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Abstract

A theory for the dynamics and statics of growing elastic rods is presented. First, a single growing rod is
considered and the formalism of three-dimensional multiplicative decomposition of morphoelasticity is used
to describe the bulk growth of Kirchhoff elastic rods. Possible constitutive laws for growth are discussed and
analysed. Second, a rod constrained or glued to a rigid substrate is considered, with the mismatch between
the attachment site and the growing rod inducing stress. This stress can eventually lead to instability,
bifurcation, and buckling.
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1. Introduction

Filamentary structures can be observed in nature at all scales, from the microscopic chains of molecules
to the macroscopic braided magnetic flux tubes in solar flares. Due to their geometric similarity and despite
their widely different length scales and microscopic structures, filaments of all sizes seem to grow, move,
and change shape according to universal laws. For instance, when a straight rope is twisted sufficiently,
it will begin to coil on itself. The same change of configuration is observed to occur in bacterial fibers,
DNA molecules and telephone cables [1]. Understanding the growth, formation and dynamics of these
fundamental structures is not only of intrinsic theoretical interest, but it also lies at the heart of a host of
important processes in biology, physics, and engineering [2, 3, 4, 5, 6, 7, 8, 9, 10].

The main motivation for the research presented here is the fascinating growth of various biofilaments as
observed in bacterial fibers [11, 12, 1, 13], bacterial filaments [14, 15, 16, 17], fungi [18, 19, 20, 21], root
hairs [22, 23, 24], stems [25, 26, 27, 28, 29, 30], roots [31, 32, 33, 34, 35], tendrils [36, 37, 38, 39], neurons
[40, 41, 42, 43, 44, 45], umbilical cords [46, 47], tendons [48], arteries [49, 50, 51], and the spine [52], to name
but a few.

On the mechanical side, there is a considerable body of work and current interest in volumetric three-
dimensional growth theories, dating back to Skalak and Hoger’s seminal work [53, 54, 55] as well as [56, 57].
The ensuing equations are however difficult to study both analytically and numerically. Furthermore, a
general constitutive theory relating growth to stresses is still lacking [58]. Due to its relative geometric
simplicity, a one-dimensional theory of growing rods is best suited for deriving growth laws from basic
principles. A priori genetic, biochemical, and micro-structural information must be combined in order to
obtain an effective macroscopic theory of growth, but the first step is to develop a general mathematical
framework for growing slender structures.

Filamentary growth is seen to occur in different ways. The first notable aspect of growth is extensional,
an overall increase in the length of the filament. Many biological filaments constrained by their surrounding
medium are known to extend in a small zone close to the free end, a process known as tip growth [59] and
first reported for root hairs by Duhamel du Monceau in 1758 [60]. However, when biofilaments do not have
to penetrate through a dense medium, they are often seen to have distributed growth along their length
[11, 15, 61]. Together with a primary extensional growth, a secondary growth is also observed. In this
process, typical for plants [62, 63, 64], the structure also increases in thickness and density. If primary or
secondary growth does not occur uniformly in the section, differential growth develops and the structure
develops residual stresses, known as tissue-tension in plants [65, 66, 67]. If these stresses are sufficiently
important, the structure may buckle or develop curvature. In a two-dimensional setting, the simplest case of
growth-induced buckling is the classical theory of thermal buckling of a bimetallic beam first developed by
Timoshenko [68]. In that process, two straight metallic beams with different thermal expansion coefficients
are fastened together. Under a change of temperature, one beam expands faster than the other and induces
buckling on the entire structure [69, 70]. In growing plants, differential growth is also the main mechanism
for gravitropic response [71, 72, 73]. In a three-dimensional setting, it is known that curvature is closely
coupled to both torsion and twist. Therefore, induced curvature can also result in torsion and twist. For
instance, the dorsal side of tendrils is known to grow faster than its ventral side, inducing curvature, an
observation first reported by de Vries in 1880. When tendrils are attached and are in tension, they are
not free to roll-up on themselves and naturally develop torsion and twist by forming helical structures with
opposite handedness, a phenomenon known as tendril perversion [38]. Torsion and twist can also be directly
induced when differential growth does not occur symmetrically, a much more subtle problem that leads
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directly to torsion. This is often referred to as helical growth and is observed in bacteria [11], fungi [21], and
plants [74, 28, 26, 75].

We include in our discussion of growth aspects of both growth (increase in body mass) and remodeling
(change of material properties). In a reduced theory, these two distinct phenomena are mixed as typically
growth and remodeling both change the intrinsic material properties of the rod.

At the mathematical level, the growth of biological filaments involves interesting aspects of curve dy-
namics [76, 77]. A natural starting point for the modeling of biofilaments is to consider them as thin elastic
rods subjected to external constraints. The basic idea is to cross-sectionally average all the stresses along
the space curve representing the centreline of the rod. This procedure leads to the Kirchhoff equations
[78, 79, 80, 81, 1], relating averaged forces and moments to the curve’s strains (characterized by the curva-
tures, shears, and extension). These equations provide the starting point for much theoretical analysis and
numerical modeling. Various aspects of a theory of growing elastic Kirchhoff rods were first discussed in
[39, 28, 13, 37, 1] mostly in biological contexts, and, more recently O’Reilly and co-workers developed a theory
of planar growing plants with special emphasis on tip growth, branching, and constitutive laws [82, 83, 84]
(see also [85] for a 3D extension). Other related works include elastic growth in a fluid environment [86, 87]
and thermo-elastic rods [88, 89, 90].

The theory of growing three-dimensional structures requires great care as growth, through incompatibil-
ity, naturally changes the geometry of the reference configuration. To capture this effect, a multiplicative
decomposition of the deformation gradient can be used as first proposed in [55], or equivalently by modifying
the geometric properties of the reference configuration [91]. Incompatible growth induces local, pointwise
residual stresses in the material, independently of the global arrangement of the elastic object or boundary
conditions. However, in a one-dimensional structure allowed to grow axially and in girth, no such residual
stress can be created since the equivalent of the deformation gradient (played by the stretches) is always
compatible. This lack of incompatibility greatly simplifies the theory as the local effect of growth can easily
be captured by a re-parameterization of the arc length and a change of the material property. Nevertheless,
a growing structure can develop stresses due either to its global geometry (a closed ring growing in length
will develop bending moments), or boundary conditions (a straight growing rod between two plates, a rod
attached to a foundation, or two rods attached to each other growing at different rates). In turn, these
stresses can be sufficient to cause a buckling instability, a primary focus of the present work.

The paper is organised as follows. First, for the sake of setting the general framework, we tersely
summarise the classical theory of Kirchhoff elastic rods by recalling the geometry and balance laws for
mechanical quantities attached to a space curve representing the filament in space. Second, we consider the
problem of a single growing rod. Then, we demonstrate the developed growth framework through a series
of examples. In particular, we investigate possible growth related buckling instabilities in rods attached to
a rigid foundation.

2. Classic rod theory

2.1. Kinematics

We define a dynamical space curve r(S, T ) as a smooth function of a material parameter S and time T ,
i.e. r : R2 → R3. At any time T the arc length s is defined as

s =

∫ S

0

∣∣∣∣∂r(σ, T )

∂σ

∣∣∣∣ dσ. (1)

The unit tangent vector τ to the space curve, r, is

τ =
∂r

∂s
, (2)

and we can construct the standard Frenet-Serret frame of tangent τ , normal ν, and binormal β, vectors
which form a right-handed orthonormal basis on r. Along the curve, this triad moves as a function of arc
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length according to the Frenet-Serret equations:

∂τ

∂s
= κ ν, (3)

∂ν

∂s
= τ β − κ τ , (4)

∂β

∂s
= −τ ν, (5)

where the curvature

κ =

∣∣∣∣∂τ∂s
∣∣∣∣ (6)

measures the turning rate of the tangent along the curve and is given by the inverse of the radius of the best
fitting circle at a given point. The torsion τ measures the rotation of the Frenet triad around the tangent τ
as a function of arc length and is related to the non-planarity of the curve. If the curvature and torsion are
known for all s, the frame (ν,β, τ ) can be obtained as the unique solution of the Frenet-Serret equations up
to a translation and rotation of the curve. The space curve r is obtained by integrating the tangent vector
τ , using (2).

In order to study the motion of elastic filamentary structures, we need to generalize the notion of space
curves to rods. Geometrically, a rod is defined by its centerline r(S, T ) where T is time and S is a material
parameter taken to be the arc length in a stress free configuration (0 ≤ S ≤ L) and two orthonormal vector
fields d1(S, T ), d2(S, T ) representing the orientation of a material cross section at S [78, 92, 93]. We define
the stretch by α = ∂s

∂S , where s is the current arc length as above. A local orthonormal basis is obtained
(see Figure 1) by defining d3(S, T ) = d1(S, T )× d2(S, T ) and a complete kinematic description is given by:

∂r

∂S
= v, (7)

∂di
∂S

= u× di, i = 1, 2, 3, (8)

∂di
∂T

= w × di i = 1, 2, 3, (9)

where u, v are the strain vectors and w is the spin vector. Note that the orthonormal frame (d1,d2,d3) is
different, in general from the Frenet-Serret frame.

The components of a vector a = a1d1 + a2d2 + a3d3 in the local basis are denoted by a = (a1, a2, a3).1

The first two components v1, v2 of the stretch vector v represent transverse shearing of the cross-sections
while v3 > 0 is associated with stretching and compression. Since the vectors di are normalized, the norm
of v gives the stretch of the rod during deformation: α = |v| = |v|. The first two components u1, u2 of
the Darboux vector u are associated with bending while u3 represents twisting, that is the rotation of the
basis (not the curve) around the d3 vector. To understand the mathematical structure of the system, it is
convenient to introduce a matrix describing the basis

D =
(

d1 d2 d3

)
, (10)

so that a = Da. Then, an alternative representation of the kinematics is obtained in terms of matrices by
introducing, respectively, the twist matrix U(s, t) and the spin matrix W(s, t) as follows

∂D

∂S
≡
(

∂d1

∂S

∂d2

∂S

∂d3

∂S

)
= D ·U, (11)

∂D

∂T
≡
(

∂d1

∂T

∂d2

∂T

∂d3

∂T

)
= D ·W. (12)

These matrices are the skew-symmetric matrices associated with the axial vectors u and w respectively,

U =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (13)

1Following [92], we use the sans-serif fonts to denote the components of a vector in the local basis.
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d3(s)

e3

e1
e2

d3(s’)

d2(s)

d2(s’)

d1(s)

d1(s’)

Figure 1: The director basis represents the orientation of the material cross section along the rod.

The entries of U and W are not independent. By differentiating (11) with respect to time and (12) with
respect to arc length and then equating their cross-derivatives, we obtain a compatibility relation for U and
W:

∂U

∂T
− ∂W

∂S
= [U,W] , (14)

where [U,W] = UW −WU. The two linear systems (11) and (12) can be seen as a Lax pair for the
nonlinear partial differential equations generated by the compatibility condition (14). Indeed, the natural
kinematic structure of evolving rods has led to a large and beautiful body of work connecting the motion of
curves with integrable systems [94, 95, 96, 97, 98]. However, this construction is purely geometric and has
little to do with evolution of elastic rods as governed by mechanical principles.

