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Abstract

Wound healing is a complex process, in which a sequence of interrelated phases contribute to a reduction in wound

size. For diabetic patients, many of these processes are compromised, so that wound healing slows down. In this

paper we present a simple ordinary differential equation model for wound healing in which attention focusses on

the dominant processes that contribute to closure of a full thickness wound. Asymptotic analysis of the resulting

model reveals that normal healing occurs in stages: the initial and rapid elastic recoil of the wound is followed by a

longer proliferative phase during which growth in the dermis dominates healing. At longer times, fibroblasts exert

contractile forces on the dermal tissue, the resulting tension stimulating further dermal tissue growth and enhancing

wound closure. By fitting the model to experimental data we find that the major difference between normal and

diabetic healing is a marked reduction in the rate of dermal tissue growth for diabetic patients. The model is used to

estimate the breakdown of dermal healing into two processes: tissue growth and contraction, the proportions of which

provide information about the quality of the healed wound. We show further that increasing dermal tissue growth in

the diabetic wound produces closure times similar to those associated with normal healing and we discuss the clinical

implications of this hypothesised treatment.
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Highlights

• A simple mathematical model of wound healing is developed

• Asymptotic analysis of the model reveals a natural separation of timescales

• The model is fit to data to identify differences between normal and diabetic healing

• The model can be used to estimate the contributions of growth and contraction to dermal healing
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• Increasing dermal growth is suggested as a treatment for enhancing healing of diabetic wounds

1. Introduction

Wound healing is a complex process, which is far from fully understood. In diabetic wounds, intrinsic pathobio-

logical abnormalities and extrinsic factors create an environment which is even more complex. Hallmarks of diabetes,

arising from hyperglycaemia include higher risk of macrovascular diseases and neuropathy and can delay healing [1]

or, in extreme cases, lead to lower limb amputations [2]. In the UK, wound care is estimated to cost the National

Health Service approximately £1 billion a year [3]. The clinical demand for treatments that can enhance wound

healing, in normal and diabetic patients, is stimulating a vast amount of biomedical research.

We argue that advances in wound management will come from greater understanding of the mechanisms control-

ling healing. As it is often difficult to conduct in vivo investigations in a non-invasive manner, realistic mathematical

models based on known cell behaviours provide a useful framework for studying wound healing. As well as mathe-

matical models, reliable animal models that recapitulate situations of impaired wound healing are essential [4]. In this

paper we present experimental data associated with normal and diabetic healing in mice. Motivated by the data we

develop a simple mathematical model in order to determine which aspects of healing are most affected by diabetes.

Human skin is primarily divided into three layers (see Fig. 1). The outermost and thinnest layer is the epidermis.

It is made from densely packed epithelial cells. Underneath is a thicker dermal layer of collagenous elastic tissue

consisting mainly of fibroblast cells and blood vessels. Beneath the dermis lies a fatty layer called the sub-dermis,

which provides the body with insulation. Partial thickness wounds affect the epidermis, may injure part of the dermis

and heal mainly by re-epithelialisation. Of interest here are full thickness wounds, for which the epidermis and a

substantial amount of the dermis are damaged.

epidermis

dermis

sub-dermis

blood vessels

sweat gland

hair follicle

fibroblast cells

epithelial cells

Figure 1: Schematic of the skin. A cross-section through the three main layers of the skin. The epidermis contains layers of tightly packed
epithelial cells. The dermis consists of fibroblasts, blood vessels, sweat glands and hair follicles, surrounded by elastic tissue made primarily of
collagen. The sub-dermis is a fatty tissue with a network of blood vessels.

Normal healing of full thickness wounds in mammalian adults involves the co-ordination of a series of interrelated

biochemical and biomechanical processes. It proceeds in four distinct phases, starting with haemostasis, followed by
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inflammation, proliferation and, finally, tissue maturation, although, in practice, these processes overlap. Immedi-

ately after wounding, the intrinsic tension in the surrounding tissue causes the skin to recoil [5]. Haemostasis is

an instantaneous response to wounding. Damaged capillaries allow blood flow into the wound causing platelets to

aggregate and form a temporary seal or clot in the opening. The clot is made primarily from fibrin and is a source

of the growth factors that are needed during the subsequent healing phases [6]. The growth factors in the wound

space initiate the inflammatory phase, which lasts for up to a week [7], during which inflammatory cells, for example

leukocytes, neutrophils and macrophages, migrate into the wound. The inflammatory cells provide chemical stimuli

for the proliferative phase. Proliferation in the epidermal layer of the skin is termed epithelialisation and proceeds

more quickly than dermal proliferation. A combination of proliferation and migration of epithelial cells contributes

to the regeneration of an epidermal covering. In the dermis the proliferative phase is described as fibroplasia. For

fibroplasia, fibroblast cells diffuse into the wound space, stimulated by a family of fibroblast growth factors (FGF)

produced during the inflammatory phase [8]. The fibroblast cells initiate the deposition of new extracellular matrix

by producing collagen. Contraction begins approximately 2 to 5 days post wounding as fibroblast cells apply tensile

forces to the collagen scaffold in order to shrink the wound [9]. After closure, cellular activity decreases and the

collagen matrix is remodelled over a period of several months.

Diabetes is a common, life-long health condition. Worldwide there are 285 million adults diagnosed with diabetes,

with this number estimated to increase by 54% by 2030 [10]. Diabetes can be categorised into type I (∼ 10%) and

type II (∼ 90%). The former results from an inability to produce insulin, whereas the latter is an inability to efficiently

use the body’s insulin. This prevents the conversion of glucose into glycogen and results in high blood glucose, or

hyperglycaemia. Symptoms of hyperglycaemia, such as higher risk of macrovascular disease and neuropathy, are

associated with both types of diabetes [1]. More than 100 physiological factors contribute to wound healing deficien-

cies in diabetic individuals [11]. As mentioned above, normal wound healing requires the coordinated integration of

complex biological and molecular events. In a diabetic wound these events may be disrupted, delaying healing.

Many aspects of wound healing have been the subject of mathematical and computational investigations. For

example, Sherratt and Murray [12, 13] formulated models of epidermal healing in which reaction-diffusion equations

were used to describe the spatio-temporal evolution of the epidermal cells and to compare the impact of growth

factors that promote and inhibit healing. Mathematical models of full thickness wounds typically focus on dermal

healing and one of the contributing processes, for example contraction [14, 15, 16] or tissue synthesis [17]. Typically

models of wound contraction are formulated as partial differential equations (PDEs) and are based on the principles

of mass and momentum balance. For example, such a model may couple mass balances for the density of fibroblasts

and extra-cellular matrix (ECM) with a momentum balance for the displacement of the cell-ECM continuum and
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constitutive laws which define the mechanical properties of the tissue. Earlier models treated the ECM as isotropic,

with linear viscoelastic properties [14]. These assumptions were relaxed by Olsen et al. [16] who viewed the ECM as

an anisotropic material and studied the different roles of fibroblasts in wound contraction. More recently, Segal et al.

[17] studied the contribution of collagen accumulation in a wound to healing of the tissue. Their spatially-averaged

model consisted of a system of time-dependent, ordinary differential equations (ODEs). Although the complexity is

reduced by adopting a spatially-averaged framework, the model still has a large number of parameters that need to be

determined experimentally.

The models described above have increased understanding of the specific processes involved in wound healing.

