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We consider a mathematical model of spin coating of a single polymer blended in a solvent. The

model describes the one-dimensional development of a thin layer of the mixture as the layer thins

due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the sol-

vent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture

are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an

asymptotic analysis reveals a number of different possible behaviours of the thinning layer depend-

ent on the nondimensional parameters describing the system. The main practical interest is in

controlling the appearance and development of a “skin” on the polymer where the solvent concen-

tration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentra-

tions of solvent. In practice, a fast and uniform drying of the film is required. The critical

parameters controlling this behaviour are found to be the ratio of the diffusion to advection time

scales �, the ratio of the evaporation to advection time scales d and the ratio of the diffusivity of the

pure polymer and the initial mixture exp(�1=c). In particular, our analysis shows that for very

small evaporation with d� exp �3= 4cð Þð Þ�3=4 skin formation can be prevented. VC 2011 American
Institute of Physics. [doi:10.1063/1.3643692]

I. INTRODUCTION

Spin coating of polymers blended in volatile solvents is

one of the most widespread methods used in the coating

industry to produce a uniformly thin surface of as little as a

few hundred nanometre thickness. It is used for many tech-

nologies including the production of electronic devices1 or

organic solar cells.2,3

Theoretical studies on thinning rates and morphological

evolution of a spin coated film go back to Emslie et al.,4

who considered the simplest case of a single-component,

non-volatile Newtonian liquid. It was followed by studies on

the spreading rate of the thin film and its stability

properties.5–10 Further aspects, such as non-Newtonian

rheology and colloidal suspensions or thermal effects were

later also included.11–17 The important effects of a volatile

component added to the liquid, was first investigated experi-

mentally by Kreith et al.18 More recent experimental results

can be found for example in Birnie and Manley.19 The first

theoretical treatment of spin coating an evaporating solution

is due to Meyerhofer20 and was later extended by Sukanek,21

Bornside et al.,22 and Reisfeld et al.23,24 Additional effects if

a volatile component is added, such as variable viscosity and

diffusion coefficients during the thinning of the film and its

effects on the stability of the film, have also been intensely

studied asymptotically and numerically during the past

decade.25–31 One important feature that occurs due to the

evaporation of the volatile component is the phenomenon of

“skin” formation. This has first been studied by Law-

rence,32,33 see also de Gennes34 and Okuzono et al.35 for fur-

ther discussions on this aspect. As discussed by Bornside et
al.,22 the phenomenon of skin formation is accompanied by a

high viscosity and low solvent diffusivity at the free surface

and is undesired in practical applications, since it may lead

to coating defects. To our knowledge, the precise theoretical

characterisation of skin formation is not available and the

interplay of the many time and spatial scales involved in the

evaporative spin coating process have not been completely

quantified, even for the spin coating problem of a solution of

a single polymer blended in a single volatile solvent and is

the focus of this study.

We base our study on the situation and experimental

data given in Bornside et al.22 and Meyerhofer.20 Their

model assumes an exponential dependence of the solvent

diffusivity on the concentration and an algebraic depend-

ence of the liquid viscosity. This process has several time

scales. Roughly speaking, there is a very fast initial time

scale lasting only a few seconds which is dominated by

convection of fluid in radial direction accompanied by very

fast thinning and negligible evaporation. Subsequently, on

a longer time scale convection becomes negligible and the

process is dominated by evaporation of the solvent con-

trolled by diffusion. There are further longer time scales

that lead eventually to formation of a “skin”. However, for

more volatile solvents or larger initial mass fraction of the

polymer, skin formation may occur on a much shorter time

scale.

Our aim is to quantify in which parameter regimes which

behaviour will occur and present a systematic approach using

matched asymptotic expansions in order to quantitatively
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characterise the various processes. In this study, we restrict

ourselves to a simplified one-dimensional model assuming a

exponential dependence for both the diffusivity and viscosity

on the solvent concentration and moreover assume a Newto-

nian rheology, to lay a foundation for the systematic asymp-

totic study of the film behaviour. Moreover, we note that in

this paper we assume that the film can be brought into a uni-

form state from the beginning, i.e., the initial distribution is in-

dependent of the lateral position. Under this assumption, our

asymptotic analysis is able to determine the various parameter

regimes, in particular when skin formation occurs and on

what time scale. We compare our analytic solutions to those

of our numerical code that uses nonuniform grids in order to

capture the self-similar approach toward blow-up in our math-

ematical model, i.e., skin formation. If the initial liquid distri-

bution is not uniform, the theory still applies to the later times

regimes if the evaporation is not too large.

Extensions of our present analysis that include more

realistic constitutive laws for the concentration dependence

of the viscosity as well as non-Newtonian rheologies and the

effect of extensional stresses in the surface layer will likely

give rise to a richer asymptotic picture. Details regarding the

validity will be discussed further in the conclusions after we

have developed our theory.

II. GENERAL BEHAVIOUR OF A SPIN COATED LAYER

From the detailed analysis of the model presented in this

paper we have found that in most physically relevant circum-

stances there are a number of different behaviours that can

occur. In examining these we consider the physically relevant

case where changes in diffusion coefficient due to changes in

solvent concentration occur on the same scale as the changes

in the viscosity. These behaviours are dependent primarily on

the relative importance of three time scales in the problem

and the initial volume ratio of polymer to solvent. The three

timescales are (i) the diffusion time of the solvent across the

initial layer, (ii) the time to advect across the initial layer due

to the vertical velocity induced by the centrifugal and viscous

forces, and (iii) the time to evaporate solvent from the initial

layer. The relative size of these time scales is readily captured

by considering the parameters �, the ratio of the diffusion to

advection time scales and d, the ratio of the evaporation to

advection time scales, both of which are very small in any

practical situation, and c, where exp(�1=c) is the ratio of the

solvent diffusivity in the pure polymer and that in the poly-

mer=solvent mixture at t¼ 0. Our analysis shows that there

are three main regimes of behaviour corresponding to

(i) d� �3=4 � 1 (small evaporation)

(ii) �3=4 � d� �1=2 � 1 (medium evaporation)

(iii) �1=2 � d� 1 (large evaporation).

