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1. Peristome surface construction25

A. General procedure.26

Overview We first outline the procedure used to generate realistic parameterizations of three-dimensional27

peristome surfaces. This process is shown schematically in Fig. S1, and consists of the following steps:28

1. Define a planar curve (x(s), y(s)) for the base shape for the peristome.29

2. Define an angle of inclination φ from the horizontal, i.e. φ = 0 corresponds to a perfectly flat peristome,30

while φ = π/2 for a vertical orientation.31

3. Define a function h2 = h2(s) describing deviation of peristome base shape from planarity. This was32

used in constructing models of the peristome for which the proximal end is raised relative to the rest33

of the peristome.34

4. Prescribe the cross-sectional shape of the peristome as a 2D curve, defined in polar coordinates by a35

function r(θ), at a finite number of points {s1, s2, s3, . . . , sn}.36

5. To create a surface from the set of discrete cross-sectional shapes, we create interpolating functions in s37

from the values of the shape parameters at each point si, therefore generating a surface parameterized38

by (s, θ).39

6. Additional features such as ribbing, teeth, or color patterns may then be added on top.40

More details on Step 4 Most of the fine-tuning for surface construction appears in Step 4, creating the41

cross-sectional shapes. This step involves a number of sub-steps that we outline further here. First, we note42

that from the parameterization of the base shape, and given the tilt φ, we define the space curve43

R(s) = (x(s), cosφ y(s), sinφ y(s)). [1]44

The tangent (T), normal (N) and binormal (B) vectors to this curve may then be defined at each point s
as follows:

α(s)T(s) =
(
x′(s), cosφ y′(s), sinφ y′(s)

)
[2]

α(s)N(s) =
(
y′(s), cosφx′(s), sinφx′(s)

)
[3]

B(s) = (0,− sinφ, cosφ), [4]

2 of 14 D.E. Moulton, H. Oliveri, A. Goriely & C. Thorogood



where α(s)2 := x′(s)2 + y′(s)2.45

In order to create easily manipulated cross-sectional shapes, we first restrict our attention to a class of46

functions for the shape, such that the precise shape is determined by a small number of parameters that we47

can fix at each point si. For most of the peristome surfaces, we have used logarithmic spirals, i.e. in polar48

coordinates the curves r(θ) = r0efθ. The parameter f is used to characterize flaring–f → 0 corresponds to49

an arc of a circle, with radius r0, while a larger value of f produces a more flared curve (increasing radius50

as θ increases).∗51

The shape is initially defined in the N-B plane, from which we then define two rotations: we rotate the52

curve about the binormal direction by angle ϕ, and rotate the curve about the axis normal to the plane by53

Θ. For example, if ϕ = 0 and Θ > 0, the curve is placed in the N-B plane, rotated by angle Θ about the54

tangent T.55

The domain of each curve is given by θ1 < θ < θ2, where the θi are also chosen at each point si.56

Combining the above, at each point si we define the following parameters:57

Si = {h2i , r0i , fi, ϕi,Θi, θ1i , θ2i}. [5]58

More details on Step 5 For given parameters Si, i = 1, . . . , n, we create interpolating functions, transforming59

each of the 7 parameters in Si into functions in s. For example, we generate the flaring function f(s) as60

an interpolating function passing through each of {(s1, f1), (s2, f2), . . . , (sn, fn)}. From these interpolating61

functions, we then define the peristome surface P(s, θ) as follows:62

P(s, θ) =R(s)
− r0(s)ef(s)θ sinϕ(s)

(
cos Θ(s) cos θ − sin Θ(s) sin θ

)
T(s)

+ r0(s)ef(s)θ cosϕ(s)
(

cos Θ(s) cos θ − sin Θ(s) sin θ
)
N(s)

+
[
h2(s) + r0(s)ef(s)θ(sin Θ(s) cos θ + cos Θ(s) sin θ)− r0(s) exp(f(s)(π/2−Θ(s)))

]
B.