However, given that these processes overlap and interact in both time and space, models that consider them in combi-

nation may provide a more realistic description of wound healing. As well as the need to consider how the different

processes in healing interact, we note that it is difficult to verify detailed mathematical models with the quality of data

currently available. Therefore, in this paper we develop a simple model which is cast in terms of variables that can be

easily measured, namely wound areas. At a gross level, wound closure occurs due to proliferation and contraction, so

these form the primary components of our model. By focussing on the net effect of these processes, rather than on the

underlying mechanistic details, we develop an idealised model, containing a small number of parameters that can be

used to test hypotheses about how diabetes modifies proliferation and contraction. We describe below the experiments

and data which motivated this theoretical study.

In order to characterise differences in wound healing between normal and diabetic mice, a series of experiments

were performed on normal, non-diabetic mice and mice in which type II diabetes was induced by deleting the leptin

receptor gene [18]. Full thickness wounds of radius 4mm were inflicted by punching a circle on the left and right

flanks of the mice. Mice were euthanised every twenty four hours for histological samples, in order to measure wound

sizes of both the epidermis and the dermis. This continued until wound closure, defined by closure of the epidermis.

Three mice for both the control and diabetic groups were used, each with two wounds, giving a sample size of six for

each time point.

From the histologies, invading fronts in both the epidermis (due to epithelial cells growing over granulation tissue)

and the dermis (due to contraction and new dermal tissue) were visible. Time courses obtained by averaging the

epidermal and dermal wound areas associated with the non-diabetic and diabetic groups are presented in Fig. 2. The

data in Fig. 2 support the view that wound healing occurs over different timescales. For both the epidermal and dermal

curves we observe a rapid increase in wound area immediately after wounding and we ascribe this to mechanical

retraction, the size of the recoil providing information about the intrinsic elasticity of the skin. After the initial recoil

the epidermal wound area gradually decreases until closure. As a consequence of granulation tissue synthesis in the
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Figure 2: Wound areas from experimental data. Average wound areas for the epidermis and the dermis in both normal and diabetic mice were
recorded over a time period of 21 and 33 days. The sample size for each day is 6 wounds, 2 on each flank of 3 mice. The initial wound radius
was designed to be 4mm and the wounds remained approximately circular throughout the experiments. The bold curve, xe(ti), gives the average
epidermal area as a function of time and the dashed curve, xd(ti), the average dermal area as a function of time.

dermal gap (defined by the dermal wound space), the dermal wound never fully closes. By comparing the data in

Figures 2(a) and (b) we see that the diabetic epidermis closes 19 days later than the non-diabetic epidermis, with the

diabetic dermis healing even more slowly than the non-diabetic dermis. These differences indicate that a larger dermal

gap remains when the diabetic wound closes, a feature which could result in a more prominent scar. We observe that,

for both non-diabetic and diabetic mice, the epidermis advance more rapidly into the wound space than the dermis,

forming an overhang of the epidermal layer, which grows atop the granulation tissue synthesised in the wound space.

That is, the amount of epidermal healing provides an indication of the amount of granulation tissue synthesised in the

dermal gap. In Fig. 3 we present a schematic diagram which clarifies how the surface areas of the wound space, the

healing epidermis and dermis are defined and inter-related. While it is evident from the data presented in Fig. 2 that

healing in diabetic wounds is delayed, it is not clear is which processes are responsible for the compromised healing.

In this paper, rather than developing a detailed model, we model in a simplified manner all the main processes that

contribute to the closure of a full thickness wound: proliferation and migration of epithelial cells in the epidermis;

tissue growth in the dermis; and contraction of the dermal tissue. The experimental data available to us describes

how the wound area of the epidermis and the dermis, change over time. Therefore, in Sect. 2, we develop a model

that comprises of time dependent ordinary differential equations for the epidermal and dermal wound areas as the
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Figure 3: Schematic representation of the wound space. The data given in Fig. 2 shows the epidermal layer healing more quickly than the dermal
layer, growing over the granulation tissue (given by the dotted area) and, hence, protruding into the wound space. The schematic diagram shows
arrangement of the epidermal and dermal tissues during healing, in preparation for introducing the mathematical model and its dependent variables
in the next section.

dependent variables, and that can be compared with the given data. In Sect. 3 we perform a focussed parameter

sensitivity analysis on our model, concentrating on those parameters that are thought to be compromised in diabetic

healing. By fitting the model to the experimental data from normal and diabetic wounds we are able to estimate the

system parameters and identify those which differ markedly between normal and diabetic wounds. Guided by these

parameter estimates, we go on to use asymptotic techniques to show how our model can be analysed on different,

well-defined timescales and how the processes that drive healing change from one timescale to the next. Finally,

in Sect. 4 we summarise our results and explain how they could be used to suggest strategies for improving wound

healing for diabetic patients.

2. The mathematical model

Since the data presented in Fig. 2 is spatially averaged, we formulate our model as a system of time dependent

ordinary differential equations (ODEs), relating the changes in wound areas of the epidermis and the dermis to the

dominant processes driving wound closure. The ODEs we develop represent: conservation of mass of new epidermal

tissue; conservation of mass of new dermal tissue; and a phenomenological balance of the forces acting on the dermis.

When developing our model we note that the experimental wounds were formed by excising a circular region of tissue

of radius 4mm and depth 0.1mm, that contained epidermal and dermal tissue. For simplicity and since the radii of the

wounds was much greater than their depth, we view the wounds as two-dimensional, and focus on how the area of the

epidermis and dermis change during healing by supposing that the wounds are radially symmetric, an assumption that

is consistent with the histology. We will consider the time duration of healing to be from initial injury until closure

of the epidermis. In this time period we do not account for remodelling of the dermis post closure or the synthesis of

granulation tissue in the wound space.

The schematic diagram presented in Fig. 4 illustrates the wound geometry that we consider and introduces the

system variables. Due to retraction (recoil), immediately following wounding, the wound increases in area from it’s
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initial wound value of A0 to AR, both constant values determined by the data. The areas of the epidermal and dermal

wounds at time t are denoted Ae(t) and Ad(t). In the dermis, where we consider the combined effects of growth and

contraction, it is convenient to introduce an additional variable As(t) ∈ (Ad, AR) to characterise the dermal wound. We

suppose that the area of the dermal wound healed by new tissue is AR − As and deduce that the amount of contraction

experienced by the dermal tissue will be proportional to As − Ad. We remark that both Ae(t) and Ad(t) are directly

comparable to the epidermal and dermal data curves presented in Fig. 2, whereas As(t) is not measurable from the

data.

A0

ii) Recoil wound area = 
AR

recoil wound 

area

proliferating 

region

i) Initial wound area = 

iii) Wound area at time t =

Ae(t)

Ad(t)

in the epidermis

in the dermis

iv) Area of new tissue at time t = {
in the epidermis

in the dermis

AR - Ae(t)

AR - As(t)

{

Figure 4: Definition of wound areas and system variables. A radially symmetric interpretation of the wound areas. (i) The initial wound area of
the epidermal and dermal layers is given by A0. (ii) Following wounding the tissues in both layers retract to an area AR > A0. Proliferation in both
the epidermis and dermis is localised to a small annular region surrounding the recoiled wound. (iii) The areas of the epidermal and dermal wounds
are given by the time dependent variables Ae(t) and Ad(t), respectively and typically 0 ≤ Ae(t) ≤ Ad(t). (iv) As the epidermal tissue proliferates,
the area of new epidermal tissue is given by AR − Ae(t). Similarly, the area of new dermal tissue is given by AR − As(t), where the time dependent
variable As(t) is the area of the relaxed dermal wound. The dermal wound is also subject to contractile forces, with the amount of contraction at
time t assumed to be proportional to the area difference As − Ad

2.1. Mass balance for new epidermal tissue

Following Clark [8], we suppose that the epidermal tissue heals by a combination of cell migration and prolif-

eration. Proliferation is localised to the new epidermal tissue and a small annulus surrounding the wound margin.