In each case, the balance of mechanisms governing the

development of the layer changes as time progresses. Most

interestingly, the case (i) has a limiting case

(ia) d� exp �3= 4cð Þð Þ�3=4 (very small evaporation),

where, unlike in the other cases, there is no skin formation.

To illustrate this situation, we show in Figure 1 how the

�� d parameter space subdivides into these different asymp-

totic regimes for �� 1 and d� 1.

The figure shows how the �� d parameter space subdi-

vides into four different asymptotic regimes as for �� 1 and

d� 1.

In all cases initially the layer thins due to centrifugal

forces balancing with viscous stresses while evaporation

causes changes in solvent concentration in a narrow bound-

ary layer near the surface. If the solvent mass fraction varia-

tions in this boundary layer become significant so that

diffusion drops dramatically, a skin is formed. Once a skin

has formed, there is a much longer time scale over which the

mass fraction slowly equilibrates.

In the large evaporation case, the skin forms before the

layer thins significantly; in the medium evaporation case, the

skin forms after the layer has thinned. In both cases, when

the thin skin forms, the material under the skin still has its

initial consistency.

When the evaporation rate is small, a thin skin forms

with the material underneath being spatially uniform but at a

solvent concentration that is much less than its initial value.

For the very small evaporation rate, no skin forms.

III. BASIC ONE-DIMENSIONAL MODEL

We consider the movement of a mixture on a spinning

disk which spins with angular velocity x about the z axis

(hence, x¼xz). The coordinate system is fixed in the disk

with r as the radial distance and the mixture between the

spinning disk z¼ 0 and the upper surface z¼ h(r,t). The mix-

ture is taken to have a mass fraction of the volatile solvent

/(r,z,t) with the polymer having mass fraction 1 �/ (r,z,t).
We consider the mixture to flow radially symmetrically and

act as an incompressible Newtonian fluid, with the fluid ve-

locity being velocity u with components u(r,z,t) in the radial

FIG. 1. Overview of the asymptotic regimes in the �� d plane for small �
and d: We illustrate that skin formation should occur in all regimes except

the one with the smallest evaporation, delimited by the dashed-dotted curve.

Below this curve skin formation occurs on increasingly shorter time scales

as we enter the asymptotic regimes separated by the solid and the dashed

curves.
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direction and w(r,z,t) in the z direction. We assume the vis-

cosity g(/) to be very strongly dependent on the solvent

mass fraction, and that diffusion of the solvent through the

mixture be represented by a diffusion coefficient Dð/Þ,
which is also very strongly dependent on the solvent mass

fraction. We assume the density of the mixture, q, is inde-

pendent of the solvent mass fraction so that the governing

equations are as follows:

The momentum equations are

q @tuþ u � ruð Þ ¼ r � T � q 2x� uþ x� x� rð Þ½ �; (1a)

where the stress tensor is given by T ¼ �pI þ gð/Þ _c with

the strain rate _c ¼ ruþ ruð ÞT and I is the identity matrix.

The continuity equation is given by

r � u ¼ 0: (1b)

These are coupled to the diffusion equation for the solvent

mass fraction,

@t/þ u � r/ ¼ r � Dð/Þr/ð Þ; (1c)

where we chose for simplicity,

gð/Þ ¼ g0 e�/=2b and Dð/Þ ¼ D0 e/=2a; (1d)

for the functional dependency of the viscosity and diffusion

on the mass fraction. The constants g0, D0, a, and b are mate-

rial constants. Note, that Bornside et al.22 used this exponen-

tial to describe the diffusion coefficient but used an algebraic

expression to describe the viscosity. We introduced the alter-

native fit for g which matches the average variation of the

viscosity in the experimental data as the mass fraction varies

from zero to one, since having an exponential dependence of

both g and D on / facilitates the derivation of the asymptotic

theory. However, the precise details of the dependency of

the diffusion coefficient and the viscosity are not essential of

the following discussions. Nevertheless, for a more realistic

model it would be interesting to consider constitutive laws

that allow for a more rapid change of viscosity with polymer

concentration than of the solvent diffusivity. Also, we

neglect non-Newtonian properties of polymer solutions and

the relevance of extensional stresses in the polymer rich

boundary layer on the flow.

For the boundary conditions at the free surface z¼ h(r,t)
we have the normal and tangential stress conditions. We

assume that there is a surface tension, r, acting and no tan-

gential stress so that forms at the surface,

n � T � n ¼ rr � n and n � T � t ¼ 0 : (1e)

For the kinematic condition we have

u � n� @thffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rhð Þ2

q ¼ Jð/Þ
q

; (1f)

where J(/) denotes the flux due to evaporation. Following

Bornside et al.,22 we approximate the mass flux of solvent

from the liquid into the gas by

Jð/Þ ¼ k q /; (1g)

with a mass transfer coefficient k that is proportional to x1=2

(to incorporate the effect of the gas flow above the disk, see

also Bornside, Brown et al.36), where we also have assumed

that the equilibrium solvent mass fraction is sufficiently

small so that it can be set to zero.

Finally, conservation of solvent at this surface gives

�Dð/Þr/ � nþ /ðu � n� @thffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rhð Þ2

q Þ ¼ Jð/Þ
q

; (1h)

or, using (1f)

Dð/Þr/ � n ¼ � Jð/Þ
q

1� /ð Þ: (1i)

Boundary conditions at the solid substrate z¼ 0 are the no-

slip and impermeability conditions,

u ¼ 0 r/ � n ¼ 0: (1j)

For the initial conditions we let

hðr; 0Þ ¼ hin and /ðr; z; 0Þ ¼ /in : (1k)

To analyse the problem we put it into nondimensional form

and consider suitable limiting cases from the various param-

eters in the problem. Note, we non-dimensionalise the prob-

lem using the overbar notation for the nondimensional

variables, but for simplicity of notation, we will immediately

drop the overbar notation from thereon,

r ¼ Lr; z ¼Hz; h ¼Hh; hin ¼H; (2a)

u ¼ Uu; w ¼ �‘Uw; T ¼ L

U
t; (2b)

where we take the characteristic height H as the initial

height hin of the layer, L as the radius of the spinning disk

and introduce the aspect ratio �‘ ¼H=L. For the character-

istic velocity we choose

U ¼ 2qx2H2L

g0e�/in=2b
: (2c)

For / we let

/ ¼ /in þ 2a/; (2d)

so that

g ¼ g0e�/in=2b e�./ and D ¼ D0 e/in=2ae/; (2e)

where . ¼ a=b. Notice that the scaling (2d) for the mass

fraction has been chosen so that order one changes in / cor-

respond to order one changes in the viscosity and diffusivity.

