for equilibrium configurations (see
Appendix A). The boundary conditions read

re(0) = (0, 0, 0)T re(1) = (x∗, y∗, z∗)T (2.12a)

d1e(0) = (1, 0, 0)T d1e(1) = (cosϕ, sinϕ, 0)T (2.12b)

d2e(0) = (0, 1, 0)T d2e(1) = (− sinϕ, cosϕ, 0)T (2.12c)

d3e(0) = (0, 0, 1)T d3e(1) = (0, 0, 1)T . (2.12d)

where we denote equilibrium variables with an e index. As stated in the introduction, we wish
to consider the rod’s configurations in terms of the three ‘tuning parameters’ of an end-rotation
about the tangent, an end-displacement, and an end-shift. The end-rotation is the angle ϕ. Since
the s = 0 end is clamped at the origin with the tangent aligned with the z-direction in the lab
frame, the end-displacement is determined by the value of ze(1) = z∗, while the end-shift is defined
as the magnitude of the distance of the s = 1 end from the point (0, 0, z∗), that is we define

δ =
√

(x∗)2 + (y∗)2.

In the case where (x∗, y∗) = 0 it has been shown that solutions are flip-symmetric [12, 17, 27], that
is the 18 functions n1e(s), n2e(s), . . ., d2ze(s), d3ze(s) are either odd or even functions of s − 1/2
and the equilibrium shape of the rod is symmetric through a π-rotation about the axis passing
through point re(1/2) and pointing in the direction d2(1/2). In order to keep the possibility of
having flip-symmetric solutions, we choose our transverse end-shift along this flip axis, that is we
set

x∗ = −δ cos(ϕ/2)

y∗ = −δ sin(ϕ/2).
(2.13)

Note that this does not prove that shifted solutions will remain flip-symmetric, but allows for the
possibility to find such solutions. (A non-flip symmetric solution is shown in Appendix E.)

Stability

To determine stability of an equilibrium solution, we expand the 18 variables as: v(s, t) = ve(s) +
ε v̄(s) eiωt, e.g. n1(s, t) = n1e(s) + ε n̄1(s) e

iωt, or d3x(s, t) = d3xe(s) + ε d̄3x(s) e
iωt [29, 26]. Inserting

these expansions into the dynamic system, Equations (A.1) in Appendix A, while making use
of the equilibrium equations (A.2) and only keeping O(ε) terms would give an 18D eigenvalue
problem for the frequency ω. Following [15], we derive a reduced system if, when writing the
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perturbations to the directors di(s, t) = die(s) + ε d̄i(s) e
iωt, we use the equilibrium directors die

to decompose d̄i, i.e.

d̄i(s) =
3∑
j=1

αij(s) dje(s) for i = 1, 2, 3. (2.14)

Enforcing orthonormality at order O(ε) yields αij = −αji and αii = 0. The perturbations to the
directors d̄i are then determined by only three quantities. We introduce the vector

α(s) = α1(s) d1e + α2(s) d2e + α3(s) d3e (2.15)

so that d̄i = α× die. Using this expression and ui(s, t) = uie(s) + ε ūi(s) e
iωt for i = 1, 2, 3 while

expanding (A.1), we obtain differential equations for the αi(s). The equations for the perturbations
form a system of only 12 equations, provided in full in Appendix A. The condition that the ends
of the rod remain clamped and keep their alignment translates to the requirement that each αi
vanishes at the ends. Thus boundary conditions (2.9), (2.10), (2.11), and (2.12) yield

r̄(0) = (0, 0, 0)T r̄(1) = (0, 0, 0)T (2.16a)

α1(0) = 0 α1(1) = 0 (2.16b)

α2(0) = 0 α2(1) = 0 (2.16c)

α3(0) = 0 α3(1) = 0. (2.16d)

Being conservative, such a system only has real-valued ω2 solutions, and an equilibrium solution
is called stable if ω2 > 0 and unstable if ω2 < 0. We then have a linear eigenvalue problem
for ω, with 12 equations and 12 boundary conditions. Note that when numerically solving this
eigenvalue problem, it is convenient to add the normalizing condition

n̄2
1(0) + n̄2

2(0) + n̄2
3(0) + m̄2

1(0) + m̄2
2(0) + m̄2

3(0) = 1 . (2.17)

In a numerical shooting approach, we thus have 7 unknowns (n̄i(0), m̄i(0), and ω) and 7 end-
conditions (r̄(1) = 0 and αi(1) = 0).

2.2 ‘Good knots’

We have outlined above the mathematical structure governing the equilibrium shape and stability
of a clamped elastic rod. As stated, our objective is to seek stable, contact-free, knotted configu-
rations as solutions of this system, in terms of the three tuning parameters z∗ (end-displacement),
δ (end-shift), and ϕ (end-rotation). To proceed, we must first clarify precisely the configurations
we seek. There are three components:

(1) Knotted. A mathematical knot is always a closed curve, its classification being de-
termined by knot invariants. Our interest is the ‘simplest’ knot, the trefoil. Since we are
considering open configurations with clamped ends, we must clarify the definition of a knot
in such a geometry. A natural option, employed here, is to create a closed curve by con-
necting the ends through a giant loop at infinity. Whether the closed configuration forms a

8



knot or not depends on how the ends are initially extended beyond the internal portion of
the rod (the loop at infinity is irrelevant). Here, we make the simple choice of extending the
rod at both ends, s = 0 and s = 1, along the tangent direction: we lengthen the rod with
‘virtual rays’ along the z-axis and connect these rays with a loop at infinity.

In most cases, a formal computation of the extension is unnecessary, and classifying the
structure as knotted or not is a simple matter, e.g. by visual inspection. While performing
parameter continuation, the knotted character is monitored by computing the writhe of the
center line of the rod, as self-crossing will make it jump by two units. More precisely, we
compute the extended polar writheW?

p [31] of the configuration and add to it the total twist

Tw = (1/2π)
∫ L
0
u3(s)ds to obtain a real number that corresponds to the link of the closed

curve mentioned earlier, and we focus on configurations with link between 3 and 4. The
use of the extended polar writhe measure enables us to detect unknotting due for example
to the Dirac belt trick, see [31, 32], without having to explicitly consider the rays or loop
extending the open curve.

