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Abstract In this work we derive systems of coupled thin-film equations for immiscible liquid polymer layers on
a solid substrate. We take into account slip between liquids and solids and also slip between both liquids. On the
scale of tens of nanometres, such two-layer systems are susceptible to instability and may rupture and dewet due to
intermolecular forces. The stability of the two-layer system and its significant dependence on the order of magnitude
of slip is investigated via these thin-film models. With weak slip at both the liquid–liquid and liquid–solid interfaces
and polymer layers of comparable thickness, the dispersion relation typically shows two local maxima, one in
the long-wave regime and the other at moderate wavenumbers. The former is associated with perturbations that
mainly affect the gas–liquid interface and the latter with larger relative perturbation amplitudes at the liquid–liquid
interface. Increasing the slip at the liquid–liquid interface generally favours the long-wave regime and can in fact
revert the mode of the instability and thus significantly change the spinodal patterns. Moreover, the maxima shift
to small wavenumbers for increasing slip.

Keywords Fluid dynamics · Interfacial slip · Thin-film models · Two-phase flow

1 Introduction

The stability of thin liquid films is of great interest in many technological applications involving lubricants and
coatings. In particular, when the thickness of films is on the micro- to nanoscale, bulk and surface stresses compete
with intermolecular forces and may lead to complex wetting or dewetting dynamics. Understanding and controlling
this dynamics is fundamental in nanoscale design and functionalisation of surfaces for numerous applications
ranging from optoelectronics to biotechnology. However, while stability, rupture and dewetting of liquid films on
solid substrates have been investigated intensively experimentally and theoretically in recent decades, comparatively
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10 S. Jachalski et al.

fewer studies have been conducted on two-layer immiscible liquid films. Moreover, two-layer liquid films have a
far richer dynamics and potentially more complex morphological structures even when both liquid layers are
Newtonian. Here, apart from differences in the thickness and density of the two layers, additional parameters such
as the ratio of the viscosities of both liquids and the ratio of the interfacial tension coefficients can play a dominant
role in determining the morphological structure.

Some of these effects are explored in an early experimental and theoretical study on liquid–liquid dewetting in
[1]. Two-layer systems were investigated using linear stability analysis as well as numerical simulations including
rupture. This was carried out in the framework of lubrication theory by Pototsky et al. [2,3], Fisher and Golovin
[4,5], Bandyopadhyay et al. [6,7] and Craster and Matar [8]. Also, stationary droplet solutions for liquid–liquid
systems and their stability have been studied numerically for the coupled system of thin-film equations by Pototsky
et al. [3]. Related studies of stratified thin films between parallel surfaces, where slip may also have to be taken into
account, can be found in [9,10]. In a recent article, Thiele et al. [11] pointed out that liquid–liquid systems have a
variational structure similar to that of systems for surfactants on thin films. Many more studies are found in a recent
comprehensive review on both single- and two-layer systems by Craster and Matar [12], illustrating the extent of
work in this field.

Interestingly, interfacial slip between immiscible, liquid polymer layers has not been taken into account in the
framework of two-layer thin-film models, even though the work by Lin [13] already suggested the possibility
of interfacial slip, and a number of experimental studies have demonstrated clear evidence of slip at polymer–
polymer interfaces. Most importantly, we mention here the coextrusion experiments by Zhao and Macosko [14]
that exhibit slip, in particular between polystyrene (PS) and polymethylmethacrylate (PMMA) interfaces, as well
as more recent measurements by Zeng et al. [15], and in liquid two-layer systems of PS dewetting from PMMA
by Lin et al. [16]. On the other hand, the intensely investigated slip phenomenon for thin polymer films on solid
substrates, for example as occurs when a polymer film dewets a hydrophobically coated substrate, has often been
described by a Navier-slip condition, relating the lateral velocity along the substrate to the shear rate u = b uz ,
with the extrapolation length b being a measure of the slip length. In fact, b is an apparent slip length that reflects
the underlying microscopic mechanism. A well-known example is the case of polymer melts dewetting from a
monolayer of polymer chains grafted on a substrate, for which Brochard-Wyart and de Gennes [17] showed that b
could be derived from microscopic consideration as a coil-stretch transition into a disentangled state with much lower
Rouse friction, and hence viscosity, within a very thin layer near the substrate. Other mechanisms corresponding
to different liquid–solid systems exhibiting apparent slip are described in [18] and the review by Lauga et al.
[19].

While these results are of fundamental importance, they have also led to the derivation of new thin-film models,
in particular for dewetting polymer melts, that take into account apparent slip of various orders of magnitude. The
investigations by Kargupta et al. [20] showed a strong dependence of the time scale of rupture and density of holes
of the typically unstable polymer film on the slip length. In [21,22] it was shown that the dynamics and morphology
of dewetting rims may even be controlled by slippage. Their models systematically explained experimental results
on the shape of the rim that were previously attributed to viscoelastic effects [23,24] and, moreover, established
a new experimental method for assessing slip in thin polymer films [25,26]. As a result of these studies, it was
shown that the bulk of a dewetting thin film can be described as a Newtonian fluid as long as the chain length of the
polymer remains below the entanglement length. However, the large slip is in fact a signature of the non-Newtonian
flow properties of the liquid polymer.

Thin-film models for immiscible polymer layers taking into account the orders of magnitude of interfacial slip are
the main topic of this study; such models make use of the theories and analysis of the microscopic mechanisms at the
polymer–polymer interface under shearing motion. The derivation of apparent slip at polymer–polymer interfaces
has been developed in works by Goveas and Fredrickson [27] and Adhikari and Goveas [28], extending earlier work
by de Gennes, Brochard-Wyart and Ajdari [29–31] for unentangled polymer, entangled polymer, dilute polymer
emulsions, and for cases when both liquid layers are Newtonian. In essence, the repulsive forces within a thin
interfacial region of two immiscible polymer films introduce higher shear rates and, hence, an apparent velocity
jump, leading to the concept of apparent slip.
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Slip at two-layer polymer films 11

Fig. 1 Sketch of a
two-layer system

As for single polymer layers on a solid substrate, dimension-reduced thin-film models allow for the systematic
analysis and efficient numerical simulation of the morphological evolution. The focus of this article is to describe
and analyse the possible impact of slip on the stability properties of the interfaces of a two-layer system. We thus
derive in Sect. 3 two thin-film models as asymptotic limits from the underlying fluid-dynamical model for the
two-layer system introduced in Sect. 2. These thin-film models take account of different orders of magnitude of
slip. The first model includes weak-slip conditions at the liquid–solid boundary as well as at the liquid–liquid
interface. The second thin-film model allows for strong slip at both liquid–solid and liquid–liquid interfaces, i.e.
orders of magnitude larger than weak slip. The focus of Sect. 4 will be to derive the dispersion relations and the
dominant spinodal wavelength and to determine the mode of the perturbation of the two interfaces, such as sinuous
or varicose. This is obtained via a linear stability analysis about flat constant interfaces. While these are fairly
standard and straightforward calculations, the fact that the base states are constant allows the stability analysis for
the underlying Stokes problem to be carried out easily. We thus are able to make direct comparisons with results of
the thin-film models in their respective asymptotic limits. This in turn will delimit the range of validity of the new
thin-film models as the slip lengths are varied, which will also be of importance for the further analysis of these
models.