[6]63

The final term in this expression shifts the curve so that the baseline curve R(s) + h2B is part of the final64

surface. We found that this choice produced smoother surfaces that were easier to manipulate to have65

desired features.66

For ease of computation, we exploit the bilateral symmetry inherent in peristome geometry, so that we67

need only define and perform computations on one half (the right half, say) of the peristome, with all68

sliding properties assumed to be identical.† Surface plots in the main text show both halves, where the left69

half follows a mirror symmetry with the right half.70

Via the process outlined above, having fixed the base shape and orientation, the surface is defined by71

the 7 × n parameters Si, i = 1, . . . , n. Typically we have used n = 6 points to balance efficiency while72

maintaining sufficient degrees of freedom to control surface geometry properties. With n = 6, the 4273

parameters were varied using the Manipulate command in Mathematica (1), which provides a graphical74

user interface that rapidly updates the surface geometry while continuously varying any of the parameters.75

In this way, by monitoring the surface shape and comparing with images of actual Nepenthes, parameter76

sets for the Si were constructed for each of the model peristome surfaces.77

Continuous flaring In generating Fig. 2 of the main text, we have continuously varied the peristome78

flaring. To do this, we first defined a flaring function f(s), as well as all other surface parameters. We then79

incorporate a scaling factor β, so that the flaring function is given by βf(s); ranging β produces a naturally80

varying flare while maintaining other surface properties unchanged.81

82

∗
Note that in our construction, the positive x-axis for each cross-section is aligned with the normal vector, which points inside the peristome, thus θ increases from inside edge to outside edge.

†
Mirror symmetry with sliding would not be maintained if the peristome were rotated along the bilateral axis; however for the vast majority of Nepenthes that we have examined, there is negligible rotation
of this type.
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On surface features The process outlined above produces a smooth surface. Adding surface features such83

as ribbing or teeth is straightforward, as this can be defined by a variation in the cross-sectional radius84

as a function of s. For instance, to add ridges with wavelength ω and amplitude ε, the term r0(s)ef(s)θ
85

is replaced by r0(s)ef(s)θ + ε cos(ωλ(s))m where m is an integer characterizing the sharpness of the ridges86

(m = 1 for perfectly sinusoidal ridges, while a large value of m produces ridges with sharp peaks and wide87

valleys). The function λ(s) is the arc length of the baseline curve, defined by λ′(s) = α(s); this term is88

needed to maintain a constant wavelength, as the base curve is not defined (necessarily) to be an arc length89

parameterization. Both ridges and teeth may be defined in the same way; the main difference being that90

with teeth we use a much larger value of both ε and m, e.g. m = 4 for ridges and m = 40 for teeth. Note91

that in defining ridges and teeth in this way, they are aligned with the cross-sectional curves; therefore the92

function ϕ(s) is used to rotate this alignment, for instance, to be more oblique towards the proximal end,93

as we have observed in many species.94

Coloration of surfaces in Fig. 1 of the main text was purely added for visual purposes in comparison95

with real specimens. Color patterns were produced using the ColorFunction environment in Mathematica.96

B. Particular surfaces. Specific values of the parameters and functions used for the peristome models can97

be found in the deposited Mathematica notebooks, which include the construction of each of the models98

appearing in main text Fig. 2.99

C. Extracting surface measures. In main text Fig. 2(e), we have defined 5 surface measures characterizing100

the peristome properties. These are the interior peristome length (L), the minimum (W1) and maximum101

(W2) peristome widths, the angle of the peristome with respect to gravity (φ), and the average ribbing102

height (H). From these, the peristome relative width is defined as W2/L, the degree of flaring is W2/W1,103

the prominence of ribs/teeth is defined to be H/W1, and the orientation is the angle φ. Main text Fig. 2104

(e)(ii)-(iii) plots these values for the sample species appearing in (a)-(d), both for the real specimens and105

the model reconstructions. Our procedure for extracting the values from the real specimens was to overlay106

straight lines on the images, from which the lengths L,W1,W2, and H were approximated by the lengths of107

the lines (in pixels); as the relevant measures are ratios and angles, the actual dimensional lengths were not108

needed.109

We stress that these extracted values are approximations, with varying levels of precision based on the110

type of measure. For instance, while the lengths and widths could be extracted with reasonable precision,111

the ribbing features on all but the Toothed category are very small and difficult to measure accurately from112

a photo. Peristome images with lines overlaid are provided in Figs. S2 and S3.113

In terms of the mathematical surface reconstructions, these parameter values are more readily extracted.114

The length L is computed from the space curve R; in particular by the symmetry of the peristome surface115

we have L := y(sn)− y(s1). In extracting the maximum and minimum peristome widths, we first define the116

peristome width function W (s) := ||P(s, θ1(s))−P(s, θ2(s))||, that is the norm of the vector pointing from117

inside to outside edge of the cross-section; we then equate the minimum and maximum values of W as s118

varies from s1 to sn with W1 and W2, respectively. The angle φ and ribbing height H are direct inputs to119

the mathematical surface so these are immediately accessible.120

121

Ribbing wavelength To justify the choice of ribbing wavelength, particularly in the case of main text Fig.122

