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Anticavitation and differential growth in elastic shells
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Abstract Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on
itself. Under the action of mechanical loading alone typical materials do not admit anticavi-
tation. We study the possibility of anticavitation as a consequence of an imposed differential
growth. Working in the geometry of a spherical shell, we seek radial growth functions which
cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material mod-
els do not admit full anticavitation, even when infinite growth or resorption is imposed at
the inner surface of the shell. However, void collapse can occur in a limiting sense when
radial and circumferential growth are properly balanced. Growth functions which diverge or
vanish at a point arise naturally in a cumulative growth process.
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1 Introduction

The effect of growth, swelling, or more generally residual stress, on the property of elastic
materials is particularly important for the modeling of biological materials. Indeed, growth
and remodelling are the hallmark of mechanical biology [47]. Typically, volumetric growth,
the change of mass or density of a volume element, is anisotropic and inhomogeneous.
Therefore, local changes of volume are usually incompatible in the sense that the local de-
formation tensor due to growth alone is not the gradient of a mapping [46]. The consequence
of this incompatibility of growth is the presence of residual stress in the material, that is
stresses that are present even in the absence of external loads [27], a common occurrence
in many biological tissues such as arteries, tumour spheroids, and plants [8,10,12,16,28,
30,50,51,7,40,52,13,54]. The modeling of growing elastic tissues with residual stresses in
nonlinear elasticity can be done through the multiplicative decomposition of the deformation
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tensor [11,31,33,42,26], based on elasto-plasticity [9,24,35,53], into a growth part charac-
terizing the local change of a volume element and an elastic part ensuring the integrity of
the body and giving rise to residual stresses. This theory, while still lacking a rigorous foun-
dation [17], has been successfully applied to many physiological systems such as arteries
[49,2,23,22], muscles [48], tumor [4] and plants [52]. The theoretical analysis of residual
stresses in growing elastic bodies has revealed that growth-induced stresses can trigger both
mechanical instability [20] and, in the case of elastic membranes, elastic cavitation [34].

Elastic cavitation is the phenomenon in which a cavity or void appears in the interior
of an elastic body. This problem has received considerable interest in the literature, starting
with the pioneering experimental work of Gent and Lindley [18] and the seminal analysis
of Ball [5]. Ball considered solid elastic spheres under uniform hydrostatic loads and found
the critical pressure at which a branch of radially symmetric configurations with an inter-
nal cavity bifurcates from the undeformed configuration. Since then, cavitation has received
considerable attention and has been studied for various situations — compressibility ver-
sus incompressibility, anisotropy, and composite layers have all been analyzed in different
combinations for various material models ([15,41,29,25,44,45,39,14,32], among others).
In these studies, cavitation occurs as a consequence of external mechanical loading. More
recently, several authors [37,38,34], have shown that growth or swelling can also induce
cavitation and cavitation has been suggested as a mechanism for stem hollowing in plants
[21].

Given far less consideration, and the subject of the present paper, is the “reverse prob-
lem” of anticavitation or void collapse. That is, under what conditions would a pre-existing
cavity close on itself. The collapse of a cavity is a common occurrence in fluids [6]. In
nonlinear elasticity, however, it has scarcely been studied. One analysis was conducted by
Abeyaratne and Hou [1]. Following Ball’s analysis of the critical pressure on a solid sphere
to induce cavity formation, Abeyaratne and Hou explored the critical pressure on spherical
shells needed to collapse the inner void. In doing so, they found a necessary and sufficient
condition on the strain-energy function of the material such that void collapse can occur
under sufficient loading. Most commonly used models of elastic materials do not satisfy
the condition. This is surprising in that for these materials, anticavitation through external
pressure alone is impossible even though cavitation may be possible. It seems to be easier
to open a cavity in a sphere than close a cavity in a shell.

In this paper, we study a growing elastic body containing a cavity or void in its refer-
ence unstressed configuration and explore the possibility of collapse and disappearance of
the void as a function of the material and form and rate of growth. In particular, we con-
sider whether growth can alter the material behaviour as to allow for collapse. In particular,
as discussed previously, growth can induce residual stress. Residual stress can have both
stabilizing and destabilizing effects [3]. Similarly, we show here that for the anticavitation
problem, the development of residual stress serves as a primary force in opposition to the
full collapse of the void.