We further introduce the definition of a walled configuration. Such a configuration has
0 < z(s) < z?, ∀s ∈ (0, 1), that is the rod entirely lies in the space bounded by two walls
perpendicular to the z-axis. Note that for a walled configuration, the link can be computed
using the classical polar writhe [4], as the Dirac belt trick cannot be performed in this
case. The walled-knotted configurations are the most clearly identifiable knots visually in a
clamped-clamped geometry, and such configurations do not require any concept of tangent
extensions. Hence, finding these knots forms a primary focus, though in Section 6 we must
relax the walled requirement in order to explore the knotted region asymptotically.

(2) Stable. Stability is the most straightforward component. A configuration is deemed
stable if all eigenvalues ω satisfy ω2 > 0.

(3) Contact-free. Incorporating self-contact at a finite number of (a priori unknown)
points can be achieved within a rod theory [39, 6] by introducing force terms with the form
of a delta function centered at an unknown s-location and with unknown magnitude, both
determined by appropriate jump conditions across the contact.

Our approach will primarily be to avoid solutions with contact (with one exception - see
Sec 3). In general, rather, we shall work within a contact-free rod theory, with no external
forces applied (i.e. f ≡ 0 in (2.1)) and make the assumption that if the centerline of the
rod does not self intersect, then the configuration corresponds to a contact-free state. While
more care would be required to ensure no contact for a rod with given finite cross-sectional
area, this does provide a necessary and sufficient condition for the existence of a rod with
no self-contact, as the cross-sectional area can always in theory be decreased, allowing for
appropriate increase in Young’s modulus to maintain the same bending and twist rigidities.

Under the descriptions above, we seek regions of the (z∗-δ-ϕ) parameter space corresponding
to ‘good knots’ – walled, knotted, stable, and contact-free configurations. These regions will be
bounded by surfaces at which either the configuration becomes unstable (ω2 = 0), does not fit
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Figure 3: Finding the first good knot. Bifurcation diagram in the (ϕ/2π, Tw) plane for fixed
values of z∗ = 0.115, δ = 0.05, and K = 3. At point A, the rod is in self-contact (with the
ray extensions) at two points. Increasing ϕ, experimentally equivalent to rotating the clamped
ends, the contact points are lost at point B, where the solution jumps to point C. A further
increase leads to an interval of good knots, between W1 and W2. A stability boundary is denoted
at point S, and a self-crossing boundary beyond which the rod is unknotted is denoted point X.
Corresponding rod configurations at points A, B, and X are shown in Figures 4 and 5.

between two walls (mins∈(0,1) z(s) = 0 or maxs∈(0,1) z(s) = z∗), becomes unknotted, or is in self-
contact. The latter two typically correspond to the same thing: self-intersection of the centerline,
since a walled knot can only change its topology by passing through itself.

3 Results in the Kirchhoff rods case

In this section we compute regions of parameter space corresponding to good knots as numerical
solutions of the 18D system outlined above. A key challenge in this regard is finding a starting
point, i.e. a choice of parameters for which a desired configuration is known, and that can provide
base values for parametric branch tracing. Below, we show that such a starting point can be
attained from a known trefoil shape with contact points by varying the end-rotation ϕ in order to
remove the contact points. (Later, in Sec 6, an alternative starting point of an unphysical double
ring is employed for an analytical approach.) We fix K = 3 in the entire Section.

Removing contacts from a trefoil knot

To start, we fix the parameters z∗ = 0.115, δ = 0.05 and consider a rod held with clamps at
both extremities, with the clamps consisting of long rigid rays aligned with the z-axis. For these
values there exists a configuration where the rod contacts the rays at two symmetrical points, one
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Figure 4: Configurations A and B from Figure 3.

in z < 0 and the other in z > z∗, see configuration A in Figure 4. Such a configuration, where
the rod is in contact with two obstacles, is obtained by introducing a non-zero shift δ = 0.05
on an open trefoil knot with contact [2, 6], following a procedure adapted from [39]. In this
configuration A, the circular cross-section of the rod (and of the cylindrical rays) has diameter
h = L/200 and the contacts happen at s = 0.17 and s = 0.83; also the end-rotation is ϕ = 0,

twist Tw = (1/2π)
∫ L
0
u3(s)ds ' −0.07, and extended polar writhe W?

p ' 3.07. From here, we
gradually increase ϕ (experimentally this would mean rotating the z > z∗ ray around the z-axis
in a counter-clockwise way) and the corresponding bifurcation diagram is shown in Figure 3. As
ϕ is increased, the intensity of the contact force first increases but then decreases and eventually
vanishes when ϕ ' 0.768, this is configuration B in Figure 3. From this configuration, contact
with the rigid rays would require a negative adhesive force, hence the rod jumps to a contact-free
knotted configuration, point C in Figure 3. Configuration C is stable and knotted, but not walled
as the rod has z(s) < 0 for s ∈ (0.81; 0.85) and z > z∗ = 0.015 for s ∈ (0.15; 0.19). If we further
increase the end-rotation from configuration C, we find stable walled knots between point W1

(with ϕW1/(2π) ' 0.774) and point W2 (with ϕW2/(2π) ' 0.82). At point W2 configurations start
to exceed the bounding walls again, though remaining knotted and stable. We eventually arrive
at point X (with ϕX/(2π) ' 0.96) where the rod self-crosses: configurations with ϕ > ϕX are
unknotted.

If from point C we decrease the end-rotation, we see a hysteresis effect: the solution does not
jump back to point B but rather follows a branch of knotted, stable, but not-walled solutions.
This branch eventually arrives at point S where a pitchfork bifurcation is reached, and stability is
lost. Two paths of non flip-symmetric solutions depart from the main path, all three paths being
unstable (note that the two paths of non flip-symmetric solutions share the same projection on
the (Tw, ϕ) plane). The main path (with flip-symmetric solutions) eventually crosses the path
of solutions with ray-contact at point B. For these parameters (z∗ = 0.115, δ = 0.05, K = 3)
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Figure 5: Left: A stable knotted configuration with no self-contact but which does not entirely lie
between walls. It belongs to the path between points W1 and X in Figure 3, with ϕ/(2π) ' 0.88.
Right: Configuration X from Figure 3.
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Figure 6: Left: Bifurcation diagrams for different values of end-shortening. Green regions
correspond to good knots, blue regions correspond to stable knots that are not between walls,
brown regions correspond to unknotted configurations, and red regions correspond to unstable
configurations. End-displacement values are z∗ = 0.115, 0.150, 0.180, 0.200, 0.215. The parameter
δ = 0.05 is fixed. Right: A stable walled knotted configuration with no self-contact, corresponding
to point G on the Left.
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Figure 7: Islands of good knots, plotted in the parameter space of end-displacement z∗ and end-
rotation ϕ. The end-shift is fixed at δ = 0.05. Left: The Kirchhoff rod case, where good knots
lie inside the region limited by the four curves S, W1, W2, and X. Right: The elastic strip case,
where good knots lie inside the region limited by the four curves W1, W2, X1, and X2.

we see that non-flip symmetric knots are all unstable. For other parameter values good non-flip
symmetric knots have been found, though here we will not investigate further non-flip symmetric
solutions.