Since the typical values for a and b are small (see Table I)

this is not the case for the dependence of g and D on the orig-

inal mass fraction /.
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For the rest of the paper we consider only the one-

dimensional problem. This means we consider the case of

uniform thickness of the liquid layer across the substrate,

i.e., the free boundary h is independent of r. In addition we

assume that / does not vary in the radial direction. We note

that the assumption of a uniform thickness over the entire

region is quite good except for neglecting variations with ra-

dius of the mass transfer rate to the surrounding gas, k.

For the thin liquid layer we make use of the fact that

e‘ � 1 (and also that the reduced Reynolds number

(2q2x2H4)=(g0 exp(�/in=(2b))) is small). We refer to the

reviews by Refs. 37 and 38 and references therein for the

derivation and discussion of lubrication approximation, mod-

eling thin film dynamics in various fields of application. In

the standard way, the leading order lubrication approxima-

tion renders the pressure to be independent of z, so that inte-

grating the radial component of the momentum equation

twice with respect to z, using the leading order boundary

conditions of tangential stress @zu¼ 0 and normal stress

p¼ 0 at the free boundary z¼ h(t), and the no-slip u¼ 0 and

impermeability condition w¼ 0 at the solid substrate z¼ 0

one obtains the expression,

uðr; z; tÞ ¼
ðz

0

rðhðtÞ � zÞ e./ dz :

Using the continuity equation and integrating with respect to

z we obtain

wðz; tÞ ¼ �
ðz

0

ðhðtÞ � qÞðz� qÞ e./ dq; (3a)

which couples to the diffusion equation

@t/þ w@z/ ¼ � @z e/@z/
� �

; (3b)

together with boundary conditions at z¼ h(t)

�

d
e/@z/ ¼ �

1

b
ð1þ c/Þð1� b/Þ; (3c)

@th� w ¼ �dð1þ c/Þ; (3d)

the boundary conditions at z¼ 0

@z/ ¼ 0 (3e)

and the initial conditions

hð0Þ ¼ 1 and /ðz; 0Þ ¼ 0: (3f)

We note that such a system has been considered by Reisfeld

et al.23,24 but without the variability of the diffusivity or

viscosity.

The resulting nondimensional parameters in the problem

for w(z,t), /(z,t), and h(t) defined by Eqs. (3a)-(3f) are given by

� ¼ 1

e‘Pe
; d ¼ k/in

e‘U
; where Pe ¼ UH

D0e/in=2a
; (4a)

c ¼ 2a

/in

; b ¼ 2a

1� /in

and . ¼ a

b
: (4b)

Typical values for the constants, that are involved in the spin

coating process are given, e.g., in Bornside et al.22 and

Kreith el al.,18 see Table I. We note that in particular Born-

side et al. suggest that the viscosity and diffusivity change

by five to six orders of magnitude as the solvent mass frac-

tion increases from zero to one. This suggest a similar sensi-

tivity for both properties with an approximate value for a
and b as stated in the table. The nondimensional parameters

corresponding to the data in the table are

�ref ¼ 3:5� 10�7; dref ¼ 1:1� 10�4; bref ¼ 1:0;
cref ¼ 0:1; .ref ¼ 1:0:

For the analysis presented here, we will vary these parame-

ters as we present our asymptotic analysis, but always

assume that �� 1, d� 1, c� 1 and that b and . are typi-

cally of order one. The relative size of e and d will be

changed as we consider different asymptotic regimes.

We note that numerical solutions to this problem can

readily be generated. Here, our aim is to find analytical

expressions for the solutions by considering physically rele-

vant limiting cases of the nondimensional parameters and

hence gain insight into the range of values that give particu-

lar behaviour such as skin formation.

IV. ASYMPTOTIC REGIMES

The behaviour of the mixture layer is different depend-

ing on the relative size of d and �. We present the behaviour

for three different regimes, starting from small evaporation

rates, as this turns out the richest case and conclude with the

regime for large evaporation rates.

A. Small evaporation ðd� �3=4 � 1Þ

1. Short time scale (t 5 O(1))

We start by considering the behaviour for t¼O(1). In

this regime the layer thins due to fluid flow alone and the so-

lution has one behaviour in the bulk and another in a small

diffusive boundary layer adjacent to the free surface.

a. Behaviour in the bulk. Taking the lowest order prob-

lem we find

TABLE I. Values of the physical parameters.

H L x q g0

1.0� 10�2 cm 1.0 cm 1.9� 104 s�1 1.0 g cm�3 8.1� 103 P

D0 K /in a b

7.8� 10�12cm2 s�1 5.5� 10�3 cm s�1 0.9 5.0� 10�2 5.0� 10�2
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@t/þ w @z/ ¼ 0 ; (5a)

w ¼ �
ðz

0

ðz� qÞðhðtÞ � qÞe./ðq;tÞ dq ; (5b)

@th� w ¼ 0 at z ¼ h ; (5c)

h ¼ 1 and / ¼ 0 at t ¼ 0 : (5d)

This has the solution

/ ¼ 0 ; so that wðz; tÞ ¼ � hz2

2
þ z3

6
: (6)

Using this in the condition (5c) at z¼ h we obtain

@thþ
h3

3
¼ 0 and hence hðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2t=3
p : (7)

This solution is well known but note that care needs to be

taken in getting this solution as (5b) contains an integral over

the whole region including the boundary layer and (5c) is

imposed in the boundary layer, however, so long as the inte-

grand never gets large in the boundary layer, which will be

true in the limit here, this solution is correct to lowest order.