We further point out that, although there are a number of potential combinations of slip conditions for different
orders of magnitude at the solid substrate and the liquid–liquid interface and hence further asymptotic limits, we
analyse here only the two thin-film models mentioned earlier since they show most clearly the significant impact
of interfacial slip on the stability behaviour of the liquid–liquid system. In particular, we describe the case where
strong-slip conditions are imposed at both interfaces, with a strong coupling of the dynamics of the interfaces. Most
notably, our results show that the impact of slip may not only change the value of the dominant wavelength but may
even reverse the type of the most unstable mode. This observation may have important implications in interpreting
the stability properties in an experimental setting.

2 Formulation

The basic situation where two liquid layers are deposited on a solid substrate is depicted in Fig. 1. Coordinates are
introduced with the x-axis pointing in the lateral direction, along the flat solid substrate, and the z-axis pointing
normal to it. The solid–liquid interface is located at z = 0, and the liquid–liquid and liquid–gas interfaces at
z = h1(x, t) and z = h2(x, t), respectively, where t denotes time. The variables un , wn and pn denote the lateral
and vertical velocity components and the pressure, respectively, in the nth layer, with n = 1, 2. The viscosity is
denoted byμn , n = 1, 2, for the two layers. Surface tensions for the liquid–liquid and liquid–gas interface are given
by σ1 and σ2, respectively.

In both layers, we have the Navier–Stokes and mass conservation equations for incompressible Newtonian
liquids:

ρ
dun

dt
= −∂x pn + μn (∂xx un + ∂zzun) , (2.1a)

ρ
dwn

dt
= −∂z pn + μn (∂xxwn + ∂zzwn) , (2.1b)
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∂x un + ∂zwn = 0, (2.1c)

where d/dt is the material derivate in each layer, d/dt = ∂t +un∂x +wn∂z , and n = 1, 2. For simplicity, we assume
that both layers have the same density ρ. At the substrate z = 0, we impose the Navier-slip condition with slip
length b and the impermeability condition

u1 = b ∂zu1, w1 = 0. (2.2a)

The free surface z = h2(x, t) evolves with the flow according to the kinematic condition,

(0, ∂t h2) · n2 = (u2, w2) · n2, (2.2b)

and the tangential and normal stress condition, which are, respectively,

n2 · (
�2 + φ′(h)I

) · t2 = 0, (2.2c)

n2 · (
�2 + φ′(h)I

) · n2 = σ2κ2. (2.2d)

The term with φ(h) represents the effect of intermolecular forces, and its exact form will be given in (2.7). Similarly,
at the liquid–liquid interface z = h1(x, t), we have the kinematic condition, tangential and normal stress conditions,
and the impermeability and slip conditions with slip length b1, which are, respectively,

(0, ∂t h1) · n1 = (u1, w1) · n1, (2.3a)

n1 · (
�1 −�2−φ′(h)I

) · t1 = 0, (2.3b)

n1 · (
�1 −�2−φ′(h)I

) · n1 = σ1κ1, (2.3c)

(u2 − u1, w2 − w1) · n1 = 0, (2.3d)

(u2 − u1, w2 − w1) · t1 = b1

(
1

μ1
+ 1

μ2

)
n1 ·�2 · t1. (2.3e)

Here we denote the thickness of the top layer by

h(x, t) = h2(x, t)− h1(x, t), (2.4)

the stress and strain tensors in the nth layer n = 1, 2 by

�n = −pn I + μ2γ̇n, where γn = ∂	unk + ∂kun	, (2.5)

and the unit tangential and normal vectors and curvature of the two interfaces n = 1, 2 by

nn = (−∂x hn, 1)
√

1 + (∂x hn)
2
, tn = (1, ∂x hn)√

1 + (∂x hn)
2
, κn = ∇ · nn . (2.6)

We focus on a situation where the contributions to the surface forces from the interaction with the solid substrate
can be neglected, but the interaction with the bottom layer is relevant and can drive spinodal dewetting. Since these
interactions decrease with the thickness of the bottom and top layers, respectively, this can be achieved, for example,
by considering thin enough top layers and only moderately thin bottom layers. For the intermolecular potential we
use the form

φ(h) = 8

3
φ∗

[
1

8

(
h∗
h

)8

− 1

2

(
h∗
h

)2
]

. (2.7)

This potential represents a contribution to the energy of a thin layer of thickness h. Variation of h1 and h2 changes
this contribution by −φ′(h)δh1 and φ′(h)δh2, respectively; thus, we have a contribution φ′(h) to the normal force
resisting and enhancing these variations in (2.2d) and (2.3c), respectively. The h−2 term in (2.7) represents the
disjoining pressure contribution from the van der Waals forces that drives the dewetting, while the h−8 term is
relevant only at very small thicknesses and is stabilising. In fact, the potential has a minimum φ∗ < 0 at h = h∗.
As a general remark, we note that while the long-range part arises from a Lennard–Jones potential [32], the form,
and in particular the power (here 8), in the short-range part of the potential may vary depending on the type of
short-range forces are considered. In the literature, the power 3 is also often used instead. Other choices, such as
exponentially decaying interactions for the short-range forces, are given in [33] and are used for example in [3].
Detailed discussions of the body of work in this field can be found in a recent review by Bonn et al. [34].

For our more general considerations we have chosen the stabilising part of the potential more for convenience
in order to produce a minimum for a particular thickness of the film.
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Slip at two-layer polymer films 13

2.1 Nondimensional problem

Let H denote the typical thickness of the upper layer, i.e. of h2 − h1, and let L , U and P be a characteristic lateral
length, velocity and pressure scale. We introduce these scalings via

x = Lx̃, z = H z̃, hi = Hh̃i , b = Hb̃, b1 = Hb̃1,

un = Uũn, wn = W w̃n, t = L
U t̃,

pi = P p̃i , φ′ = Pφ̃′,
(2.8)

and then drop ‘∼’. A pressure scale is set by the derivative of the intermolecular potential. The choice

P = 8

3

φ∗
H

(2.9)

results in a particularly simple form for φ′,

φ′(h) = 1

ε

[
−

( ε
h

)9 +
( ε

h

)3
]
, where ε = h∗

H
. (2.10)

In what follows we denote

ε	 = H

L
, Re = ρU H

μ2
, μ = μ1

μ2
, σ = σ1

σ2
, α = P H

μ2U
. (2.11)

For the equations in the bulk of the liquid layers, we obtain

ε	 Re
du2

dt
= −α ε	∂x p2 + ε2

	∂xx u2 + ∂zzu2, (2.12a)

ε2
	 Re

dw2

dt
= −α ∂z p2 + ε3

	∂xxw2 + ε	∂zzw2, (2.12b)

0 = ∂x u2 + ∂zw2, (2.12c)

ε	 Re
du1

dt
= −α ε	∂x p1 + μ

(
ε2
	∂xx u1 + ∂zzu1

)
, (2.12d)