Island of ‘good knots’

The computations above confirm the theoretical presence of stable, walled, and contact-free knots,
indeed showing a continuous interval of such ‘good knots’. We now allow the end-displacement
z∗ to vary, while keeping δ = 0.05; the result appears in Figure 6-left, which plots paths of flip-
symmetric solutions for different z∗ values. Here, as in Fig 3, green regions represent good knots,
blue regions are stable knots that are not between walls, brown regions are unknotted, and red
regions are unstable. We see that the interval of end-rotation values for which good knots exist
is drifting slowly with z∗. We therefore plot in Figure 7-left a connected set of values of ϕ and z∗

for which these stable walled knots exist, i.e. a parametric island of good knots. As illustrated
in Fig 7-left, there are three ways for a ‘good’ configuration to lose its properties: (i) it may go
unstable (cross the S curve), (ii) it may cross itself and unknot (the X curve), or (iii) it may
extend outside the z = 0 and z = z∗ bounding walls (the Wi curves). Our numerical computations
suggest that this island of good knots shrinks as δ is decreased and vanishes completely for a finite
value of δ, implying that an end-shift is a requirement for a good knot. Further evidence for this
hypothesis is provided by asymptotic calculations for small δ in Section 6.

4 Results in the elastic strip case

One of the assumptions for the validity of Kirchhoff rod theory is that the cross-section is small
compared to the total length of the structure. Moreover the aspect ratio of the cross-section itself
should not be too large. For a strip of paper, as in Fig 1, the rectangular cross-section, of width w
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and thickness h, is flat, h� w, so the assumptions for Kirchhoff theory are not met. In such a case,
the system should be modelled using elastic strip equations [13, 35]. Here we follow the approach
developed in [10], where elastic strip equations are derived using an energy approach starting from
shell theory. It is shown that in the regime where L � w � h, an elastic strip obeys essentially
the same equations as an elastic rod, provided the bending and twist constitutive relations are
changed in the following way. We put the width w along the d1 direction and the thickness h
along the d2 direction. As a consequence the strip is unbendable around d2 and we thus have

u2(s, t) = 0 ∀ (s, t) (4.1)

even if the bending moment m2 is non-zero. This situation is analogous to the constraint of
inextensibility where the extensional strain in the rod is zero while the axial stress is not. A
second constraint, coming from differential geometry, is that the inextensibility of the strip surface
itself implies a link between the bending in the soft direction (u1) and the twist (u3), eventually
modifying the other two constitutive relations to

m1 = B

(
1− u43

u41

)
u1 (4.2a)

m3 = 2B

(
1 +

u23
u21

)
u3, (4.2b)

where B = (1/12)h3w/(1 − ν2), with ν the Poisson’s ratio of the material. In the following, we
use B instead of B11 to non-dimensionalize physical quantities, see (2.5).

The dynamics of the strip is then given by system (A.1), complemented by (4.1) and (4.2):
a differential-algebraic system that we will try to avoid. In principle (4.2) could be inverted so
as to express u1 and u3 as functions of m1 and m3 and one could treat the system (A.1) as was
done for the rod case: a system of 18 differential equations for the 18 variables (x, y, z, n1, n2, n3,
m1, m2, m3, d1x, d1y, d1z, d2x, d2y, d2z, d3x, d3y, d3z). Nevertheless the inversion leads to multiple
roots, a matter that complicates the approach. We therefore use an alternative procedure and
differentiate (4.2) with respect to s in order to write

u′1 =
u31

(u21 + u23)
3

[
u1 (u21 + 3u23)m

′
1 + 2u23m

′
3

]
u′3 =

u21

2 (u21 + u23)
3

[
(u41 + 3u43)m

′
3 + 4u1 u

3
3m

′
1

]
,

(4.3)

where m′1 and m′3 are replaced using (A.1d), (A.1f), and (4.1). System (A.1), (4.3) then com-
prises 20 equations for the 20 variables (x, y, z, n1, n2, n3, m1, m2, m3, d1x, d1y, d1z, d2x, d2y,
d2z, d3x, d3y, d3z, u1, u3) with boundary conditions given by (2.9), (2.10), and (2.11), supple-
mented with (4.2) evaluated at s = 0. Numerical shooting now involves the 6 unknowns (n1(0),
n2(0), n3(0), u1(0), m2(0), u3(0)) and the 6 equations (2.10), d3x(1, t) = 0, d3y(1, t) = 0, and
arg (d1x(1, t) + ı d1y(1, t)) = ϕ. If one interprets the non-linear constitutive relation (4.2a) as a
linear relation such that the term in parenthesis plays the role of a non-uniform effective bending
rigidity, one sees that the local twist rate u3(s) lowers the rigidity in bending. This effective rigidity
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Figure 8: Left: Bifurcation diagram for different values of the end-displacement z∗ in the elastic
strip case. Green regions represent good knots, blue regions stable knots that are not between
walls, and brown regions unknotted configurations. End-displacement values are (following the
arrow) z∗ = 0.115, 0.150, 0.180, 0.200, 0.215. The parameter δ = 0.05 is fixed. The point on the
upper curve corresponds to the configuration shown on the right. Right: A stable walled knotted
elastic strip configuration with no self-contact, with z∗ = 0.215 and ϕ/(2π) ' 0.94.

is cancelled at those points along the rod where u3(s) = u1(s) and reversed when |u3(s)| > |u1(s)|.
The relation (4.2b) shows that the opposite is true for the twist constitutive relation: the local
twist rate increases the effective twist rigidity.