b. Behaviour in the diffusion boundary layer. The

boundary layer scalings are

z ¼ hðtÞ þ �1=2z and /ðz; tÞ ¼ d

�1=2
/ðẑ; tÞ (8)

and note, for small evaporation, this corresponds to /
remaining small in this region. The problem in the boundary

layer is then

@t /�
h2z

2
@z / ¼ @zẑ / ; (9a)

@z/ ¼ �
1

b
at z ¼ 0; (9b)

/! 0 as z! �1 ; (9c)

/ ¼ 0 at t ¼ 0 : (9d)

We note that, because of the form of h(t) in Eq. (7), after an

initial transient to account for the initial condition, this prob-

lem has self-similar behaviour of the form,

/̂ ¼ 1

b
1þ 2

3
t

� �1=2

uðfÞ; ẑ ¼ � 1þ 2

3
t

� �1=2

f (10)

described by the boundary value problem

d2u

df2
¼ 1

3
u� 5

6
f

du

df
; (11a)

du

df
ð0Þ ¼ 1 ; (11b)

u! 0 as g!1 : (11c)

The solution to Eq. (11) can be written in terms of Kummer’s

functions

Mða; b; zÞ: ¼ CðbÞ
CðaÞCðb� aÞ

ð1

0

ezxxa�1ð1� xÞb�a�1 dx ;

Uða; b; zÞ: ¼ 1

CðaÞ

ð1
0

e�zxxa�1ð1þ xÞb�a�1 dx ;

and is given by

uðfÞ ¼ 1� j
2

5
U

6

5
;
3

2
; 0

� �
þ 2j U

1

5
;
3

2
; 0

� �� �

� e5=12 f2

M
6

5
;
3

2
;

5

12
f2

� �
f

þ j e5=12 g2

U
6

5
;
3

2
;

5

12
f2

� �
f : (12)

The value of j is determined by matching to the outer solu-

tion as f ! 1. Numerically, we determined the value up to

six digits of accuracy and found j¼�0.366172.

To show the range of validity of this asymptotic solu-

tion, we compare it to the solution of the full model (3) in

Figure 2. The latter was obtained numerically using a fully

implicit Euler finite difference scheme on a fixed but non-

uniform grid (this method was also used in the later figures

whenever a time dependent problem needed to be solved

numerically). We see that the two solutions agree very well

for t¼O(1) but that the asymptotic approximation breaks

down for longer times, which therefore need further treat-

ment in Sec. II.

FIG. 2. Comparison of the numerical and asymptotic results in the small

evaporation regime, for � ¼ 3:5� 10�5, d ¼ 1:1� 10�8, and for constant

viscosity . ¼ 0. The solid curves denote the numerical results for h(t) and

maxxj/(x,t)j for Eq. (3). The dashed line shows maxxj/(x,t)j for the self-

similar solution (10), (11), to the early time asymptotic problem; the behav-

iour for h, given by Eq. (7), is indicated by circles. The dash-dotted curves

show the longtime approximations (16) for maxxj/(x,t)j for the leading order

asymptotic solution in the medium time regime; note that in this regime, the

leading order solution for h(t) coincides with the long time expansion of Eq.

(7), so we do not include a separate line. The two vertical dotted lines corre-

spond to the times t ¼ ��1=2 ¼ 169 and t¼ d�2=3¼ 2.02� 105, respectively.
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2. Medium time scale t ¼ Oð��1=2Þ
� �

The previous results have established that as t gets larger

the layer thins according to h¼O(t�1=2) (from (7)), and using

Eq. (10), a boundary layer forms of thickness Oðð�tÞ1=2Þ in

which the mass fraction is of size / ¼ Oðdðt=�Þ1=2Þ. There

are several scenarios how this solution ceases to be valid as

time progresses. The possibilities are

(a) Evaporation eventually becomes important: Since @th and

w at z¼ h decrease according to O(t�3=2), they are of the

same order as the term on the right hand side of Eq. (3d)

when t�3=2¼O(d), i.e., on the time scale ta¼O(d�2=3).

(b) The thickness of the boundary layer grows to the size of

the entire layer, i.e., when h ¼ Oðð�tÞ1=2Þ. This occurs on

the time scale tb ¼ Oð��1=2Þ.
(c) Thirdly, the mass fraction / increases to be O(1) in the

boundary layer, resulting in formation of a skin with sig-

nificant variations in the diffusive and the viscosity. This

occurs when d t=�ð Þ1=2¼ O 1ð Þ, i.e., if tc ¼ O �=d2
� �

.

We note that there is one distinguished limit, where all

three time scales, ta, tb, and tc are equal. This happens when

d � �3=4. In the case when d� �3=4, which we will refer to as

medium evaporation, the time scales are ordered according to

tc � ta � tb and, therefore, skin formation occurs first. In the

other case, when d� �3=4, which we call small evaporation,

the time scales are ordered according to tb � ta � tc. We

now study the small evaporation case and determine the

behaviour on the timescale of t ¼ tb ¼ Oð��1=2Þ. Since

h¼O(t�1=2) for large t, this shows that we should consider

h ¼ Oð�1=4Þ and / ¼ Oðdðtb=�Þ1=2Þ ¼ d��3=4 � 1. From the

kinematic condition, (3d), we then find that w ¼ Oð�3=4Þ.
Hence, we introduce the following scales for this regime:

t ¼ ��1=2t	; h ¼ �1=4h	; z ¼ �1=4z	; x ¼ �3=4x	;

/ ¼ d

�3=4
/	

and obtain the problem

@t	/
	 þ w	 @z	/

	 ¼ @z	z	/
	 ; (13a)

w	 ¼ � h	z	2

2
þ z	3

6
; (13b)

with boundary conditions at z*¼ h*

@z	/
	 ¼ � 1

b
; (13c)

@t	h
	 � w	 ¼ 0 ; (13d)

and at z*¼ 0
@/	

@z	
¼ 0: (13e)

As t*! 0 we require

/	 ! 0 and h	 ! ð2t	=3Þ�1=2; (13f)

where the final conditions come from matching.