ε2
	 Re

dw1

dt
= −α ∂z p1 + μ

(
ε3
	∂xxw1 + ε	∂zzw1

)
, (2.12e)

0 = ∂x u1 + ∂zw1. (2.12f)

At the free surface z = h2 we get for the normal, tangential and kinematic condition, respectively

p2 − φ′(h)+ ∂xx h2
[
1 + ε2

	 (∂x h2)
2]3/2 = 2

ε	

α

[
1 − ε2

	 (∂x h2)
2] ∂zw2 − [

∂zu2 + ε2
	∂xw2

]
∂x h2

1 + ε2
	 (∂x h2)

2 , (2.12g)

[
∂zu2 + ε2

	∂xw2

] [
1 − ε2

	 (∂x h2)
2
]

− 4ε2
	∂x u2∂x h2 = 0, (2.12h)

∂t h2 = w2 − u2∂x h2. (2.12i)

For the boundary condition at the free liquid–liquid interface z = h1 we get for the normal, tangential and kinematic
condition, respectively,

p1 − p2 + φ′(h)+ σ
∂xx h1

[
1 + ε2

	 (∂x h1)
2]3/2

= 2
ε	

α

[
1 − ε2

	 (∂x h1)
2] ∂z (μw1 − w2)− [

∂z (μu1 − u2)+ ε2
	∂z (μw1 − w2)

]
∂x h1

1 + ε2
	 (∂x h1)

2 , (2.12j)

[
∂z (μu1 − u2)+ ε2

	∂x (μw1 − w2)
] [

1 − ε2
	 (∂x h1)

2
]

− 4ε2
	∂x (μu1 − u2) ∂x h1 = 0, (2.12k)

∂t h1 = w1 − u1∂x h2. (2.12l)
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14 S. Jachalski et al.

The impermeability condition between the upper and lower liquid layers is given by

(w2 − w1)− (u2 − u1) ∂x h1 = 0. (2.12m)

The slip condition at the liquid–liquid interface becomes

(u2 − u1)+ ε2
	 (w2 − w1) ∂x h1 = b1

μ+ 1

μ

[
∂zu2 + ε2

	∂xw2
] [

1 − ε2
	 (∂x h1)

2] − 4ε2
	∂x u2∂x h1

√
1 + ε2

	 (∂x h1)
2

, (2.12n)

and the boundary conditions (impermeability and Navier-slip) at the substrate are

w1 = 0, u1 = b ∂zu1. (2.12o)

Using the balance in Eq. (2.12g) we fix the parameter L by setting

σ2 H

PL2 = 1. (2.13)

Together with (2.9), we then find

ε	 = H

L
=

√
8

3

φ∗
σ2
. (2.14)

Throughout this paper, we assume that ε	 � 1 and derive thin-film equations for the profiles h2 and h1 for various
degrees of slip at the solid–liquid and liquid–liquid interfaces. Different magnitudes of slip lengths will require
different choices for α in terms of the small parameter ε	. We will treat μ and σ as parameters of order one. For
many systems, such as dewetting micro- and nanoscopic polymer films, inertia is negligibly small. Therefore, we
will only cover the case Re = 0 but remark that inertia can be kept easily for the strong-slip models in appropriate
regimes of Re, analogous to one-layer models [21].

3 Thin-film models

3.1 Weak-slip model

In this section we assume that both slip lengths are O(1). We will refer to the resulting thin-film model as the
weak-slip model. Here, the flow is driven by the lateral pressure gradient ∂x p acting on the dominant viscous term
∂zzu2 in (2.12a). Thus we balance the two by letting

α = 1

ε	
, (3.1)

which fixes the velocity scale and, thus, the capillary number in terms of ε	,

Ca = μ2U

σ2
= ε3

	 . (3.2)

The corresponding leading-order problem in (2.12) can then be integrated and reduced to the system of partial
differential equations for h2(x, t) and h1(x, t) using the kinematic conditions (2.12i) and (2.12l). The derivation is
a straightforward variation of the case where there is no slip at both interfaces; see e.g. [2,8]. Here we find it more
convenient to write the thin-film model as a system for h1(x, t) and h(x, t) = h2(x, t)− h1(x, t). To do this, note
that

∂t h = −∂x

h2∫

h1

u2 dz, (3.3)
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Slip at two-layer polymer films 15

and obtain

∂t h1 = 1

μ
∂x

[(
h3

1

3
+ b h2

1

)

∂x p1 +
(

h2
1

2
h + b h1h

)

∂x p2

]

, (3.4a)

∂t h = ∂x

[(
1

3
h3 + 1

μ
h1h2 + b

μ
h2 + μ+ 1

μ
b1 h2

)
∂x p2 +

(
1

μ

h2
1

2
h + b

μ
h1h

)

∂x p1

]

, (3.4b)

where

∂x p1 = − (σ + 1) ∂x

(
∂xx h1 + 1

σ + 1
∂xx h

)
, (3.4c)

∂x p2 = −∂x

(
σ

σ + 1
∂xx h − φ′(h)

)
+ 1

σ + 1
∂x p1. (3.4d)

This can be written as

∂t h = ∂x (Q · ∂x p) , (3.5a)

where h denotes the vector (h1(x, t), h(x, t)), p = (p1(x, t), p2(x, t)), and Q the mobility matrix given by

Q = 1

μ

⎛

⎜
⎝

h3
1

3 + b h2
1

h2
1h
2 + b h1h

h2
1h
2 + b h1h μ

3 h3 + h1h2 + b h2 + (μ+ 1) b1h2

⎞

⎟
⎠ . (3.5b)

Note also that (3.4c) and (3.4d) are equivalent to

∂x p2 = −∂x (∂xx h2 − φ′(h)), (3.6a)

∂x p1 = −∂x (σ∂xx h1 + φ′(h))+ ∂x p2 = −∂x (σ∂xx h1 + ∂xx h2). (3.6b)

3.2 Strong-slip model

We now assume that during the dewetting motion of the upper from the lower layer there is significant slip at
both the solid substrate and the liquid–liquid interface. The systematic derivation of one-layer thin-film models for
different regimes of slip at the substrate [21] has shown that the case of strong slip, where the dimensionless slip
length is O(ε−2

	 ), represents a distinguished limit. It leads to a particularly rich model that incorporates the effect
of elongational stresses. We therefore consider strong slip at both z = 0 and z = h1 and introduce slip parameters
of O(ε−2

	 ) at the bottom and liquid–liquid interface, respectively,

b = β

ε2
	

, b1 = β1

ε2
	

. (3.7)

Also, guided by the derivation [21], the plug-flow scaling in both layers leads to Ca = ε	, and thus here α = ε	.
Expanding all dependent variables in terms of ε2

	 , we find that, to leading order, the lateral velocity fields ui turn
out to be constant in z, i.e. we have plug flow in both layers. To obtain closed-form thin-film models for h, h1 and
the lateral velocities u1 and u2, the derivation needs to consider the problem to order O(ε2

	) to obtain solvability
conditions. The resulting velocity fields and the leading-order film profiles h1(x, t) and h(x, t) satisfy the following
system of equations:

0 = −∂x (−(σ + 1)∂xx h1 − ∂xx h)+ 4μ

h1
∂x (∂x u1h1)+ μ(u2 − u1)

(μ+ 1)β1h1
− μ u1

βh1
, (3.8a)

∂t h1 = −∂x (h1u1), (3.8b)

0 = −∂x (φ
′(h)− ∂xx h1 − ∂xx h)+ 4

h
∂x (∂x u2h)− μ(u2 − u1)

(μ+ 1)β1h
, (3.8c)

∂t h = −∂x (hu2). (3.8d)

We avoid interruption of the flow of argument and include the details of the derivation of this new model in
Appendix 1.
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4 Linear stability

4.1 Dispersion relation for weak-slip model

We investigate the stability of the stationary solution with two flat interfaces. Since we have assumed in the non-
dimensionalisation (2.8) that the length scale H is the typical thickness of the top liquid layer, the base state is
given by

h1(x, t) = h0
1, h(x, t) = 1.