Island of ‘good knots’ in the elastic strip case

As with the Kirchhoff model, we compute regions of the parameter space corresponding to good
knots in the elastic strip case. In Figure 8, a bifurcation diagram in the (Tw, ϕ) projection is
shown for the same values of z∗ and δ as in Figure 6-left. We see that the end-rotation range for
which knotted but not walled (blue curves) and good knot (green curves) configurations exist is
larger in the strip case than in the rod case. Moreover, equilibrium configurations are found down
to values ϕ < 0.5, and no pitchfork bifurcation nor non-flip-symmetric solutions are found. In
comparison with the Kirchhoff rod case, we plot in Figure 7-right the island of good knots for the
strip model, i.e. the parameter range (ϕ, z∗) corresponding to good knots, keeping the end-shift
fixed at δ = 0.05. In the 3D parameter space (δ, z∗, ϕ), we have not found any good knots outside
the region bounded by 0.01 < δ < 0.3, 0.05 < z∗ < 0.45, and 0.02 < 1 − ϕ/(2π) < 0.5, see
Figure 9. Nevertheless, as in the Kirchhoff rod case, we have numerically found stable knotted
unwalled configurations as δ → 0, see Section 6 for asymptotic calculations on this matter.
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Figure 9: In the elastic strip case, regions for good knots (green), unwalled knots (blue), and
unkotted configurations (brown) in the 3D space (δ, z∗, ϕ), for δ = 0.01, 0.05, 0.10, 0.15, 0.20,
0.25, and 0.30.

5 Experimental validation

We have shown that parameter values exist for stable, contact-free and walled knots, in both the
Kirchhoff rod and Elastic Strip cases. As highlighted in the introduction, the three parameters of
end-displacement, end-rotation, and end-shift are easily manipulated in an experimental setting.
In this section, we perform a quantitative experiment to test and validate the theoretical predic-
tions. In particular, we focus experimentally on the elastic strip case. As seen above, the strip
model predicts a larger region of good knots, thus increasing the chances of finding these configura-
tions experimentally. Also, a material fitting the assumptions of the strip model is easily obtained,
while the material parameters we have utilised in the Kirchhoff theory (K2 = K3 = 3), though
physically possible, are much harder to manufacture (potentially requiring an auxetic material).

Experimental setup

The experimental setup is presented in Figure 10-left. We use strips cut from PVC binding cover,
with length L = 26.3 cm, width w ∈ (6, 15) mm, thickness h = 200µm, Young’s modulus E ' 3
GPa, density ρ = 1380 kg/m3. At both ends clamps, laser-cut from a 8 mm thick PMMA sheet,
bind the strip to rotational Thorlabs elements (enabling precise tuning of ϕ), and these elements
themselves are mounted on Thorlabs translational elements, one in the z direction for tuning
end-displacement z? and one in the transverse x direction, for δ tuning. Translational precision is
around 1 mm, thus the error for z? and δ is around ±0.2 %. For rotation, the imprecision in angle
is around 1◦, so the error on the link ϕ is around ±0.3 %. For a given strip, the experimental
procedure is to fix the end-shift and the end-rotation, and then vary the end-displacement (by
sliding one rotational clamp along its translational axis in the z-direction) until self-contact or
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Figure 10: Left: Picture of a good knot for a PVC strip of width w/L = 0.057. Here z? = 0.17,
ϕ/(2π) = 0.78 and δ = 0.10. Right: The island of the good knots for the strip model: Comparison
between theoretical predictions and experimental results. Colored regions are computed in the
limit w = 0, while the continuous lines shows boundaries once the finite thickness w/L = 0.057
is taken into account. Experimental points correspond to boundaries found with strips facing up
(upward triangles) and down (downward triangles) in the gravity field. The end-shift is δ = 0.10.

wall contact occurs, if possible. In this way any values of end-to-end displacement that enables
a good knot are precisely determined. The end-rotation is then varied slightly and the procedure
is repeated. Regions of good knots could indeed be located. A comparison between theory and
experiment is provided in Figure 10-right for an end-shift δ = 0.10 and w = 15 mm. Here, the
colored background is the numerical output from the strip model, the green region representing
good knots. However, we note that in the model calculations, the self-crossing boundary was
computed according to self-intersection of the centreline (as if w = 0). To compare with the
present experiment, we adapt the numerics in order to take into account the finite width of the
strip: the solid curves show the updated boundaries, here the appreciable width causes the region
of good knots to be significantly smaller. The triangle points represent experimentally determined
boundaries of the region of good knots for ‘up’ and ‘down’ orientations of the strip in the gravity
field. Gravity has a clear effect experimentally (note that L3ρghw/EI ' 25) and the size of the
good region varies with the orientation of the strip. A good knot in the down configuration is
presented in Figure 1 where the major loop points downwards. The up configuration, on the
other hand, corresponds to the case where the major loop points upwards. While there is some
discrepancy, generally the agreement is good. We also note that small plastification was present:
when removing the strip from the clamps, it would show a slight intrinsic curvature (end deflection
of about 5% of the total strip length).

Validity of the strip model : importance of the ratio w/h

Experiments were conducted for several different strip widths. In all experiments, the cross-
sectional thickness of PVC used was h = 200µm, and we varied the width from w ≈ 6 mm to
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w ≈ 15 mm, hence the aspect ratio w/h varied from about 30 to 75. The behaviour of the system
was found to depend on the width w of the strip as follows:

• For w lower than ∼ 6 mm (w/h < 30), the presence of dynamic instabilities was observed,
reminiscent of the Kirchhoff rod case: at particular fixed z?, decreasing ϕ slowly would lead
to a sudden jump to a new configuration.

• For w larger than ∼ 6 mm (w/h > 30), stability jumps were not observed, though we found
that the size of the ‘good knot’ island was strongly dependent on w. Moreover, for w . 8
mm (w/h = 40), experimental results did not match well with predictions of the elastic strip
model. Improvement was observed for a wider strip w = 10 mm but only for w & 15 mm did
the comparison between theoretical prediction and experimental results become satisfactory.

This w/h dependence is not included in the elastic strip model, which treats the strip as a
plate with no extension, that is u2 is constrained to be zero at all times, an assumption that is met
experimentally for large w/h ratios only. As this ratio becomes smaller, say O(10), the curvature
u2 is no longer infinitely small compared to u1 and u3 and the elastic strip model should then be
enriched in order to describe such experimental systems.

6 Unfolding of the doubly covered ring

Figure 11: Beginning at the the doubly-covered ring (middle) and adding a small end-displacement,
a small end-rotation and end-shift of opposite sign creates an unknotted helical-type configuration
(left), while a small end-rotation and end-shift of equal sign can create a knotted configuration
(right).