For simplicity and to allow for analytical progress, we consider here a spherically sym-
metric shell, and ask whether growth may be imposed upon the shell such that it deforms to
a solid sphere. These ideas can be easily generalised to cylindrical shells. We begin with the
formulation of the problem through nonlinear elasticity, adding the component of growth
via the formulation of multiplicative decomposition [43], in which the deformation tensor
is given by the product of a growth tensor and an elastic strain tensor. The specific form
of growth is captured by two functions (of radius) describing the amount of material that
is added or removed in the radial and circumferential directions. We explore whether there
exist functions that admit anticavitation. This is largely dependent on the strain energy func-



tion for the material. For a large class of materials, we show that anticavitation is in fact not
possible for most physically relevant growth functions, but can be achieved in the proper
limits when singular and/or vanishing growth functions are allowed. This analysis is shown
to be relevant in the context of cumulative growth.

2 Setup
2.1 Background

We consider the symmetric growth and deformation of a spherical shell composed of an in-
compressible, hyperelastic material. The general question we explore is whether symmetric
growth, i.e. addition of material, may occur such that the shell deforms to a solid sphere. Let
the inner and outer radii in the reference configuration be given by R = A and R = B, respec-
tively, and the deformed shell be described in the current configuration by the function r(R),
which gives the radius of a sphere with initial radius R. Let r(A) = a and r(B) = b, so that
after deformation the shell in the current configuration has boundary radii a and b. For this
map, the geometric deformation tensor is given by F = diag(r/,r/R,r/R) [36], where primes
denote differentiation with respect to R. The elastic strain tensor is A = diag(a, 0, %),
where the index 1 denotes the radial direction and index 2 the circumferential directions.
The elastic incompressibility condition is det(A) = 1, from which a; = a2 (where we
have denoted o := )

The symmetric growth is described by two functions, ¥ (R) and ¥ (R), which describe
the addition (or resorption) of material in the radial and circumferential directions, respec-
tively. In the case of homogeneous growth, with each 7 a constant: if y» = 1, material is
added in the radial direction if 73 > 1, whereas material is lostif y; < 1. If 73 = 1, growth is
circumferential for y» > 1 while 95 < 1 corresponds to circumferential resorption. Generally,
it is the ratio 7 /7» that dictates the form of growth, so that radial growth and circumferen-
tial growth are qualitatively similar up to an isotropic growth. Here we allow these to be
functions of radius.

The growth tensor is G = diag(y1, 12,7 ). Using the multiplicative decomposition F =
AG, we obtain ¥ =y, / o2, and r/R = ay,. From these, the deformation may be written as

R ~ ~
P—a = 3/ 71(R)¥ (R)R? dR. 1)
A

Note also the relation
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Hyperelasticity implies that there exists a strain energy function W = W(A). Letting T de-
note the Cauchy stress tensor, the stress-strain relation is T = AW, — p1, where p is a La-
grange multiplier representing hydrostatic pressure and Wy is the tensorial deriavative of
W w.r.t. A. Denote the non-vanishing components of the Cauchy stress tensor by #; = Ty,
the radial stress, and #, = T», = Tz3, the hoop stress. In terms of these variables, the stress-
strain relationship is t; = oy W) — p, to = 0pW> — p, where W; = %’i. Mechanical equilibrium
requires div(T) = 0, where div is the divergence in the current configuration - the only non-
vanishing equation is
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and from this we obtain a closed equation for the radial stress (see [3] for details):
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Here we have introduced the auxiliary function W (o) = W (a2, &, &). Integrating Equation

(4) and defining P =, (A) — t;(B) as the applied load on the shell, we have

b oW
_p= / o ar (5)
Ja r
This may be rewritten in terms of R as
B W/
= [FHAOM g ®)
4 o2pR

2.2 Formulation of the problem

Given growth functions %(R) and an applied load P, Equation (6) may be thought of as
defining a relation to solve for the inner radius a, since the outer radius b is a function of
a via Equation (1) with R = B,r = b. Note that a is implicitly embedded in (6) through
Equation (2). Once a is known, the deformation is completely determined. The question of
void collapse is then: what are the conditions on the growth functions Y;(R) and external
pressure so that there exists a solution of mechanical equilibrium with a = 0?