5(a), in Fig. S4 we show side by side an image of N. veitchii and a model representation. In each, we have123

indicated a segment of peristome corresponding to 50 ribs, with every 5th rib indicated by a white circle.124

This shows that while not exact, the wavelength we have used in our model is in rough agreement with the125

wavelength in real specimens.126
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Fig. S1. Peristome surface construction. (a) A plane curve (x(s), y(s)) is constructed, and (b) translated out of plane by an amount h2(s) and rotated by angle φ about
the x-axis, with the tangent-normal-binormal frame (TNB) is defined at each point on the curve. (c) At a discrete set of points {s1, s2, . . . , sn}, a cross-sectional curve
is defined, originally in the normal-binormal plane, but rotated by angle ϕ about the binormal. (d) a surface is created by interpolating the functions defining the discrete
cross-sectional shapes. (e) additional features such as ribbing are added.

2. Point-mass model127

Here we outline the procedure for stability properties and dynamic motion of a point mass on the surfaces128

as constructed above.129

A. Seeding the surface.While some properties, such as stability under dry friction, can be readily computed130

as a continuum property at each point on the surface, computation of the dynamics requires integrating the131

equations of motion forward in time, which must be done individually for any given point on the surface.132

Therefore, in order to approximate the relative areas of the surface for each category–stable, unstable133

with dynamics leading to falling into the pitcher, and unstable with dynamics leading to falling out of the134

pitcher–we first seed the surface with a large number of points. In order to space the seed points evenly135

across the surface, we first compute the metric tensor G, which has components136

G11 = ∂P
∂s
· ∂P
∂s

, G12 = ∂P
∂s
· ∂P
∂θ

, G22 = ∂P
∂θ
· ∂P
∂θ

. [7]137

Noting that the line element dS of a curve on the surface satisfies dS2 = G11ds2 + 2G12dsdθ +G22dθ2, our138

approach for seeding the surface is then as follows:139
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Fig. S2. Peristome images and overlay of lines from which we have extracted the dimensionless surface measures L, W1 and W2 (left), H and W2 (middle), and φ (right)
for the species (top to bottom): N. pervillei, N. eymae, N. jamban, and N. jacquelinae.

1. Fix a step size δ140

2. Fix s = s1 (distal end).141

3. Seed points along the cross-section:142

(i) Fix θ = θ1(s), and seed a point143

(ii) Increment θ ← θ + δ√
G22(s,θ)

, and seed a point144

(iii) Continue until θ2 is reached.145

4. Increment s← s+ δ√
G11(s,θ)

146
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Fig. S3. Peristome images and overlay of lines from which we have extracted the dimensionless surface measures L, W1 and W2 (left), H and W2 (middle), and φ (right)
for the species (top to bottom): N. veitchii, N. naga, N. macrophylla, and N. diabolica.

5. Return to step 3.147

6. Repeat until s ≥ sn is reached.148

In the case of ribbing/teeth, in producing main text Fig. 5 we only seed points in the valleys of the149

surface features. That is, given the cross-sectional shape r0(s)ef(s)θ + ε cos(ωλ(s))m, we seed points at150

values of s satisfying ωλ(s) = (2n+ 1)π/2 for integers n. This produces the same uniform seeding for all151

values of ε, since ω and λs are fixed for a given peristome shape, and ensures that the starting points for152

the dynamics are treated equally for all ribbing/teeth heights (the dynamic motion will be much different153

for a point starting on the top of a ribbing feature). Intuitively, in the case of large teeth features, as e.g.154

on N. diabolica, flying prey are very unlikely to land on the top or side of a tooth feature, and also walking155

prey seem most likely to enter the surface in the valleys, though it remains to investigate this empirically.156
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50 ridges
50 ridges

Fig. S4. Ribs count on N. veitchii and a model representation, with every 5th rib marked and a region corresponding to 50 ribs indicated.