As an alternative approach to finding regions of parameter space with ‘good knots’, in this
section we take as a starting point the doubly covered ring – this is an unphysical configuration
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Figure 12: Schematic of configurations of rod centerline for end-displacement 0 < z∗ � 1. The
origin (which corresponds to zero end-rotation (∆ϕ = 0) and zero end-shift (δ = 0) has 4 points
of self-contact. Small changes in δ and ∆ϕ can remove the self-contact and divide the quadrant
δ > 0,∆ϕ > 0 into 3 regions, separated by two curves with one point of self-contact each. Knotted
solutions exist only in the wedge region (b).

in which the centerline is a circle that traces over itself exactly once and that corresponds to
end-rotation ϕ = 2π, end-shift δ = 0, and end-displacement z∗ = 0. The key observation is that
knots can be found emerging from this configuration upon application of a small tuning of the
parameters. This idea is easily replicated with a strip of paper: curve a thin strip of paper into a
double circle, such that the ends are in contact, and then shift the ends in the transverse direction.
Shifting in one direction creates an unknotted helical-type shape, while passing one end through
the middle and shifting in the other direction creates a knot, as illustrated in Figure 11. Here
we have included the tangent extensions to the numerically computed configurations, from which
it can be concluded that the configuration on the right is indeed a knot. We note that in these
configurations, with the ends very close, we cannot hope to have a knot contained between walls,
so this requirement is removed for this section.

We work with the Elastic Strip model where the doubly covered ring is stable [3] and consider
nearby knotted equilibrium configurations. It is reasonable to expect that these knotted configu-
rations will be stable and our approach in this section is to seek such a region of stable knots by
means of an asymptotic expansion about the doubly-covered ring, i.e. in the limit 0 < z∗ � 1,
0 < ∆ϕ� 1, 0 < δ � 1, with ∆ϕ = 2π−ϕ. In particular, our objective is to uncover analytically
the intuitive picture shown schematically in Figure 12. For small but positive z∗, if there is zero
end-rotation and zero end-shift (∆ϕ = δ = 0), the centreline is a planar double loop configuration
with 4 points of self-contact, labelled ci, i = 1 . . . 4. From there, applying either a small end shift
or end-rotation gives an unknotted state with no points of contact. To obtain a knotted state,
the loops must cross, i.e. the centerline must pass through itself at c1 or c2. Applying both a
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small end-shift and end-rotation divides the positive quadrant of the (δ-∆ϕ) plane into 3 distinct
regions, bounded by two curves (labelled I and II) with a single point of self-contact (c1 and
c2, respectively). Within the wedge region between these curves, the loops are crossed and the
centreline curve is knotted. We seek expressions for these boundary curves.

To make analytical progress, we proceed entirely within the assumption of flip-symmetry and
calculate equilibrium solutions without assessing stability, as stability is already established for
the base solution of the double ring and nearby solutions should then also be stable. Nevertheless
we have verified numerically that the solutions attained below are stable. For the purposes of the
present analysis, we also make several notational choices for convenience. First, for symmetric
solutions, it is convenient to shift the domain of s to be s ∈ (−1/2, 1/2) and to place the origin
at the midpoint s = 0, r(0) = 0. Second, we rotate the fixed frame so that at the mid-point the
rod is oriented such that

d1(0) =

 cos ξ
0

− sin ξ

 , d2(0) =

0
1
0

 , d3(0) =

sin ξ
0

cos ξ

 . (6.1)

In this orientation, the flip-symmetry implies n2(0) = ny(0) = 0 and m2(0) = my(0) = 0, while the
remaining components of n and m are unknown and must be determined as part of the asymptotic
solution. We have therefore 9 unknowns nx(0), nz(0), mx(0), mz(0), ξ, z∗, ∆ϕ, δ, and sc, the
latter being the arc-length of the self-contact point. The end-rod boundary conditions in (2.12)
are then written as

d3x(1/2) = 0 , d3y(1/2) = 0 , x(1/2) = δ/2 , z(1/2) = z∗/2 , d1y(1/2) = − sin(∆ϕ/2), (6.2)

and the contact conditions read
x(sc) = 0 , z(sc) = 0. (6.3)

We have 7 conditions for 9 unknowns, and we look at the solution of this boundary value problem
in the form δ = δ(z∗, ϕ), that is we set z∗ = ε and ∆ϕ = β ε and look for the solution as a series
expansion in ε, with 0 < ε� 1, and β fixed. We expand all the variables r, n, m, u, di, ξ, δ, and
sc in powers of ε up to order 3. For example we write

r(s) = r[0](s) + ε r[1](s) + ε2 r[2](s) + ε3 r[3](s) +O(ε4) or (6.4)

m(s) = m[0](s) + εm[1](s) + ε2 m[2](s) + ε3 m[3](s) +O(ε4) (6.5)

At zeroth order, the doubly covered ring solution is

x[0](s) = 0 , y[0](s) =
cos(4πs)− 1

4π
, z[0](s) =

sin(4πs)

4π
(6.6)

and, following [6], we use a rotating frame to write the component of the unknown vectors n, m,
u, d1, d2, and d3. The rotating frame is constructed from the Frenet frame of the curve (6.6) and
coincides with the fixed frame at s = 0.

ex =

1
0
0

 , et =

 0
cos 4πs
sin 4πs

 , eτ =

 0
− sin 4πs
cos 4πs

 . (6.7)
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Furthermore we uses (X,Z,X) Euler angles (ψ, θ, φ), see Appendix B, to describe the rotation
of the material frame and we also expand ψ(s), θ(s), and φ(s) in powers of ε. The boundary
conditions for these Euler Angles are

ψ(0) = π/2 , θ(0) = π/2− ξ , φ(0) = π (6.8)

ψ(1/2) = 2π + π/2 , θ(1/2) = π/2 , φ(1/2) = π −∆ϕ/2. (6.9)

We solve (2.1), (2.2), (4.1), and (4.2) at each order. The solution at order 0 is given by (6.6) and

n[0] = 0 , m[0] = u[0] = 4π ex , d1
[0] = ex , d2

[0] = eθ , d3
[0] = eτ (6.10)

ψ[0](s) = π/2 + 4 π s , θ[0](s) = π/2 , φ[0](s) = π , ξ[0] = 0 , δ[0] = 0 (6.11)

This solution fulfills boundary conditions (6.2) and we see that we have to either take s
[0]
c = 1/4

or s
[0]
c = 1/2 in order to fulfill the contact conditions (6.3), with s

[0]
c = 1/4 corresponding to curve

I and s
[0]
c = 1/2 corresponding to curve II, see Figure 12.