To examine when the solution to Eqs. (13)–(13f) may

cease to be valid it is instructive to consider the long-time

limit of the problem. For this limit it is convenient to set

z	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2=3t	

p n; h	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2=3t	

p f ;

/	ðz	; t	Þ ¼ wðn; t	Þ: (14)

Then, we obtain the problem

3

2

1

t	
@t	wþ

3

4

1

t	2
n 1� 3

2
fnþ 1

2
n2

� �
@nw ¼ @nnw; (15a)

with boundary conditions at n¼ f

2

3
t	

� �1=2

@nw ¼ �
1

b
; (15b)

2

3
t	@t	 f � 1

3
f þ 1

3
f 3 ¼ 0 ; (15c)

and at n¼ 0

@nw ¼ 0: (15d)

This problem has the solution

f ðt	Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1=t	

p and (16a)

wðn; t	Þ ¼ � 1

b
2

3
t	

� �3=2

þ �
ffiffiffi
3
p

2
ffiffiffi
2
p 1

b
n2 þ c2

� �
t	�1=2 þ � � �

(16b)

for t	 � 1 and compares well with our numerical solution,

see Figure 2.

The solution breaks down either when the evaporation

becomes important for the evolution of the layer thickness h
or when the mass fraction / becomes O(1). From Eqs. (14)

and (16), we obtain /¼O(dt3=2), and this becomes O(1)

when t¼O(d�2=3). Similarly, we find h¼O(t�1=2) thus

ht¼O(h3)¼O(t�3=2) and this will be of the same O(d) as the

evaporation when t¼O(d�2=3). This too yields t¼O(d�2=3)

for the breakdown of validity, marking the transition to a

new time regime.

3. Long time scale (t 5 O(d22=3))

For this new time regime, we therefore scale

t ¼ d�2=3�t; h ¼ d1=3 �h; w ¼ d�w; / ¼ �/:

Substitution into Eq. (3) yields the problem

@�t
�/þ �w @�z

�/ ¼ �

d4=3
@�zðe

�/@�z
�/Þ; (17a)

�w ¼
ð�z

0

ð�z� �qÞð�h� �qÞe.�/ d�q; (17b)

with boundary conditions at �z ¼ �h

�

d4=3
e

�/@�z
�/ ¼ � 1

b
ð1þ c�/Þð1� b�/Þ ; (17c)
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@�t
�h� �w ¼ �ð1þ c�/Þ ; (17d)

and at �z ¼ �h

@�z
�/ ¼ 0: (17e)

We let

�/ ¼ �/0 þ
d4=3

�
�/1 þ � � � ;

�h ¼ �h0 þ
d4=3

�
�h1 þ � � � ;

�w ¼ �w0 þ
d4=3

�
�w1 þ � � � ;

(18)

and obtain that �/0 depends only on t. Hence, at next order

the problem is

d�/0

d�t
¼ � 1

b
ð1þ c�/Þð1� b�/0Þ

�h0

; (19a)

d �h0

d�t
¼ � 1

3
e.�/0 �h

3

0 � ð1þ c�/0Þ; (19b)

�w0 ¼ e.�/0ðtÞ �
�h0�z2

2
þ �z3

6

� �
: (19c)

The initial conditions for this system comes from matching

back with the medium time layer,

/0 ! 0; h0 � ð2t=3Þ�1=2
for t! 0: (19d)

The solution to this problem is obtained numerically and

shown in Figure 3, where it is compared to the solution for

the full lubrication model (3). As t!1, the solution for h0

and /0 tends monotonically to the equilibrium h0¼ 0,

/0¼�1=c of the ODE system (19a) and (19b). The solutions

are in excellent agreement even in the later stages of the me-

dium time regime and throughout the late time regime. This

is true if the diffusion remains strong enough to keep the

mass fraction profile constant throughout the film, even as

the exponential term on the right hand side of Eq. (17a)

becomes smaller as /0 approaches �1=c. This is the case if

the condition exp 1=cð Þ � �=d4=3 (or equivalently the very

small evaporation limit d� exp �3= 4cð Þð Þ�3=4Þ is satisfied,

which imposes a lower bound for c in order that no skin

forms. For the values for e and d chosen in Figure 3, this

bound is about c ¼ 1=lnð�=d4=3Þ ¼ 0:07. Note our choice of

c is larger and indeed we found that the numerical solutions

of Eq. (3) have flat mass fraction profiles. We have tested

this bound by carrying out further simulations of Eq. (3) with

smaller values of c but all other parameters unchanged.

Already for c¼ 0.05, the mass fraction profiles varied signifi-

cantly across the film in the time period where / increased

rapidly towards the equilibrium value, and this effect became

more pronounced for smaller c; for c¼ 0.035, the variation

was more than 50%. We conclude that our estimate of the

bound that defines very small evaporation is reasonably

accurate.

4. The effect of mass fraction dependent viscosity

So far, all the figures only show results for the case

where . ¼ 0, i.e., the viscosity does not depend on the mass

fraction of the solvent. Indeed, setting . ¼ 1 hardly changes

the evolution the film thickness and the maximum value of

/(x,t), with one notable exception. Once a significant amount

of solvent has evaporated throughout the film (i.e., /
approaches �1=c everywhere rather than only in a thin

boundary layer) the thinning due to centrifugal forces slows

down dramatically as the viscosity in the bulk increases

significantly. In fact, when we compare the evolution of h(t)
for the two choices of . in Fig. 4, the two lines only disagree

after t¼O(d�2=3), where the effect of evaporation on the

evolution of h becomes significant. For . ¼ 0, thinning

returns to h� (2t=3)�1=2 after a while; for . ¼ 1 the thinning

is slower and eventually becomes h� (2exp(�1=c)=3t)�1=2.

This behaviour follows from Eq. (19b) since �/0 ! �1=c as
�t!1.

Note that, for maxxj/(x,t)j, the results for the two values

of . are indistinguishable in the figure. Also note that for the

other cases, i.e., medium and large evaporation, the effect of

replacing . ¼ 0 by . ¼ 1 is qualitatively the same for the

full model, in the sense that in the numerical solution

maxxj/(x,t)j is largely unaffected and only the final long

time behaviour of h(t) changes from h� (2=3t)�1=2 to

h� (2 exp(�1=c)=3t)�1=2.