Cells from these regions are assumed to migrate towards the wound centre to assist in closing the wound. We assume

further that the combined effect of these processes can be described by a modified logistic growth law, in which the

growth rate contains contributions from proliferation in the new wound tissue and the surrounding wound margin. By
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applying the principle of mass balance to the new epidermal tissue, AR − Ae(t), we deduce that:

d
dt

(AR − Ae(t)) = r∗(AR − Ae(t))
(
1 − AR − Ae(t)

A∗

)
, (1)

where A∗ is the carrying capacity and the growth rate r∗ has the form:

r∗ = r
(
1 +

νAR

AR − Ae(t)

)
, (2)

where the first term, r, represents the assumed constant rate at which new epidermal tissue grows while the second

term represents additional growth from the annulus surrounding the wound margin, the parameter ν indicating the

proportion of the area, AR, which contributes to this effect. We account for the fact that epithelial cells are known

preferentially to migrate over a smooth, moist surface, such as the new dermal tissue, rather that granulation tissue

[19] by assuming that the carrying capacity A∗ depends on the dermal wound area. The maximum value for the

carrying capacity of new epidermal tissue is AR, corresponding to the epidermis being fully healed (Ae = 0). As the

dermal wound area, Ad(t), decreases, the new dermal tissue offers a platform for preferential growth and migration

of epidermal tissue, and the carrying capacity will increase. We therefore assume that the carrying capacity takes the

following form:

A∗ = AR − γAd(t), (3)

where the parameter γ ∈ [0, 1) measures the degree to which the carrying capacity depends on the dermal wound area.

We remark that if γ = 0, then the epidermis heals independently of the dermis, with a carrying capacity of AR.

Substituting (2) and (3) into (1), we obtain the following ODE for AR − Ae(t), the area of new epidermal tissue at

time t:
d
dt

(AR − Ae(t)) = r(AR − Ae(t) + νAR)
(
1 − AR − Ae(t)

AR − γAd(t)

)
. (4)

2.2. Mass balance for new dermal tissue

In the dermis we assume that contraction and growth drive healing. Both processes are regulated by fibroblast

cells which accumulate in the wound space following injury. When modelling proliferation in the dermis, we consider

two mechanisms. Firstly, there is a basal proliferation from the healthy skin, which is localised close to the wound.

Secondly, the growth rate of the new and surrounding tissue is enhanced by the amount of stretch it experiences. Such

mechanosensitive behaviour is known to occur during dermal wound healing [20, 21]. As for epidermal tissue, we

assume that the growth of new dermal tissue follows a modified logistic growth law. By applying the principle of
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mass balance to the new dermal tissue, AR − As(t), we deduce that:

d
dt

(AR − As(t)) = k∗(AR − As(t))
(
1 − AR − As(t)

AR

)
, (5)

where k∗ is the growth rate of the dermal tissue and AR is the carrying capacity. As with the epidermal growth rate,

we write:

k∗ = k
(
1 +

νAR

AR − As(t)

)
, (6)

where the first term represents the growth rate of the new dermal tissue and the second term the contribution to growth

from the annulus surrounding the wound margin. For simplicity we assume that area of the annuli surrounding the

wound that contribute to epidermal and dermal tissue are identical (ν is the same in (2) and (6)). We decompose the

growth rate k into basal and mechanosensitive contributions. In order to quantify the mechanosensitive contribution,

we introduce the normalised area of additional tissue due to contraction, Ψ ∈ [0, 1):

Ψ =
area of stretched tissue − area of relaxed tissue

area of stretched tissue

=
(AR − Ad(t) + νAR) − (AR − As(t) + νAR)

AR − Ad(t) + νAR

=
As(t) − Ad(t)

AR − Ad(t) + νAR
, (7)

so that Ψ ∈ [0, 1) provides a measure of the stretch experienced by the dermal tissue (Ψ = 0 if As = Ad). We assume

that k is a linearly increasing function of Ψ so that

k = k0 + k1

(
As(t) − Ad(t)

AR − Ad(t) + νAR

)
, (8)

where k0 represents the assumed constant basal growth rate, and the constant of proportionality k1 how mechanosen-

sitive the dermal tissue is.

Substituting (6) and (8) into (5) we obtain the following ODE for AR − As(t), the area of new dermal tissue at time

t:
d
dt

(AR − As(t)) =
(
k0 + k1

(
As(t) − Ad(t)

AR − Ad(t) + νAR

))
(AR − As(t) + νAR)

(
1 − AR − As(t)

AR

)
. (9)

2.3. Force balance for the dermis

In order to close the model it remains to determine the evolution of Ad(t). In this section we propose a phenomeno-

logical force balance to specify Ad(t). Fig. 5 schematically shows the forces acting on the dermal wound. Since the

timescale of interest is on the order of days, which is much longer than that associated with inertial effects, we neglect
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inertial terms and assume that the forces due to the elastic response, contraction and tethering are in equilibrium so

that

0 = FE + FC + FT ,

where FE denotes the elastic restoring force, FC the contractile force and FT the tethering resistance. We note that,

given the assumption of radial symmetry, all forces are assumed to act in the radial direction.

FC

FE FT

Figure 5: Forces acting on the dermis. The inner circle represents the dermal wound area, Ad(t), and the outer dashed circle the relaxed dermal
wound area, As(t). The elastic response (FE) pulls the wound open to it’s relaxed state. Fibroblasts, represented by black circles, infiltrate the
granulation tissue and contract (FC) surrounding tissue in order to decrease the wound area. Friction (FT ) due to tethering to the subdermal layer
acts to resist motion of the dermis.

When the skin is injured, the residual tension causes it to spring open to a relaxed state [5]. Given that elastic

fibres are distributed throughout the surrounding tissue, we assume that the elastic restoring force, which causes the

recoil of the wound, is proportional to the annular area of stretched tissue surrounding the wound, As(t) − Ad(t). We

write the radial component of the elastic restoring force as

FE = E(As(t) − Ad(t)), (10)

where E is the elastic restoring force per unit area.

In normal, healthy tissue contraction typically begins 2 to 5 days post wounding, by which time fibroblasts have

migrated into the wound in response to chemical growth factors released during the inflammatory phase [22]. When

defining the contractile force we account for this delay by introducing the continuous switch function

H(t − tc) =
1
2

[
tanh

( t − tc
θ

)
+ 1

]
. (11)

where tc is the time delay in days and θ is the gradient of the switch. Various contraction mechanisms are thought

to contribute to the reduction in wound size [23, 24, 25, 26]. Here we consider the simplest and best documented:

fibroblast cells infiltrate the wound space and apply a contractile force, which causes the granulation tissue to shrink

[24, 25]. Due to attachments between the granulation tissue and the healthy dermal tissue, this pulls the wound edge
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inwards, decreasing the area of the dermal wound. Since the fibroblasts migrate into the wound and can occupy the

dermal wound space, we assume that the contractile force is proportional to the area of the dermal wound. We can

now write the form of the radial component of the contractile force as

FC = cH(t − tc)Ad, (12)

where c is the contractile force per unit area.

Attachments between the dermal and subdermal layers resist the motion of the dermis and we assume that this

tethering force is proportional to the velocity of the dermis, dAd/dt. Thus when the wound area is increasing due to the

elastic response, dAd/dt > 0 and the tethering force resists this motion. Similarly, when the wound area is decreasing

due to contraction, dAd/dt < 0 and the tethering force resists the contractile force. Guided by these observations we

assume, for simplicity, that the tethering force can be written as

FT = µ
dAd

dt
, (13)

where µ is the tethering coefficient.