The solution functions at order 1 are listed in the Appendix B. For curve I, the unknown
parameters are

n[1]
x (0) = − 8πβ

cos
(
π/
√

2
) , ξ[1] = β

tan
(
π/
√

2
)

√
2

, m[1]
τ (0) = 2β

[ √
2 π

tan
(√

2π
) − 2

cos
(
π/
√

2
)] (6.12)

m[1]
x (0) = −8π , n[1]

τ (0) = 32π2 , s[1]c = 1/4 , δ[1] =
β

2π

(
1− 1

cos
(
π/
√

2
)) = 0.422 β (6.13)

Calculations at order 2 yields

δ[2] = − β

4π

√2 π

[
2

tan
(√

2π
) +

1

sin
(
π/
√

2
)]− 4

[
1 +

1

cos
(
π/
√

2
)]2
 (6.14)

which finally yields
δI ' ε δ[1] + ε2 δ[2] = 0.422 ∆ϕ− 0.505 z∗∆ϕ (6.15)

For curve II, the unknown parameters are

n[1]
x (0) = −8πβ , ξ[1] = β

tan
(
π/
√

2
)

√
2

, m[1]
τ (0) = 2β

[
−2 +

√
2 π

tan
(√

2π
)] (6.16)

m[1]
x (0) = −8π , n[1]

τ (0) = 32π2 , s[1]c = −1/2 , δ[1] = 0 (6.17)

Calculations at order 2 yields δ[2] = 0 and it is only at order 3 that a non-vanishing δ[3] = (π/2) β
is found, yielding

δII ' ε3 δ[3] = (π/2) z∗2 ∆ϕ (6.18)

Comparing (6.15) and (6.18), we see that the intuitive picture of Figure 12 is confirmed: for given
z∗, both branches are linear and meet at the origin, and the increased order z∗2 in Branch II implies
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Figure 13: Left: For δ = 0.01, numerical bifurcation curve (solid) for configurations with one self-
contact point, in the Elastic Strip model, and its comparison with analytical approximations (6.15)
(dotted curve) and (6.18) (dashed curve). Right: Numerical bifurcation curves for configurations
with one self-contact point for the Elastic Strip model, for δ = 0.05 ,0.04, 0.03, 0.02 0.01, 0.008,
0.006, 0.004, 0.002, 0.001. The maximum z∗ value for the curves tends to z∗ ' 0.223 as δ → 0.

a much shallower slope, with the wedge region between consisting of good knots. Moreover, the
positive slope (π/2) z∗2 of δII means that Branch II always sits above the δ = 0 axis, providing
further evidence that some degree of end-shift is necessary for a good knot.

An alternative way of viewing the analytical expressions is to fix δ and plot the boundary
curves in the ∆ϕ-z∗ plane. These analytical curves are compared with numerical computations
in Figure 13-Left. The numerical computations follow configurations with one self-contact point,
as for curve X1 in Figure 7-right. The crossing of curve I and II happens at z∗ = 0.382, a value
independent of δ. This is an approximation of the maximum z∗ point on the numerical curve, see
Figure 13-Left. We see in Figure 13-Right that on numerical curves, this maximum point only
very slowly depends on δ, and that as δ → 0, this point converge towards z∗ ' 0.223. This limit
value may be computed as the end-to-end distance of a self-contacting planar elastica, see [28]
and Figure 14. It is the solution of

0 = E (3π/4,m)−
(

1− m

2

)
F (3π/4,m) (6.19)

z∗ = 1− 2

m

[
1− E(π/2,m)

F(π/2,m)

]
(6.20)

where m ' −5.4, F(x,m) is the incomplete elliptic integral of the first kind, and E(x,m) is the
incomplete elliptic integral of the second kind.

7 Discussion

In this paper we have explored the possibility of generating stable knot configurations of an elastic
rod or strip in a clamped geometry and with no points of self-contact. One motivation for this
study was the simple observation that such configurations can be replicated with a strip of paper or
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Figure 14: Self-contacting planar elastica corresponding to the limit case δ → 0, ∆ϕ → 0, and
z∗ given by Eq. (6.20).

flexible wire, but that it can be quite difficult or even impossible, depending on the exact material
used. Our theoretical analysis has confirmed the existence of such configurations, and we have
quantitatively validated this experimentally in the case of a strip. We have generally considered
the question in terms of a three-dimensional parameter space consisting of the natural degrees
of freedom available when attempting to generate such a knot by hand: end-displacement, -shift,
and -rotation; and have located regions of this parameter space for which the desired knots are
found. Our analysis seems to confirm the fact that finding a good knot is easier with a strip than
with, say, a flexible wire with circular cross-section. Indeed, we find that within Kirchhoff theory,
the region of good knots generally is smaller than within a strip theory, and that the requirement
on material properties for a stable knot within Kirchhoff theory are quite limiting.

Aside from the specific issue of contact-free knots, our analysis required the use of several
computational and analytical techniques that can easily be adapted to other settings. The 18D
system associated with an inextensible unshearable Kirchhoff rod presents a rich solution struc-
ture, with many equilibrium solutions for any given set of boundary conditions; hence locating
a desired configuration – in particular one that is stable – can be a daunting task. The linear
stability calculation can also be numerically challenging, requiring knowledge of the sign of all
eigenvalues of a high-dimensional system. Adapting the constitutive equations to model a strip is
straightforward in principle, but brings challenges of its own due to the nonlinearity introduced in
the constitutive law (4.2). Here we have utilised a combination of numerical shooting, branch trac-
ing, and asymptotic analysis; and have attempted to highlight any “tricks” employed to facilitate
in computations.

There are several directions that could be further explored in this problem. In our macro-scale
experiments, the effect of gravity was apparent, a feature that would be straightforward to add
theoretically. If we relax the condition that the ends are aligned, this would add another parameter
and must presumably generate a larger region of good knots. Also, the analysis presented here
really only considers the “simplest” knot, the trefoil (including the closing loop at infinity). A
similar analysis could in theory be performed with any higher knot genus, though the numerical
computations may become increasingly difficult for more complex knots. On the other hand, we
conjecture that in fact stable contact-free knot configurations exist in theory for any genus. This is
a consequence of generalizing the arguments posed in Section 6: for K2 = K3 = K, the n-covered
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ring is stable if K ≥ n, and knots of increasing genus are (likely) nearby the n-covered ring. Of
course, it remains to be seen via either formal asymptotic analysis about the n-covered ring for
n > 2 and/or numerical computation whether such regions of parameter space can explicitly be
found. Here we restricted our analysis to the values K2 = K3 = 3, a choice that ensured stability of
the doubly-covered ring but that required a Poisson ratio of negative 1/2 in an elliptical geometry.
While fixing these parameters created a more manageable parameter space to explore, from a
theoretical point of view good knots of a given genus will be attainable in a rod framework over
regions of the K2-K3 space. Whether such regions are physically realizable is a separate issue:
while K2 can be computed for any geometry using simple formulae for second moment of area,
and can in theory be made to take on any positive value, the torsional rigidity constant that
determines K3 is much more difficult to compute and has only been determined for a very small
number of cross-section geometries [38, 23].