2.1.1. The case of unshearable rods

A particularly important class of rods is obtained by taking v1 = v2 = 0, v3 = α. In this case the possible
deformations are restricted so that the vectors spanning the cross sections remain perpendicular to the axis.
Geometrically, the vectors (d1,d2) lie in the normal plane to the axis and are related to the normal and
binormal vectors by a rotation through the register angle ϕ,

d1 = ν cosϕ+ β sinϕ, (15)

d2 = −ν sinϕ+ β cosϕ, (16)

d3 = τ (17)

This rotation implies that

u = α(κ sinϕ, κ cosϕ, τ +
1

α

∂ϕ

∂S
) (18)

where κ and τ are the usual Frenet curvature and torsion. These relations can also be inverted to yield ϕ,
κ and τ as functions of the twist vector components:

cotϕ =
u2

u1
, (19)

κ =
1

α

√
u2

1 + u2
2, (20)

τ =
1

α

(
u3 +

u′2u1 − u′1u2

u2
1 + u2

2

)
. (21)
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The quantities τ , ∂ϕ
∂S and u3 play related but distinct roles. The torsion τ is a property of the curve alone

and is a measure of its non-planarity. Hence a curve with null torsion is a plane curve, and any two rods
having the same curvature and torsion for all S and T have the same space curve r as axis, and can only
be distinguished by the orientation of the local basis. The quantity ∂ϕ

∂S , the excess twist, is a property of
the rod alone, representing the rotation of the local basis with respect to the Frenet frame as the arc length
increases. An untwisted rod, characterized by ∂ϕ

∂S = 0 is therefore called a Frenet rod. In a Frenet rod, the
angle ϕ between the binormal b and the vector field d2 is constant, hence the binormal is representative of
the orientation of the local basis (d1,d2,d3). The twist density, u3, is a property of both the space curve
and the rod, measuring the total rotation (as can be seen from the third component of (18)) of the local
basis around the space curve as the arc length increases.

2.2. The mechanics of Kirchhoff rods

Before considering the case of a growing rod, we review the fundamental equations for the dynamics of
Kirchhoff rods. The stress acting on the cross section at r(S) from the part of the rod with S′ > S gives
rive to a resultant force n(S, T ) and resultant moment m(S, T ) attached to the central curve. The balance
of linear and angular momenta yields [92]

∂n

∂S
+ f = ρA

∂2r

∂T 2
, (22)

∂m

∂S
+
∂r

∂S
× n + l = ρ

(
I2d1 ×

∂2d1

∂T 2
+ I1d2 ×

∂2d2

∂T 2

)
, (23)

where f(S, T ) and l(S, T ) are the body force and couple per unit stress-free length applied on the cross
section at S. These body forces and couple can be used to model different effects such as short and long
range interactions between different parts of the rod or can be the result of active stress, self-contact,
or contact with another body. A(S) is the cross-sectional area (in the stress-free frame), ρ(S) the mass
density (mass per unit stress-free volume), and I1,2(S) are the second moments of area of the cross section
corresponding to the directions d1,2 at a material point S. Explicitly, they read

I1 =

∫
S
x2

2 dx1dx2 , I2 =

∫
S
x2

1 dx1dx2. (24)

where S is the section at point S and a point on this section is given by a pair {x1, x2} and located at
r(S) + x1d1(S) + x2d2(S) (see Figure 2).

(x1,x2)

d1

d2

d3

Figure 2: Cross-section of a rod and local coordinates

To close the system, we assume that the resultant stresses are related to the strains. Again, there are
two important cases to distinguish.

2.3. Constitutive laws

2.3.1. Extensible and shearable rods

First, we consider the case where the rod is extensible and shearable and we assume that the rod is
hyperelastic. That is, we assume that there exists a strain-energy density function W = W (y, z, s) such that
the constitutive relations for the resultant moment and force in the local basis are given by

m = f(u− û, v − v̂, S) = ∂yW (u− û, v − v̂, S), (25)

n = g(u− û, v − v̂, S) = ∂zW (u− û, v − v̂, S), (26)
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where v̂, û are the strains in the unstressed configuration (m = n = 0 when u = û, v = v̂). Without loss
of generality, one can choose the general basis so that v̂1 = v̂2 = 0. Furthermore, if S is the arc length of
the unstressed configuration then v̂3 = 1. Typically, W is assumed to be continuously differentiable, convex,
and coercive. The rod is uniform if its material properties do not change along its length (i.e. W has no
explicit dependence on s) and the stress-free strains v̂, û are independent of s.

2.3.2. Inextensible and unshearable rods

In the second case, we assume that the rod is inextensible and unshearable, that is we take v = d3 and
the material parameter S = s becomes the arc length. In that case, there is no constitutive relationship for
the resultant force and the strain-energy density is a function only of (u− û), that is

m = ∂yW (u− û) = f(u− û). (27)

For a quadratic strain energy W = yTKy, the constitutive relations for the local basis components m are

m = K(u− û), K =

K1 K12 K13

K12 K2 K23

K13 K23 K3

 , K1 ≤ K2. (28)

Note that, in general, due to the arbitrary phase in the definition of the general basis, one can choose the
vector d1 so that either K12 = K21 ≡ 0 or û1 ≡ 0 or û2 ≡ 0. In the simplest, and most widely used, case
the energy is further simplified to

W1 = K1(u1 − û1)2 +K2(u2 − û2)2 +K3(u3 − û3)2, (29)

where û is the unstressed Darboux vector that defines the shape of the rod when unloaded. Explicitly, the
resultant moment and coefficients {K1,K2,K3} are

m = EI1(u1 − û1)d1 + EI2(u2 − û2)d2 + µJ(u3 − û3)d3 (30)

where E is the Young’s modulus, µ is the shear modulus, J is a parameter that depends on the cross-section
shape and and I1 and I2 are the second moments of area given by (24) (an explicit form for J and examples
can be found in [99]).

For the simple but important case of a rod with uniform circular cross section of radius R, these param-
eters are:

I1 = I2 =
J

2
=
πR4

4
. (31)

The products EI1 ≡ K1 and EI2 ≡ K2 are the principal bending stiffnesses of the rod, and µJ ≡ K3 is the
torsional stiffness. Upon rescaling (see [99]), the properties of the rod can be conveniently described by a
single parameter, the ratio of bending to torsional stiffness,

Γ ≡ µJ

EI1
=

1

1 + σ
∈
[

2

3
, 1

]
. (32)

where σ denotes the Poisson ratio.

2.3.3. Constitutively isotropic extensible and unshearable rods with quadratic energy

For many applications, rods can be modeled as inextensible and unshearable. However, for the modeling
of a growing rod, it is also interesting to consider the case where the rod is unshearable but extensible with
a quadratic energy that is constitutively isotropic. In this case, in addition to (29), we have an equation
relating the elastic stretch α ≡ v3 ≡ ∂s

∂S to the tension

m = EI1(u1 − û1)d1 + EI2(u2 − û2)d2 + µJ(u3 − û3)d3, (33)

n3 = EA(α− 1). (34)

For a straight rod under uniaxial tension, this last constitutive equation is simply Hooke’s law. Note that
although the Darboux vector u is scaled by a factor α in (18), the unstressed Darboux vector û is given by
the unstressed geometric curvatures in the reference configuration (it is not scaled by α since it is a material
property of the rod in the reference configuration).
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3. A single morphoelastic rod

From a modeling perspective, we can take advantage of the fact that growth in filamentary structures
takes place on time scales much longer than any elastic time scale propagation or viscous relaxation. Indeed,
typical elastic time scales are related to elastic wave propagation (with typical velocities of 100 m/s, the
associated elastic time scale for a 10 cm long filament is 10−3s), whereas growth time scales are of the order
of minutes, hours, and days. Different attempts have been made to model growing rods. Essentially, one
can distinguish three different approaches.

The first approach, which we refer to as parameter variation, consists in considering families of rod
solutions (typically static due to the slow time evolution of growth with respect to viscous damping in the
rod) parametrized by one of the material parameters. For instance, in the growth of a tree, one may consider
the length and width as two parameters that evolve in time. At each time, we increase the value of such
parameters and recompute the static solution that matches the boundary conditions [28].

The second approach is remodeling. The idea is now to consider a separate evolution law for the material
parameters that may depend on time and history of the material. For instance, an initially straight rod can
develop intrinsic curvature and the resulting equilibrium configurations for given boundary conditions can be
studied [38, 39]. This is fundamentally different from the previous approach since the material parameters
may now be a function of the position and their values depend on the evolution in time.

The third approach presented here, that combines all aspects of growth and remodeling in rods, is to
consider the evolution of the natural configuration. From the description of the general theory of rods, we
see that rods are characterised by intensive quantities such as density and cross-sectional area, and one
extensive quantity, the length. It is useful in the theory of morphoelasticity to distinguish between growth
and remodeling. Growth refers to a change of volume of the unstressed elastic material, whereas remodeling
refers to a change of material properties. While this distinction is clear in the general three-dimensional
theory of growing elastic bodies, in the theory of rods growth and remodeling are combined. This is due to
the fact that rod theory is a reduction from a three-dimensional elastic body to a one-dimensional structure.
For instance, the bending stiffness (K1 = EI1 in Eq. (29)) is a product of a material coefficient, the Young’s
modulus, and a geometric property, the second moment of area. As the rod grows and remodels, the material
can become stiffer and/or increase in radius, both changing the stiffness. Apart from the change in radius,
the rod can grow in length. Again, the effect of this type of growth is not obvious as a change of length in
a rod can easily be rescaled without affecting the basic equations for the rod deformation. Therefore, the
effect of a change of length in a rod can only be appreciated through boundary effects, that is when the
rod interacts with its environment, either through boundary conditions on each end of the rod or through
a body force or couple connecting the rod with its surrounding. The case where a rod is closed on itself
through periodic boundary conditions generates a self-interaction that can lead to stressed configurations,
even in the absence of external forces or couples.

In order to describe interesting aspects of growing rods in space, we first define the mechanics of a single
growing rod through the evolution of its reference configuration. Second, we consider the case of a growing
rod attached to a given rigid curve in space via an elastic force. For instance, one may consider the case of a
growing rod attached to a substrate or the case of a growing rod inside a sphere or lying on a cylinder. In a
companion paper, we consider growing birods, that is, two rods attached together and growing at different
rates ([100]).

For the rest of this paper, our basic assumptions are:

1. The growth dynamics is slow enough so that the unstressed rod is in elastic equilibrium at all time.
We use the variable t to denote the slow time evolution. Note that dynamical problems could still
be considered at any given slow time. This assumption merely states that the growth dynamics is
decoupled from the elastic dynamic of the rod. Nevertheless, in this paper, we will focus only on static
problems. That is, we will assume the existence of a dissipative process that takes the rod back to a
stable equilibrium much faster than any growth time scale (in particular to assess the dynamic stability).

2. Unless stated otherwise, the rod is assumed to be at all times hyperelastic, unshearable, and charac-
terised by a quadratic strain-energy function W . Due to remodeling and growth, the parameters defining
the unstressed shape û and the coefficients of W may be functions of the growth time t.