Physically having the viscosity change only manifests

itself when the concentration of solvent changes sufficiently

from its initial value to significantly alter the viscosity. For

large and medium evaporation rates this only occurs in a thin

surface skin layer. In this layer the shear stress is very small,

due to the proximity of the surface and so the viscosity

changes have no appreciable effect on the behaviour. For

FIG. 3. Comparison of the numerical and asymptotic results in the small

evaporation regime, for � ¼ 3:5� 10�5, d¼ 1.1� 10�8, and for constant

viscosity . ¼ 0. The solid curves denote the numerical results for h(t) and

maxxj/(x,t)j for Eq. (3). The dashed lines show the numerical for the leading

order asymptotic problem in the late time regime (19). The two vertical dot-

ted lines correspond to the times t ¼ ��1=2 ¼ 169 and t ¼d�2=3¼ 2.02� 105,

respectively.
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small and very small evaporation rates the spatial uniformity

of the concentration implies that the viscosity changes sim-

ply slow the thinning down and alter the velocities in a uni-

form manner. We do note that the increased viscosity may

result in elongation stresses becoming significant in the

layer, however, for the one dimensional model studied here

we have neglected such effects. For these reasons in the anal-

ysis of the remaining cases in this paper, we focus exclu-

sively on . ¼ 0.

B. Medium evaporation �3=4 � d� �1=2 � 1
� �

1. Short time scale (t 5 O(1))

For t¼O(1), we obtain the same results as in the short

time regime for small evaporation. In particular we note that

the analysis of the boundary layer is valid provided d� �1=2.

However, the transition to the next time regime occurs via the

third scenario c) listed in Sec. IV A 2, since for d� �3=4, the

time scale tc ¼ O �=d2
� �

is the shortest of the three.

2. Medium time scale t ¼ O �=d2
� �� �

Using the earlier results we know that there is a bound-

ary layer in which the concentration is expected to start to

alter significantly. Hence, in the outer layer we take these

scalings

t ¼ �

d2
�t; h ¼ d

�1=2
�h; z ¼ d

�1=2
�z;

/ ¼ �/ ; w ¼ d

�1=2

� �3

�w : (20)

This yields the problem

@�t
�/þ �w @�z

�/ ¼ �3

d4
@�z e

�/@�z
�/

	 

; (21a)

�w ¼ �
�h�z2

2
þ �z3

6
; (21b)

with boundary conditions at �z ¼ �h

�3=2

d2
e

�/@�z
�/ ¼ � 1

b
ð1þ c�/Þð1� b�/Þ; (21c)

@�t
�h� �w ¼ � �

3=2

d2
ð1þ c�/Þ; (21d)

and at �z ¼ 0

@�z
�/ ¼ 0: (21e)

As �t! 0 we have

�/ ¼ 0 and �h ¼ 2

3
�t

� ��1=2

: (21f)

For the regime, we are considering we know that

�3=2=d2 � 1, thus to leading order we obtain an outer prob-

lem whose solution can readily be found to be

�/ ¼ 0 and �h ¼ 2

3
�t

� ��1=2

: (22)

In the boundary layer we introduce the scalings

�z ¼ �hþ �
3=2

d2
z; �/ ¼ /; �t ¼ t: (23)

This leads to the leading order inner problem

@
t
/þ 1þ c/ð0Þ � 3z

4t

� �
@

z
/ ¼ @

z
e/@

z
/

� �
; (24a)

with the boundary condition at z ¼ 0

e/@
z
/ ¼ � 1

b
ð1þ c/Þð1� b/Þ: (24b)

In addition, we require as z! �1 that

/! 0; (24c)

and as t! 0

/! 0: (24d)

As time increases the analysis breaks down when either the

boundary layer thickness equals the thickness h of the film or

evaporation begins to significantly modify the evolution of

h. In fact, we expect that the time scale for both events must

be the same: If / is order one in the boundary layer, then

evaporation has a leading order effect on the film thickness

exactly when the boundary layer thickness is no longer small

compared to h itself. From a diffusion balance in Eq. (24a),

we find that the boundary layer grows like �1=2t1=2; from Eq.

(22), we obtain h¼O(t�1=2). Equating the two yields

t ¼ Oð��1=2Þ. On this time scale ht ¼ O �3=4
� �

; this does not

FIG. 4. Comparison of the numerical solution of Eq. (3) for . ¼ 0 (solid

lines) with the results for . ¼ 1 (dashed lines with symbols). The dot-dashed

lines indicate the long time behaviour for h according to (19), which is

h� (2=3t)�1=2 for . ¼ 0 (bottom line) and h� (2exp(�1=c)=3t)�1=2 for

. ¼ 1 (top line).
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seem to balance evaporation, i.e., the right hand side of

Eq. (3d), which appears to be O dð Þ � �3=4. However, we

have to take into account that /(h) is already very close to

�1=c so that ð1þ c/ hð ÞÞ ¼ O �3=4=d
� �

.

3. Long time scale t ¼ O ��1=2
� �� �

In this time regime, we scale according to

t ¼ ��1=2~t; h ¼ �1=4 ~h; z ¼ �1=4~z;

/ ¼ ~/ ; w ¼ �3=4 ~w :
(25)

Note that here we do not have a boundary layer, i.e., there is

only one spatial scaling. Introducing these scalings yields the

problem

@~t
~/þ ~w @~z

~/ ¼ @~z e
~/@~z

~/
	 


; (26a)

~w ¼ �
~h~z2

2
þ ~z3

6
; (26b)

with boundary conditions at ~z ¼ ~h

�3=4

d
e

~/@~z
~/ ¼ � 1

b
ð1þ c ~/Þð1� b ~/Þ; (26c)

�3=4

d
@~t

~h� ~w
� �

¼ �ð1þ c ~/Þ; (26d)

at ~z ¼ 0

@~z
~/ ¼ 0: (26e)

and as ~t! 0

~/! 0 and ~h! ð2~t=3Þ�1=2 : (26f)

We let

~/ ¼ ~/0 þ
�3=4

d
~/1 þ � � � ;

~h ¼ ~h0 þ
�3=4

d
~h1 þ � � � ;

~w ¼ ~w0 þ
�3=4

d
~w1 þ � � � ;

(27)

and obtain to leading order the problem

@~t
~/0 þ ~w0 @~z

~/0 ¼ @~z e
~/0@~z

~/0

	 

; (28a)

~w0 ¼ �
~h0~z2

2
þ ~z3

6
; (28b)

where the boundary condition at ~z ¼ ~h0 is now given by

~/0 ¼ �
1

c
; (28c)

and at ~z ¼ 0

@~z
~/0 ¼ 0: (28d)

As ~t! 0

~/0 ! 0; ~h0 ! ð2~t=3Þ�1=2 : (28e)

Note that the two boundary conditions at z ¼ ~h, (26c) and

(26d), result in a single leading order condition at z ¼ ~h0,

(28c). To close the problem, we need an additional condi-

tion, which comes from carrying out the expansion for Eqs.