B. Dry friction.The criterion for stability under dry friction is157

F

N
< µ, [8]158

where F and N are the components of the reaction force r tangential to and normal to the surface,159

respectively, and µ is the friction coefficient (2). As the only force acting on the point mass is gravity,160

which is defined in the z-direction (and can be defined with unit magnitude without loss of generality),161

the reaction force satisfies r = ez. The component of r normal to the surface has magnitude N = |ez · n|,162

where n is a unit normal vector, which can be computed via163

n =
∂P
∂s ×

∂P
∂θ∥∥∥∂P

∂s ×
∂P
∂θ

∥∥∥ . [9]164

The frictional component of r is then ez − nN, from which we determine that the point is stable if [Eq. (8)]165

F

N
=
√

1− (ez · n)2

|ez · n|
< µ. [10]166

Computational aside It is worthwhile to note that the expressions for Gij as well as n, while straightforward167

to compute, are very long for the surface defined by Eq. (6), and can be cumbersome to apply. For168

computational ease, it is useful to take advantage of the orthonormality of the right-handed basis {T,N,B},169

which satisfies the Frenet equations170

T′(s) = α(s)κ(s)N
N′(s) = −α(s)κ(s)T
B′(s) = 0,

[11]171

where the curvature κ is given by

κ(s) = x′(s)y′′(s)− x′′(s)y′(s)
α(s)3 .

Since the surface P is expressed in this basis, the scalar and vector products of the partial derivatives with172

respect to s and θ take a reduced form when all derivatives are expressed in the basis itself using Eq. (11).173

Our approach was to pre-compute generic analytical expressions for the Gij and n from Eq. (6) before174

explicitly defining the interpolating functions. Specific computed formulas are available in the Mathematica175

notebooks accompanying this manuscript.176
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C. Dynamic motion.177

Equations of motion The equations of motion for a point mass sliding on the surface are determined178

via the Euler-Lagrange equations with energy function having components for both kinetic energy and179

gravitational potential energy‡. Noting that the path along the surface is defined by a curve in parameter180

space (s(t), θ(t)), the position vector for the material point is given by p(t) = P(s(t), θ(t)). The kinetic181

energy for mass m then takes the usual form182

T = 1
2m|ṗ|

2, [12]183

where overdot denotes a material derivative with respect to time, i.e. ṗ(t) = ṡ(t) ∂P/∂s(s(t), θ(t)) +184

θ̇(t) ∂P/∂θ(s(t), θ(t)), while the potential energy is given by185

V = mgp · ez, [13]186

with g the gravity of Earth. Each of these may be expressed in terms of the functions s(t) and θ(t) via the187

parameterization given by Eq. (6), from which we may write the Lagrangian L = T − V:188

L(s(t), θ(t), ṡ(t), θ̇(t)) = 1
2m|ṗ(t)|2 −mgp(t) · ez. [14]189

The equations of motion are then given by190

d
dt
∂L
∂ṡ
− ∂L
∂s

= 0, [15]191

192
d
dt
∂L
∂θ̇
− ∂L
∂θ

= 0. [16]193

As initial conditions, we prescribe zero initial velocity and choose (s(0), θ(0)) to correspond to the values194

of seed points as described above. Eqs. (15) and (16) define two highly nonlinear coupled second order195

differential equations for (s(t), θ(t)). Again, the calculation is straightforward; the challenge is in dealing196

efficiently with the cumbersome formulas. As above, this is rendered easier by expressing all derivatives197

back in terms of the orthonormal basis {T,N,B}. Having reduced the formulas as outlined, the system of198

equations can generally be integrated forward in time in less than a second for points with simple motions199

(e.g. a point near the edge), or maximally within tens of seconds for more complicated motions (e.g. a point200

situated next to a large tooth). These were integrated using the numerical solver NDSolve in Mathematica,201

with a stopping criterion based on reaching the edge of the surface. In particular, if θ(t) reaches θ1, the202

point has reached the inside edge, and we deem the mass to have fallen in the pitcher; conversely, if θ(t)203

reaches θ2, the point has reached the outside edge, and we deem the mass to have fallen out of the pitcher.204

Given the mirror symmetry, it is also possible for the point to reach the proximal point, defined by s(t)205

reaching 0; in this event, we simply reflect the velocities as appropriate and continue the integration.206