Void collapse depends on the convergence of the integral (6) in the limit a — 0. If the
integral converges, then the value of the integral gives the applied load necessary for anti-
cavitation. Mathematically, the difficulty is apparent by setting a = 0 in the representation
(5). Physically, the issue is that sending @ — 0 requires zero circumferential stretch (¢ — 0
in (2)), or equivalently infinite radial stretch, at R = A.

The response of the shell to a given growth law, and thus whether or not anticavitation
can be achieved, depends on the material properties, encompassed in the form of the strain
energy function W. There are many different strain energy functions available in the liter-
ature. In cavitation problems, Ball showed that it is the behavior of W (a) as o — oo that
determines whether the material admits cavitation. In contrast, Abeyaratne and Hou showed
that the behavior of W as o — 0 determines void collapse. Here we show that with the ad-
dition of growth, the behavior of the auxiliary function both at zero and infinity plays a role
in anticavitation. We classify the possibility of anticavitation for strain energy functions W
with power law behavior as ¢ approaches zero and infinity. Here, we use the notation

f)

f(x) ~g(x) asx — xp if lim ——= =c¢#0, c a constant, @)
2 e

and restrict our attention to strain energy functions which satisfy the following hypothesis:

Hypothesis 1 The auxiliary function W(Oc) associated with the strain energy function W
for an incompressible, hyperelastic material satisfies

W(a)~a™ asa—0, W(a) ~ o™ as o — oo ®)

for some constants my and M.



2.3 Finite growth

Along with the behavior of the strain energy, we will need to characterize the behavior of the
growth functions 7;. Define a finite growth function as being finite, continuous, and strictly
positive. As a first case, we have the following:

Proposition 1 A material undergoing finite growth admits spherically symmetric anticavi-
tation if and only if W () is bounded as o — 0.

Proof: Note that from (2), as r goes to zero so does a. By assumption, W ~ o as o — 0.
Then

aW' aam! 1
~ ~ asr— 0. )
r r rl=mo
Hence,
b aWw’
/ dr (10)
o r

will converge if and only if mg > 0, i.e. if and only if W is bounded as ot — 0.

The condition that W must be bounded as o — 0 coincides with the condition for void
collapse given by Abeyaratne and Hou in the absence of growth. Hence, imposing finite
growth cannot change the property of a material to admit anticavitation. However, for ma-
terials that satisfy this condition, void collapse can occur in the absence of external loading
but through growth-induced residual stress. To illustrate this phenomenon, consider a mate-
rial with strain energy W = %[(1 +B(of + 05+ 03 — 3))” — 1], where 4 >0, 8 >0,and n
are material constants as suggested in [1]. This strain energy function admits anticavitation
for n < 0. We consider homogeneous, anisotropic growth for an unloaded shell by setting
% =1, 71 > 1 a constant, and the external pressure P = 0. Figure 1 plots the inner radius
a as a function of ¥; for initial radii A = 1, B = 2, and parameters it = § = 1. There is a
critical value of y; for which the cavity closes fully. Above this value, the inner radius is still
zero, with a finite compressive radial stress induced at the origin due to the contact. Figure
1 shows the residual radial stress at the points marked I and II. The stress is greater in the
cavity-filling solution II, and is non-zero at the center of the solid sphere (R = 1).

3 Diverging/vanishing ¥;

The condition that W be bounded as a goes to zero is very restrictive. For most models
of materials in the literature (including neo-Hookean, Mooney-Rivlin, Ogden, and Varga),
with W unbounded as o¢ — 0, the integral in Equation (6) (or equivalently (5)) is divergent
implying that anticavitation requires infinite external pressure. However, we have assumed
that the functions % are finite and strictly positive. As is discussed in Appendix A, divergent
or vanishing growth functions can arise naturally in a cumulative growth process where
growth is localised close to the boundary. Therefore, we consider materials for which the
strain energy is unbounded as ¢ approaches zero, and explore whether anticavitation is
possible with diverging and/or vanishing 7.