3.1. Kinematics of a growing rod

Based on the general approach of growth in nonlinear elasticity through a multiplicative decomposition
[55, 101], we consider three different configurations for the rod. The initial configuration B0 is the unstressed
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configuration of the rod at time t = 0, all quantities in this state are denoted by a subscript 0. The reference
configuration V is the unstressed configuration at a given time t and the current configuration B of the
rod is the actual configuration of the rod at time t for given external loads, body loads and boundary
conditions. Note that at time t the unstressed configuration may not be realizable in the Euclidian space.
For instance, starting initially with a ring of radius one and unstressed curvature one and increasing the
rod length while keeping the unstressed curvature constant would lead to a stress-free configuration that
would be self-penetrating. However, unlike the three-dimensional case, there is no problem with local
compatibility and generation of residual stress associated with the local definition of a growth and elastic
tensor [102]. Therefore, all local quantities are well-defined and the reference configuration is appropriate
for the computation of the current configuration.

At time t = 0, the rod is described by its unstressed shape û0 = û(S0, t = 0) with arc length S0, total
length L0, density ρ0(S0), cross-sectional surface area A0(S0) and a stiffness matrix K0. This unstressed
shape evolves so that at any given time t the rod has unstressed shape û = û(S0, t), with arc length S,
total length L(t), density ρ(S0, t), cross-sectional surface area A(S0, t) and a stiffness matrix K. In this
description, S0 is now a material parameter. It is related to arc length S of the virtual configuration V by
the growth stretch γ, i.e.

γ(S0, t) =
∂S

∂S0
, (35)

so that γ characterizes the local increase of length of a material segment located at a material point S0 at
time t. This virtual configuration is required in order to compute the current shape of the rod for given
loads and boundary conditions (See Figure3). In the current configuration, the rod has arclength s and total
length l(t).

B0
B

V

Figure 3: Schematic of the 3 configurations, initial B0, reference V, and current B. The reference configuration is stress-free and
evolves in time and reflects the change due to growth (shown here, initially the rod has intrinsic curvature; as growth proceeds
the cross-section is allowed to grow inhomogeneously and the length of the rod increases). The reference configuration can
also intersect itself as it does not represent a possible realization of the rod; rather, it defines its local properties. The current
configuration is the actual configuration with correct boundary conditions (here periodic boundary conditions) and body loads.

3.2. Mechanics of a growing rod

At time t, the balance of force and moment in the reference configuration yields

∂n

∂S
+ f = 0, (36)

∂m

∂S
+
∂r

∂S
× n + l = 0, (37)
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where f and l are the body force and couple per unit reference length. The reference arc length S is the
natural choice to express all quantities as the constitutive equations are given in the reference configuration.
This equation together with the appropriate boundary conditions and with one of the two constitutive models
proposed (either (28) for inextensible rods or (33) for extensible rods) can be solved to obtain the current
configuration. We define α to be the elastic stretch and λ the total stretch between the initial and current
configuration. We have

λ = αγ ⇐⇒ ∂s

∂S0
=
∂s

∂S

∂S

∂S0
. (38)

A change of independent variable leads to an alternative formulation in the current and initial configu-
ration. Namely, we have

∂n

∂s
+ α−1f = 0, (39)

∂m

∂s
+
∂r

∂s
× n + α−1l = 0, (40)

where α−1f and α−1l are now the body force and couple per unit current length. Finally, in the initial
configuration, we have

∂n

∂S0
+ γf = 0, (41)

∂m

∂S0
+

∂r

∂S0
× n + γl = 0, (42)

where γf and γl are the body force and couple per unit initial length.

3.3. Constitutive and evolution laws for a single growing rod

Following our assumptions, at the constitutive level and at any given time t the rod is still characterised
by one of the three constitutive models described in Section 2.3. Since both reference arc length and stretch
can change at time t, great care must be exercised to ensure that these changes in length are correctly taken
into account. We advocate the simple principle of always defining first all material properties in the reference
configuration V with respect to the arc length S. All other formulations of the rod equations follow directly
from a change of independent variables as shown above. Note that the parameters entering the constitutive
equations (stiffnesses and unstressed curvatures) may also evolve in the slow time t.

3.4. Evolution law for a growing rod

We now consider a possible law for the evolution of unstressed curvature. We first consider the case of an
inextensible rod. In this case, the only material and structural parameters (possibly function of the position
S) evolving in time are the radius, density, stiffness matrix K and unstressed Darboux vector. Again we
assume that S is the arc length in the virtual (grown) configuration. Whereas radii, density, and stiffnesses
are quantities whose evolution must be prescribed from biological laws, the unstressed curvatures û depends
both on intrinsic quantities and on the geometry of the deformation. To understand this dependence, we
adapt the reasoning of [84] to the present terminology and to the three-dimensional case. First, we consider
an inner rod with uniform unstressed curvatures ûin and stiffness matrix Kin. Next, we apply a moment
so that the new shape has uniform curvatures ûout. In this new configuration, we add an external outer
cylindrical layer with the present curvature and bending stiffness Kout. Ignoring the possibility of internal
residual stresses in the material and treating this new structure as an elastic rod, the problem is to determine
its new properties, that is, its curvature û and stiffness matrix K. For any uniform shape given by u, the
total moment of the composite rod is K(u− û), which is also equal to the sum of both moments due to the
inner and outer rods, so that we have

Kin(u− ûin) + Kout(u− ûout) = K(u− û) (43)

which must be valid for all u so that we have both

K = Kin + Kout, (44)
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and

û = K−1 (Kinûin + Koutûout) . (45)

It is now possible to treat this effect as a continuous process. Consider a deformed rod and assume that at
time t it has curvatures u(t), and material properties û(t) and K(t). At time t + ∆t, a small new layer is
applied to the rod. The balance of moment now reads

K(t)[u(t+ ∆t)− û(t)− k2(t)∆t] + ∆K[u(t+ ∆t)− u(t)− k1(t)] = K(t+ ∆t)[u(t+ ∆t)− û(t+ ∆t)], (46)

where ∆K = K̇∆t is the bending stiffness of the new layer, k1(t) is the difference between the curvatures of
the new layer and the curvatures of the inner rod and k2(t) is a source term for the intrinsic curvature of
the inner structure. By expanding all quantities to order ∆t, we obtain

K̇(u− û + k1) = K( ˙̂u− k2). (47)

If there is no increase of mass or change of stiffness in the section, we have K̇ = 0 and the evolution of the
curvatures is simply governed by ˙̂u = k2 and a choice for k2 must be made. For instance, in the plane, the
only non-zero component of the curvatures is the Frenet curvature κ = u2. If we assume that the intrinsic
curvature relaxes to the current curvature with a relaxation time η−1, we have

˙̂κ = η(κ− κ̂). (48)

This is exactly the law used in [39] to describe the slow evolution of tendrils in climbing plants. We utilize
this law in the buckling of a ring in Section 6.1.1 below.

4. A growing rod on a foundation

Of key importance in growing filamentary structures is the development of stresses and buckling insta-
bilities due to external forces. Here we consider a growing rod attached to a rigid foundation via an elastic
force, and explore the effect of the induced body force f and body couple l. We assume that the foundation is
a rigid space curve to which the rod is adhered via a restoring body force dependent solely upon the distance
from the rod to the curve. The governing equations of the rod are unchanged; the key is to appropriately
capture the body force and body couple generated by attachment to the foundation. To do so, we must
first specify the details of the attachment, e.g. where on the rod the force acts, and in which direction.
The geometric attachment of a rod of current length l on a foundation of length l̂ is specified by a pair of
functions φ : [0, l]→ [0, 2π[ and A : [0, l]→ [0, l̂] defined as follows

1. The function φ defines the material position on the surface of the rod where the attachment occurs.
As before, let the centreline of the rod be described in the current configuration by the space curve
r(s). Recall that the cross section is spanned by the vectors d1 and d2. The attachment location on
the material cross section can be described by a function φ(s), the angle from the d1 axis at which the
attachment occurs, so that the rod is attached at the point

rA(s) = r + a (φ(s), s)) [cos(φ(s)) d1 + sin(φ(s)) d2] (49)

where the function a(φ(s), s) defines the shape of the cross section at r(s) as a polar function.
2. The function A defines the location on the foundation to which each point is adhered, i.e. a map between

the centreline of the rod and the foundation curve. Let the space curve ρ(ŝ) describe the foundation.
We define the attachment map A(s) as a one-to-one map from the rod to the foundations such that
ŝ = A(s), A(0) = 0 and describing the respective material position where the rod is attached, that is
the point rA(s) is attached to the point ρ(A(s)).

The situation is depicted in Figure 4. The two functions φ and A as well as the foundation curve ρ define
completely the geometry of attachment. We now describe the mechanical force connecting the curve to the
rod. We define the “spring vector”2 as the vector from the rod to the curve

E = ρ(A(s))− rA(s), (50)

2while we use the word spring for visual and schematic purposes, we do not intend this to mean individual, discrete springs.
The reader should keep in mind a continuum of springs, or an elastic sheet.
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Figure 4: Setup for rod on a foundation. The point rA, located on the edge of the rod, is attached to a rigid foundation ρ by
an elastic force directed along E. Since the force does not act on the centreline, a body couple can also be induced.

and assume that the body force generated by the rigid foundation is along that direction, and only depends
on the distance relative to a rest length,

f(s) = f (|E| − q(s)) E

|E|
, (51)

where q(s) is the rest length of the spring, so that f(0) = 0 when |E| = q. We further assume that f derives
from a convex potential for which the origin is a minimum. The particular case where f is linear corresponds
to the classical case of a Winkler foundation with a Hookean spring. Note that in this formulation, no
force is generated by shearing the “springs,” i.e. a translation of the rod in which |E| does not change.
This potentially undesirable feature can be removed by introducing a twist force to the foundation, or more
simply, by defining ρ so that the rest length q = 0.

Since the foundation is attached to the edge of the rod, the force is applied at the edge as opposed to the
centreline, and thus the attachment also generates a body couple that is dependent upon the attachment
function φ and is given by

l = (rA − r)× f . (52)

A simple example illustrating the effect and generation of a body couple is provided in Appendix A.

5. Buckling criterion

A primary focus in this paper is to study buckling of growing rods. Here we derive a general formulation
to determine a buckling criterion of a rod with arbitrary body force and couple. Our starting point is the
full kinematic and mechanics description for an unshearable rod, expressed in the reference configuration:

∂r

∂S
= αd3,

∂di
∂S

= u× di, i = 1, 2, 3,

∂n

∂S
+ f = 0,

∂m

∂S
+
∂r

∂S
× n + l = 0,

(53)
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along with the constitutive equations

m = EI1(u1 − û1)d1 + EI2(u2 − û2)d2 + µJ(u3 − û3)d3,

n3 = EA(α− 1).
(54)

Let the rod have constant intrinsic curvature û, and suppose that for given growth γ, we have a known

solution given by r(0), n(0), u(0), d
(0)
i i=1,2,3, and with elastic stretch α(0). The general idea is to add to

this solution a small perturbation and determine the critical growth value γ = γ∗ at which a non-trivial
solution to the perturbed system exists.