Combining the above assumptions, we obtain the following ODE relating the dermal wound area, Ad(t), to the

relaxed dermal wound area, As(t):

0 =

elastic restoring force︷       ︸︸       ︷
E(As − Ad) −

delayed contractile force︷         ︸︸         ︷
cH(t − tc)Ad −

tethering force︷︸︸︷
µ

dAd

dt
. (14)

2.4. Initial conditions

Following excision at t = 0 of tissue of area A0, the wound retracts instantaneously, exposing a larger region

AR > A0. These observations, together with our assumption that the epidermis is not under tension during healing,

lead us to prescribe the following initial conditions for the dependent variables:

Ae(0) = AR, As(0) = AR, Ad(0) = A0. (15)

The conditions in (15) close our phenomenological model of wound healing.

Equations (4), (9) and (14) constitute three coupled ODEs for the time evolution of the wound areas Ae, As and Ad.

Before presenting model solutions, it is convenient to restate the governing equations, suitably rearranged to clarify
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their interactions:

dAe

dt
= −r(AR(1 + ν) − Ae)

(
Ae − γAd

AR − γAd

)
,

dAs

dt
= −

(
k0 + k1

(
As − Ad

AR(1 + ν) − Ad

))
(AR(1 + ν) − As)

As

AR
,

µ
dAd

dt
= E(As − Ad) − cH(t − tc)Ad,

whereH(t − tc) is defined in (11) and the initial conditions satisfy (15).

2.5. The nondimensionalised equations

In practice, when constructing numerical and approximate analytical solutions we use a dimensionless version

of equations (4), (9), (14) and (15). These equations are stated below for completeness with asterisks omitted for

notational simplicity (details of the nondimensionalisation are relegated to Appendix A):

dAe

dt
= −λ(1 + ν − Ae)

(
Ae − γAd

1 − γAd

)
, (16a)

dAs

dt
= −

(
β0 + β1

(
As − Ad

1 + ν − Ad

))
(1 + ν − As)As, (16b)

ε
dAd

dt
= As − Ad − αH(t − tc)Ad, (16c)

with initial conditions

Ae(0) = 1, As(0) = 1, Ad(0) =
A0

AR
≡ Kd. (16d)

The dimensionless parameters λ, β0, β1, ε, α, tc, θ and Kd are non-negative constants whose physical interpretations

are stated in Table. 1.

2.6. Model behaviour

We anticipate that equations (16), should reproduce the natural progression of healing with a rapid recoil phase

followed by a period of cell proliferation and tissue growth, with contraction contributing at later stages. The recoil

phase occurs within hours of healing. Since we are interested in the time until wound closure, our timescale of

interest is on the order of days. We therefore expect that ε will be small in comparison to the other model parameters,

representing a large elastic restoring force relative to the tethering resistant force of the dermis to the underlying layers.

With 0 � ε < 1, we can apply the methods of matched asymptotic analysis to equations (16) to verify that analysis
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of the model reproduces the different phases of healing on the appropriate timescales. Full details of this analysis

are given in Appendix E, where our model expresses a progressive behaviour of the dominant physical mechanisms

contributing to healing on each timescale, with these dominant mechanisms predicted to change in the following way:

dermal recoil→ basal proliferation→ contraction→ mechanosensitive proliferation

In Fig. 6 we compare the approximate solution obtained from the asymptotic analysis with a numerical solution

of the model. We observe excellent agreement between the two solutions.
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c
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Figure 6: Comparison of results from asymptotic analysis with numerical solutions of the full model. Leading order approximate solutions
for Ad(t) given by equation (E.2c) for t = O(ε), equation (E.4c) for t = O(1) with t < tc and equation (E.8b) for t = O(1) with t > tc are compared
with the numerical solution to the full model given by (16). Parameter values: θ = 1, tc = 3, ε = 0.01, λ = 0.2, β0 = 0.2, β1 = 0.2, α = 0.2, γ = 0.1,
ν = 0.1.

In the next section we solve equations (16) numerically in order to test whether the model is in good qualitative

agreement with wound healing data. We further fit the model to nondimensionalised experimental data to identify the

processes which differ markedly between normal and diabetic healing.

3. Numerical Results

In this section we numerically solve equations (16) using the stiff differential equation solver ode15s in MATLAB.

By using a least squares fitting method we find the best fits to the data presented in Fig. 2. We further compare the

parameters associated with the best fits for the non-diabetic and diabetic cases and suggest a treatment strategy that

may be used to enhance healing of diabetic wounds.
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3.1. Least squares analysis

Using a least squares method (see Appendix D) we fit equations (16) to nondimensionalised data by exploring

the parameter space given by Φ∗ = {λ, β0, β1, α, γ ν}. The data in Fig. 2 is nondimensionalised by scaling the area by

the maximum wound area (AR) and time by an appropriate timescale (T ) which we take to be 1 day (see Appendix B

for details). The parameters tc = 3, θ = 1 and ε = 0.01 are fixed as justified by carrying out a numerical parameter

sensitivity analysis (see Appendix C).

The best fits of the model to the non-diabetic and diabetic data are presented in Fig. 7 and reveal that the model

fits the data well, with the non-diabetic fit being better (mean squared error, MSE = 0.0017) than the diabetic fit (MSE

= 0.0067). This is likely due to the greater amount of noise in the diabetic data.
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Figure 7: Wound areas for the best fits of the model to data. The numerical solutions of (16) are fit to the data given in Fig. 2 by optimising
the parameter set Φ∗ = {λ, β0, β1, α, γ, ν} using a least squares analysis. The parameters θ = 1, tc = 3 and ε = 0.01 are fixed. (a) Best fit to the
non-diabetic data with parameters λ = 0.5274, β0 = 0.2950, β1 = 0.0592, α = 0.2144, γ = 0.0027, ν = 0.0904. (b) Best fit to the diabetic data with
parameters λ = 0.4258, β0 = 0.0715, β1 = 0.0026, α = 0.1593, γ = 0.1868, ν = 0.1000.

Table 1 displays the parameter estimates associated with the best fit curves. By comparing the non-diabetic and

diabetic parameter sets, we see that epidermal growth (λ) and dermal growth (β0 and β1) are lower in the diabetic

wounds by 20%, 75% and 80%, respectively. Contraction (α) is also compromised in diabetic healing but the decrease

(25%) is less prominent than the decrease in the dermal growth parameters. Regarding the influence of the dermis

on epidermal healing (γ) we observe that the diabetic estimate of γ is much greater than the non-diabetic estimate;
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this implies that the diabetic epidermis is more sensitive to the new dermis. Equivalently, the diabetic epidermis has a

lower affinity for the granulation tissue synthesised in the wound space than the non-diabetic epidermis.

parameter physical interpretation normal diabetic

λ epidermal growth rate 0.5274 0.4258
β0 basal dermal growth rate 0.2950 0.0715
β1 mechanosensitive dermal growth rate 0.0124 0.0026
α contraction with respect to elastic response 0.2144 0.1593
γ epidermal dependence on dermis 0.0027 0.1868
ν proportion of proliferative region at wound margin 0.0904 0.1000

Table 1: Dimensionless parameters associated with the best fits. The dimensionless parameter values associated with the best fits to non-diabetic
and diabetic data.

We note further that, in comparison to the other growth parameters, mechanosensitive growth (β1) is small. By

setting β1 = 0 in (16) and fitting the resulting model to the data we investigate whether the data can be described

without the effect of mechanosensitive growth. We calculate the MSE associated with the best fit curve in order to

compare the model solutions in Fig. 7 to those with no mechanosensitive growth. From Table 2 we observe that the

best fit curves with β1 = 0 give the same error as those when β1 is included in the least squares analysis.