Following the assumptions and notations of the previous section, we define the function

B 9t B’
Gla) = | Ix(R:a) dR:/A %M. (1)
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Fig. 1 Anticavitation of a shell (with initial radii A = 1 and B = 2) induced by radial growth. On the left,
the inner radius in the current configuration, a, is plotted as a function of the radial growth y; for pp =1,
=B =1, n= —1. The radial stress corresponding to the points marked I, Il is shown on the right. The
radial growth creates a compressive radial stress.

For a given external pressure P, the positive root of G(a) + P = 0 gives the inner radius. To
focus on the effect of growth alone, we consider shells with no external pressure. Hence,
we set P = 0 and explore the convergence or divergence of the integral G(0). We allow the
functions ¥ to either blow up or vanish at the inner boundary, and consider whether this
characteristic of the growth functions can change the divergent nature of the integral G(0).
In particular, we define y := R — A and assume that as y — O (that is R — A) we have

N~y oy (12)
where p; and p, are real numbers. From (1) with a = 0, we find that
Pyl TP 5g R AL (13)

For the map r(R) to be well defined, we therefore require that 1 — p; —2p, > 0. Next, using
the relation & = r/(15R), we have o ~ y(1=P172)/3_ The behavior of G(0) will depend on
whether « is vanishing or diverging as R — A. Thus, from here we divide the problem into
3 cases, based on the sign of the quantity

J:=1-p1+p2. (14)

3.0.1 Case 1: J >0

If J > 0, then o — 0 as R — A. Since by assumption W ~ a0 as a — 0, mq < 0. In this
case, we have

8[1 El(

_—~

R m0) as y — 0. (15)

where E1(m) = %(m —3) — p1 + p2. The requirement for the boundedness of the radial stress
is E1(mo) > —1. This reduces to Jmg > 0 which cannot hold since J > 0 and mg < 0.



3.0.2 Case 2: J <0

ForJ < 0, ot — 0 as R — A, and we consider the behavior of W as ot — co. For isotropic ma-
terial, W has the symmetry W (a;, 0, 0) = W (0, a1, &1 ). Thus for W (a) = W (a2, o, o),
it follows that limg_o W (@) = limg_... W(a) = o, and we conclude that W is unbounded
at infinity. Therefore, if W ~ o= as of — oo, it follows that mw > 0. Similar to Case 1,

ot E| (meo)

—_—~

JdR

and convergence requires E (m..) > —1, which simplifies to Jm.. > 0 which again does not
hold based on the assumptions of J and ...

asy — 0, (16)

3.0.3 Case 3: J =0

IfJ =0, o and W’ (@) are constants as R — A and hence play no role in the convergence or
divergence of the integral. Here,

ot 1
IR
but the requirement for convergence is equivalent to requiring J > 0, which does not hold.
From these 3 cases, we conclude that even if we allow the growth functions to diverge or
vanish at the inner boundary, we still cannot send the inner radius a to zero. This is quite in
contrast to elastic cavitation, where a void may be formed with finite growth and no external
pressure [21], and highlights the notion that cavitation and anticavitation are not “inverse
processes” in a mathematical sense. To summarize:

~y PP asy — 0, (17)

Proposition 2 Let y; ~ (R—A) "7 as R — A, i = 1,2, be radial growth functions. If W is
unbounded as o — 0, the material does not admit anticavitation for any real numbers p|
and pj.

3.1 The p; — p» plane: filling the void

The previous proposition seems to point to the impossibility of anticavitation in locally
unbounded strain energy-functions. However, in this section we show that the void can be
made arbitrarily small with the proper balance of diverging/vanishing growth. To do this,
we consider more closely the relationship between the rates of growth, captured by the
exponents p; and p; in the relation (12). Figure 2 depicts the p;-p, plane. The requirement
for a well defined map r(R) is that p; < 1 —2p,, which divides the plane into a valid and
invalid region. We further divide the plane based on the sign of the quantity J. Underlying
Proposition 2 is the fact that for any choice of p; and py, G(0) is a diverging integral.
The following result establishes the direction of divergence of this integral (plus or minus
infinity) .

Proposition 3 Assume that W () is unbounded as a — 0. Then, for J # 0,

lim G(a) = —sgn(J)ee. (18)

a—0t

That is, the direction of divergence (plus or minus infinity) of the integral G(a) given in
Equation (11) in the limit a = 0 is determined by the sign of J.