5.1. The perturbation expansion

Let ε be a small parameter. Based on the general ideas outlined in [103, 1, 104, 105], we begin by

expanding the basis itself, di = d
(0)
i + εd

(1)
i +O(ε2). If we express the correction terms d

(1)
i in terms of the

unperturbed basis, and require orthonormality to O(ε), we find that the O(ε) corrections can be expressed

in terms of a single vector c = c1d
(0)
1 + c2d

(0)
2 + c3d

(0)
3 such that di = d

(0)
i + ε c × d

(0)
i + O(ε2). We now

expand all quantities, such that the first order perturbation of all vector quantities is expressed in the frame

{d(0)
i }. Generally, for a vector v = v1d1 + v2d2 + v3d3, we write

v =
∑
i

(v
(0)
i + εv

(1)
i )d

(0)
i +O(ε2). (55)

Note the following relationship: if, alternatively, we were to expand each vi = v
(0)
i + εv

(1)
i , we would have

v
(0)
i = v

(0)
i and v

(1)
i = v

(1)
i − (c × v(0))i, where v(0) =

∑
i v

(0)
i d

(0)
i . We expand r, n, and u in this fashion,

and also α = α(0) + εα(1) + O(ε2). We assume that the body force f and body couple l can be expanded
similarly.

Inserting these expansions into Equations (53) and (54), we obtain a linear system for the 13 independent

variables {r(1)
1 , r

(1)
2 , r

(1)
3 , n

(1)
1 , n

(1)
2 , n

(1)
3 , u

(1)
1 , u

(1)
2 , u

(1)
3 , c

(1)
1 , c

(1)
2 , c

(1)
3 , α(1)}. The force balance reads (′ = ∂

∂S )

(n
(1)
1 )′ = u

(0)
3 n

(1)
2 − u

(0)
2 n

(1)
3 + f

(1)
1 (56)

(n
(1)
2 )′ = u

(0)
1 n

(1)
3 − u

(0)
3 n

(1)
2 + f

(1)
2 (57)

(n
(1)
3 )′ = u

(0)
2 n

(1)
1 − u

(0)
1 n

(1)
1 + f

(1)
3 . (58)

The moment balance is

EI1

(
(u

(0)
2 c3)′ − (u

(0)
3 c2)′ + (u

(1)
1 )′ + (û1 − u(0)

1 )(u
(0)
3 c3 + u

(0)
2 c2)

)
+

EI2

(
(û2 − u(0)

2 )c′3 − (u
(0)
2 )′c3 + u

(0)
1 u

(0)
3 c3 + ((u

(0)
2 )2 − (u

(0)
3 )2 − u(0)

2 û2)c1 − u(0)
3 u

(1)
2

)
+

µJ
(

(u
(0)
3 − û3)c′2 + (u

(0)
3 )′c2 + u

(0)
1 u

(0)
2 c2 + ((u

(0)
3 )2 − (u

(0)
2 )2 − u(0)

3 û3)c1 + u
(0)
2 u

(1)
3

)
−

α(0)n
(0)
3 c1 − α(0)n

(1)
2 − n

(0)
2 α(1) + l

(1)
1 = 0,

(59)

EI1

(
(u

(0)
1 − û1)c′3 + (u

(0)
1 )′c3 + u

(0)
2 u

(0)
3 c3 + ((u

(0)
1 )2 − (u

(0)
3 )2 − u(0)

1 û1)c2 + u
(0)
3 u

(1)
1

)
+

EI2

(
(u

(0)
3 c1)′ − (u

(0)
1 c3)′ + (u

(1)
2 )′ + (û2 − u(0)

2 )(u
(0)
1 c1 + u

(0)
3 c3)

)
+

µJ
(

(û3 − u(0)
3 )c′1 − (u

(0)
3 )′c1 + u

(0)
1 u

(0)
2 c1 + ((u

(0)
3 )2 − (u

(0)
1 )2 − u(0)

3 û3)c2 − u(0)
1 u

(1)
3

)
−

α(0)n
(0)
3 c2 + α(0)n

(1)
1 + n

(0)
1 α(1) + l

(1)
2 = 0,

(60)

EI1

(
(û1 − u(0)

1 )c′2 − (u
(0)
1 )′c2 + u

(0)
2 u

(0)
3 c2 + ((u

(0)
1 )2 − (u

(0)
2 )2 − u(0)

1 û1)c3 − u(0)
2 u

(1)
1

)
+

EI2

(
(u

(0)
2 − û2)c′1 + (u

(0)
2 )′c1 + u

(0)
1 u

(0)
3 c1 + ((u

(0)
2 )2 − (u

(0)
1 )2 − u(0)

2 û2)c3 + u
(0)
1 u

(1)
2

)
+

µJ
(

(u
(0)
1 c2)′ − (u

(0)
2 c1)′ + (u

(1)
3 )′ + (û3 − u(0)

3 )(u
(0)
1 c1 + u

(0)
2 c2)

)
+

α(0)n
(0)
1 c1 + α(0)n

(0)
2 c2 + l

(1)
3 = 0.

(61)
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The kinematic equation ∂r
∂S = αd3 reads

(r
(1)
1 )′ + u

(0)
2 r

(1)
3 − u(0)

3 r
(1)
2 = α(0)c2 (62)

(r
(1)
2 )′ + u

(0)
3 r

(1)
1 − u(0)

1 r
(1)
3 = −α(0)c1 (63)

(r
(1)
3 )′ + u

(0)
1 r

(1)
2 − u(0)

2 r
(1)
1 = α(1), (64)

and the frame equations ∂di

∂S = u× di take the following simple form at O(ε)

c′1 = u
(1)
1 , c′2 = u

(1)
2 , c′3 = u

(1)
3 . (65)

In the case of an inextensible rod, α(0) = 1 and α(1) = 0, while for an extensible rod the constitutive equation
(34) gives

n
(1)
3 + n

(0)
1 c2 − n(0)

2 c1 = EAα(1). (66)

5.2. Bifurcation criterion
To obtain a bifurcation criterion, we define the 9 dimensional vector

µ = {r(1)
1 , r

(1)
2 , r

(1)
3 , n

(1)
1 , n

(1)
2 , n

(1)
3 , c

(1)
1 , c

(1)
2 , c

(1)
3 }. (67)

Note that we can eliminate the u
(1)
i immediately using (65), and α(1) using (66). The system can be written

in compact matrix form
M2µ

′′ + M1µ
′ + M0µ = 0, (68)

where each Mi is a constant matrix depending on the solution at first order. We then look for a solution of
the form µ = ξeinS/γ + ξ̄e−inS/γ . Inserting this form into (68), the system is satisfied if det M = 0, where

M = M(γ;n) = −n2M2 + inM1 + M0. (69)

The critical growth γ∗ is the smallest value of γ > 1, minimised over n, at which the determinant vanishes,
and the corresponding value of n determines the mode or wavelength of the buckling, depending on the
particular geometry.

6. Growing rings

A classic problem in the theory of elastic rods is the buckling of a ring to a non-circular shape. This
problem was first considered by Michell in 1889 [106, 107] for the case of a twisted ring. Similarly, the problem
of the stability of a ring with intrinsic curvature under a variety of loadings and material parameters has
been considered by many authors [108, 109, 110, 111, 112] and is known to be relevant for the study of DNA
mini-rings [113, 114, 115, 93].

Here, we use this simple configuration to demonstrate the relative effects of growth, remodeling, and an
elastic foundation on the buckling and shape of rods. We consider an inextensible ring of initial and unstressed
radius 1, with cross-sectional radius a. We assume that it grows linearly in time so that γ = 1 + mt while
keeping all other material properties unchanged. We can set, without loss of generality, m = 1 by rescaling
t, which is now the growth time. In this case, we have û = (0, 1, 0), L = 2πγ.

6.1. Without external force
First we study the buckling of the growing ring in the absence of external forces. In the absence of

remodeling the buckling is strictly determined by the critical γ. For this system there exists for all γ ≥ 1
circular solutions characterised by curvature u2 = 1/γ, vanishing force n = 0, and maintained by a bending
moment m = EI(u2−1) generated by the periodic boundary condition (the condition that the cross sections
at s = 0 and s = L agree perfectly). Let the ring be situated in the x-y plane, and with Frenet basis

d
(0)
1 = − cos(S/γ)ex − sin(S/γ)ey, d

(0)
2 = ez, d

(0)
3 = − sin(S/γ)ex + cos(S/γ)ey. (70)

Then the initial solution is described by r
(0)
1 = −γ, u

(0)
2 = 1/γ, with all other quantities equal to zero.

Inserting this into Equations (56) - (65), the determinant condition can be solved explicitly for γ, and is
found to be

γ(n) =
1− Γ +

√
1 + (4n2 − 2)Γ + Γ2

2
, (71)

where Γ is given by (32) and the buckling mode n must be an integer to satisfy the periodic boundary
conditions of the closed ring. The critical growth is the smallest value of γ > 1, which occurs at n = 2.

14



6.1.1. Remodeling

In this section we incorporate remodeling of the ring. The basic question is: if the intrinsic curvature
of the ring evolves such that it relaxes to the current curvature with a particular relaxation time, does the
ring still buckle? In the previous section, the rate of growth was unimportant, the buckling was dictated
purely by the amount of growth. Here, whether or not the ring buckles and when, depends on a competition
between the growth rate and the relaxation rate.

In the growth process, let the unstressed curvature evolve to the current curvature following the law (48)
(so that if growth is interrupted, the ring evolves to an unstressed state with a characteristic time 1/η). As
long as the central axis of the rod remains circular, the curvature is, as before, u2 = 1/γ = 1/(1 + t), which
can be used directly in (48), so that

∂û2

∂t
= η

(
1

1 + t
− û2

)
. (72)

The solution of this last equation can be expressed in terms of the exponential integral Ei(·) as

û2(t) = e−η(1+t) [eη + ηEi(η(1 + t))− ηEi(η)] . (73)

The buckling criterion is found in the same way as in the previous section, but now must be computed in
terms of the critical time, as û2 is not a fixed constant; we now have a competition between the growth of
the ring and the remodeling of the unstressed curvature. Here, the ring becomes unstable when

u2

û2
≤ c ≡ Γ− 1 +

√
Γ2 + 14Γ + 1

8Γ
, (74)

at which time, the solution does not remain planar and the expression for the intrinsic curvature (73) ceases
to be valid. The evolution of u2/û2 is plotted in Figure 5 for various values of η. If the relaxation rate is
high enough, the criterion (74) is never satisfied and the ring never buckles. In this situation where we have
two dynamical processes, the history of the deformation has to be taken into account. A similar situation
for the Euler buckling of a straight rod and the twisted ring has been discussed in [39, 87].
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Figure 5: Stability of growing ring with evolving unstressed curvature. For illustrative purpose we chose Γ = 3/4, which leads
to the condition ∼ 0.54, for η < ηc ∼ 0.57, the instability occurs at time t1 whereas for η > ηc, the unstressed curvature evolves
sufficiently fast as to remove stresses in the ring and no instability takes place (upper curve: η = 2, lower curve η = 0.1).