The gravitational constant g only has the effect of increasing or decreasing the rate with which the mass207

slides off the surface, and could be set arbitrarily. Here, we note that when computing the dynamic motion,208

we assume that the surface is fully wetted. In this case, every point is unstable except for points at which209

the surface is flat with respect to gravity and with appropriate sign of the mean curvature, i.e. a point210

situated at a local minimum. For the geometries we considered, this was not an issue, i.e. there were no211

attracting regions on the surface into which a point could slide and potentially remain. If such regions did212

exist, the value of the gravitational constant would be important in determining the velocity with which213

a point entered such a region and therefore whether it became stuck; but this was not the case in our214

simulations.215

216

‡
For simplicity we neglect kinetic friction, which should be largely irrelevant with regards to the question of whether the point mass slides into or out of the pitcher.
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Fall in/fall out percentages and surface area Having computed the dynamic trajectories of each of the seed217

points, we can approximate the percentage of the surface area for which dynamic motion leads to falling in218

versus out by simply counting the number of seed points that lead to the different stopping criteria. That219

is, if the dynamic trajectories of N1 seed points ended with θ = θ1 (falling in), and there were M total seed220

points, we approximate N1/M × 100 as the percentage of the surface for which prey “fall-in”.221

In terms of actual surface area, which is relevant to our energy analysis, we may compute the total222

surface area in the usual way, in terms of the metric tensor:223

A =
∫ sn

s1

∫ θ2(s)

θ1(s)

√
det G dθds. [17]224

Note that ribbing features do not change the nature of the calculation–as ribbing/teeth are directly225

incorporated into the surface parameterization, the ribbing pattern and properties (height ε and frequency226

ω) are built into the metric tensor, so that the formula above provides A = A(ε) when increasing the227

ribbing height as in main text Fig. 5. Note that in terms of energetic gain, because we only seed points228

in the valleys (as described in Section 2A above), we compute the capture area as the percentage of seed229

points that fall into the pitcher times the area of the smooth surface.230

D. Energy functions.We have defined in the main text the net energy231

∆E = Egain − Ecost = g(Ain)− f(A), [18]232

where Ain is the surface area for which prey will fall into the peristome, A is the total surface area, and233

f and g are functions that model respectively the link between prey capture and energetic benefit for234

the plant, and the energetic cost of constructing and maintaining the peristome. We have considered the235

functional forms g(x) = cgx
βg , f(x) = ccx

βc , where the constants cg and cc characterize the energetic gains236

and costs, respectively, while the exponents βg and βc characterize possible non-linearity in the pathway237

between areas and energy.238

For simplicity, in the results presented in the main text, we only varied cg with fixed values cc = 1 (a239

choice that can be made without loss of generality since the absolute energy is not relevant in our analysis),240

βg = βc = 1. In this section we explore in more detail the impact of the β parameters, in particular with241

respect to the potential energetic benefit of flaring, corresponding to main text Fig. 3. Fig. S5 plots ∆E242

against the flaring parameter W2/W1 for βg and βg ranging over the discrete set {0.2, 1.0, 2.5}. These plots243

show a range of qualitatively different behavior. Consider first the middle column of plots, with βc = 1. If244

βg < 1, the energetic gain per area increase is relatively large when the area is small, but decreases as the245

area increases (since the derivative of the function xa with a < 1 diverges as x→ 0 but vanishes as x→∞).246

The result is that ∆E is a monotonically decreasing function of W2/W1 in the case (βg, βc) = (0.2, 1.0);247

here it is not energetically favorable to increase flaring. As βg is increased to 1.0 (middle plot), ∆E has248

an internal maximum for most values of cg, so that flaring to some degree is favorable. If βg is increased249

further, the energetic gain per area increase is small when the area is small, but increases with increasing250

area (the function xa with a > 1 has increasing derivative). The result is an initial decrease of ∆E, followed251

by a sharp rise in the case (βg, βc) = (2.5, 1.0). This shape has an interesting theoretical evolutionary252

consequence: even though it is highly energetically favorable to have large flaring, the initial decrease in253

∆E would cause an energetic barrier, barring an energetically beneficial continuous transition from thin to254

flared peristome.255

In the bottom row of Fig. S5, with βc = 0.2, ∆E is monotonically increasing for almost all values of cg256

and βg. It is clear that ∆E should rise with larger W2/W1, since the energetic cost per increased area is257

very low for large area. For smaller areas, even though the change in cost per increase in area is higher, the258

capture fraction also increases the most with small flaring (not plotted), so that the gain still outweighs the259

cost. In the top row, βc = 2.5, the energetic cost is very high compared to the gain, and ∆E is monotonically260

decreasing, though ∆E is nearly flat for small flaring, as the cost is less impactful at small areas.261
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Fig. S5. Net energy ∆E plotted against flaring parameter αf for varying values of βg and βc. Within each plot, arrows indicate increasing cg from 1 to 2.25.