MSE

type of growth normal diabetic

basal and mechanosensitive (β0, β1 > 0) 0.0017 0.0067
basal only (β1 = 0 < β0) 0.0017 0.0067
mechanosensitive only (β0 = 0 < β1) 0.0084 0.0082

Table 2: Comparison of error between the different types of dermal growth. The mean squared error is calculated from the best fit curves to
the non-diabetic and diabetic data with either β0 and β1 optimised, β1 = 0 and β0 optimised or β0 = 0 and β1 optimised. The remaining parameters
λ, α, γ and ν are included in the optimisation.

In order to investigate whether mechanosensitive growth is small or whether our data (or model) can’t distinguish

between the two types of dermal growth, we perform model simulations in which the basal growth rate of the dermis

is off (β0 = 0). The associated MSEs presented in Table 2 suggest that the model with only mechanosensitive growth

(β0 = 0 < β1) describes the data less well than that with only basal growth (β1 = 0 < β0). These results suggest that

the effect of mechanosensitive growth is negligible. This is because the MSE for basal growth only (β1 = 0 < β0) is

the same as that with β0, β1 > 0.

When β1 = 0, we find that β0 is the parameter which changes most significantly between the non-diabetic and

diabetic best fits. We estimate the value of β0 with β1 = 0 and fixed λ, α, γ, ν obtained from the non-diabetic best fit

(see Table 1) that gives the best fit to the diabetic data. This fit is presented in Fig. 8 with an associated MSE = 0.0170.

Although the MSE associated with this fit is much greater than that when all parameters are free, the resulting solution
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for the dermal healing curve is qualitatively similar to that in Fig. 7(b) and the difference in error is likely due to the

qualitative differences in the epidermal curves. This shows that the delay in diabetic healing can be mainly ascribed

to a lower rate of basal growth.
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Figure 8: Best fit to the diabetic data described by lower basal growth only. The parameter set Φ = {λ, α, γ, ν} is fixed according to the best fit
to the non-diabetic data, given in Table 1, β1 = 0, θ = 1, tc = 3 and ε = 0.01 are fixed. A least squares optimization gives β0 = 0.0645.

3.1.1. Processes contributing to dermal closure

The main delay in healing in diabetics is closure of the dermis. From the data in Fig. 2 healing is tracked by

movement of the dermal and epidermal edges, the latter being an indication of healing by granulation. Movement

of the dermal edge is due to addition of dermal tissue and contraction by fibroblast cells, however, this separation

of processes is not measurable by the data. The model variables for dermal healing, As and Ad, give an indication

of the contribution to dermal healing by growth and contraction. Fig. 9 shows which area differences between the

model solutions represent the contribution by area of new tissue for each process. The contribution of the individual

processes measured by the best fit curves of the model for each day are given in Fig. 10.

By comparing the breakdown of processes at wound closure (defined by the data at day 14 in the non-diabetic

wounds and day 33 in the diabetic wounds) we observe that the percentage healed by granulation tissue is much

greater in the diabetic wound (approximately 30% in comparison to 10%). This large amount of granulation tissue

could result in severe scarring. Also, the diabetic wounds experience more contraction relative to dermal growth (10%

and 60%) than the non-diabetic wounds (2% and 90%). In Sect. 3 we found that the contraction parameter (α) was
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Figure 9: Processes contributing to dermal healing and the associated areas. The numerical solutions of (16) can be used to calculate the
contribution of granulation tissue, contraction and dermal growth to dermal healing. The synthesis of granulation tissue is given by the epidermal
curve, hence the area healed by granulation is given by Ad(t)−Ae(t). The area healed by contraction is given by As(t)−Ad(t) and by dermal growth
is 1 − As(t).
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Figure 10: Contributions from granulation tissue, dermal growth and dermal contraction predicted by best fits of the model to data. The
numerical solutions of (16) are fit to the data given in Fig. 2 and the contributions to healing according to Fig. 9 are plotted for each day until
closure.
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lower in the diabetic wounds (see Table 1), therefore the diabetic tissue is less contractile than the non-diabetic tissue.

However, the reduction in dermal growth in the diabetic wounds is more marked than the reduction in contraction (see

Table 1), so that a greater proportion of the diabetic wounds is healed by contraction than in the non-diabetic wounds.

Further, the proportion of the diabetic wounds healed by dermal growth is only 60% whereas it is almost 90% in the

non-diabetic wounds.

Combining the above results, we conclude that increasing the basal growth in the dermis is likely to have the

most significant effect on increasing rate of healing of diabetic wounds. In the next section we perform a parameter

sensitivity analysis by varying the parameter β0 to investigate the effects of increasing the basal growth on healing.

3.1.2. Treatment intervention

In this section we use our mathematical model to investigate a theoretical treatment for increased basal growth

in the dermis, i.e. increasing the model parameter β0. The non-diabetic wounds reach closure by day 14 (Fig. 7a)

by which point, the non-diabetic dermal curve is Ad = 0.05. Following our analysis of reduced β0 and parameter

sensitivity we fix the parameters estimated by the diabetic best fit and increase β0 to show how the time taken until

Ad = 0.005 changes with our theoretical treatment. β0 is held at the increased value for all time and results are

presented in Fig. 11.

From Fig. 7(a) we deduce that, in normal healing, wound closure is achieved by day 14. By increasing β0, as

shown in Fig. 11(a), from the estimated diabetic value of 0.0715 to an enhanced value of 0.34, the model predicts

that the diabetic wounds will also close by day 14, normalising the dermal healing time in the diabetic wound. We

observe that the curve representing increased β0 levels off at a minimum healing time of 10 days. Similarly, the

same treatment in the non-diabetic wound results in a reduced dermal healing time, with the curve having the same

qualitative behaviour as that in Fig. 11(a). Fig. 11(b) shows how increasing β0 from β0 = 0.0715 to β0 = 0.34 alters the

contributions of contraction and growth to healing of the dermis in the diabetic wound, making them more consistent

with the proportions seen in healthy, non-diabetic tissue.

Our model suggested that the contribution from mechanosensitive proliferation in the dermis was much less than

that from basal proliferation. We compared the contribution to healing from contraction and dermal growth and

concluded that, the proportion of healing by dermal growth is much lower in the diabetic case than the non-diabetic

case whereas the proportion healed by contraction was greater in the diabetic case. We investigated a treatment for

increased basal growth and showed that it is theoretically possible to mimic normal healing by increasing just one

of the parameters in our model (representing basal dermal growth). Combining the above results we suggest that

increased dermal growth is the most effective target for treatment in order to speed up the rate of healing in diabetic

wounds and normalise the proportion of healing due to contraction and dermal growth.
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Figure 11: Increasing β0 as a treatment strategy. a) Parameter sensitivity analysis showing how, for the diabetic tissue, the time for the dermal
curve to reach Ad(t) = 0.05 decreases as β0 increases. The value of β0 as estimated by the best fit of equations (16) to the diabetic data in Fig. 2
is 0.0715 (− · −) and the target treatment value is β0 = 0.34 (−−). By increasing β0 to 0.34 the diabetic dermis will reach Ad = 0.05 by day 14,
mimicking closure of the non-diabetic wounds. All other parameters are fixed at the diabetic values in Table 1. b) Comparison of the contributions
to healing for (i) the diabetic case (ii) the diabetic case with β0 increased to the target value and (iii) the non-diabetic case.

4. Discussion

Existing mathematical models of wound healing typically focus on epithelialisation for epidermal healing, tissue

growth in dermal healing or wound contraction. In practice, wound healing involves a combination of these processes.