6.1.2. Post buckling regime

Equation (71) provides the critical point at which the ring buckles. Next we consider the solution
after buckling and without remodeling, and highlight its intricate mathematical structure. A full numerical
solution for the post buckled ring can be obtained by solving the full system via a shooting method [116]
and parameter continuation. This solution is shown in Figure 6. Note that we have not taken into account
self-contact. Nevertheless, the ring follows an interesting deformation path. By γ ≈ 2.19, the closed rod has
collapsed back into a planar ring, tripled on itself. As γ continues to increase, this tripled ring grows, so that
at γ = 3, it forms a tripled ring of radius 1. At this point, the curvature everywhere matches the intrinsic
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Figure 6: The shape of a growing ring after buckling, computed from a numerical analysis with Γ = 0.7.

curvature; the ring has resolved back to a stress-free state. Through a numerical linear stability analysis, we
have verified that the solutions throughout the deformation are in fact stable.

What happens if the tripled ring continues to grow? The same buckling analysis as above can be
performed to determine when the tripled ring will buckle if we further increase γ. The difference is that
now the length of the rod is three times the radius. Thus the buckling mode n in Equation (71) does not
have to be an integer, but rather an integer multiple of 1/3. The “second buckling” occurs at γ ≈ 3.83 ,
and corresponds to mode 4/3. This solution is plotted on the right side of Figure 8. Interestingly, mode
2/3 occurs for γ ≈ 2.18, and has the same form as the post buckled ring in Figure 6 just before collapsing
back into the planar tripled ring. For comparison, studies of various multicovered rings can be found in
[117, 112, 104].

6.1.3. Fourier modes for the buckled ring

The periodicity of the problem invites a Fourier analysis. Moreover, the numerical solution suggests that
the buckled ring can be approximated by expressions depending on a few Fourier modes only. We therefore
derive an approximate, low dimensional model to yield analytical solutions.
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Applying (36,37) to the case of this inextensible ( ∂r∂S = d3) ring gives:

∂n

∂S
= 0,

∂m

∂S
+ d3 × n = 0.

(75)

Numerical analysis indicates that both the planar and buckled solutions satisfy n = 0. Equation (75)
therefore reduces to ∂m

∂S = 0 with the constitutive relation m = EI(u1d1 + (u2 − û2)d2 + Γu3d3), and the

definition ∂di

∂S = u × di. Projecting the moment balance equation in the local basis {di}, and rescaling
S = γS∗/û2 and ui = û2u

∗
i yields:

1

γ

du∗1
dS∗

= (1− Γ)u∗2u
∗
3 − u∗3,

1

γ

du∗2
dS∗

= −(1− Γ)u∗1u
∗
3,

Γ

γ

du∗3
dS∗

= u∗1,

(76)

where the choice of parameterization S∗ lets the growth factor appear explicitly. The system (76) possesses
two invariants: d

dS∗ (u∗21 + u∗22 + Γu∗23 ) = 0 and d
dS∗ (u∗2 + Γ 1−Γ

2 u∗23 ) = 0. Its solution therefore lies on a closed
loop in the {u∗1, u∗2, u∗3} space at the intersection of an ellipsoid and a cylindrical paraboloid as can be seen in
Figure 7. The periodic orbit lying on the intersection can be characterised in terms of its Fourier modes and
an approximate model of (76) in terms of the first few non-trivial Fourier modes can be obtained. Indeed

Figure 7: The solution of (76) lies at the intersection (red) of an ellipsoid (black) and a cylindrical paraboloid (green): u∗21 +

u∗22 + Γu∗23 = R2 and u∗2 + Γ 1−Γ
2

u∗23 = A. The figure shows the case γ = 2.03 and Γ = 0.7. As shown in the Appendix, the
constants can be found a posteriori using the solution (139) together with the value of ρ3 at which the determinant of the
system (153) vanishes.

we show in Appendix B that one can reduce the problem of finding the shape of the ring after bifurcation to
finding the root of a polynomial equation of degree 4 in the (square of the) amplitude of the leading Fourier
mode of u∗3. Once the root is obtained, the solution can be reconstructed as shown in Figure 8.

6.2. Growing ring on a foundation

Next we attach the growing ring to a foundation, and in particular analyse the effect on the buckling.
We consider two possible configurations for the foundation.
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Figure 8: Comparison between the amplitude of u∗3 obtained from the numerical simulation (blue) for Γ = 0.7 and the value
predicted by the low dimensional model (red).

6.2.1. Foundation inside

First we consider the case in which the foundation is attached to the inside edge of the ring in its initial
unstressed state. As the ring grows, the foundation exerts an increasing elastic force directed towards the
centre of the ring. To compute the circular, prebuckled solution, we again let the ring be located in the x-y

plane and let the initial frame {d(0)
i } be given by (70). The foundation is attached at the point rA = r+ad1,

where a is the cross-sectional radius of the rod, and we assume the foundation generates a linear force,

f = k(ρ− rA), (77)

where the foundation ρ is a circle of radius 1− a, located in the x-y plane and centred at the origin. Note

also the associated couple given by (52). The circular solution (see Figure 9) has centreline r
(0)
1 = −γ,

r
(0)
2 = r

(0)
3 = 0. Since ρ = −(1−a)d

(0)
1 , it follows that f

(0)
1 = k(γ−1), with f

(0)
2 = f

(0)
3 = 0, and all l

(0)
i = 0.

As before, u
(0)
2 = 1/γ, and now the foundation force is balanced by an axial force n

(0)
3 = −kγ(γ − 1).

initial con�guration

prebuckled con�guration

foundation

Figure 9: Circular solution for the growing ring with foundation on inside edge, viewed from above. Lengths are scaled by 1/û2.
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To compute the critical growth, the body force (77) and couple (52) are expanded to O(ε), yielding

f
(1)
1 = −kr(1)

1 , f
(1)
2 = −k(r

(1)
2 + ac3), f3 = −k(r

(1)
3 − ac2), (78)

l
(1)
1 = 0, l

(1)
2 = −a(f

(1)
3 + c2f

(0)
1 ), l

(1)
3 = a(f

(1)
2 − c3f

(0)
1 ). (79)

Following Section 5, these expressions are inserted into the system of Equations (56) - (65), and a determi-
nant condition is formed for the critical growth γ∗. The result, and the general effect of the foundation on
the buckling, is illustrated in Figure 10, in which γ∗ is plotted against the log of the foundation stiffness
k for modes n = 2, 3, 4. For small k, the solution is similar to the case of no foundation: the ring buckles
at mode 2, and as k → 0, the buckling criterion (71) is recovered. As the stiffness is increased, the critical
growth decreases (i.e. the ring buckles earlier), as might be expected. At the same time, the buckling mode
n increases. That is, as the foundation force strengthens, it becomes energetically favourable to buckle at
higher mode, solutions which have higher bending energy but remain closer to the foundation.

Figure 10: Critical buckling growth plotted against the log of the foundation stiffness k, for modes 2,3, and 4. As the stiffness
increases, the buckling occurs after less growth, and at higher modes. The diagram is plotted for Γ = 1 and aû2 = 0.07.

6.2.2. Foundation underneath

Next we consider the alternative configuration in which the foundation lies under the ring in its initial
unstressed state. In this configuration, any growth of the ring induces not just a body force, but also a body
couple (with the foundation attached to the bottom of the ring, as the ring expands the foundation induces
a moment that serves to twist the ring and roll its centreline into the plane of the foundation, see Figure 11).
Thus, there is a non-zero register angle ϕ, i.e. the angle of rotation of the cross section due to the applied
couple. Writing the normal and binormal vectors

ν = − cos(S/γ)ex − sin(S/γ)ey, β = ez, (80)

we have d
(0)
1 = cosϕν + sinϕβ, d

(0)
2 = − sinϕν + cosϕβ. Following Equation (18), u

(0)
1 = γ−1 sinϕ,

u
(0)
2 = γ−1 cosϕ, u

(0)
3 = 0. The foundation force is of the form (77), but now rA = r − ad2, and the

foundation is a circle of radius 1, located in the x-y plane, i.e. ρ = −ν.
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The prebuckled solution has as centreline a circle radius γ, located in the plane z = h. Mechanical
equilibrium is satisfied if the plane of the ring satisfies h = a cosϕ, and the register angle solves

EIγ−1 sinϕ+ ka cosϕ(a sinϕ− γ + 1) = 0. (81)

The buckling parameter γ∗ is computed similarly as before, with φ determined as the root of (81). In Figure

initial

foundation
grown

Figure 11: Growing ring with foundation underneath.

12, γ∗ is plotted against the log of the foundation stiffness. The general effect of the foundation is similar to
the previous section; however, with this setup modes 2 and 3 do not exist for all values of k, and mode 2 has
a minimum value. This leads to the interesting difference that the critical growth does not monotonically or
even continuously decrease with increasing foundation stiffness. Also of note is that compared to the case of
the foundation on the inside edge, the ring with foundation underneath is generally more stable, i.e. buckles
for larger γ∗ for all values of k. This is due to the induced body couple in the planar state, which serves to
counteract the spring force and reduce the internal stress in the rod, thus stabilising slightly compared to
the previous case.

Figure 12: Critical buckling growth in the case of the foundation underneath the initial ring. The dashed line is the envelope
of the critical growth – it is not monotonic, and suffers a discontinuous jump in the transition from mode 3 to mode 4. The
diagram is plotted for Γ = 1 and aû2 = 0.07.
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7. Growing naturally straight rods

Another natural configuration to study is a straight growing filament. A typical approach for these system
is to use a (growing) beam on an elastic foundation [69, 70]. However, from a modeling perspective the beam
on a foundation lacks crucial features and a distinction between the coordinates and arc length of material
points (as material points are labeled by their position along the axis of the beam even during deformation).
This can be more confusing if the beam grows or is extensible. Here, we show that the theory of Kirchhoff
rod is the natural framework for modeling and studying straight growing filaments on a foundation.