3. Finite-sized prey262

We detail the rigid body model used to investigate the effect of prey size.263

A. General setup.We model the prey as a bilaterally symmetric rigid body with center of mass G and264

(arbitrary) mass m [Fig. S6(a)]. The body is in contact with the peristome at two points located at the265

same distance ρ from G, respectively noted C1 and C2 (with C1 the highest point). We introduce γ, the266

radius of gyration of the rigid body, and the angle α := 1/2× Ĉ1GC2. The peristome is modeled as a circle267

with radius R ≡ 1, used as a reference length unit. The prey position is parameterized by the angle θ, the268

angle between the prey and the vertical. We assume that the prey is subject to its own weight only. Lastly,269

we also prevent the leg axes from intersecting the surface by enforcing the non-penetration constraint270

ρ tanα ≤ 1. [19]271

272

B. Mechanics.To characterize the frictional stability of the prey, we use Erdmann’s theory of Coulombian273

friction with multiple contact points which extends the classic notion of friction cone to some appropriately-274

defined configuration space (3, 4). Indeed, in contrast to a material point, a rigid body can be subject275

to both a resultant and a torque applied at G, that overall form a generalized force (Fx, Fy, τ) ∈ R3. In276

particular, the generalized friction cone is a three-dimensional, polyhedral cone that contains all the possible277

generalized forces that the surface can provide under static friction while maintaining contact at both278
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contact points. The theoretical basis of the configuration space friction cone is mathematically sophisticated;279

we refer the reader to Refs. (3, 4) for details. Here, we adapt the theory to our problem and briefly outline280

the construction of our slipping criterion. The strategy is as follows: i) construct the individual friction281

cone associated with each contact point; ii) obtain the composite, generalized friction cone (accounting for282

both contact points) by the superposition principle.283

We here build the friction cone for the first contact point C1 (the second friction cone for C2 is obtained284

similarly). We first define the position vector r := −−→C1G = (rx, ry, 0) = ρ(sinα, cosα, 0), expressed in the285

canonical basis (eθ, er, eθ × er) attached to the rigid body [Fig. S6(a)]. In this basis, the weight is expressed286

as F = mg(sin θ,− cos θ, 0). Elementary geometry also provides the normal to the surface at the contact287

point:288

n0 = (nx, ny, nz) =
(
−ρ sinα,

√
1− ρ2 sin2 α, 0

)
. [20]289

The generalized normal follows as:290

n = 1
∆n

(
nx, ny,

nxry − nyrx
γ

)
, [21]291

with ∆n =
√

1 + (nxry − nyrx)2/γ2, such that ‖n‖ = 1. We stress that, while n0 and n have the same292

dimension, the former is a vector in the physical space, while the latter lives in the 3D configuration space.293

The last component of n corresponds to the torque about the reference point G, due to a unit reaction294

force applied at the contact point. Friction acts along the tangent through the point of contact, associated295

similarly with the configuration vector296

vf =
(
ny,−nx,

nxrx + nyry
γ

)
. [22]297

The friction cone for C1 [blue cone in Fig. S6(b)] can be written as {a(∆nn + sµvf ) | a ≥ 0, s ∈ [−1,+1]}298

(the one for C2 is obtained analogously). Physically, the fact that the friction cone has a component in299

the τ direction accounts for the fact that, if only one contact point is considered, equilibrium of the rigid300

body requires a non-zero applied torque to balance the applied resultant that tends to induce rotation301

about the contact point. Finally, the generalized friction cone, which accounts for both contact points, is302

obtained by the superposition principle and is given mathematically by the vector sum of the two friction303

cones associated with all contact points [Fig. S6(b)]. Note that to compute the friction cone, one need not304

compute explicitly the reaction forces at the contact points.305

In our scenario, we consider a prey subject to its own weight, with no applied torque. Therefore, we306

consider the intersection of the three-dimensional friction cone previously constructed, with the plane307