Our work represents a simplified attempt to couple epithelialisation in the epidermis and contraction and tissue growth

in the dermis. We have developed a new mathematical model which tracks changes in the epidermal and dermal

areas of a wound, decreasing in time, in response to these key processes. By developing the model in tandem with

experimental data, we were able to compare it’s dynamics directly with the data.

By fitting the model to the data we identified those parameters which differed markedly between non-diabetic

and diabetic healing in mice. Our results suggest that the effects of mechanotransduction on tissue synthesis were

negligible. Moreover, the dermal growth rate and contractile force were lower in the diabetic wounds, that is consistent

with the literature [27]. However, the reduction in the dermal growth rate in diabetics (75% lower) is more pronounced

than the reduction in contraction (25% lower), so that the contribution of contraction to healing is greater in diabetic

than non-diabetic wounds (10 rather than 2%). This implies that, although both contraction and tissue growth are

compromised in diabetic healing, it is likely to be more beneficial to increase growth of new tissue in the dermis than
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to stimulate increased contraction in order to normalise healing. These model predictions also highlight the need for

additional, more detailed experiments that focus on the breakdown of dermal healing into contraction and dermal

growth.

Our results suggest that the delay in diabetic healing can mainly be ascribed to a lower basal growth in the dermis.

When the parameter associated with this process was increased 5-fold the model suggested that healing of the dia-

betic wound would more closely resemble that associated with non-diabetic wounds. There many possible treatment

applications associated with increasing the model parameter β0. The amino acid arginine is recruited specifically for

collagen synthesis. Supplemental arginine has been shown to accelerate wound healing, mainly by increasing collagen

synthesis [28]. Other supplements, such as vitamin C [29], have been shown to improve activation and stimulation

of collagen synthesis. Well-established treatments, such as the application of occlusive dressings, can increase the

rate of dermal epithelialisation by providing a moist wound environment [30]. The treatments mentioned here are

inexpensive and therefore readily available for treating diabetic wounds.

Through asymptotic analysis we showed that the model reproduces the normal progression of healing phases

described in the biological background. The analytical descriptions of the dominant process in each healing phase

could enable for a more effective analysis of healing strategies.

Although the proposed model is simple, it is formulated at a level which is consistent with the data available. If

we are to extrapolate our results to healing in humans we must be aware of the differences between healing in mice

and humans. The most prominent of these is that healing in mice is driven mainly by contraction where as human

wounds heal mainly by re-epithelialisation. In some experiments on mice, the wounds are ‘splinted’ by fixing a silicon

splint to the wound with adhesive [31]. As a result, contraction is slowed down and healing is more representative of

human healing. By comparing our model with data taken from splinted wounds we may understand more about the

compromised processes associated with diabetic healing in humans.

Parameter estimation revealed that the epidermal dependence on the dermis is greater in the diabetic wounds.

Equivalently the epidermis in the diabetic wounds has a lower affinity for the granulation tissue than it does in non-

diabetic wounds. This could be a property either of the epidermis or of the newly synthesised granulation tissue.

For simplicity, in this work, we have not modelled the synthesis of granulation tissue, but rather associated it with

epidermal growth. To understand better the formation of granulation tissue and its role in epidermal migration and

dermal healing, we would need to include include the production of granulation in our modelling. In future work we

will develop a spatially-resolved model. Including spatial variation and a more detailed mechanical framework may

enable to distinguish between basal and mechanosensitive growth in the dermis, while still maintaining the concepts

considered in this paper and a minimal number of parameters.
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Appendix A. Non-dimensionalisation

It is convenient to nondimensionalise the governing equations by introducing the following scalings for the de-

pendent and independent variables:

A∗e =
Ae

AR
, A∗s =

As

AR
, A∗d =

Ad

AR
t∗ =

t
T
,

where T is an appropriately chosen timescale. Dimensionless parameters are defined as follows:

λ = rT, β0 = k0T, β1 = k1T, α =
c
E
, ε =

µ

ET
, t∗c =

tc
T
θ∗ =

θ

T
.

By dropping the asterisks for convenience we can write the non-dimensionalised equations as follows:

dAe

dt
= −λ(1 + ν − Ae)

(
Ae − γAd

1 − γAd

)
, (A.1a)

dAs

dt
= −

(
β0 + β1

(
As − Ad

1 + ν − Ad

))
(1 + ν − As)As, (A.1b)

ε
dAd

dt
= As − Ad − αH(t − tc)Ad, (A.1c)

with initial conditions

Ae(0) = 1, As(0) = 1, Ad(0) =
A0

AR
≡ Kd. (A.1d)

Appendix B. Parameter estimation

In this section we discuss the estimation of AR, T and the dimensionless parameters which are fixed for the least

squares analysis. The value AR is the maximum area of the wound, which, from the data, is 47.6816mm2 in the non-

diabetic and 59.0705mm2 in the diabetic wounds. T is taken to be 1 day, which is approximately the cell doubling

time for both epithelial and fibroblast cells [32, 33].
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The value ε represents a measure of friction relative to the elastic response. We assume that the elastic response

is much greater than the tethering so that the wound springs open to it’s relaxed size and hence ε � 1. We therefore

take ε = 0.01. The delay for contraction is known to be approximately 2 to 5 days post wounding [9]. The parameter

tc represents the time (in days) at which H(t − tc) = 1/2. We therefore assume that tc = 3 and fix θ as follows. We

consider the gradient of the contraction switch and assign θ = 1 such that the continuous switch represents a period of

4 days from which contraction begins to activate until it has reached close to it’s maximum. This 4 day period (day 1

to 5) represents the time for which the fibroblasts infiltrate the granulation tissue in the wound space.

Appendix C. Numerical parameter sensitivity analysis

Given the model defined by (16) with parameter set Φ = {φ1, φ2, ..., φn} we define the sensitivity S (t), of the

solution A(t,Φ), with respect to the parameter φk by the following formula:

S (t) =
normalised change in A(t;Φ)

normalised change in φk
=
∆A(t;Φ)
∆φk

φk

A(t,Φ)
. (C.1)

Since we have obtained numerical solutions, (C.1) is a discretised analogue of the method often used in parameter

sensitivity analysis [34], where partial derivatives of the solutions with respect to the parameters are calculated. The

parameter φk is varied by ±60% and the normalised change in A(t,Φ) is defined as the absolute value of the difference

in the solution at time t. In Fig. C.12 we present the average (over time) sensitivity of Ae and Ad to each of the

parameters, defined by:

S̄ =
1
T

i=T∑
i=0

S (ti). (C.2)

The model parameters we are interested in comparing are those which represent proliferation in the epidermis (λ)

and growth (β0, β1) and contraction (α) in the dermis. We therefore fix θ = 1, tc = 3 and ε = 0.01, since they have a

low sensitivity in comparison to the other parameters (see Appendix B). Given the relatively high sensitivity of γ and

ν we optimise these together with the parameters of interest. The parameter set optimised in the least squares analysis

is therefore Φ∗ = {λ, β0, β1, α, γ, ν}.

Appendix D. Least squares method

Given the model solutions Ae(t;Φ) and Ad(t;Φ), where Φ is the set of model parameters, and the data sets xe(ti)

and xd(ti), we aim to find Φ∗ ⊆ Φ such that it minimises the sum of errors squared (MSE), that is,

MSE = min
Φ∗

1
k

k∑
i=1

( |xe(ti) − Ae(ti,Φ)| + |xd(ti) − Ad(ti,Φ)| )2

 . (D.1)
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Figure C.12: Average parameter sensitivity to the model solutions. Numerical parameter sensitivity to the solutions Ae(t) and Ad(t) of (16) are
averaged using equations (C.1) and (C.2) for the parameter set Φ = {λ, β0, β1, α, γ, θ, tc, ε, ν}.