We introduce normal mode perturbations according to

h1(x, t) = h0
1 + δχ1 exp(ikx + ωt), h(x, t) = 1 + δ(χ2 − χ1) exp(ikx + ωt),

where i = √−1 is the imaginary unit, k the wavenumber and ω the growth rate of the normal mode perturba-
tion, respectively, and 0 < δ � 1. The notation is chosen to be consistent with expansions where perturbations
δχ1 exp(ikx + ωt) and δχ2 exp(ikx + ωt) are applied to h1 and h2, respectively. We assume that χ1 and χ2 are
normalised so that χ2

1 + χ2
2 = 1. Substituting this into (3.4a) after eliminating p1 and p2, expanding to first order

in terms of δ, and dropping the superscript ‘0’, we obtain the following eigenvalue problem for the eigenvalue ω
and the eigenvector χ̄ = (χ1, χ2 − χ1):

ωχ̄ = −k2QEχ̄ , (4.1)

where Q is the mobility matrix (3.5b) with h = 1 and

E =
(
(σ + 1)k2 k2

k2 k2 + φ′′(1)

)
. (4.2)

Therefore, the dispersion relation is given by

ω1,2 = −k2

2
Tr(QE)± k2

√
Tr(QE)2

4
− Det(QE). (4.3)

For each value of k, there are two eigenvalues. For positive h1, b, μ and σ , these are always real and then have a
different sign if det E < 0. In fact, one eigenvalue is positive (and the other negative) if k < kc, and both are stable
for k > kc, where the cut-off wavenumber kc is obtained from the condition det E = 0, with the result

kc =
[
σ + 1

σ

]1/2

. (4.4)

4.1.1 No slip: b = b1 = 0

To provide a baseline for the discussion on the impact of slip on stability, we first investigate how the dispersion
relations and the corresponding perturbations of the two interfaces are affected by different thicknesses h1 of the
lower layer in the case where there is no slip at all, b = b1 = 0. As we mentioned in our introduction, such studies
have been carried out before, e.g. in [2] or [6], where different long-range and short-range potentials were used, and
dependencies of the stability properties on the film thickness of the two layers, their surface tension and viscosity
ratios were investigated. Further studies into the non-linear stability regimes were also undertaken in [7] and [3],
which is not the focus of the present study when discussing the impact of slip. In our studies we focus on situations
where the surface tension of the liquid–liquid interface is lower by an order of magnitude than that of the gas–liquid
interface since we believe this reflects many physical situations. We therefore choose a small value for σ = 0.1. For
simplicity, we assume that the two liquids have the same viscosity, i.e. μ = 1. Moreover, the value of |φ′′(1)| can
be scaled out of the problem by rescaling k = |φ′′(1)|1/2k̃ and ω = |φ′′(1)|2ω̃; thus, we can set φ′′ = −1 without
losing generality. With these parameters, kc = 3.32.
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Fig. 2 Dispersion relations (left column (a, c, e)) and components of the perturbation vector (right column (b, d, f)) for the weak-slip
model with b = b1 = 0. The film thickness of the bottom layer is varied from top to bottom, with h1 = 0.1, 0.01 in the top row,
h1 = 1 in the middle and h1 = 10, 100 in the bottom row. Arrows point in the direction of larger h1. Values for other parameters are
μ = 1, σ = 0.1, h = 1 and φ′′(1) = −1. The two components χ1 and χ2 of the perturbation vector represent the amplitudes δχ1 and
δχ2 of the normal mode perturbations of the lower and upper interfaces, respectively

For moderate thickness of the lower layer (h1 = 1), the most prominent feature to observe are the two maxima in
the dispersion relation in Fig. 2c, suggesting a bimodal instability with two different wavelengths. Such a dispersion
relation with two maxima was first observed by Pototsky et al. [2] for a situation with three interaction potentials
and no slip at both interfaces. Inspection of the components of the perturbation vector χ̄ reveals a transition in
the shape of the perturbed layers as k increases from the range where ω has its first maximum to where it has its
second maximum. For k less than approximately one, the shape of the perturbation is sinuous-like (both interfaces
are perturbed in the same direction), and for k larger than about one it is varicose. However, the modes are quite
asymmetric. For the k ≥ 2, the gas–liquid interface is only weakly perturbed, and in fact the relative amplitude

123



18 S. Jachalski et al.

0 4
k

0

0.1

ω

0.8                        1                        1.2
-0.01

0

0.01

(a)

0 4
k

-1

0

1
χ

1
 (dom)

χ
2
 (dom)

χ
1
 (sub)

χ
2
 (sub)

0.8                    1                    1.2
-0.1

0

0.1

(b)

Fig. 3 Dispersion relation (in (a)) and components of χ (in (b)) for b = b1 = 0, μ = 1, σ = 0.1, h = 1, h1 = 0.1 and φ′′(1) = −1
for the dominant and subdominant modes. The values for ω in (a) and the values χ1 and χ2 in (b) for the subdominant mode are
emphasised by crosses. (In the legends, ‘sub’ and ‘dom’ are abbreviations for ‘subdominant’ and ‘dominant’, respectively.) In each
subfigure, insets show zooms of the regions delimited by boxes. As before, the two components χ1 and χ2 of the perturbation vector
represent the amplitudes δχ1 and δχ2 of the normal mode perturbations of the lower and upper interfaces, respectively

compared to the perturbation of the liquid–liquid interface tends to zero if σ is made smaller. This is plausible
since σ → 0 implies a very stiff gas–liquid interface, σ2 
 σ1. For longer wavelengths, surface tension should
be less important at both interfaces, so that the stability is governed by the intermolecular forces and geometrical
constraints, i.e. the presence of a solid substrate below the bottom layer. The latter is expected to have a stronger
suppressing effect on the liquid–liquid interface deformation; thus, for k < 1 the gas–liquid interface is perturbed
more strongly than the liquid–liquid interface.