7.1. Uniaxial deformation

We start with the simple problem of an elastic rod being pulled and growing as a response to applied
tension. This model is motivated by experiments of growing axons on a substrate, Experiments where one
end of the axon is fixed while the other end of the axon is pulled with either constant velocity or constant
pulling forces can be performed with high accuracy [118, 119]. The typical range of applied forces is 1-8
nN (nano-Newtons) and the position as a function of time of the axon tip can be measured by standard
microscopy. These experiments have revealed that after a critical tension below which no growth occurs,
the growth rate is mostly linear with the applied tension [120, 43, 118, 42, 121]. This elongation results
from stretching the neurons for long period of time. If, instead, the axon is suddenly “plucked” it will
respond quickly depending on its material properties rather than its growth response to external stimuli.
On these time scales, the axon was shown to behave mostly like a Hookean spring past a critical rest tension
corresponding to the tension in axons in the absence of external loads

From these basic observations, we can model the axon as a one-dimensional rod subject to growth as
described before. The filament is of length l and anchored at the growth body at the point s = 0 and is
only allowed to deform along its length. Following the analysis and the ideas presented in [41, 122], we
assume that the tension n3 in the axon is due to both the applied tension at the end and to an adhesion
force between the substrate and the axon. At any given time, we assume that the axon is elastic and operate
in small deformation, so that it is characterized by

n3 = E(α− 1). (82)

Since there is an adhesion force f acting on the filament due to its interaction with the substrate, the tension
along the filament is given by

∂n3

∂S
+ f3 = 0. (83)

We further assume that the adhesion force can be modelled by a simple Hookean law

f3 = k(s(S)− S). (84)

Taking an extra derivative of (83) and using the Hookean relationship (82), we obtain

∂2n3

∂S2
+

n3

a2
= 0, (85)

where a =
√
E/k is a characteristic length for the problem. Since the proximal end of the filament (s = 0)

remains fixed, s(0) = 0, which implies f3(0) = 0 and ∂n3
∂S (0) = 0. The other end is pulled with a tension

n3(s = L) = σL. The solution of (85) with these boundary conditions is

n3(S(t)) = σL
cosh(S(t)/a)

cosh(L(t)/a)
. (86)

For large a, that is for very small adhesion force or very stiff filament, the tension in the filament becomes
uniform (lima→∞ n3(S) = σL). For small a, i.e. large adhesion force or very compliant filament, the tension
is localized at the side of the pulling with an exponential decay of characteristic length a. In an experiment
where the end is pulled with a constant tension σL, the behavior of the filament would still appear Hookean
as it will extend to a length l = L+ (a/E) tanh(L/a)σL. That is, an extension proportional to the applied
tension.

21



Next, we consider a growth law for the evolution of S(t). At time t = 0, the filament of length L0 is
parameterized by its initial arc length S0 and the change in reference configuration is described by γ = ∂S

∂S0

and a growth law of the form
∂γ

∂t
= γg(n3). (87)

If γ is known, the evolution of a material point initially at position S0 is given by

S(S0, t) =

∫ S0

0

γdS0. (88)

That is,

∂tS(S0, t) =

∫ S0

0

(∂tγ)dS0

=

∫ S0

0

γg(n3)dS0

=

∫ S

0

g(n3(S))dS. (89)

Note that since S evolves in time the adhesion given by (84) corresponds to an evolving adhesion. It is
an effective phenomenological model for a foundation where attachment and detachment are continuously
occurring as the rod slides on the foundation. Hence, it is reminiscent of a viscous drag force. Assuming
that growth takes place when the tension is larger than a critical tension σ∗, we have

g(n3) = k̂(n3 − σ∗)H(n3 − σ∗), (90)

where H(·) is the Heaviside function. Using the explicit form (86) for the tension, the equation for S(t) is

∂tS = k̂H(S − S∗)
∫ S

S∗

(
σL

cosh(S/a)

cosh(L/a)
− σ∗

)
dS

= k̂H(S − S∗)
[
σ∗(S∗ − S) + aσL

sinh(S/a)− sinh(S∗/a)

cosh(L/a)

]
, (91)

where S∗ = a arccosh( σ
∗

σL
cosh L

a ). This last equation gives at any length L the velocity profile as a function
of the reference length S at time t, that is

V (S, t) = k̂H(S − S∗)
[
σ∗(S∗ − S) + aσL

sinh(S/a)− sinh(S∗/a)

cosh(L/a)

]
. (92)

A typical velocity profile is shown in Figure 13.

50 100 150 200

5

10

15

20 V(S)

a=
65 a=6

5

a=
40 a=40

a=
10 a=10

S

L(t)

t
1 2 3 4

50

100

150

Figure 13: Left:Velocity of points along a growing axon; L = 200, σL = 1, σ∗ = 1/10, k = 1. Right: Length as a function of
time in the limit case where σ∗ = 0, parameters as for the left graph.

Note that Equation (91) for S(t) cannot be solved directly as both S and L depend on t. Therefore, we
specialize this equation at the point S(t) = L(t)

∂tL = k̂σ∗(S∗ − L) + k̂aσL
sinh(L/a)− sinh(S∗/a)

cosh(L/a)
(93)
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with initial conditions L(t) = L0. No useful closed-form solution exists for this equation. Instead, we consider

the limit where σ∗ → 0 which leads to ∂tL = k̂aσLtanh(L/a), that is

L(t) = a arcsinh
[
ek̂σLt sinh(L0/a)

]
. (94)

Once the function L(t) is known, it can be substituted in Eq. (91) and an equation for the evolution of S(t)
can be found for all initial points of the form S(t = 0) = S0. Note that after an initial exponential phase
where the entire filament experiences growth, growth becomes limited to a finite zone close to the tip of
characteristic size a and growth becomes linear with time (see Figure 13). Interestingly, the analysis given
here based on the growth of the filament and the remodeling of the foundation is equivalent to the analysis
given in [122] based on a viscous fluid model for the growth dynamics where it was shown to be consistent
with experimental data on axonal growth [118]. In particular, our model correctly predicts that the the
growth rate of the axon under constant tension asymptotes to a constant value (see L(t) in Fig: 13).

7.2. Planar deformations

The previous example dealt with a rod constrained along a line. Next, we consider the buckling of a planar
rod on a foundation in the absence of body couple (see Figure 14). This scenario is very common in the
literature [123, 124, 125, 126, 127], and it is instructive to proceed in detail and see how the buckling emerges
from our morphoelastic rods framework. The rod is naturally straight, initially planar and constrained in

Figure 14: Setup of the buckling of a straight planar rod on a foundation. A rod is attached to a foundation and is allowed to
deform only in the plane. An increase in length leads to a buckling instability.

the plane so that with respect to the reference configuration V the Darboux vector is u = (0, ακ, 0), where
κ is the Frenet curvature. A convenient representation of the rod is obtained by assuming that it lies in the
x-y plane and introducing the angle θ between the tangent vector and the x-axis. That is

τ = d3 = cos θex + sin θey, (95)

which implies

κ =
∂θ

∂s
= α−1 ∂θ

∂S
(96)

and d2 = ez. By writing n = Fex + Gey, f = fex + gey, r = xex + yey, we can simplify the equilibrium
equations (36-37) to a system of 5 equations in the current configuration

∂x

∂S
= α cos θ,

∂y

∂S
= α sin θ, (97)

∂F

∂S
+ f = 0,

∂G

∂S
+ g = 0, (98)

EI
∂2θ

∂S2
+ αG cos θ − αF sin θ = 0. (99)

These equations are supplemented by the constitutive law for the foundation (see below) and a constitutive
law for tension F cos θ+G sin θ = EA(α− 1) where A is the cross sectional area as before. We use this last
relationship to express α in terms of F,G and θ in the equations above.

We consider the case of a clamped uniformly growing rod of initial length L0 = 1 and whose end positions
are fixed for all time, that is

x(0) = 0, x(L) = 1, y(L) = y(0) = y0, θ(0) = θ(L) = 0. (100)
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where y0 is the distance between the rod and the rigid foundation taken to be the segment of the x-axis
between 0 and 1. Different assumptions on the nature of the attachment between the rod and the foundation
can be made. We consider here the case where the rod is initially glued to the axis. Therefore, a point (S0, 0)
on the x-axis is attached to a point (S0, y0) on the rod. In the current configuration the two points are still
connected elastically and are now located at (S/γ, 0) and (x(S), y(S)). Therefore, the body force acting on
the rod from the foundation is

f =
h(∆)

γ∆
[(x− S/γ)ex + (y − y0)ey] (101)

where we have assumed that the rest length of the foundation is y0 and ∆ =
√

(x− S/γ)2 + (y − y0)2 is the
distance in the current configuration between two material points connected in the initial configuration. Note
the factor 1/γ which indicates that the attachment was made in the initial configuration and no subsequent
remodeling takes place. The function h(∆) is chosen such that h(0) = 0 and h′(0) = −Ek < 0.

The trivial solution is a straight compressed rod, that is

x(0) = S/γ, y(0) = θ(0) = G(0) = 0, F (0) = EA
1− γ
γ

. (102)

To find the critical value of γ where a bifurcation first occurs, we expand our 5 variables in power series
x = x(0) + εx(1) + O(ε2), y = y(0) + εy(1) + O(ε2) and, as before, linearise the system around the trivial
compressed state. To first order, it is easy to show that x(1) = F (1) = 0, and we reduce the problem to a set
of 3 linear equations

dy(1)

dS
=
θ(1)

γ
,

dG(1)

dS
= Ek

y(1)

γ
, (103)

EI
d2θ(1)

dS2
+ EA(γ − 1)θ(1) + γG(1) = 0. (104)

which can easily be reduced to a single fourth order differential equation for θ(1)

d4θ(1)

dS4
+ 2a

d2θ(1)

dS2
+ b2θ(1) = 0, (105)

where

a =
A(γ − 1)

2Iγ2
, b =

√
k

Iγ3
, (106)

and the boundary conditions (vanishing for all linearised variables) now read

θ(1)(0) = A(γ − 1)
dθ(1)

dS
(0) + Iγ2 d

3θ(1)

dS3
(0) = 0, (107)

θ(1)(γ) = A(γ − 1)
dθ(1)

dS
(γ) + Iγ2 d

3θ(1)

dS3
(γ) = 0. (108)

We now look for modes for Equation (105) of the form θ(1) ∼ eiωs, which leads to the 4 roots

ω2
1 = a+

√
a2 − b2, ω2

2 = a−
√
a2 − b2. (109)

The condition a = b gives the first bifurcation condition for the existence of oscillatory modes on an infinite
domain. Explicitly, it reads

A2(γ − 1)2 − 4Ikγ = 0 (110)

which leads, for a circular cross section of radius r, to the first condition γ1 = 1 + kr(r +
√
kr2 + 4π)/(2π)

associated with a typical mode number n =
√
a, that is a typical wavelength

ζ = 2π/ω1 = 2πγ
3/4
1

(
I

k

)1/4

=
π5/4

√
2
γ

3/4
1 rk−1/4 (111)

≈ r
π1/4

√
2

(
πk−1/4 −

√
π

4
k1/4 +

1

32
k3/4

)
+ O(k5/4). (112)
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In a finite domain with clamped boundary conditions, there is a delay at the bifurcation and the value of
γ2 > γ1 for which the system is unstable can be found by matching the boundary conditions. Assuming
a > b, the non-trivial solution reads

θ(1) = C1 [cos(ω1S)− cos(ω2S)] + C2 sin(ω1S) + C3 sin(ω2S) (113)

with

C2 =
C1ω1b(cos(γω1)− cos(γω2))

(2aω1 − ω3
1) sin(γω2) + (ω3

2 − 2aω2) sin(γω1)
, (114)

C3 =
C1ω2b(cos(γω2)− cos(γω1))

(2aω1 − ω3
1) sin(γω2) + (ω3

2 − 2aω2) sin(γω1)
, (115)

with the condition
a sin(γω1) sin(γω2) + b cos(γω1) cos(γω2)− b = 0. (116)

The first positive root of this equation is γ1 but it leads to the trivial solution θ(1) = 0 so that the critical
bifurcation value for γ is the first root γ2 > γ1. However for r � L0, the root γ1 provides an excellent first
approximation for the critical value γ2. Note that this linear analysis is very close to the classical problem
of a beam on a foundation [128] and indeed the force at buckling could have been predicted by a simpler
theory (the main difference being that our rod is extensible). Nevertheless, we showed that this classical
bifurcation can easily be obtained within the general framework of morphoelastic rods. Note also that the
linear analysis presented here can also be completed by a general weakly nonlinear analysis to obtain the
amplitude as a function of the load (see for instance [129, 105]).