Fig. 2 Depiction of p;-p; plane. The line p; = 1 —2p, divides the plane into a valid and invalid region. The
plane is further divided based on the sign of the quantity J.

Proof: The proof comes from an analysis of the sign of W' (a) as a — 0. We use again the
symmetry of W for isotropic materials: W(ay,00,0n) = W(op,ay, o), as well as the fact
that the strain energy W is non-negative for all deformations. Thus for W (at) =W (a2, a, &),
we have limg_oW (o) = limg_... W (&) = oo. It follows that

lim W/ (o) = —eo, lim W (&) = oo.
o—0 o —0
Since & — 0 as R— A when J > 0 and ot — o as R — A when J < 0 and since all other
terms in G(0) are non-negative, the integral G(0) will be negative when J > 0 (i.e. ¢ — 0)
and positive when J < 0 (&t — oo). The result immediately follows.

Given this change in divergence based on the sign of J, the following theorem establishes
that a solution may be found with an arbitrarily small void.

Theorem 1 Let W(a) be unbounded as o — 0, and assume that the growth functions are
such that y; ~ (R—A)~Pi as R — A. Then for any fixed p» < 0 and € > 0, there exists p; for
which the unloaded spherical shell has an inner radius a < €.

Proof: Let € > 0 and py < 0 be fixed. Since the function G(a) depends on the exponent
p1, we define for each py the function H(a,p1) = G(a). Further, there is a distinguished
exponent pi = 1+ p, for which J = 0. Then, following Case 3 above, we have,

lim H(a,p}) = s(p2)> (19)

where s(pa) is either +1 or —1 depending on the value of p, and the strain-energy function.
Without loss of generality, we consider here the case where s(p2) = +1, as the case where
s(p2) = —1 follows with appropriate sign changes. Since H is continuous with respect to a,
we can choose 0 < ay < € such that ¢ := H(ay, p}) > 0. For fixed ay > 0, H is a continuous
function of p. Hence there exists 6 > 0 such that

[Pl —pi1| <6 = |H(a1,p]) —H(ai,p1)| < ¢. (20
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Fig. 3 Depiction of the local behavior of G(a) near a = 0. The dashed (solid) lines represent G(a) for (py, p2)
directly above (below) J = 0. The change in sign of the divergence ensures a root arbitrarily close to zero.
Referring to Theorem 1, in (A) s(p2) = +1 and s(p2) = —1 in (B). Thus in (A), an arbitrarily small root
appears as (p, p2) approach J = 0 from below. In (B), an arbitrarily small root appears as (p;, p2) approach
J =0 from above.

Let py = p; — 8/2; then H(ay, p1) > 0. Further, since py < pi, J > 0 at the point (P, p2)
(see Figure 2), and so

lim H(a,p)) = —oo. 21

Jim, (a,p1) 21)
Again by continuity of H as a function of a, there exists a* > 0 such that H(a,p,) < 0 Va <
a*. Therefore, we can choose 0 < ay < ay such that H(ay, p1) < 0 and by the Intermediate
Value Theorem there exists asz € (az,a1) such that H(asz,p1) = 0. Since by construction
as < &, the result follows.

The above argument is illustrated in Figure 3, where the local shape of the curve G(a)
near a = 0 will transition according to one of two possibilities. In Figure 3, the dashed lines
represent the shape of the curve for (p;, p2) located directly above the line J = 0 (i.e. in the
J < O region of Figure 2) and diverge to infinity, while the solid lines represent the curve for
(p1, p2) directly below J = 0, with the divergence to minus infinity. In Case (A), the change
of divergence as (py, p2) cross the line J = 0 results in a root appearing arbitrarily close to
a =0 when (p;, p2) are arbitarily close to but below J = 0. In other words, in this case for
fixed po < 0, taking p; less than but arbitrarily close to pj = 14 p; results in a solution
of mechanical equilibrium existing with arbitrarily small void. In (B), an arbitrarily small
root appears for (py, pa) arbitrarily close to but above J = 0, that is for p; greater than but
arbitrarily close to pj. In either case, the general result is that an arbitrarily small root exists
for some (py, p2) close to the line J = 0.