For small values of the thickness of the lower layer, h1 = 0.1 and h1 = 0.01, we expect the impact of geometric
constraints to be more relevant closer to the substrate. Indeed, for k less than approximately one, the sinuous mode
in Fig. 2b is more asymmetric than previously in Fig. 2d, with χ2 = O(h2

1), so that in the limit h1 → 0, only the
gas–liquid interface is perturbed. We then have a transition in the relative amplitudes for k between one and two
as before. In fact, the relative amplitudes for larger k are similar to those in Fig. 2d. However, if we look at the
dispersion relation Fig. 2a, the growth rates for k > 1 are small compared to the growth rates for k < 1. Thus, the
geometric constraints suppress the instability in the range of k > 1 and eliminate one of the maxima present for
moderate h1. For k < 1, the shape of the perturbation suggest a behaviour as in a one-layer system, and indeed, an
asymptotic analysis shows that for h1 � 1 one eigenvalue is

ωasy = −1

3
k2(k2 − 1) (4.5)

to leading order, and the other is zero (i.e. not order one in h1). Relation (4.5) has its maximum at the wavenumber
k = √

1/2 and its cut-off wavenumber at 1. The top eigenvalue ω1 approaches ωasy from above for k < 1 and the
zero eigenvalue, for k > 1. It therefore has its maximum near k = √

1/2 and is nearly zero, but still positive, for
k > 1 up to kc, after which it is stable (i.e. negative).

In contrast, the subdominant mode approaches zero from below for k < 1 and ωasy for k > 1 and is always
stable. This is shown for one set of parameter values in Fig. 3a. The two asymptotic approximations of ω, i.e. ωasy

and zero, cross at k = 1, and this crossing point is approached by the graphs for the subdominant and dominant
modes. The minimum distance between the two modes decreases to zero as h1 → 0 but remains finite for h1 > 0,
i.e. they do not cross. Notice also that in Fig. 3b the perturbation amplitude vectors are never identical since the
amplitudes χ2 for the two modes are always separated, although they get close to each other near k = 1.

Returning to Fig. 2, we observe that for large h1 = 10 and h1 = 100, the other maximum in the dispersion
relation dominates (Fig. 2e). For the wavenumbers where it is located, the shape of the perturbation is that of a
varicose mode where the perturbation affects both interfaces in opposite directions. However, due to the smallness
of σ , the gas–liquid interface is much stiffer than the liquid–liquid interface; thus the effect of the perturbation
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on the former is small. In the long wave regime, the shape of the perturbations is sinuous-like and increasingly
symmetric, i.e. it affects both interfaces equally well as h1 → ∞. The region of k with the sinuous shape in Fig. 2f
is thinner than for previously discussed h1, of order O(h−1/2

1 ). Notice that growth rates in this regime for k are
small compared to the maximum rates achieved for k > 1.

Summarising, we have for moderate thickness h1 and small σ , i.e. relatively soft liquid–liquid interface, a bimodal
instability. The longer-wave maximum corresponds to a one-layer model where the perturbations occur mainly at the
liquid–gas interface while they are inhibited at the liquid–liquid interface due to the constraints from the presence
of the substrate. The shorter-wave maximum corresponds to the dominant mode of a one-layer system of thickness
h = 1 with two interfaces at a distance from any solid substrate. The instability is dominant at the softer, i.e. the
liquid–liquid interface. The lower surface tension of this interface determines the preferred wavelength.

4.1.2 General b1, with b = 0

We now investigate how the dispersion relation and perturbation shapes change for moderate, small and large h1

if b1 is increased. All other parameter values are retained from the previous numerical experiments. Starting with
h1 = 1, in Fig. 4d, we notice that the components of the perturbation vector shown in Fig. 4b change comparatively
little. The transition from an asymmetric sinuous to an asymmetric varicose shape at k = 1 . . . 2, already observed
for b1 = 0, persists for larger slip. At the upper end of the k shown, the graphs for χ1 and χ2 are very similar. The
strongest dependence on b1 is seen for k < 1, where χ1 → 0 as b1 → ∞, i.e. the already weak coupling between
the interfaces is further diminished.

In the dispersion relation Fig. 4c, increasing b1 increases ω [notice that for better visibility we plotted ω over
(1 + b1) instead of ω]. This is to be expected since this decreases friction, which accelerates the evolution of the
instability. However, the values for ω with k less than approximately one increase like ∝ b1 for b1 → ∞, while
the increase of ω for wavenumbers larger than one is smaller. This is not surprising since the lower-k instability
mainly involves the gas–liquid interface (as seen in Fig. 4b), for which the friction reduction is stronger than for
the liquid–liquid interface, which is more directly affected by the no-slip condition at the solid substrate. The
preferential increase of the growth rates allows the lower-k instability to eventually overtake the larger-k instability.

For small h1 = 0.1, we therefore expect that the lower-k instability will be further reinforced. Indeed, the
dispersion relation in Fig. 4a does not change qualitatively with increasing b1, except that the maximum growth
rates increase approximately linearly in b1 for larger slip lengths. The shape of the perturbations are hardly affected
by changes in b1 over two orders of magnitude, as shown in Fig. 4b, where the lines for χ1 and for χ2 for the
different b1 nearly coincide.

The effect of increasing b1 is more dramatic for larger h1. For h1 = 10 and b1 = 0, the dispersion relation
Fig. 4e has only one maximum at k larger than one, with a preferential perturbation of the liquid–liquid interface
(Fig. 4f). As b1 is increased, the lower-k maximum appears again, for the instability that mainly affects the gas–liquid
interface. Thus, we recover a bimodal situation. As b1 is increased even further, the lower-k maximum eventually
dominates. Thus we transition from a shorter wavelength perturbation that affects mainly the liquid–liquid interface
to a longer wavelength perturbation of predominantly the gas–liquid interface simply by increasing the slip length.

4.2 Dispersion relation for strong-slip thin-film model

We use the same base state and perturbations for the film h1 and h as in Sect. 3.2. For the velocities u1 and u2 the
base state is zero, and thus the perturbed field is

u1(x, t) = δu1
1 exp(ikx + ωt), u2(x, t) = δu1

2 exp(ikx + ωt).

After expanding, the perturbations of the velocity fields can be eliminated, and one obtains the eigenvalue problem

ωχ̄ = k2 Q1T −1 Q2 E χ̄ , (4.6)
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Fig. 4 Dispersion relations (left column (a, c, e)) and components of the perturbation vector (right column (b, d, f)) for the weak-slip
model with b = 0 and different slip length b1 = 0, 1, 10, 100 in each panel. The bottom row has two additional values, b1 = 1,000
and 104. All arrows point in the direction of increasing b1. From top to bottom, the thickness changes from h1 = 0.1 (top) to h1 = 1
(middle) and h1 = 10 (bottom row). Values for other parameters: μ = 1, σ = 0.1, h = 1 and φ′′(1) = −1. Notice that ω was rescaled
by 1 + b in the left column. The two components χ1 and χ2 of the perturbation vector represent the amplitudes δχ1 and δχ2 of the
normal mode perturbations of the lower and upper interface, respectively

where χ̄ = (χ1, χ2 − χ1), and the matrices are

Q1 =
(

h1 0
0 1

)
, Q2 =

(
β(μ+ 1)β1h1 0

0 (μ+ 1)β1

)
, E =

(
(σ + 1)k2 k2

k2 k2 + φ′′(1)

)