τ = 0 that describes the space of resultant forces, i.e. torque-free generalized forces. This intersection is308

a planar cone [in green in Fig. S6(b)] which, as in the case of a material point, provides the maximum309

inclination above which slippage occurs. The director lines for this cone [thick dashed lines in Fig. S6(b)]310

are given by {a(s sin θc, cos θc, 0) | a ≥ 0, s = ±1}, where θc denotes the critical slippage angle. Tedious, but311

straightforward calculation of the intersection provides312

θc = arctan

 µ

1 + ρ (µ2 + 1)
(
cosα

√
1− ρ2 sin2 α− sin2 α

)
, [23]313

for a small enough friction coefficient µ ≤ µc, with314

µ2
c = sinα+ ρ sin 2α

√
1− ρ2 sin2 α+ ρ2 sinα cos 2α

cosα cotanα− ρ sin 2α
√

1− ρ2 sin2 α− ρ2 sinα cos 2α
; [24]315

otherwise316

θc = α [25]317
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Fig. S6. (a) Schematic of a prey modeled as a symmetric rigid body sitting on a circular peristome. (b) The configuration space friction cone intersected with the plane τ = 0
provides the critical inclination angle θc.

Fig. S7. (a) Plot of θc vs µ, for α = π/4 and for an optimal prey size, i.e. with ρ = ρ∗(π/4) [Eq. (26)]. For µ > µc [Eq. (24)], capture occurs via tumbling. (b) The
efficiency function f(α, ρ). Maximal gain corresponds to minimal stability zone θc, relative to the point-mass case θc ≈ µ � 1. (c) For µ � 1, the relative gain function
G(α) is independent of µ and provides the maximum relative decrease of θc with respect to the worst case scenario ρ→ 0.

[Fig. S7(a)]. We first remark that θc is independent of the radius of gyration γ. Secondly, as expected, in318

the limit ρ→ 0 (with θ ≤ α), we also retrieve the classic result of point-mass Coulombian friction, namely319

tan θc = µ (2). The latter happens to correspond to the worst-case scenario (from the plant’s point of320

view), i.e. maximal θc. We obtain the same θc for ρ→ cotα (Eq. (19)) where the leg axis is tangent to the321

surface. The second case [Eq. (25)] corresponds to the situation where the reaction force at one contact322

point becomes negative, i.e. contact is lost and the prey tumbles into the traps (in reality, arthropod pads323

have some degree of adhesion, but we ignore this aspect for simplicity, arguing that adhesion is largely324

suppressed by the wetting of the peristome). For large friction coefficients µ > µc (given ρ and α), slipping325

becomes impossible and capture may only occur via tumbling. In summary, a prey (α, ρ) satisfying the326

non-penetration constraint Eq. (19) will be in equilibrium if θ ≤ θc, with θc described by Eqs. (23) to (25).327

C. Optimal prey size.To explore the functional role of peristome size, we fix the size of the peristome and328

we look for the typical size of the most unstable prey; in other words, we consider the value of ρ that329
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minimizes θc (for any fixed angle α). Remarkably, we show that this minimum is attained at a finite value330

of ρ, given by331

ρ∗(α) =

√
cscα(cscα− 1)

2 , [26]332

which, interestingly, is independent of µ (only the value of the minimum will depend on µ). For a slippery333

peristome (µ� 1), the leading order expansion of Eq. (23), namely334

θc = µ

1− ρ2 sin2 α+ ρ cosα
√

1− ρ2 sin2 α
+O

(
µ3
)
, [27]335

further shows that, to second order in µ, the relative gain in capture efficiency θc/µ, with respect to the336

worst case ρ→ 0, is only dependent on the geometry, via the fundamental efficiency function337

f(ρ, α) = ρ cosα
√

1− ρ2 sin2 α− ρ2 sin2 α [28]338

[Fig. S7(b)]. Maximum f corresponds to maximum efficiency gain, given by G(α) = 1−θc(α, ρ∗(α))/θc,max =339

(1− sinα)/(1 + sinα) [Fig. S7(c)]. The black solid line in Fig. S7(b) shows the path of maximum efficiency340

(for all fixed values of α) along the surface f(α, ρ). For example, for a realistic angle α = π/4 [red dashed341

line in Fig. S7(b)], the efficiency is maximal for ρ∗(π/4) =
√

1− 1/
√

2 ≈ 0.54, which generates a relative342

efficiency gain 1− θ∗c/µ = 3− 2
√

2 ≈ 17% with respect to the point mass scenario, irrespective of the value343

of µ� 1. Conversely, for any insect size ρ, the maximal capture efficiency is attained for α→ 0. In this344

case, however, the insect will tumble and fall inside the pitcher before slipping.345
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