A final direction of interest for future study is to connect to polymer mechanics. As noted in
the introduction, there is an abundance of knots found in polymers in biology, and in numerous
instances the presence of self-contact is an important feature underlying the biological activity.
Our analysis suggests that it may be possible for a knotted polymer to have no points of self-
contact, but that such situations would be rarely encountered; this raises the interesting questions
of whether such configurations do occur and if so what is the impact on the biological function.
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A Full system

We provide here the full set of equations in component form for the dynamical system, equilibrium
configurations, and the linear stability system.
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Dynamical system. The dynamical system consists of the force and moment balance (2.1),
the moving frame equations, (2.2), as well as r′ = d3. In component form these read

x′ = d3x , n′1 = n2 u3 − n3u2 − f1 + ρA (ẍ d1x + ÿ d1y + z̈ d1z) (A.1a)

y′ = d3y , n′2 = n3 u1 − n1u3 − f2 + ρA (ẍ d2x + ÿ d2y + z̈ d2z) (A.1b)

z′ = d3z , n′3 = n1 u2 − n2u1 − f3 + ρA (ẍ d3x + ÿ d3y + z̈ d3z) (A.1c)

d′3x = u2 d1x − u1 d2x , m′1 = m2 u3 −m3u2 + n2 (A.1d)

d′3y = u2 d1y − u1 d2y , m′2 = m3 u1 −m1u3 − n1 (A.1e)

d′3z = u2 d1z − u1 d2z , m′3 = m1 u2 −m2u1 (A.1f)

d′1x = u3 d2x − u2 d3x , d′2x = u1 d3x − u3 d1x (A.1g)

d′1y = u3 d2y − u2 d3y , d′2y = u1 d3y − u3 d1y (A.1h)

d′1z = u3 d2z − u2 d3z , d′2z = u1 d3z − u3 d1z. (A.1i)

Equilibrium system. Setting time derivatives to zero and denoting equilibrium variables with
index e, we have the system

x′e = d3xe , n′1e = n2e u3e − n3eu2e − f1 (A.2a)

y′e = d3ye , n′2e = n3e u1e − n1eu3e − f2 (A.2b)

z′e = d3ze , n′3e = n1e u2e − n2eu1e − f3 (A.2c)

d′3xe = u2e d1xe − u1e d2xe , m′1e = m2e u3e −m3eu2e + n2e (A.2d)

d′3ye = u2e d1ye − u1e d2ye , m′2e = m3e u1e −m1eu3e − n1e (A.2e)

d′3ze = u2e d1ze − u1e d2ze , m′3e = m1e u2e −m2eu1e (A.2f)

d′1xe = u3e d2xe − u2e d3xe , d′2xe = u1e d3xe − u3e d1xe (A.2g)

d′1ye = u3e d2ye − u2e d3ye , d′2ye = u1e d3ye − u3e d1ye (A.2h)

d′1ze = u3e d2ze − u2e d3ze , d′2ze = u1e d3ze − u3e d1ze (A.2i)

where
u1e = m1e, u2e =

m2e

K2

, u3e =
m3e

K3

. (A.3)

Stability system. Following the perturbation scheme outlined in the main text, the eigenvalues
ω that determine stability are determined from the following set of 12 equations

x̄′ = α2 d1xe − α1 d2xe , n̄′1 = n2e ū3 + n̄2 u3e − n3eū2 − n̄3u2e − ω2 (x̄ d1xe + ȳ d1ye + z̄ d1ze)

ȳ′ = α2 d1ye − α1 d2ye , n̄′2 = n3e ū1 + n̄3 u1e − n1eū3 − n̄1u3e − ω2 (x̄ d2xe + ȳ d2ye + z̄ d2ze)

z̄′ = α2 d1ze − α1 d2ze , n̄′3 = n1e ū2 + n̄1 u2e − n2eū1 − n̄2u1e − ω2 (x̄ d3xe + ȳ d3ye + z̄ d3ze)

α′1 = ū1 + u3e α2 − u2e α3 , m̄′1 = m2e ū3 + m̄2 u3e −m3eū2 − m̄3u2e + n̄2

α′2 = ū2 + u1e α3 − u3e α1 , m̄′2 = m3e ū1 + m̄3 u1e −m1eū3 − m̄1u3e − n̄1 (A.4)

α′3 = ū3 + u2e α1 − u1e α2 , m̄′3 = m1e ū2 + m̄1 u2e −m2eū1 − m̄2u1e.
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B Asymptotic approach

We here detail the asymptotic approach to compute the parameter value for which knotted con-
figurations exist near the point z∗ = 0, ∆ϕ = 0, δ = 0, see Section 6. For Elastic Strips, the
doubly covered ring is stable [3], while for Kirchhoff rods, stability of the n-covered ring has been
established analytically [24] as a function of material parameters K2, K3, yielding the result that
the configuration is stable if and only if√

K2 − 1

K2

K3 − 1

K3

≥ n− 1

n
. (B.1)

In the case of the doubly-covered ring, with n = 2, and with K2 = K3, (B.1) simply reads
K2 = K3 ≥ 2 for stability. If this is satisfied, then since knotted configurations exist nearby, it is
reasonable to expect that these knotted configurations will be stable. We introduce the notation
k2 = 1 − 1/K2 and k3 = 1 − 1/K3 and we present results valid for both the Elastic Strip and
Kirchhoff rod models, as well as for both curves I and II. (Formally, the Elastic Strip case is
recovered by setting k2 = 1 and k3 = 1/2.) We uses (X,Z,X) Euler angles (ψ, θ, φ) where the
material frame is given by

{d1,d2,d3}T =M · {e1, e2, e3}T (B.2)

with

M =

− cosφ sin θ cos θ cosφ cosψ − sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ
sin θ sinφ − cos θ cosψ sinφ− cosφ sinψ cosφ cosψ − cos θ sinφ sinψ

cos θ cosψ sin θ sin θ sinψ

 (B.3)