, (4.7)

and

T =
( − 4μβ(μ+ 1)β1h1k2 − μβ − μ(μ+ 1)β1 μβ

μ −4(μ+ 1)β1k2 − μ

)
. (4.8)
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Fig. 5 Comparison between dispersion relations from weak-slip model, strong-slip model and numerical solutions of Stokes equations
from Appendix 2. The variables are shown here in the scalings used for the weak-slip model in Sect. 3.1. For the thin-film parameter
values, we choose h1 = h = 1, b = 2, b1 = 10, σ = 0.1, μ = μ1 = μ2 = 1 and φ′′(h) = −1. In a, we let ε	 = 0.1, and σ1 = 10
and σ2 = 100 for the Stokes model. Also notice this entails β = 0.02 and β1 = 0.2 for the strong-slip model. In b, we use ε	 = 0.01,
σ1 = 103 and σ2 = 104, and β = 2 × 10−4 and β1 = 2 × 10−3

Therefore, the dispersion relation is given by

ω1,2 = −k2

2
Tr(Q̄E)± k2

√
Tr(Q̄E)2

4
− Det(Q̄E), (4.9)

where Q̄ = −Q1T −1 Q2.
For the parameters, we assume μ = 1 and σ = 0.1 as before, h1 = 10, and vary β and β1. As before, the

value of |φ′′(1)| can be set to φ′′(1) = −1 since by rescaling k = |φ′′(1)|1/2k̃, ω = |φ′′(1)|ω̃, β = β̃/|φ′′(1)| and
β1 = β̃1/|φ′′(1)|, we can remove φ′′(1) from the dispersion relation.

For β1 = 0.05, we have, for very small slip parameters at the solid substrate, a bimodal situation. As β is
increased, the larger-k maximum dominates, i.e. the instability that mainly affects the liquid–liquid interface in an
asymmetric varicose shape. Notice that for the larger β, a very long wavenumber local maximum emerges in the
dispersion relation that is associated with an increasingly symmetric sinuous shape of the perturbation.

For β1 = 0.5 and β1 = 5, the situation is similar, except that for the smallest β shown, the dispersion relation
has its global maximum in the lower k range where the perturbation only involves the gas–liquid interface. As β is
increased, the larger-k maximum takes over with a perturbation that mainly affects the liquid–liquid interface.

4.3 Discussion and comparison with Stokes model

Stability can also be explored directly by linearising and using normal modes for the full model using the Stokes
equations. This leads to a more complicated eigenvalue problem for the growth rate that is derived in Appendix 2,
Eqs. (7.8)–(7.17). Numerical solutions of this problem (through a solver for generalised eigenvalue problems) give
the growth rate over the entire parameter space, and by taking corresponding limits the dispersion relations for the
thin film models in this paper can be recovered.

In Fig. 5a we see the dispersion relations for the three models (weak-slip, strong-slip, Stokes). We assume a
lubrication parameter ε	 = 0.1. Then, for slip lengths b = 2 and b1 = 10 we observe that the weak-slip model
overestimates the growth rates in the stable regime compared to the Stokes model. Furthermore, while in the
dispersion relation of the weak-slip model the second maximum is the dominant one, in the Stokes case the first
maximum is dominant. Recall that this also implies a different prediction for the preferred perturbation shape, with
the first maximum corresponding to a sinuous and the second to a varicose mode. On the other hand, the strong-slip
model matches the Stokes model quite well for these parameters. However, the picture changes if we decrease
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Fig. 6 Effect of varying
the thickness of bottom
layer for two different
values of slip parameter at
liquid–liquid interface for
strong-slip model. The other
slip parameter is β = 0.1,
and the parameters are as
before μ = 1, σ = 0.1,
h = 1 and φ′′(1) = −1
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Fig. 7 Numerical simulations of film profiles h1 and h for strong-slip model with potential φ′(h) as in (2.10). The initial height of the
film is h1 = 0.1, h = 1 (left) and h1 = 0.8, h = 1 (right). The parameters are β1 = β = 0.1, μ = 1 and σ = 0.1. The profiles were
computed using a finite-difference discretisation on a large computational domain with Neumann conditions at the boundary and initial
conditions h1 = 0.1, h = 1 + 0.1 cos(0.577x) for (a) and h1 = 0.8 + 0.1 cos(2.309x), h = 1 − 0.1 cos(2.309x) for (b)

the lubrication parameter ε	 while keeping the other parameters fixed. Then the weak-slip model gives a better
approximation of the Stokes result than the strong-slip model, as we observe in Fig. 5b.

In general, our results show that increasing slip at the liquid–solid interface amplifies perturbations at the liquid–
liquid interface relative to the gas–liquid interface, whereas increasing slip at the liquid–liquid interface favours
perturbations at the gas–liquid interface.

Also, if the bottom film layer is thick enough, the preferred wavelength perturbation predominantly affects the
liquid–liquid interface since the maximum of the dispersion relation corresponds to wavenumbers where χ1 is
larger (Fig. 2e, f). This interface is softer, i.e. easier to deform than the gas–liquid interface, due to its lower surface
tension. The preferred wavelength is determined by the smaller surface tension of this interface. If h1 is decreased,
this instability is suppressed. Instead, another maximum of the dispersion relation at smaller wavenumbers appears
and eventually becomes dominant (Fig. 2a). The case of moderate film thickness h1 in Fig. 2c shows both maxima
simultaneously. This trend observed for no slip at the solid–liquid and liquid–liquid interface persists for weak slip
at the liquid–liquid interface and also for strong slip at both interfaces. Increasing slip at the liquid–liquid interface
(and no or fixed weak slip at the solid substrate) delays this transition in the dispersion relation from one dominant
maximum to the other as the thickness h1 is increased. This is also illustrated by Fig. 6. For the smaller slip β1 = 0.1,
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Fig. 8 Dispersion relations (left column) and components of the perturbation vector at both interfaces (right column) for for the strong-
slip model with h1 = 10 and for β1 = 0.05, 0.5 and 5, top to bottom. Each subfigure shows the results for different values of β = 10−4,
10−3, 0.01, 0.1, 1, 10, with the arrows pointing in the direction of increasing β. Values for other parameters are μ = 1, σ = 0.1, h = 1
and φ′′(1) = −1. The two components χ1 and χ2 of the perturbation vector represent the amplitudes δχ1 and δχ2 of the normal mode
perturbations of the lower and upper interface, respectively

the line with h1 = 0.8 has two maxima with the one to the right (k > 1) being the larger one. In contrast, for β1 = 1,
a second maximum is just about to form in the graph for h1 = 0.8 and is clearly dominated by the maximum at
k < 1. Also in this situation we observe a change in the shape of the preferred wavelength perturbation. While in
the case h1 = β1 = 0.1 the perturbation has a sinuous shape (Fig. 7a), the picture changes for the case h1 = 0.8
and β1 = 0.1. Here the second maximum becomes dominant and the shape of the perturbation is varicose (Fig. 7b).
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In addition, we observed that changing the slip length at the liquid–liquid interface in the weak-slip regime
typically does not have a strong effect on the location of the maxima. In contrast, for strong slip at both interfaces,
increasing the slip parameter tends to shift the location of the maxima to smaller wavenumbers (cf. Fig. 8a, c, e).
We note at this point that for one-layer films with strong slip at the liquid–solid interface, a similar behaviour of the
strong-slip and weak-slip thin-film models has been observed previously [20,35].