Which scenario is appropriate, i.e. whether (p;, p2) should approach J = 0 from above
or below to obtain the arbitrarily small root, depends on the behavior of G(0) on the line
J =0. When J = 0, o approaches a constant as R — A, and the direction of the divergence
will depend on the particular strain energy function and can also change along the line J = 0.
If, at a particular point on the line J = 0, G(0) diverges to positive infinity, then that point
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corresponds to Case (A), and the root may be sent to zero by approaching J = 0 from below
(i.e. the limit of p; — pj~ for fixed p,). To see this, consider: in Case (A), the divergence on
J = 0 must be to positive infinity; otherwise, if G(0) diverged to negative infinity either the
root was not able to be made arbitrarily small, contradicting the continuity, or else the root
became identically zero, contradicting the divergence. If instead G(0) diverges to negative
infinity, the point corresponds to Case (B) and J = 0 should be approached from above (the
limit p; — pj™ for fixed py).

3.2 Physical interpretation

In view of the valid/invalid division of the plane in Figure 2, a consequence of the above
results is that p, must be negative to send a root to zero, which physically corresponds to
infinite circumferential resorption at the cavity surface. Recall, however, that the actual form
of growth depends on the ratio ¥; /7». Since we do not prescribe the exact form of the ¥,
only their asymptotic behavior, we cannot compute this ratio. We can, however, infer that
the region J > 0 corresponds to infinite circumferential growth at the cavity surface, since
in this region the elastic response to the growth is an infinite radial elastic stretch (¢ — 0
as R — A), whereas in the region J < 0 there is infinite circumferential elastic stretch in
response to the growth, and thus the form of growth must be radial at the cavity surface. We
see, then, that an arbitrarily small void is achieved by approaching the boundary between
the two regions of infinite radial and circumferential growth.

The question still arises, though, of why the conditions that lead to anticavitation are so
restrictive in comparison with cavitation. First, note that the difficulty is essentially math-
ematical rather than physical. In a physical sense, there is almost no difference between a
sphere with an arbitrarily small void and a solid sphere, and so in some instances it would
be fair to say that anticavitation has occurred physically, even though a singularity can-
not be overcome mathematically. This distinction still does not really answer the question.
In the context of growth, the fundamental difference between cavitation and anticavitation
seems to be in the role of residual stress. When a solid sphere undergoes differential growth,
growth causes a build-up of stress at the origin, which eventually causes the formation of a
void [21]. A shell undergoing differential growth also builds up residual stress, but in this
case the residual stress at the cavity surface resists the closing of the void, since the stress in-
creases with descreasing cavity radius. Thus, residual stress enhances cavitation, but hinders
anticavitation.

4 Stability

We have shown that a root of G(a) may be brought arbitrarily close to zero. This means that
there exists a mechanical solution of the problem with an arbitrarily small void. However, we
have not demonstrated that these solutions can be reached and are stable. In the transition
crossing the line J = 0, multiple roots may occur, only one of which may be stable. A
stability analysis for symmetric deformations can be performed by considering the minima
of the potential energy.

Theorem 2 Ler a > 0 be a solution of G(a) = 0 corresponding to the inner radius of an
equilibrium solution in the set of radially symmetric deformations. Then, the associated
deformation is locally stable if G'(a) > 0, and locally unstable if G'(a) < 0.
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Fig. 4 (A) 5 points in the p;-p; plane defining 5 choices of %. (B) The corresponding curves G(a) for a
neo-Hookean material. Anticavitation is achieved as J = 0 is approached from below.

Proof: The potential energy for the deformation, as a function of the inner radius a, is found
by integrating the strain energy function over the shell; that is

b B
U(a):/a W (ot)4mr? dr:'/A W (o) y1347R? dR. (22)

Taking a derivative with respect to a, and using (1), (2), and the definition of G(a) (11), we
obtain

U'(a) = 41a*G(a). (23)

Taking a second derivative, and using the fact that G(a) = 0 at a point of equilibrium, we
have U"(a) = 4wa®G'(a), and the result follows by the concavity of the energy potential.