This least squares method is implemented using the lsqnonlin function in MATLAB and requires a starting vector of

parameter values Φ0. In order to determine Φ0 we fit the approximate solutions for each timescale found in Appendix

E to the relevant subset of the data. By doing this we reduce the number of parameters in the least squares analysis

and hence the method is less likely to settle at a local minimum. The method for choosing Φ0 is summarised in the

flowchart in Fig. D.13.

Fit approximate solution to Ae 

to post recoil data (day 1 to 30)

by optimising ν and λ 

Fit approximate solution to Ad 
to data for t<tc (day 1 to 3)

by optimising β0

Fit approximate solution to Ad 
to data for t>tc (day 3 to 30)

by optimising β1 and α 

Fix ν and λ 

Fix β1 and α 

Fix β0

Use Φ0 = {λ, β0, β1, α, γ, ν } 

Figure D.13: Flowchart of the method for selecting an initial parameter set. Using the least squares analysis we fit the approximate solutions
presented in Appendix E, to the associated subset of data, to find an initial parameter set Φ0 for the least squares analysis of the full model. Since
γ ∈ (0, 1) we take γ0 = 0.1.
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Appendix E. Asymptotic analysis

The natural timescales of interest are: the recoiling of the wound, which occurs for t = O(ε); before contraction is

switched on when t < tc; and, when contraction is activated for t ≥ tc. For simplicity, we approximate the continuous

switch function, H(t − tc), by the Heaviside function, H(t − tc), that is, H = 0 for t < tc and H = 1 for t ≥ tc. This

means that contraction is either on or off. From the estimation of parameters ε is very small and we exploit this to find

asymptotic expansions of the model solutions, Ae(t), As(t) and Ad(t).

Appendix E.1. Approximate solutions

We consider the model given by (16) and replace the continuous contraction switch,H(t − tc), with the Heaviside

function, H(t − tc), in order to clearly separate the two timescales t < tc and t ≥ tc and for ease of calculation. The

system we look to analyse is therefore,

dAe

dt
= −λ(1 + ν − Ae)

(
Ae − γAd

1 − γAd

)
, (E.1a)

dAs

dt
= −

(
β0 + β1

(
As − Ad

1 + ν − Ad

))
(1 + ν − As)As, (E.1b)

ε
dAd

dt
= As − Ad − αH(t − tc)Ad, (E.1c)

where the initial conditions satisfy (16d).

Since ε is small this system gives rise to a boundary layer for t = O(ε) in which dAd/dt is large and hence the

solution Ad(t) is rapidly evolving. We first seek the solution on this fast timescale, which we call the inner solution

(inside the boundary layer).

Appendix E.1.1. Inner solution: t = O(ε)

By considering t = O(ε) we rescale time such that t = ετ. Noting that, for small times (t = ετ � tc) H = 0 and

substituting in the fast time variable, τ, (E.1) becomes,

dĀe

dτ
= −ελ(1 + ν − Āe)

(
Āe − γĀd

1 − γĀd

)
, (E.2a)

dĀs

dτ
= −ε

(
β0 + β1

(
Ās − Ād

1 + ν − Ād

))
(1 + ν − Ās)Ās, (E.2b)

dĀd

dτ
= Ās − Ād, (E.2c)
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where the initial conditions satisfy (16d). Substituting power series expansions for the variables into (E.2) and equating

powers of ε we obtain the following asymptotic expansions,

Āe(τ) =1 − ενλτ + O(ε2), (E.3a)

Ās(τ) =1 − ε [νβ0τ − νβ1 log
(
(1 − Kd)e−τ + ν

)]
+ O(ε2), (E.3b)

Ād(τ) =1 − (1 − Kd)e−τ − ε [νβ0
(
τ + e−τ − 1

) −β1
(
(1 − Kd)e−τ + ν

)
log

(
(1 − Kd)e−τ + ν

)
−β1(1 − Kd)e−ττ + β1e−τ(1 − Kd + ν) log(1 − Kd + ν)

]
+ O(ε2). (E.3c)

On this timescale, we deduce that at leading order, Ād increases exponentially, representing the recoil of the wound.

We also deduce that Ās and Āe remain constant. The expansions begin to break down at O(ε), implying that for

t = O(1) the solutions will involve another process. The dominant process here is retraction of the dermis.

Appendix E.1.2. Outer solution: t < tc

As τ→ ∞ we approach the edge of the boundary layer and return to the original time variable t. On this timescale

we solve for the outer solution by considering (E.1) and noting that H = 0 since t < tc. For the initial conditions we

consider the limit as τ→ ∞ of the solutions in the boundary layer (before the expansion breaks down, i.e. to O(1)),

Âe(0) = lim
τ→∞

Āe(τ) = 1,

Âs(0) = lim
τ→∞

Ās(τ) = 1,

Âd(0) = lim
τ→∞

Ād(τ) = 1.

In order to obtain an analytic solution we solve for γ = 0. Substituting power series expansions in ε into (E.1) and

equating powers of ε we obtain,

Âe(t) ≈ 1 + ν
1 + νeλ(1+ν)t

, (E.4a)

Âs(t) =
1 + ν

1 + νeβ0(1+ν)t + εÂs1 + O(ε2), (E.4b)

Âd(t) =
1 + ν

1 + νeβ0(1+ν)t + εÂd1 + O(ε2), (E.4c)
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where,

Âs1 (t) =
β1ν(1 + ν)2eβ0(1+ν)t

(1 + νeβ0(1+ν)t)2 log
(

(1 + ν)eβ0(1+ν)t

1 + νeβ0(1+ν)t

)
, (E.5a)

Âd1 (t) =
ν(1 + ν)2eβ0(1+ν)t

(1 + νeβ0(1+ν)t)2

(
β0 + β1 log

(
(1 + ν)eβ0(1+ν)t

1 + νeβ0(1+ν)t

))
. (E.5b)

On this timescale, we deduce that at leading order, Âe and Âs decrease logistically, representing a proliferative phase

in both the epidermis and the dermis. The rates are proportional to 1 + ν, which represents the area of the active

region surrounding the wound. Here we see only basal growth in the dermis since contraction is not yet active, and to

leading order the solution Âd is equivalent to Âs. However, to O(ε), Âd and Âs differ, indicating that another process is

affecting the solutions. By the appearance of the parameter β1 in Âs1 and Âd1 , we anticipate that on the next timescale

mechanosensitive growth will contribute. The dominant process here is basal growth.

Appendix E.1.3. Transition layer: t ≈ tc

As t → tc contraction becomes active. We note that for t ≈ tc, the change in H will affect the solution Ad(t).

We write power series expansions for As(t) = Ăs(ε, t) and Ad(t) = Ăd(ε, t). Substituting into (E.1c) with H = 1 and

equating powers of ε we obtain,

Ăe(t) = Âe(t), (E.6a)

Ăs(t) = Âs(t), (E.6b)

Ăd(t) =
Âs0

1 + α
+ ε

 Âs1 − 1
1+α

dÂs0
dt

1 + α

 + O(ε2). (E.6c)

where,

Âs0 (t) =
1 + ν

1 + νeβ0(1+ν)t ,

and Âs1 (t) is given by (E.5a). As contraction becomes active, the solutions Ăe and Ăs remain the same as those for

t < tc, whereas Ăd experiences a jump in the solution across t = tc. We now observe a contribution to reduction in

dermal wound size due to contraction. Now that contraction is on we expect that the difference Ăs − Ăd will stimulate

mechanosensitive proliferation.