The solution at order 0 is given by (6.6), (6.10), and (6.11). At order 1, one finds the force to be

n[1] = (n
[1]
x (0), 0, n

[1]
τ (0))T while the moment and Darboux vectors are

m[1]
x (s) = m[1]

x (0) +
n
[1]
τ (0)

4π
(1− cos(4πs)) u[1]x (s) = m[1]

x (s) (B.4)

m
[1]
t (s) =

(
m[1]
τ (0)− n

[1]
x (0)

4π

)
sin(4πs) u

[1]
t (s) = 4π k2 φ

[1](s) + (1− k2)m[1]
t (s) (B.5)

m[1]
τ (s) =

n
[1]
x (0)

4π
+

(
m[1]
τ (0)− n

[1]
x (0)

4π

)
cos(4πs) u[1]τ (s) = 4π k3 θ

[1](s) + (1− k3)m[1]
τ (s) (B.6)
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The Euler angles and position of the center line are

ψ[1](s) =

(
n
[1]
τ (0)

4π
+m[1]

x (0)

)
s− n

[1]
τ (0)

16π2
sin(4πs) (B.7)

θ[1](s) =
m

[1]
τ (s)

4π
− n

[1]
x (0)

16π2k3
+

(
n
[1]
x (0)

4π
− k3m[1]

τ (0)− 4πk3ξ
[1]

)
cos
(
4
√
k2k3 πs

)
4πk3

(B.8)

φ[1](s) =
m

[1]
t (s)

4π
+

(
n
[1]
x (0)

4π
− k3m[1]

τ (0)− 4πk3ξ
[1]

)
sin
(
4π
√
k2k3 s

)
4π
√
k2k3

(B.9)

x[1](s) =
1

4πk3

(
1− k3

4π

[
n[1]
x (0) s+m

[1]
t (s)

]
− φ[1](s)

)
(B.10)

y[1](s) =
[
m[1]
x (s) +m[1]

x (0)
] sin2(2πs)

16π2
− ψ[1](s)

sin(4πs)

4π
(B.11)

z[1](s) = −

[
m[1]
x (s) +m[1]

x (0) +
n
[1]
τ (0)

4π

]
sin(4πs)

32π2
+ ψ[1](s)

cos(4πs)

4π
+
n
[1]
τ (0)

32π2
s (B.12)

This solution fulfills the s = 0 boundary conditions (given around equation (6.1) and in (6.8)).

The parameters n
[1]
x (0), n

[1]
τ (0), m

[1]
x (0), m

[1]
τ (0), ξ[1], s

[1]
c , and δ[1] are found by enforcing the s = 1/2

boundary conditions (6.2) together with contact conditions (6.3):

n[1]
x (0) = 2πβ

sin
(

4π
√
k2k3 s

[0]
c

)
(k3 − 1)s

[0]
c sin

(
2π
√
k2k3

) , n[1]
τ (0) = 32π2 , m[1]

x (0) = −8π (B.13)

m[1]
τ (0) =

n
[1]
x (0)

4πk3
+

2πβ
√
k2k3

k3 tan
(
2π
√
k2k3

) , ξ[1] = β k2
tan
(
π
√
k2k3

)
2
√
k2k3

(B.14)

δ[1] =
β

4πk3
−

β sin
(

4π
√
k2k3 s

[0]
c

)
8πk3 s

[0]
c sin

(
2π
√
k2k3

) , s[1]c = −s[0]c / cos
(
4πs[0]c

)
(B.15)

with s
[0]
c = 1/4 for curve I, and s

[0]
c = 1/2 for curve II. For curve I, at order 2, the shift is computed

to be

δ[2] =
β sin−1

[
(π/2)

√
k2k3

]
cos−2

(
π
√
k2k3

)
8πk23(−1 + k3)(−1 + k2k3)(−1 + 4k2k3)

P(k2, k3) (B.16)

with P(k2, k3) given in Appendix C. For the classic case k2 = k3 = 2/3 used in Section 3,
δ[2] = −β

[
1/
√

3 + 123/(40π)
]
.

For curve II, we have

δ[2] = 0 (B.17)

δ[3] = k2 (π/2) β (B.18)
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C The function P(k2, k3)

The function P(k2, k3) introduced in (B.16) is

P(k2, k3) = p1(k2, k3) cos

(
1

2
π
√
k2k3

)
+ p2(k2, k3) cos

(
5

2
π
√
k2k3

)
+

p3(k2, k3) sin

(
1

2
π
√
k2k3

)
+ p4(k2, k3) sin

(
3

2
π
√
k2k3

)
+

p5(k2, k3) sin

(
5

2
π
√
k2k3

)
(C.1)

with

p1(k2, k3) = −π
√
k2 k3(−1 + k3)k3(1− 5k2k3 + 4k22k

2
3) (C.2)

p2(k2, k3) = p1(k2, k3) (C.3)

p3(k2, k3) = −10 + (19 + 46k2)k3 − (8 + 99k2 + 36k22)k23 + 16k2(3 + 5k2)k
3
3 − 40k22k

4
3 (C.4)

p4(k2, k3) = 5− 11(1 + 2k2)k3 + (7 + 62k2 + 20k22)k23 − 15k2(3 + 4k2)k
3
3 + 44k22k

4
3 (C.5)

p4(k2, k3) = (−1 + k3)(1− (1 + 4k2)k3 + 3k2k
2
3 + 4k22k

3
3) (C.6)

D A generic configuration

We here give full details on the good-knot configuration shown in Figure 6-right. Initial values
are n1(0) = −24.743, n2(0) = 17.772, n3(0) = 37.145, m1(0) = 7.5317, m2(0) = −8.7100,
m3(0) = 4.529. Parameters are K = 3, z∗ = 0.115, δ = 0.05, ϕ/(2π) = 0.802, Tw = 0.107,
W?

p = 3.695.

E A non-flip-symmetric configuration

We here give full details on a configuration which is not flip-symmetric. The initial values are
n1(0) = −52.49, n2(0) = 4.12, n3(0) = 7.84, m1(0) = 2.21, m2(0) = −17.59, m3(0) = 10.01. The
solution has K = 3, z∗ = 0.15, δ = 0.05, ϕ/(2π) = 0.785, Tw = 0.23,W?

p = 3.554, and is shown in
Figure 15. The configuration is stable, knotted, and free of self-contact, but does not lie between
walls.
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