Whether or not an arbitrarily small void can be physically achieved depends on whether
or not there are multiple roots, which depends on the form of the curve G(a), which in turn
depends on the choice of strain energy function. As an example, consider a neo-Hookean
material, characterized by a strain energy function W = /J(Ocl2 + 0622 + (x32 —3), where p > 0,
sothat W = p(o™* 4202 —3).

In Figure 4, the curve G(a) is plotted for a sequence of points in the p;-p; plane, where
Hh=(R—-A)"P, n=(R—A) P2, and parameters A = 1, B=2, and 4 = 1. The 5 curves in
(B) correspond to the 5 points in (A). As the line J = 0 is approached from below, the single
root of the curve approaches zero. Since there is only a single root, anticavitation is possible
in the limit of p; approaching 0.5 from the left (in this example p, = —0.5 is fixed). Above
the line (point 5), the divergence at zero flips, and the root disappears. The radial residual
stress at points 3 and 4, when the cavity radius is nearly zero, is compressive right at the
cavity surface, but has a very sharp transition so that it is tensile over most of the shell (not
plotted). As mentioned before, this build-up and sharp gradient in stress serves to resist the
full collapse of the void.

In Figure 5, pp = —1 is fixed. In (A), G(a) is plotted on both sides of J = 0. For p; =
—0.06, there is a root, so that crossing the line J = 0 to the point p; = 0.06 yields a second
root, an unstable solution based on Theorem 2 and the slope of the curve G(a) at point a;.
In (B), the residual radial stress is plotted for each of these two roots, a; and a,. For both
solutions, the residual stress is tensile, and as expected, the stress is much higher in the
unstable solution with root a;.
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Fig. 5 (A) The curve G(a) above (p; = 0.06) and below (p; = —0.06) J = 0 for p, = —1. (B) The radial
stress for the two roots a; and a; from (A).

Comparing Figures 4 and 5, a couple things are worth noting. When p, = —0.5, G(0) di-
verges to positive infinity and has no root, whereas with p, = —1, G(0) diverges to negative
infinity and has a single root. This means that following a path along J = 0 from p, = —0.5
to po = —1, there are two interesting bifurcations. At the point p; ~ —0.795, G(a) tangen-
tially touches the axis but still diverges to +oo, so that beyond this point there are two roots
of G(a) on J = 0. A second bifurcation occurs right at p = —1, at which point the diver-
gence of G(0) switches to —eo. Thus, for p, € (—1,—0.795), there are two roots on J = 0,
so that a third arbitrarily small root is added by approaching J = 0 from below. Based on
Theorem 2, the small root and the largest root are both stable, although the radial residual
stress is higher for the void-filling smaller root. By a continuous change of parameter, the
larger root is the continuation of the path and will be the one that is observed. Hence, for
for all p € (—1,—0.795), anticavitation (in the arbitrarily small void sense) is physically
unattainable.

It is worth noting that the neo-Hookean material used in this example does not satisfy
the criterion of Abeyaratne and Hou for anticavitation given in [1], i.e. W is unbounded as
a — 0. In other words, external pressure on the shell cannot cause void collapse, whereas
growth can cause the void to become arbitrarily small.

5 Conclusion

In this paper, we explored anticavitation in a growing elastic shell as a function of the form
and of the rate of imposed growth. The question of whether void collapse is possible is
formulated in terms of the convergence or divergence of a single integral, given in Equation
(5). Our analysis consists in determining radial growth functions for which convergence of
this integral is achieved. We concluded that the integral will always diverge, even for growth
functions which diverge or vanish at the point where the integral is improper. Nevertheless,
based on the rates at which the growth functions diverge/vanish, the void may still be made
arbitrarily small. This can only be achieved in the proper limits of the rates at which the
growth functions diverge/vanish, illustrating the fine balance of radial and circumferential
growth needed for anticavitation. Note, however, that we have only considered strain energy
functions with power law behavior. An extension of the present work would be to study
functions W (o) which are either bounded by power laws or diverge faster than any power,
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in which case it is likely that exponentially diverging/vanishing growth functions would also
be necessary.