5 Conclusions and outlook

In this study we derived and compared two thin-film models for liquid–liquid systems accounting for different
magnitudes of interfacial slip at their solid–liquid and liquid–liquid interfaces with respect to their interfacial
stability properties. One of the thin-film models included weak-slip interface conditions, while the second allowed
for strong slip at the interfaces. Stability was also explored directly by linearising and using normal modes for the
underlying Stokes equations, which led to an eigenvalue problem for the growth rate, which we numerically solved
over the entire parameter space. Taking appropriate limits, the dispersion relations for the two thin-film models in
this paper were recovered and, hence, makes it possible to determine the range of validity of the thin-film models
when varying slip lengths.

While it had previously been shown that the thickness of liquid layers has an important influence on the stability
properties of a liquid–liquid system, our investigations demonstrated that interfacial slip can have a major impact
as well.

In conclusion, we note that our results clearly demonstrate that including slip and choosing the appropriate
thin-film model is vital for comparisons with experimental data and interpreting, as well as controlling, pattern
formation in such systems. The experimental systems we intend to describe with our models typically consist
of polymer films such as polystyrene (PS) on top of polymethylmethacrylate (PMMA) with a film thickness of
approximately 10–100 nm. As an example, we mention our recent study [36], where we used values for the surface
tension σ ≈ 0.038, ε	 = 0.15 and μ = 271, at a temperature of approximately T = 140 ◦C for molecular weights
of Mw = 9.6 kg/mol for PS and Mw = 9.9 kg/mol for PMMA, which have glass transition temperatures of
approximately 85 and 115 ◦C, respectively. While it is already non-trivial to obtain such values, since they are
dependent on the temperature and molecular weights of the polymers, obtaining values for the slip length is a matter
of future research. It was previously demonstrated in [22,25] for the case of single-layer dewetting polymer films
on hydrophobic solid substrates that it is possible to extract quantitative information on the slip parameters from
observations of the morphology. The present study has laid down the basic framework for extending this approach
to two-layer systems.

A further natural extension of our studies would be to investigate the evolution of the instability beyond the
initial linear stages, to consider, for example, the impact of slip on rupture events in a two-layer system. For the
no-slip case this has been discussed for example in [2] or [7] and recently also a self-similar approach to rupture
was treated in [37]. Extending the work by [38,39], it was shown in [40,41] that the presence of slip introduces
a rich structure to a self-similar behaviour. We expect that the two-layer system will exhibit even more complex
behaviour due to the additional degrees of freedom arising from the presence of two deformable interfaces.

Acknowledgments The authors SJ, DP and BW are grateful for the support by the DFG of their project within the priority programme
SPP 1506, ‘Transport at Fluidic Interfaces’.

6 Appendix 1: Derivation of thin-film model for strong slip at liquid–liquid and solid–liquid interfaces

We expand the variables in (2.12) as

(u1, w1, u2, w2) =
(

u(0)1 , w
(0)
1 , u(0)2 , w

(0)
2

)
+ ε2

	

(
u(1)1 , w

(1)
1 , u(1)2 , w

(1)
2

)
+ O

(
ε4
	

)
, (6.1a)
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(p1, p2) =
(

p(0)1 , p(0)2

)
+ ε2

	

(
p(1)1 , p(1)2

)
+ O

(
ε4
	

)
, (6.1b)

(h1, h2) =
(

h(0)1 , h(0)2

)
+ ε2

	

(
h(1)1 , h(1)2

)
+ O

(
ε4
	

)
. (6.1c)

and consider in turn the leading- and next-order problem in ε	.

Leading-order problem

0 = ∂zzu(0)2 , (6.2a)

0 = −∂z p(0)2 + ∂zzw
(0)
2 , (6.2b)

0 = ∂x u(0)2 + ∂zw
(0)
2 , (6.2c)

0 = ∂zzu(0)1 , (6.2d)

0 = −∂z p(0)1 + μ∂zzw
(0)
1 , (6.2e)

0 = ∂x u(0)1 + ∂zw
(0)
1 . (6.2f)

For the boundary condition at the free surface z = h(0)2 we get for the normal, tangential and kinematic conditions,
respectively,

p(0)2 − φ′(h(0))+ ∂xx h(0)2 − 2
(
∂zw

(0)
2 − ∂zu(0)2 ∂x h(0)2

)
= 0, (6.2g)

∂zu(0)2 = 0, (6.2h)

∂t h
(0)
2 = w

(0)
2 − u(0)2 ∂x h(0)2 . (6.2i)

For the boundary condition at the free liquid–liquid interface z = h(0)1 we get for the normal, tangential and kinematic
conditions, respectively,

p(0)1 − p(0)2 + φ′(h(0))+ σ ∂xx h(0)1 − 2
[(
μ∂zw

(0)
1 − ∂zw

(0)
2

)
−

(
μ∂zu(0)1 − ∂zu(0)2

)
∂x h(0)1

]
= 0, (6.2j)

∂z

(
μu(0)1 − u(0)2

)
= 0, (6.2k)

∂t h
(0)
1 = w

(0)
1 − u(0)1 ∂x h(0)1 . (6.2l)

The impermeability condition at z = h(0)1 between the two liquid layers is given by
(
w
(0)
2 − w

(0)
1

)
−

(
u(0)2 − u(0)1

)
∂x h(0)1 = 0. (6.2m)

The slip condition at the liquid–liquid interface z = h(0)1 is

u(0)2 = β1
μ+ 1

μ
∂zu(0)2 . (6.2n)

For the boundary conditions at the substrate we assume impermeability and no slip:

w
(0)
1 = 0, (6.2o)

∂zu(0)1 = 0. (6.2p)

From (6.2d), (6.2p) and (6.2a), (6.2h) we conclude

u(0)1 = u(0)1 (x, t), (6.3a)

u(0)2 = u(0)2 (x, t), (6.3b)

and thus the horizontal velocity components are independent of z. Using this in (6.2f), (6.2o) and (6.2c), (6.2m) we
find

w
(0)
1 = −z∂x u(0)1 , (6.4a)
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w
(0)
2 = −

(
z − h(0)1

)
∂x u(0)2 − ∂x u(0)1 h(0)1 + (u(0)2 − u(0)1 )∂x h(0)1 . (6.4b)

Using (6.2e), (6.2j) and (6.2b), (6.2g) we find

p(0)1 + 2μ∂x u(0)1 + ∂xx h(0)2 + σ∂xx h(0)1 = 0, (6.5a)

p(0)2 − φ′ (h(0)
)

+ 2∂x u(0)2 + ∂xx h(0)2 = 0, (6.5b)

hence also independent of z.

Next-order problem

To close the problem to leading order and determine an equation for u(0)1 and u(0)2 , we need to consider the problem
to next order. We will formulate here only the equations that are required to accomplish the task of fixing these
leading-order velocity components.