Figure 15: Buckling of a clamped growing rod on an elastic foundation. The rod is constrained to lie in the unit interval L0 = 1
and is clamped at the boundary (with y0 = 1/2). Here k = 1, r = 0.02, and γ2 = 1.19934. The amplitude is arbitrary and
chosen here to be C1 = −0.2 and the centreline is indicated by a dashed line.

7.3. Spatial deformations

In the previous section, the rod was assumed to remain planar. This is a very typical assumption in
models of rods on foundations. However, the question remains whether a planar deformation is a valid
assumption. Here we explore this issue in the context of a rod with non-circular cross section. The setup
is pictured in Figure 16. We assume an infinite, extensible, naturally straight rod that is positioned in its
initial configuration parallel to the z-axis and take the foundation to be the z-axis. The cross section is
assumed elliptical, with antipodal points at distances a1 and a2 from the centre of the ellipse, and aligned
along the x and y directions, respectively, in the initial configuration. As in the previous section, we compute
the critical growth at which the rod buckles to a non-straight configuration, but here we allow for a fully
general 3D deformation.

The prebuckled solution consists of a straight, compressed rod. Let the initial frame correspond to the

Cartesian axes, that is d
(0)
1 = ex, d

(0)
2 = ey, d

(0)
3 = ez. Then we can write r(0) = a1d

(0)
1 + Sγ−1d

(0)
3 . We
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foundation grows

Figure 16: Setup of the buckling of a straight rod on a foundation. A rod with elliptical cross-section is attached to a foundation,
the z-axis. An increase in length leads to a buckling instability.

also have α(0) = 1/γ, n
(0)
3 = EA(γ−1 − 1), with all other quantities zero. Note that for an elliptical cross

section, the constitutive equation can be written as m = B1u1d1 +B2u2d2 +B3u3d3, where (see [99])

B1 =
Eπa1a

3
2

4
, B2 =

Eπa3
1a2

4
, B3 =

Eπa3
1a

3
2

2(1 + σ)(a2
1 + a2

2)
, (117)

where σ is the Poisson ratio. The body force due to the foundation is f = k(ρ − rA), with the attachment
point rA = r−a1d1. Twist is permitted in the buckling, and the body couple is given by Equation (52). The
body force and couple are zero in the prebuckled solution, and have components in the perturbed solution
given by

f
(1)
1 = −kr(1)

1 , f
(1)
2 = −k(r

(1)
2 − a1c3), f

(1)
3 = −k(r

(1)
3 + a1c2),

l
(1)
2 = a1f

(1)
3 , l

(1)
3 = −a1f

(1)
2 .

(118)

The system of equations for the first order components of the buckled rod decouples into 5 equations for

µ1 := [r
(1)
1 , r

(1)
3 , c2, n

(1)
1 , n

(1)
3 ]T and 4 equations for µ2 := [r

(1)
2 , c1, c3, n

(1)
2 ]T . Thus the buckling will tend to

occur in one set of variables or the other. Denote a bifurcation in the first and second sets respectively as
Type I and II. To form the determinant condition for buckling, we allow different wavelengths for each type,
that is we assume a form µj = ξeinjSπ/γ + ξ̄e−injSπ/γ , j = 1, 2. A critical growth can be determined for
each solution type; that is, we can find both γ∗I and γ∗II , and the buckling point and type is determined by
the smaller of the two.

No foundation.. In the absence of a foundation, the critical growth takes the simple form

γ∗I (n1) =
B2π

2n2
1

k
+ 1, γ∗II(n2) =

B1π
2n2

2

k
+ 1. (119)
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Note that for a circular cross section (a1 = a2), B1 = B2, and thus the critical growths are equivalent for
each buckling direction. If a1 > a2, then B1 < B2, and so for a given mode n1 = n2 = n, it follows that
γ∗II < γ∗I , while a1 < a2 ⇒ B2 < B1 ⇒ γ∗I < γ∗II . This reflects the intuitive fact that a rod will tend to
buckle in the direction where the cross section is thinner, i.e. it will buckle about the direction aligned with
the major axis of the ellipse.

Effect of foundation.. For a circular cross section, with a1 = a2 = a, we find that for all material parameters
and foundation stiffnesses, γ∗II < γ∗I . That is, a rod with circular cross section will always buckle as a Type II
solution. Recall that the rod is situated such that it passes through the x-axis in the natural configuration,
and that Type II solutions consist of a deformation in the y-direction. Thus the rod becomes unstable first
in the direction orthogonal to the direction in which the “springs” are aligned. This is interesting in the
context of the beam on a foundation analysis, in which the deformation is assumed to occur in the x-z plane
of our setup. Indeed, this was the case in the previous section. Here, we have shown that in fact for a
circular cross section, buckling will initially occur in the orthogonal, y-z plane.

x xx

0.6

Type II Type I

Figure 17: Phase diagram of the buckling of a rod on a straight foundation. The curve divides the E-ã plane by type and
direction of the initial instability. On the curve, both types are triggered, and the instability is of mixed type. Other parameters:
a1 = 0.05, σ = 0.3, kf = 100.

For non-circular cross sections, however, Type I bifurcations can be triggered. Figure 17 shows a phase
diagram in the E-ã plane, where ã := a2/a1. To the left of the curve, γ∗II < γ∗I , and the buckling is Type
II. Observe that the entire line ã = 1 is in this region. To the right of the curve, γ∗I < γ∗II , and the buckling
is Type I. We see that as the Young’s modulus E decreases, the buckling disparity is enhanced, so that the
elliptical cross section must be more eccentric with major axis in the d2 direction (i.e. the y-direction of the
pre-buckled rod). Also of interest is that on the curve, γ∗I = γ∗II , and thus the form of the buckled solution is
of mixed type. These solutions can have an unusual form, since the two combined types will typically occur
at different wavenumbers, that is n1 6= n2 (also, since we consider an infinite rod, there is no requirement
that the ni are integers). An example is given in Figure 17 (but again, a weakly nonlinear analysis would
be needed to determine the amplitudes of the buckling types).
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8. Conclusions

We have proposed a systematic formulation of growing elastic rods based on the Kirchhoff equations.
This formulation is generic in the sense that it can be easily adapted to many different problems involving
elastic filamentary structures undergoing growth and large deformations. Like most mechanical theories, the
theory developed in this paper relies on three different components: kinematics, mechanics, and constitutive
laws.

First, the kinematics is characterised by the introduction of three different configurations. The initial
configuration before growth, an unstressed reference configuration after growth, and a current configuration
depending on the loads and boundary conditions. The passage from the initial to the reference configurations
is mostly given by a growth stretch (γ) characterising the elongation of the rod purely due to growth. That
is, it contains information on the axial extension due to growth in the unloaded filaments.

Second, the mechanics of a growing rod follows directly from the basic mechanical principles of a Kirchhoff
elastic rod and is completely contained in the usual balance of forces and moments. For simplicity, we
advocate to use the material arc length in the reference configuration as the main independent variable as
it is conceptually easier to define material properties in that particular configuration.

Finally, the mechanics and kinematics must be supplemented by constitutive laws. For many problems
of interest in growing rods, there are three different type of laws. First, the constitutive law for the material
properties of the rod (relating stresses to strains). Again, these are the usual laws in a classical theory of
elastic rods and depending on the level of details required, one may use various forms of energy density
(quadratic, isotropic, inextensible, unshearable,...). Second is the interaction of the rod with the external
world. Here, the focus was on attachment to a rigid foundation, which requires a foundation law; that is,
the constitutive equations that describe the attachment. These laws contain the overall response of the
foundation to deformation and include details about the nature of the elastic material in the foundation and
the way it is connected to the rod. Since forces act in the current configuration, the constitutive laws for the
foundations are best formulated in that particular configuration. Third is the evolution law for the growth
parameter, which relates the anelastic part of the deformation to external fields (position, stress, strain,...).

Using our formulation for growing rods, we have demonstrated that instabilities of different natural
configurations (free or on a foundation) can emerge through the growth evolution. In particular, we have
considered a series of examples involving the buckling of rings and straight rods, and have explicitly shown
the effect of different growth laws, foundation attachments, and material parameters.

The foundation that we used was assumed to be a connection between an elastic rod and a rigid curve or
surface. Alternatively, an elastic rod can be connected to other elastic rods through either a rigid constraint
or through a foundation. The problem is then to capture the equilibrium shape of the connected rods when
they are allowed to grow (or twist) at different rates. We will explore possible equilibrium configurations of
multiple connected rods in the second installment of this series ([100]).
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A. How body couples are generated

Body couples are notoriously complicated and it is often the practice to neglect them. However, when
rods are attached to a support, the support exert a force on the rod and since this force acts on the surface
of the rod and not on directly on the centreline it creates a system of force and couple. The following is
a simple example that illustrates how body couples are generated by these interactions. Here, we neglect
growth and deformation of the central axis. We consider a naturally straight rod of circular cross section
and unit length clamped between two plates a distance one apart. The mid point of the rod is twisted and
then attached to a rigid foundation. That is, the rod is attached via a single “spring” at its midpoint. In
this setup, the unstressed shape is untwisted, but untwisting is opposed by the spring. The setup is pictured
in Figure 18, which gives a schematic of the mid point cross-section. We assume that the rod can twist while

-

1. natural state 2. twist and attach spring
      in rest length

3. relaxes to equilibrium state

Figure 18:

its axis is constrained to remain straight. Then the centreline is determined to be along the z-axis so that
r(s) = [0, 0, s], 0 < s < 1. We position the foundation at the point [L+ a, 0, 1/2], where L is the rest length
of the spring and a is the radius of the rod’s cross section. The vectors d1 and d2 are oriented to align with
the x and y axes, respectively, in the untwisted state. Following Figure 4, let φ denote the angle between the
attachment point rA and the d1 axis, i.e. φ is the given angle of twist when the spring is in its rest length.
Note the relationships

d1 = cosϕx̂ + sinϕŷ, d2 = − sinϕx̂ + cosϕŷ (120)

where ϕ is the register angle as described in Section 2.1.1. The attachment point is thus given by

rA = [a(cosφ cosϕ− sinφ sinϕ), a(cosφ sinϕ+ sinφ cosϕ), 1/2]. (121)

The attachment force f is given by Equation (51) using ρ(A) = [L+ a, 0, 1/2]. Note f is of the form

f = fx(ϕ(s);φ)δ(s− 1/2)x̂ + fy(ϕ(s);φ)δ(s− 1/2)ŷ, (122)

where δ(s) is the Dirac delta function. Since r − rA has only x̂ and ŷ components, the body couple, given
by (52), is of the form

l = h(ϕ(s);φ)δ(s− 1/2)ẑ. (123)

The twisting moment is m3 = µJu3 = µJϕ′(s), and thus the d3 = ẑ component of the moment balance
reads

µJϕ′′ + hδ(s− 1/2) = 0. (124)

B. Computation of the Fourier coefficients for the growing ring

Here, we give the details for the computation of the approximate solutions for the growing ring based on
its Fourier expansion. We recall that for the growing ring we have

1

γ

du∗1
dS∗

= (1− Γ)u∗2u
∗
3 − u∗3,

1

γ

du∗2
dS∗

= −(1− Γ)u∗1u
∗
3,

Γ

γ

du∗3
dS∗

= u∗1,

(125)

35



where S = γS∗/û2, ui = û2u
∗
i and γ is as before the growth parameter.