The effect of growth on material properties is clear — arbitrarily small voids can be
achieved through growth alone in materials for which an arbitrarily small void requires a
limitless increase in pressure when growth is not included. Furthermore, the analysis pre-
sented in the Appendix suggests that diverging or vanishing growth functions naturally arise
in the context of cumulative growth. Physically, such functions appear as the result of (finite)
material growth being focused on the cavity surface and accumulating; multiple steps of “in-
cremental growth” then become mathematically similar to the diverging/vanishing functions
we have considered.

The present study of void collapse reveals that completely filling a void through a purely
elastic mechanism in physical or biological systems is mathematically impossible, yet a del-
icate balance between growth laws and material parameters can lead to arbitrarily small
voids. In practice, complete anticavitation would involve either a control mechanism or
other mechanisms such as accretion at the inner boundary or asymmetric deformation of
the body. In particular, as compressive forces increase, a buckling instability could be trig-
gered, as is shown in cylindrical tubes in [55]. Nonetheless, from a mechanical standpoint,
the simplified model presented here illustrates the important role of differential growth in
anticavitation processes.

Acknowledgments: This publication is based on work supported by Award No. KUK-C1-
013-04 , made by King Abdullah University of Science and Technology (KAUST), and
based in part upon work supported by the National Science Foundation under grants DMS-
0907773 (AG)

Appendix: Cumulative growth

We have analyzed the growth of a spherical shell with radial growth functions which ei-
ther diverged or vanished at the inner edge R = A. As a single growth step, this may appear
unphysical. However, this single step should be seen as the result of a cumulative growth
process. In a continuously growing body, growth can be modeled by a relation of the form

G =H(G,AT,...;X,1); (24)

where the rate of growth is not necessarily constant, and might in general depend on the
growth and strain tensors, stress, position, time, and potentially other factors. This can be ap-
proximated by a discrete growth process, where (24) is replaced by G(¢ + At) = G(r) + AtH.
This relation may be seen to define an incremental growth, Gi,. := G(¢ + At) — G(¢). If, at
each incremental step, the elastic response is captured by Ay, then through multiplicative
decomposition we can define an incremental deformation Fj,. = Aj,c - Ginc. Thus, at each
step, the material grows according to some incremental growth law, followed by an elas-
tic response necessary for compatibility. For each incremental step, one can define a total
growth tensor, such that the i incremental step is equivalent to a single step with a defor-
mation tensor defined from the initial, stress free configuration (see [19] for details).

In the spherical geometry we have considered here, let R be the radius in the initial
configuration and r;_; the radius in the current configuration after the (i — 1)th step. Then
the incremental growth tensor for the i step will be of the form

G,(,lq)c = diag (?’1@(%—1)’ 751')(71‘—1)7 Véi)(”i—l)) . (25)
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Fig. 6 Piecewise incremental growth laws in a cumulative growth process.
The total deformation defines a map r;_; = r;_1(R), and so the 7 are functions of the radius
in the initial configuration, R. The fotal growth tensor is [19]
G = diag (1" (R), T " (R), T " (R)). 26)

If the shell is growing in a continuous process such that growth is always focused on the in-
ner surface, then the incremental y will take extreme values at the inner edge, corresponding
to R = A. Therefore, the total growth functions, which are products of the growth func-
tions of all previous steps, will magnify this effect and will approach either zero or infinity
at the inner surface. Thus, the total growth functions would be well approximated by the
diverging/vanishing ¥ we have considered in this paper.

In this process, the possibility of anticavitation will depend on the specific form of the
incremental growth laws, encompassed by a relation of the form (24). As a simple example,
consider a neo-Hookean material subject to the piecewise linear growth functions pictured
in Figure 6.

At each incremental step, the region over which growth/resorption is restricted is given
by the parameter €, while the §; dictate the rate or amount of growth/resorption. Figure 7
shows the results of the cumulative growth process for the parameters 6; = 0.6, & = 0.3,
and € = 0.5. Here, the balance of radial growth and circumferential resorption is such that
the growth collapses the void, as seen in Figure 7(A). The total growth function 7; (R) at the
9th step is plotted in Figure 7(B), illustrating the blow-up like behavior of the radial growth
function after several steps.

As would be expected from the analysis of Section 3, a small change in the growth rate
parameters §; can cause anticavitation to be no longer possible (plots not included).
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