(26c) and (26d) to next order. We obtain

e
~/0@~z

~/0 ¼ �
c
b
ðc ~/0z þ c ~/1Þð1� b ~/0Þ; (29a)

and the boundary condition at z ¼ ~h0

@~t
~h0 � ~w0 ¼ �ðc ~/0z þ c ~/1Þ: (29b)

From this we obtain by elimination of ~/1ð~h0Þ the following

condition at z ¼ ~h0

@~t
~h0 � ~w0 ¼

bc
bþ c

e�1=c@~z
~/0: (30)

The solution of the leading order problem (28) is shown in

Figure 5 (dashed-dotted line for ~h0 and square symbols for
~/0). In order to capture the small bump shown in the

expanded view in Figure 6 (top) for maxxj/j, higher order

corrections to the leading order asymptotic results are

required. In practice, the solution to Eq. (28) will change on

a very long time scale (long even in terms of ~t) due to the

FIG. 5. Comparison of the numerical and asymptotic results in the medium

evaporation regime, for � ¼ 3:5� 10�7, d¼ 1.1� 10�4, and for constant

viscosity . ¼ 0. The thick solid curves denote the numerical solutions of

Eq. (3). The circles and the dashed line denote the results for the asymptotic

approximations in the short time regime (7) and (9) (circles for h(t) and the

dashed line for maxxj/(x,t)j). The solution for h(t) remains valid to leading

order in the medium time regime (see Eq. (22)), while the solution of the

leading order inner problem (24) for maxxj/(x,t)j in this time regime is given

by squares; it continues to agree well with the solution of (3) also in the

long-time regime. The thin line with the solid diamonds corresponds to the

solution for h(t) to the leading order asymptotic problem (28), (30) in

the long time regime. The two vertical dotted lines indicate the times

t ¼ �=d2 ¼ 28:9 and t ¼ ��1=2 ¼ 1:69� 103, respectively.
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small values of c. This is an interesting problem, which we

shall not pursue further here.

C. Large evaporation �1=2 � d� 1
� �

1. Short time scale t ¼ O �=d2
� �� �

We anticipate a thin boundary layer will be created by

the evaporation at the surface. Appropriate variables in the

boundary layers are

z ¼ hðtÞ þ �
d

ẑ and /ðz; tÞ ¼ /̂ðẑ; tÞ : (31)

This scaling allows for order one values of / in the boundary

layer and balances the terms on the left and right hand side

of Eq. (3c). Balancing the time derivative in the bulk with

the diffusion requires that we rescale time by

t ¼ �

d2
t̂; (32)

which implies a short time regime (since �=d2 � 1). With

these scalings, the leading order boundary layer problem

becomes

@t̂/̂þ 1þ c/̂ð0Þ
	 


@ẑ/̂ ¼ @ẑ e/̂@ẑ/̂
	 


; (33a)

with the boundary condition

e/̂@ẑ/̂ ¼ �
1

b
ð1þ c/̂Þð1� b/̂Þ at ẑ ¼ 0: (33b)

A far-field condition at z ! �1 comes from matching to

the outer problem. On the short time scale (32), the leading

order outer problem becomes trivial; it has the constant solu-

tion h¼ 1 and /¼ 0. Matching yields

/̂! 0 as ẑ! �1 : (33c)

The solutions to the leading order asymptotic problems are

compared to the solutions of the full model are compared in

Fig. 7. The figure also contains lines for the solutions to the

asymptotic problems in the medium and long time regime

stated in the next two sections.

This time regime ends when w and ht balance in Eq.

(3d); since both w and h are O(1), this happens when

t¼O(1).

2. Medium time scale t ¼ O 1ð Þð Þ

Since also h¼O(1) also w¼O(1) for z¼O(1), we leave

all variables in their original scaling in this regime. Hence,

the leading order problem is directly obtained from problem

(3) and has the solution

/0 ¼ 0; h0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2t=3
p : (34)

However, this solution does not satisfy the boundary condi-

tion (3c), so we need to introduce a boundary layer at

z¼ h(t).
Boundary layer problem Setting

z ¼ hðtÞ þ �1=2z	 (35)

the boundary problem reads

@t/þ
d

�1=2
1þ c/ð0Þð Þ � h2z	

2
þ � z	3

6

� �
@z	/

¼ @z	 e/@z	/
� �

; (36a)

FIG. 6. Expanded details of the graphs given in Fig. 5 for maxxj/(x,t)j and

h(t). All parameters, line styles and symbols identical to Fig. 5.

FIG. 7. Comparison of the numerical and asymptotic results in the large

evaporation regime, for � ¼ 3:5� 10�7, d¼ 3.48� 10�3, and for constant

viscosity . ¼ 0. The solid curves denote the numerical solutions of Eq. (3).