The main idea is to express the three variables in (76) in terms of Fourier series, that is

u∗n =
∞∑

k=−∞

Un(k)eikS
∗

(126)

where

Un(k) =
1

2π

∫ 2π

0

e−ikS
∗
u∗n(S∗)dS∗, Un(k) = U†n(−k) (127)

and ( )† indicates complex conjugation. Then, in terms of Un(k), the system (125) becomes

∀k :
ik

γ
U1(k) = (1− Γ)

∑
p+q=k

U2(p)U3(q)− U3(k), (128)

∀k :
ik

γ
U2(k) = −(1− Γ)

∑
p+q=k

U1(p)U3(q), (129)

∀k :
ikΓ

γ
U3(k) = U1(k). (130)

Substituting U1 from (130) in (129) yields:

∀k 6= 0 : U2(k) = −(1− Γ)Γ/2
∑
p+q=k

U3(p)U3(q), (131)

which in turn can be substituted in (128):

∀k :

(
1− Γk2

γ2
− (1− Γ)U2(0)

)
U3(k) = − (1− Γ)2Γ

2

∑
p+q+r=k, p+q 6=0

U3(p)U3(q)U3(r). (132)

Equation (132) can be used to predict the critical growth parameter. Indeed, before bifurcation, the ring
is planar with u2 = û2/γ, u1 = u2 = 0. Hence, u∗2 = 1/γ = U2, planar(0) and ∀k 6= 0 : U2, planar(k) = 0.
Furthermore, U3, planar(k) = 0 and the bifurcation occurs when γ reaches a value such that a mode U3(k0)
does not vanish identically. Assuming that at the bifurcation, only one such mode exists, Equation (132)
gives (

1− Γk2
0

γ2
− (1− Γ)

γ

)
U3(k) =

(
− (1− Γ)2Γ

2
|U3(k0)|2

)
U3(k) (133)

At the bifurcation, |U3(k0)|2 � 1 and a bifurcation point is reached when the L.H.S. vanishes, that is

γcrit. =
1− Γ +

√
(1− Γ)2 + 4k2

0 Γ

2
. (134)

This result is consistent with the bifurcation analysis (71) and we conclude that the first transition occurs
for k0 = 2.

Beyond the bifurcation, there is a range of values of γ for which |U3(k)| � |U3(k0)| ∀k 6= k0. In that
region, we propose a low dimensional model in terms of the the key Fourier modes listed in Table 1. Note
that although our choice was guided by a numerical study, (130) implies that |U1(k)| � |U3(k0)| ∀k 6= k0,
and (131) yields|U2(k)| � |U3(k0)| ∀k 6= k0.

Truncating to the order given by Table 1, we obtain an approximation to (128):

U1(k0) =
ik0Γ

γ
U3(k0), (135)(

1− k2
0Γ

γ2
− (1− Γ)U2(0)

)
U3(k0) = (1− Γ)U2(2k0)U†3 (k0), (136)

2

γ
U2(2k0) = −(1− Γ)ΓU3(k0)2. (137)
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Separating the complex Fourier modes U in module and complex phase, we obtain

U1(k0) = ρ1e
iϕ1 , U2(0) = ρ2e

iϕ2 , U3(k0) = ρ3e
iϕ3 , and U2(2k0) = ρ4e

iϕ4 , (138)

with ρn ∈ R+ and ϕn ∈ [0, 2π], the underdetermined system (135) together with Un(k) = U†n(k) gives:

ρ1 =
k0Γ

γ
ρ3, ϕ1 = ϕ3 +

π

2
,

ρ2 =
1− k20Γ

γ2

1− Γ
+ Γ

1− Γ

2
ρ2

3, ϕ2 = 0, (139)

ρ4 = Γ
1− Γ

2
ρ2

3, ϕ4 = 2ϕ3 + π(= 2ϕ1).

If we define ε = Γ 1−Γ
2 < 1/9� 1, then all other modes in (128-130) can be show to be O(ε2).

Un(k) = 1
2π

∫ 2π

0
un(S∗) e−ikS

∗
dS∗ Dn(k) = 1

2π

∫ 2π

0
dn(S∗) e−ikS

∗
dS∗

Un Non-vanishing modes Dn · dm Non-vanishing modes Dn · da Non-vanishing modes

U1 2 Dm
1 2 Da

1 1,3
U2 0,4 Dm

2 0,4 Da
2 1,3,5

U3 2 Dm
3 2 Da

3 1,3

Table 1: List of dominant Fourier modes as found by the numerical simulation. The left column contains Fourier transform
of u components while the right columns list Fourier transform of components of the directors {d1,d2,d3} along the angular
momentum dm = m/|m|, and along an arbitrary direction da perpendicular to dm.

The solution (139) of (125) still contains two unknowns: ϕ3 and ρ3. The former is a free phase that can
be arbitrarily chosen by setting a particular point on the ring as S∗ = 0. On the other hand, we still need
to find a condition for ρ3.

Expressing dn(S∗) in Fourier series in (8) yields

ik

γ
D1(k) =

∑
p+q=k

U3(p)D2(q)− U2(p)D3(q),

ik

γ
D2(k) =

∑
p+q=k

U1(p)D3(q)− U3(p)D1(q),

ik

γ
D3(k) =

∑
p+q=k

U2(p)D1(q)− U1(p)D2(q),

(140)

where Dn(k) = 1
2π

∫ 2π

0
dn(S∗)e−ikS

∗
dS∗.

As dm
dS = 0, the unit vector dm = m/|m| is fixed in the lab frame. Let us define another fixed vector da

orthogonal to dm. When projected respectively on da and dm, the system (140) is linear in the components
of Ds. Since each of the Dn(k) are Fourier modes of unit vectors, there must be a solution other than the
trivial one and the determinant of the linear system must vanish. This gives the condition that fixes ρ3.

Indeed, projecting (140) on da, and taking into account that only the modes listed in Table. 1 are active
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gives

i

γ
Da

1(1) = U3(2)Da†
2 (1) + U†3 (2)Da

2(3)− U2(0)Da
3(1)− U2(4)Da†

3 (3), (141)

3i

γ
Da

1(3) = U3(2)Da
2(1) + U†3 (2)Da

2(5)− U2(0)Da
3(3)− U2(4)Da†

3 (1), (142)

i

γ
Da

2(1) = U1(2)Da†
3 (1) + U†1 (2)Da

3(3)− U3(2)Da†
1 (1)− U†3 (2)Da

1(3), (143)

3i

γ
Da

2(3) = U1(2)Da
3(1)− U3(2)Da

1(1), (144)

5i

γ
Da

2(5) = U1(2)Da
3(3)− U3(2)Da

1(3), (145)

i

γ
Da

3(1) = U2(0)Da
1(1) + U2(4)Da†

1 (3)− U1(2)Da†
2 (1)− U†1 (2)Da

2(3), (146)

3i

γ
Da

3(3) = U2(0)Da
1(3) + U2(4)Da†

1 (1)− U1(2)Da
2(1)− U†1 (2)Da

2(5), (147)

where Da
n(k) := Dn(k) · da.

Substituting Da
2(k)s from (143,144,145) in (141-142) and (146-147) yields a 4×4 complex linear system in

the D1s and D3s. This smaller system can be further simplified by the following change of complex variables
that takes advantage of the definitions (138) and solutions (139)

x = Da
1(1), y = ei2ϕ3Da†

1 (3), z =
i

γ
Da

3(1), and t =
i

γ
ei2ϕ3Da†

3 (3), (148)

so that

(141)× i

γ
⇔ − x

γ2
+B(γ)z + Γ

1− Γ

2
ρ2

3(z − t) =
i

γ

[
U3(2)Da†

2 (1) + U†3 (2)Da
2(3)

]
, (149)

(142)† × iei2ϕ3

γ
⇔ 3y

γ2
+B(γ)t+ Γ

1− Γ

2
ρ2

3(t− z) =
i

γ

[
U3(2)Da†

2 (1) + U3(2)ei2ϕ3Da†
2 (5)

]
, (150)

(146) ⇔ −B(γ)x+ z + Γ
1− Γ

2
ρ2

3(y − x) =
2Γi

γ

[
−U3(2)Da†

2 (1) + U†3 (2)Da
2(3)

]
, (151)

(147)† × ei2ϕ3 ⇔ −B(γ)y − 3t+ Γ
1− Γ

2
ρ2

3(x− y) =
2Γi

γ

[
U3(2)Da†

2 (1)− U†3 (2)ei2ϕ3Da†
2 (5)

]
, (152)

where B(γ) =
(

1− 4Γ
γ2

)
/(1 − Γ). Substituting (143-145) in (149-152) yields the system (linear in x, y,

z, and t):

x

(
2ρ2

3

3
+

1

γ2

)
+ y

(
ρ2

3

)
+ z

([
8Γ

3
− ε
]
ρ2

3 −B(γ)

)
+ t
(
ρ2

3 [−2γ + ε]
)

= 0,

x
(
ρ2

3

)
+ y

(
6ρ2

3

5
− 3

γ

2)
+ z

(
[2Γ + ε] ρ2

3

)
+ t

(
−
[

8Γ

5
+ ε

]
ρ2

3 −B(γ)

)
= 0,

x

([
−8Γ

3
+ ε

]
ρ2

3 +B(γ)

)
+ y

(
− [2Γ + ε] ρ2

3

)
+ z

(
−8Γ2

3
ρ2

3 − 1

)
+ t
(
4Γ2ρ2

3

)
= 0,

x
(
[2Γ− ε] ρ2

3

)
+ y

([
8Γ

5
+ ε

]
ρ2

3 +B(γ)

)
+ z

(
4Γ2ρ2

3

)
+ t

(
−24Γ2

5
ρ2

3 + 3

)
= 0.

(153)

Aside from the trivial solution x = y = z = t = 0, this linear system for x, y, z, t has a solution when its
determinant vanishes. This condition yields a polynomial equation of degree 4 in ρ2

3, which when satisfied
implies the existence of a non-trivial null-space vector and a non-planar solution for the ring. Figure 8
compares the amplitude of u∗3 as found by numerical simulation to 2ρ3 obtained from the first positive
root of this polynomial. It can be appreciated that this approximate solution cannot be distinguished from
the numerical solution and covers the complete post-buckling shape of the ring up to the folding of the
multi-covered ring and the next bifurcation point.
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