Appendix E.1.4. Outer solution: t > tc

Contraction is now activated as t > tc. We note that this will affect the solutions As and Ad but since we have

taken γ = 0 in order to obtain analytical solutions, Ae will remain the same. We write power series expansions in ε
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for As(t) = Ãs(ε, t) and Ad(t) = Ãd(ε, t) and take initial conditions which satisfy the previous solutions for t = tc,

Ãs(0) = Ăs(tc),

Ãd(0) = Ăd(tc).

Substituting Ãs(ε, t) and Ãd(ε, t) into (E.1b) and (E.1c) and equating powers of ε we obtain,

dÃs0

dt
= −

(
β0 + αβ1

(
Ãd0

1 + ν − Ãd0

))
(1 + ν − Ãs0 )Ãs0 , (E.8a)

Ãd0 =
Ãs0

1 + α
. (E.8b)

We observe that the equation for Ãs0 now depends on β1, indicating that, to O(1), mechanosensitive proliferation is

contributing to the reduction in dermal wound area.

Appendix E.2. Analytical results

We present the approximate solutions on the various timescales found in Appendix E in Fig. E.14 and on the

same figures present the numerical solution to the full model given by (16) for comparison (see Sect. 3). We use

the parameters found for the best fit to the non-diabetic data given in Fig. 7(a). Within the correct timescale, the

asymptotic solutions to first order are a good approximation to the numerical solution of the full model. Outside the

timescale on which the solutions are valid the error between the asymptotic solution and the numerical solution to the

full model increases. We can therefore deduce that the approximate solutions at leading order describe the dominant

processes occurring on each relevant timescale.
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F Larcher, Á Meana, M J Escámez, and M Del Rı́o. The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised

wound healing model. Exp. Dermatol., 22(3):195–201, 2013.

[5] D P Kiehart. Wound healing: The power of the purse string. Curr. Biol., 9(16):R602–R605, 1999.

[6] S M Wahl, H Wong, and N McCartney-Francis. Role of growth factors in inflammation and repair. J. Cell. Bioch, 40(2):193–9, 1989.

27



0.0

0.2

0.4

0.6

0.8

1.0

log(t)

A
e(t

)

 

 

t=ε t=t
c

t=O(ε)
t=O(1)
full model

(a) Approximate solutions for Ae.

0.0

0.2

0.4

0.6

0.8

1.0

log(t)

A
s(t

)

 

 

t=ε t=t
c

t=O(ε)
t=O(1)<t

c

t=O(1)>t
c

full model

(b) Approximate solutions for As.

0.0

0.2

0.4

0.6

0.8

1.0

log(t)

A
d(t

)

 

 

t=ε t=t
c

t=O(ε)
t=O(1)<t

c

t=t
c

t=O(1)>t
c

full model

(c) Approximate solutions for Ad .

Figure E.14: Comparison of approximate solutions with numerical solution of the full model. Leading-order, approximate solutions for a)
Ae(t), b) As(t) and c) Ad(t) on each timescale are shown to be in good agreement with numerical solutions to the full model given by (16). Parameter
values: θ = 1, tc = 3, ε = 0.01, λ = 0.55274, β0 = 0.2950, β1 = 0.0124, α = 0.2144, γ = 0.0027, ν = 0.0904.

28



[7] W J Jeffcoate, P Price, and K G Harding. Wound healing and treatments for people with diabetic foot ulcers. Diabetes-metab. Res., 20(Suppl

1):S78–89, 2004.

[8] R A F Clark. The Molecular and Cellular Biology of Wound Repair. Plenum, New York, 1988.

[9] J L Monaco and W T Lawrence. Acute wound healing an overview. Clin. Plast. Surg., 30(1):1–12, January 2003. ISSN 0094-1298.

[10] J E Shaw, R A Sicree, and P Z Zimmet. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pr., 87(1):

4–14, 2010.

[11] H Brem and M Tomic-Canic. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 117(5):1219–1222, 2007.

[12] J A Sherratt and J D Murray. Models of epidermal wound healing. P. Biol. Sci., 241(1300):29–36, 1990.

[13] J A Sherratt and J D Murray. Epidermal wound healing: the clinical implications of a simple mathematical model. Cell Transplant., 1(5):

365–371, 1992.

[14] R T Tranquillo and J D Murray. Continuum model of fibroblast-driven wound contraction: Inflammation-mediation. J. Theor. Biol., 158(2):

135–172, 1992.

[15] P Tracqui, D E Woodward, G C Cruywagen, J Cook, and J D Murray. A mechanical model for fibroblast-driven wound healing. J. Biol. Sys.,

3(4):1075–1084, 1995.

[16] L Olsen, P K Maini, J A Sherratt, and J Dallon. Mathematical modelling of anisotropy in fibrous connective tissue. Math. Biosci., 158(2):

145–170, 1999.

[17] R A Segal, R F Diegelmann, K R Ward, and A Reynolds. A differential equation model of collagen accumulation in a healing wound. B.

Math. Biol., 74(9):2165–82, 2012.

[18] D. L. Coleman. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia, 14(3):141–148, 1978.

[19] P Martin. Wound healing: aiming for perfect skin regeneration. Science, 276(5309):75–81, 1997.

[20] M Chiquet. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol., 18(5):417–426, 1999.

[21] G Pietramaggiori. Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin. Ann. Surg., 246(5):896–902,

2007.

[22] W K Stadelmann, A G Digenis, and G R Tobin. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg., 176(2):

26S–38S, 1998.

[23] G T Watts, H C Grillo, and J Gross. Studies in wound healing: II. The role of granulation tissue in contraction. Ann. Surg., 148(2):153–60,

1958.

[24] H P Ehrlich. Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye, 2 ( Pt 2)(2):149–57, 1988.

[25] M S Kolodney and R B Wysolmerski. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell

Biol., 117(1):73–82, 1992.

[26] B Nedelec, A Ghahary, P G Scott, and E E Tredget. Control of wound contraction. Basic and clinical features. Hand Clin., 16(2):289–302,

2000.

[27] F Xu, C Zhang, and D T Graves. Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. BioMed. Res. Int., 2013

(1):1–9, 2013.

[28] A Barbul, S A Lazarou, D T Efron, H L Wasserkrug, and G Efron. Arginine enhances wound healing and lymphocyte immune responses in

humans. Surgery, 108(2):331–7, 1990.

[29] W M Ringsdorf and E Cheraskin. Vitamin C and human wound healing. Oral Surg., Oral Med., O., 53(3):231–236, 1982.

[30] O M Alvarez, P M Mertz, and W H Eaglstein. The effect of occlusive dressings on collagen synthesis and re-epithelialization in superficial

wounds. J. Surg. Res., 35(2):142–148, 1983.

29



[31] R D Galiano, J Michaels, M Dobryansky, J P Levine, and G C Gurtner. Quantitative and reproducible murine model of excisional wound

healing. Wound Repair Regen., 12(4):485–92, 2004.

[32] Q Shi and R W King. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437(7061):

1038–42, 2005.

[33] K Ghosh, Z Pan, E Guan, S Ge, Y Liu, T Nakamura, X Ren, M Rafailovich, and R A F Clark. Cell adaptation to a physiologically relevant

ECM mimic with different viscoelastic properties. Biomaterials, 28(4):671–679, 2007.

[34] R P Dickinson and R J Gelinas. Sensitivity analysis of ordinary differential equation systems: A direct method. J. Comp. Phys., 21(2):

123–143, 1976.

30