The thin lines with circles and the squares denote the results for the asymp-

totic problems in the short time regime (circles for h(t), which is constant to

one, and squares for maxxj/(x,t)j, obtained from Eq. (33)). In the medium

time regime, the solution for the asymptotic problems (34), (39) is given by

a dash-dotted line for h(t) and by a dashed line for maxxj/(x,t)j ¼ 1=c. In the

long time regime, the solution to Eqs. (28) and (30) is indicated by a thin

line with solid diamonds for h(t). The two vertical dotted lines correspond to

the times t ¼ �=d2 ¼ 2:89� 10�2 and t ¼ ��1=2 ¼ 1:69� 103, respectively.
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at z*¼ 0

�1=2

d
e/@z	/ ¼ �

1

b
ð1þ c/Þð1� b/Þ; (36b)

as z*!�1

~/! 0: (36c)

We consider the expansions

/ ¼ /0 þ
�1=2

d
/1 þ Oð�=d2Þ; h ¼ h0 þ

�1=2

d
h1 þ Oð�=d2Þ

(37)

and obtain

/0ð0Þ ¼ �
1

c
; /1ð0Þ ¼

bc
bþ c

e�1=c@z	/0ð0Þ ; (38)

where the leading order problem is

@t/0 �
bce�1=c

bþ c
@z	/0ð0Þ þ

h2
0z	

2

� �
@z	/0

¼ @z	 e/0@z	/0

� �
; (39a)

with the boundary condition for /1 at z*¼ 0 given by (38).

As z*!�1

/0 ! 0; (39b)

and /0! 0 as t! 0.

We note that as t !1 then h0¼O(t�1=2). Since the dif-

fusion balance yields z*¼O(t1=2) and the boundary layer

grows to the size of the film thickness O �1=2t1=2
� �

¼ O t�1=2
� �

which suggests that the next time regime is t ¼ O ��1=2
� �

.

3. Long time scale t ¼ O ��1=2
� �

For the long-time behaviour we obtain the same scales

as in Eq. (25) in Sec. IV B 3. This results in the same set of

equations as in that section.

V. CONCLUSIONS

Our analysis of spin coating a polymer blended in a vol-

atile solvent shows that in the high Peclet number regime,

there are essentially three asymptotic regimes in our simpli-

fied model that describe distinct paths of the film thinning

process starting from the initial liquid layer to the final solid

film and can be described by corresponding asymptotic

boundary value problems for the small, medium and large

evaporation limits. They are distinguished by the relationship

between three main parameters, the ratio of diffusion to

advection �, the ratio of evaporation to advection d and the

ratio of the diffusivity of the pure polymer, and the initial

mixture exp(�1=c).

We show that, while the basic mechanisms discussed in

detail by Bornside et al.22 are valid, the important practical

problem of understanding how to prevent the eventual skin

formation can in fact be quantified. We predict that for the

very small evaporation limit, when d� exp �3= 4cð Þð Þ�3=4 is

satisfied, no skin formation will occur.

In the remaining small, medium, and large evaporation

cases, where there is always skin formation, we show that

the time scales at which the skin appears and the details of

its formation are different. In the small evaporation regime,

the solvent is initially depleted in a thin boundary layer

region near the liquid surface. However, the boundary layer

spreads out until it spans the entire film, after which the mass

fraction profile flattens out across the film. If the evaporation

is very small, this flat profile is maintained until all solvent is

evaporated. But if it is not very small, the changes in diffu-

sivity can give rise to steeper mass fraction gradients and

eventually to skin formation.

In the medium evaporation regime, an order one change

of the mass fraction occurs within the surface boundary

layer, giving rise to a skin within a medium time scale.

Underneath the skin, the polymer concentration is still at its

initial value. After the skin has formed, depletion due to

evaporation is slowed down because diffusion of the solvent

through the boundary layer is greatly diminished. However,

there are still significant mass fraction gradients so the

volume profile continues to evolve, albeit on a very slow

time scale. These gradients are driven by the fact that the

material at surface is almost pure polymer.

The large evaporation regime is qualitatively similar to

the medium evaporation case, except that the skin arises on a

very fast timescale, i.e., much smaller than order one, before

any liquid has been ejected due to the centrifugal forces.

The behaviour described above is characteristic for

liquids of constant viscosity as well as for concentration de-

pendent viscosity. In fact our numerical results are almost

indistinguishable during the time regime when evaporation

is still dominant. A dramatic quantitative change sets in after

significant amounts of the solvent has evaporated throughout

the film and the thinning for the liquid with concentration de-

pendent viscosity slows down considerably. We note, how-

ever, that we have restricted our investigations to the case

where the viscosity changes with the polymer mass fraction

at the same rate as the diffusivity. However, even in Born-

side et al.’s data22 it is apparent that as the polymer fraction

is raised from 1% to 10%, the viscosity changes dramatically

compared to the diffusivity; only for even larger polymer

concentrations the viscosity increases more slowly. This

rapid change suggests using a q that is significantly larger

than one, and it would certainly interesting to extend our

analysis to include this regime as well. Alternatively, one

could use a different constitutive law that better fits the de-

pendence of the viscosity over a wider range of concentra-

tions, e.g., the law used by Bornside et al.
For practical purposes, we note that for a given material

the parameter � can be modified by a reasonable amount by

changing the spinning speed of the disk or modified dramati-

cally by the initial mass fraction of the solvent, while d can

be modified reasonably either by changing the spinning

speed and changing the overlying solvent mass fraction,

whereas exp(�1=c) depends very sensitively on both the ini-

tial mass fraction of the solvent and the overlying solvent

mass fraction.
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We note that the theory we construct in this paper

assumes that the film is flat, i.e., independent of the radial

(and axial) variables from the beginning. Even though this

condition can be achieved by an appropriate experimental

setup, it is not the typical situation. Rather, the liquid mixture

is usually deposited in the middle of the disk when it is

started up. As Emslie et al.4 have shown for the case without

evaporation, the centrifugal forces flatten out the film; this

happens on the time scale used here to nondimensionalise

the equations. Hence, the film becomes flat in general for

t� 1. For small and medium evaporation, this happens

before any skin forms and the asymptotic regimes with

t� 1 remain valid. However, for larger evaporation, the

skin appears before the film has completely flattened so that

the final outcome is likely to be different from the situation

described in this paper.

There will be further aspects to consider in the future

that have not been explored in detail previously in the litera-

ture or in this paper. Initially they will concern the possible

formation of instabilities of the flow in higher dimensions.

Extending the number of constituents of the polymer blends

will introduce new phenomena such as phase separation or

liquid-liquid dewetting.
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