The next-order upper and lower layer equations in the bulk are

0 = −∂x p(0)2 + ∂xx u(0)2 + ∂zzu(1)2 , (6.6a)

0 = −∂z p(1)2 + ∂xxw
(0)
2 + ∂zzw

(1)
2 , (6.6b)

0 = ∂x u(1)2 + ∂zw
(1)
2 , (6.6c)

0 = −∂x p(0)1 + μ∂xx u(0)1 + μ∂zzu(1)1 , (6.6d)

0 = −∂z p(1)1 + μ∂xxw
(0)
1 + μ∂zzw

(1)
1 , (6.6e)

0 = ∂x u(1)1 + ∂zw
(1)
1 . (6.6f)

The next-order tangential stress boundary conditions at liquid–gas interface z = h(0)2 are

∂zu(1)2 + ∂xw
(0)
2 − 4∂x u(0)2 ∂x h(0)2 = 0, (6.6g)

∂z

(
μu(1)1 − u(1)2

)
+ ∂x

(
μw

(0)
1 − w

(0)
2

)
− 4∂x

(
μu(0)1 − u(0)2

)
∂x h(0)1 = 0. (6.6h)

At the liquid–liquid interface z = h(0)1 we have

u(0)2 − u(0)1 = β1
μ

μ+ 1

[
∂zu(1)2 + ∂xw

(0)
2 − 4∂x u(0)2 ∂x h(0)1

]
, (6.6i)

and at the solid substrate z = 0,

u(0)1 = β1∂zu(1)1 . (6.6j)

In the preceding equations, we have already made use of the fact that u(0)1 and u(0)2 do not depend on z and
dropped all derivatives of these variables with respect to z.

Integrating now (6.6a) and (6.6d), we obtain

∂z u(1)2

∣∣∣
h(0)2

− ∂z u(1)2

∣∣∣
h(0)1

= −h(0)
(
−∂x p(0)2 + ∂xx u(0)2

)
, (6.7a)

∂z u(1)1

∣∣∣
h(0)2

− ∂z u(1)1

∣∣∣
h(0)1

= −h(0)1

(
−∂x p(0)1 + μ∂xx u(0)1

)
. (6.7b)

The pressure terms on the right-hand side can be eliminated by using (6.5a) and (6.5b). The terms on the left-hand
side can be expressed in terms of the leading-order solutions u(0)2 , u(0)2 , h(0)1 and h(0)2 by first using (6.6g), (6.6h),
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(6.6i) and (6.6j), then eliminating the occurring w(0)2 and w(0)1 via the solutions (6.4a) and (6.4b). This yields
Eqs. (3.8a) and (3.8c). The other two equations, (3.8b) and (3.8d), are obtained by integrating (6.2c) and (6.2f) and
using the conditions (6.2i), (6.2l), (6.2m), (6.2p).

7 Appendix 2: Dispersion relations for Stokes equations

We start the stability analysis with the Stokes equations

0 = −∂x pn + μn (∂xx un + ∂zzun) , (7.1a)

0 = −∂z pn + μn (∂xxwn + ∂zzwn) , (7.1b)

0 = ∂x un + ∂zwn (7.1c)

and the boundary conditions from the previous sections. To simplify our problem, we introduce the stream functions
�1 and �2 with

un = ∂�n

∂z
, wn = −∂�n

∂x
(n = 1, 2). (7.2)

Plugging this into the Stokes equations we obtain two biharmonic equations:

∂4
x�n + 2∂2

x ∂
2
z�n + ∂4

z�n = 0 (n = 1, 2). (7.3)

Linear stability is carried out by introducing small perturbations
(
�n, h1 − h0

1, h2 − h0
2, pn − p0

n, φ − φ0

)
= δ

(
ψn(z), χ, 1,�n(z), (1 − χ) φ′∣∣

h0

)
exp(ikx + ωt) (7.4)

around the base state

�n = 0, hn = h0
n, h0 = h0

2 − h0
1, pn = p0

n, φ|h0 = φ0, (7.5)

where ω and k are the growth coefficient and the wavenumber, and obtain

∂4
zψn − 2k2∂2

zψn + k4ψn = 0, (7.6)

with the general solutions

ψn(z) = un1 exp(kz)+ un2z exp(kz)+ un3 exp(−kz)+ un4z exp(−kz), (7.7)

where the coefficients are determined using the boundary conditions. First, slip at z = 0 leads to

(k − b k2)u11 + (1 − 2 b k)u12 − (k + b k2)u13 + (1 + 2 b k)u14 = 0, (7.8)

while impermeability simply reads

u11 + u13 = 0. (7.9)

At the free surface z = h2 the kinematic condition becomes

kekh0
2 u21 + kh0

2ekh0
2 u22 + ke−kh0

2 u23 + kh0
2e−kh0

2 u24 = iω (7.10)

the tangential stress condition

kekh0
2 u21 + (kh0

2 + 1)ekh0
2 u22 + ke−kh0

2 u23 + (kh0
2 − 1)e−kh0

2 u24 = 0. (7.11)

At the liquid–liquid interface z = h1, the kinematic condition now reads

kekh0
1 u11 + kh0

1ekh0
1 u12 + ke−kh0

1 u13 + kh0
1e−kh0

1 u14 = iχω (7.12)

the tangential stress condition

μ1[kekh0
1 u11 + (kh0

1 + 1)ekh0
1 u12 + ke−kh0

1 u13 + (kh0
1 − 1)e−kh0

1 u14]
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−μ2[kekh0
1 u21 + (kh0

1 + 1)ekh0
1 u22 + ke−kh0

1 u23 + (kh0
1 − 1)e−kh0

1 u24] = 0. (7.13)

The impermeability condition is equivalent to

kekh0
1 u21 + kh0

1ekh0
1 u22 + ke−kh0

1 u23 + kh0
1e−kh0

1 u24 = iχω (7.14)

and, finally, the slip condition

kekh0
1 u11 + (kh0

1 + 1)ekh0
1 u12 − ke−kh0

1 u13 − (kh0
1 − 1)e−kh0

1 u14

+ k(2b∗k − 1)ekh0
1 u21 + (kh0

1 + 1)(2b∗k − 1)ekh0
1 u22

+ k(2b∗k + 1)e−kh0
1 u23 + (kh0

1 − 1)(2b∗k + 1)e−kh0
1 u24 = 0, (7.15)

where b∗ = (1 + μ2/μ1)b1. For the solution of this algebraic system we use the remaining boundary conditions,
namely the normal stress conditions at z = h2

iμ2[2k2ekh0
2 u21 + 2k2h0

2ekh0
2 u22 − 2k2e−kh0

2 u23 − 2k2h0
2e−kh0

2 u24] = σ2k2 + (1 − χ) φ′′∣∣
h0 , (7.16)

and at z = h1

iμ1[2k2ekh0
1 u11 + 2k2h0

1ekh0
1 u12 − 2k2e−kh0

1 u13 − 2k2h0
1e−kh0

1 u14]
− iμ2[2k2ekh0

1 u21 + 2k2h0
1ekh0

1 u22 − 2k2e−kh0
1 u23 − 2k2h0

1e−kh0
1 u24] = σ1χk2 − (1 − χ) φ′′∣∣

h0 . (7.17)
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